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CRNs and Open CRN Models




Chemical Reaction Networks 4

The dynamic model of a Chemical Reaction Network (CRN) is
built upon the following elements:

>

>

Species: S :={S1...S,} are constituent molecules
undergoing (a series of ) chemical reactions.

Complezes: C :={C;...Cp} are formally linear
combinations of the species, i.e. Cy := > 1 | @i Si,

where a4, ; are non-negative integer stoichiometric
coefficients.

Reactions: R :={R1... R} where Ry : C; — C;. Here C;
is the reactant (or source) complex, and C; is the product
complex for k=1,...,7.

Reaction rate coefficients: ki > 0 that is associated to Ry
fork=1,...,r.
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Dynamic CRN Model 5

Under the assumption of mass action law, the dynamic behavior
of the species’ chemical concentration (x = (z;)T € RZ) during
the reactions is given:

x =Y Agp(x), x(0) =x9 € RY,

> Y =[V;;] € N**™ Y} = oy is the complex composition
matrizc

» A, € R™*™ is the so-called Kirchhoff matriz containing the
reaction rate coefficients:

.| Kji, for j#£i
A/{('Laj) - { 72[7@ Ko, lfj -

Cc

> ;(x) =[],z for j =1,...,m are monomial functions




Open CRN Model

Consider constant volume V in the reactor where the reactions
take place:

n
x=YAp(x)+ %(diag(vi)XI —vx), where v = ;vl

> x; - concentration of inlet species

» v - volumetric flow rate

As follows we assume that V = 1.
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Physically Motivated Interconnections
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Interconnected CRNs

CRN™

CRN®

CRN®




CRN Subsystem Model

The dynamics of the jth open CRN reads as:

%) — (J)A(J Z O%WX _UJ x@)
teNy)

The outlet of the jth CRN is divided into fractions with the

fraction coefficients aj; and are fed into the neighboring CRNS.

Z aji:1

ieNg)

ol




Networks of CRNs 10

Let the Kirchhoff convection matrixz of the interconnected CRN

structure:
—U1 a21U9 e QAN1UN
o a12U1 —V2 e AN2UN
C, =
1NVl CQ9gNVy ... —UN

» Due to the definition of fraction coefficients, the column
sum is zero, e.g. Z;Vﬁ ay; = 0.

» Due to the constant volume assumption, the row sum is
N
zero, e.g. E r—o Qp1Vp = V1.




Interconnections with Delay 11

Subsystem models with delay:

x) =y AW, Z O‘EJWXTZ ;X x\),
teny)

» Discrete delay: m%) = xgé) (t —Tyj), Ty > 0 delay value.

» Distributed delay:
o] t
w20 = [l =ryir = [ gt=nalvir

Here g(7) is at least piece-wise continuous kernel function such
that [~ g(7)dr = 1.
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Interconnections with Distributed Delay 12

Example: Gamma-type kernel function

(n/T)ne—nt/T

g(t) = (=1

» T is a scaling parameter (time constant)

» n is a shape parameter (order of the system)

Impulse Response Impulse Response

Amplitude

0 = 0 ICRN|
0 5 10 15 0
Time (seconds) Time (seconds) _




Approximation of Distributed Delay 13

Let a single input — single output Linear Time-Invariant (LTT)
system with state-space representation

x(t) = Ax(t) + Bu(t), x(0)=0

where x(t) : R — R™ are the time-dependent internal states,
y(t),u(t) : R — R are the inputs and outputs respectively.
The output of the LTI system:

t
y(t) = /0 ce(AT)Bu(t—T)dr
a\7

Here ¢g(t) is the output when the input is the Dirac-delta.

ﬁ
2




Approximation of Distributed Delay 14

The output of an LTI system:

t
y(t) = /0 ce(AT)Bu(t—T)dT
g T

The distributed delay operator:

y(t) = /0 " g(ryult - r)dr

This suggests that LTI systems can be a (truncated)
approximation of the distributed delay terms in dynamic
models for a some types of kernel functions.




Approximation of Distributed Delay 15

Example: Gamma-type kernel function with n =1

y(t) = / le_T/T u(t —7)dr
o I
—_——
g(7)

The corresponding ODE:

Here v = 1/T is the flow rate coefficient.




Approximation of Distributed Delay 16

Example: Linear chains

c2

CRN?
'@ Wi AT et

CRN™

(1)

Ze = v(2zp—1 — 20) 2 =wv(x,’ — 21)

The corresponding LTI approximate model is a linear chain
model with the following terms




Diffusive Interconnections 17

Let two CRNs be connected in the following way:

) — Y ) A0 50 (xD)) 4 §(x0) — )

<0) = Y0 4G) 50 (x) 4 §(xD — x0))

The interconnection flow is driven by the concentration (state)
difference.

The interconnection term &(x¥) — x() represents the simplest
static approxzimate diffusion model.

The parameter § > 0 is the diffusion rate coefficient.




Diffusive Interconnections 18

ODE model for spatially discretized diffusion

A2

20 =0(z0—1 — 20) + 0(ze41 — 21)
) = 6(z9 — sz —
1 (22 251) + (.’L‘k Zl)

Zm = 0(Zm—-1— 2m) + 5(9”5@2) — Zm) ]




Diffusive Interconnections 19

ODE approximation: Two input — two output LTI system with
the following terms

x = Ax + Bu, x(0)=xo

y=0Cx
=26 0 0 0 o 0 o 0
A— ) 0 0 B— 0 0 o7 — 0 O
0 0 6 =20 0 ) 0 0




Interconnected CRNs 20

These cases (distributed delay, diffusion) motivate the analysis
of such networks of CRNs in which the interconnections are LTI
systems.

CRN™

1




CRN Model of Interconnected CRNs




Interconnected CRNs by LTT elements 22

One directional case: a number of m species is transferred
among the CRN subsystems.

CRNG) : x0) = YW AD ) (x0) 137 FD Y@ x| x(0)(0) = x)
(=1

e
rriy’ (g) o Doy 0) )
=A; XM +> ien ) )y B, H, x(0) x5/ (0) = x40

L. Marton, G. Szederkényi, K. M. Hangos, Modeling and control of networked kinetic systems with
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delayed interconnections, Journal of Process Control, Volume 130, 2023




Assumptions on Connecting LTI Models 23

>

>

Motivated by the physical examples we assume that Aéj ) is

Metzler and Hurwitz.

The inflow rates are considered to be equal to the outflow
rates both in the CRNs and LTI connecting subsystems.
Ezample: The cumulative inflow rate in the open C RN)
subsystem is equal to the outflow rate from this subsystem,
i.e. the row sum of the matrix below is zero:

( FOCY . FOcD . F9cw) - H(j))




Extended CRN Subsystem 24

The extended subsystem contains a CRN subsystem and the LTI
connecting elements from its input neighborhood set.

(4) (3) (x(3)
- (§) . Ag o o o e (x7)
x y@W o o I [€2) €]
; A
*(Jl) = o I o o o ! ?j) o x{jl)
x{]) o o I o o o Ay o x{g
12 - o F{”C%J) F2(])C£J> _Hg@ x(3)
*x(3) @) ——
KEJ) (1) (x(9))
o o o o Lp(f)g,f()(f)) o o o o w(g)gj(g))
4| 0 o o BYuP 10 +( o o o BYH® ) 1
(7) 17(F) x (3) £7(9) x
O O O BQf H, x{%) O o] O By, Hy x{g)
B{) 2 =) By

———
q>(£1)<

(c




Extended CRN Subsystem 25

po—

CRNO
=

Generally, the open CRN model of an extended subsystem can
be written in the following compact form:

X0 = YORDG0 (X0 1 T BO(x)
ieNt?




Interconnected Extended CRN Subsystems 26

The state-space realization of the networks has the form:
%1 YOAM o B{" () (x(1)
x@ | = B2  y@&® o 22 (x(®)
7 (3 3 — 3 3
x(3) o Bé&) Y<3)AL3) P )(x( ))

Proposition: The matrices 8), can be factorized as:

. L . )
B —yWBY), where ngz( BJ ) E

I
T




Interconnected Extended CRN Subsystems 27

The dynamic network model can be rewritten in the form:

x (1) v o o A o BY) () (x (1)
( x@ )—( o Y® o ) B A® o ( »(2)(x(2)) )
x(3) o 1o} v (3 o B(ESZ) KS) (3)(x(3))
X Y A ®(X)

The model of the interconnected system has CRN form:
X = YA, ®(X). RN
) i)




Diffusively Connected CRNs 28

A2

The highlighted terms are included in the CRN models at the
boundaries. Let the terms of the modified model be (?(1), Z,(j)),
and (7(2),1&2)) respectively. _




Diffusively Connected CRNs

ALY

The global model of the interconnected system:
x = YA, p(x)

29




Control — Theory of Passive Systems
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Control of Dynamic Systems 31

Let the open dynamic system:
x =f(x,u), x(0)=xp
y = h(x)

» Control problem: Design u in the function of y such to
achieve desired dynamic and steady-state proprieties for
the (controlled) system states.

» Example: all the states remain bounded and the output
converge to a prescribed constant setpoint.

limi o0y = ysp




Feedback Control 32

Let the same open dynamic system:
x =f(x,u), x(0)=x¢

y = h(x)
> Static feedback control:

u = u(y)
» Example: linear control
u = —Ky, K = (k?l])

» The controlled system is autonomous: x = f(x, u(h(x))

[CRN]
u y
K




Lyapunov Stability of Dynamic Systems 33

Let a dynamic system
x =f(x), x(0)=xo,

Notions from Lyapunov’s stability theory:

» Let x* be an equilibrium point of the system, i.e. f(x*) =0

» The equilibrium point x* = 0 is asymptotically stable if
Vp > 0 3r > 0 such that ||x¢| < r implies ||x(¢)|| < p, V¢
and lim_||x(t)|| = 0.

» Lyapunov’s direct method: Let a storage function
S(x) : R" — R assigned to the system such that
S(x) > 0,¥x # 0 and S(0) = 0. If S(x) < 0,Vx # 0, then
the system is asymptotically stable.
Note that for uniform and global stability decrescency or
radial unboundedness proprieties of S are required.




Passive Systems 34

Let an open dynamic system

x =f(x,u), x(0)=xp
y = h(x)

u,y : R — R™ are the (control) input and output vectors.

» The system is passive if 35 constant such that

/t yludr > 8 ¥ u(t).
0

» If there exists a continuously differentiable storage function
S(-) > 0 such that

t
S(t) < / yludr + St =0) or S(t) <y,
0

. . ICRN|
then the system is passive.




Passivity of Input-Affine Systems 35

Let an input-affine system:

x =f(x) + G(x)u, x(0)=x¢
y =h(x)

G(x) : R" — R™ ™ i a state-dependent input matrix.

» If there exists a continuously differentiable storage function
S(-) >0, S(0) = 0 such that

)

0x

and g—iG(x) = h(x)

f(x) <0

then the system is passive.




Passivity-based Stabilization of Dynamic Systems 36

Let the dynamic system:

x = f(x,u), x(0)=xp
y = h(x)

» The system is zero state detectable if y =0 and u =0
implies that the steady-state of x = 0.

» If the system is zero state detectable and passive, then the
linear diagonal control u = —Ky asymptotically stabilizes
the equilibrium state 0. Here K = diag(k;), k; > 0.




Feedback Passivation 37

Let the input-affine system:

x = f(x) + G(x)u, x(0) =xp
y = h(x)
» Let the control transformation:

u = f(x) + Gp(x)u,
» The system with control:

x = f(x) + Gx)fy(x) + GX)Gp(x) up,
fe(x) Ge(x)

y = h(x)

» The selection of the output (y) and the construction of the
feedback transformation u called feedback passivation.




Passivity-based Control of CRNs




Complex Balanced CRNs 39

Let the CRN model
x =Y Ap(x), x(0) =x0
» An equilibrium point of a CRN’s dynamic model satisfies
YAcp(x*)=0
» The CRN is called complex balanced if
Agp(x¥) = 0.

i.e. the signed sum of incoming and outgoing reaction rates
at equilibrium is zero for each complex.
» If the complex balanced property is satisfied for an
equilibrium point, then it is fulfilled for all the other —
equilibrium points. ,




Passivity of Open CRNs 40

Let the open CRN model
x=YA.p(x)+u, x(0)=x
The model is passive from the input u to the output
y = Ln(x) — Ln(x")
with respect to the storage function

S(x):zn: [x (111;—1) —i—xf]

=1 ¢

if the CRN is complex balanced.

L. Marton, K. M. Hangos, G. Szederkényi, Disturbance Attenuation via Nonlinear Feedback for

Chemical Reaction Networks, IFAC-PapersOnLine, Vol. 53, No. 2, 2020, pp 11497-11502.
[--




Control of Open CRN Models 41

Let the open CRN model
x=YAup(x)+ Bu+d, x(0)=xg

Here d is an unknown disturbance rate, B is the input matrix.
The control problem:
> Let a setpoint concentration xgp > 0 chosen from the
equilibrium point set of the CRN.
» If d = 0, design the control u such that lim;_,,ox = xgp
or equivalently lim;_,ooy = limy_, oo (Ln(x) — Ln(xgp)) = 0.
> If d # 0, ensure disturbance attenuation, i.e. “minimize”
the effect of d on y.




Passivity-based Feedback Control of CRNs 42

The control has a passivation feedback term and a setpoint
tracking term:
u=u,+u

» The first term (u,) modifies the rate such that the
dynamics of the controlled CRN “mimics” the dynamics of
a complex balanced CRN with the same monomial vector.

» The second term (u,) ensures the setpoint tracking of the
CRN in the presence of disturbances.




Design of Passivation Feedback u, 43

» First, design a reference Kirchhoff matrix A,.s such that
Apresp(xsp) =0
» Let the passivation feedback in the form:
u, = K,p(x)
» We can design such feedback iff
BBYY (Agres — Ag) =Y (Agrer — Ay)
» If the solvability condition holds, the solution is

Ky = B'Y (Ao — Ax) + (I — BTB) Z

ICRN|
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Design of A ef 44

> Let equilibrium state x(0)* = (:z:gj)* aréj)* :z:éj)*)T € R3, and
the vector of monomial functions:

) . . (7))
@ :]R%O - R220 @ (x)y = ( wlL(f)z >
3

» Let a diagonal matrix P; in the form:

o ocgj)*xgj)* 0 '
J 0 xéy)*

j —1 1
Aé”:( L4 )

» The reference Kirchhoff matrix can be constructed as:

» Let aj >0 and

AG) :ajAéj)P].*l (J)* (J)* (J)*

rref = . CRN
<7>* RO m* I




Setpoint Tracking Design (uy) 45

Let u; = —K;y = —K; (Ln(x) — Ln(x*)).
» With this control, the CRN model has the form:

X = YA/irefSO(X) - Ky +d.
» The time-derivative of the storage function satisfies
S <y'(~Kiy+d)

» If the controller gain matrix is chosen such that

ke > % (1 + %), where v > 0 is the prescribed disturbance
attenuation level, then the disturbance attenuation control
objective fot yly <~ fot d”d + S(0) is achieved.

ICRN|
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Implementation of the Control 46

Realistic implementation of the control:
u = u, + w; =: diag(v;)x; — vx

The input concentration (x; > 0) is manipulated by the control
mechanism.

Ensuring positivity for x; by manipulating the volumetric flow
rate v:

» Technical assumption 1: 0 <e < x; <

» Technical assumption 2: —uy; < u; < upyg

» Design v; such that xj; = Ui(uZ + vz;) > 0 regardless of the
sign of u;. R

I
T




Case Study - CRN Control 47

CRN with constant inflows and mass action kinetics outflows

@ — (k1 + ka) 0 ks " 00 O o kr V1T — VT
iy 2k —2%ky 0 : 00 0 3 kr VaT 2 — V2
. = 5 — 5 + +

T3 ky ky  —ks . 0 0 ko e 0 V3T [3 — VI3
Ty ky ko —k3 bt 0 0 ko a4 0 V4T[4 — VTY

M Ko K1 Vx—vx




Simulation Results - Trajectories with Control 48
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Simulation Results - Control Rates
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Control of Interconnected CRNs




Synchronization in Passive Networks 51

Let a network of subsystems

%) = £0) (x)) + GO (xD)u@, x0)(0) = xéﬁ
y) = h0)(x()

The outputs of the network’s subsystems are synchronized if

limisoo [y O (t) —y (1) =0, V4,5




Synchronization in Passive Networks 52

The network is synchronized if:
» All the subsystems are passive.

» The underlying graph of the network is strongly connected
(there is a path from each vertex to each vertex)

» The inputs of the subsystems are:




Control of Interconnected CRNs 53

» CRN subsystem model:

dx ()

v OAD D T e @t e voxd 4 g
zeN}-;V) Control Inflow Outflow PDisturbance

Interconnection Inflow

» Bounded disturbance is assumed
1dD|; < df

» Network structure defined by the Kirchhoff matriz

—V0 a10V1 ... ONQUN
. a@01Y0 —U1 e ON1UN
C, =
QoNVUy) O1NVT ... —UN

ié
: 2




Environment 54

The CRN network is connected through constant inflows (raw
material) and constant outflows (products) to the Environment.
Cumulative inflow rates are equal to cumulative outflow rates.

N
Vo = E QU
=0

Assume that the underlying graph of the interconnected
system has such a spanning tree whose root is the Environment.




Control Problem 55

» Let the setpoint of the jth CRN be ng])j that belongs to

the equilibrium point set of the jth CRN.

» Design the control input x¢ for each CRN such to assure
that ‘
limisso|lyV (1)l <&, VL

where € > 0 is a given control precision and
y@) = Ln(xW)) — Ln(xgl)a)
L. Marton, G. Szederkényi, K. M. Hangos, Distributed control of interconnected Chemical Reaction

Networks with delay, Journal of Process Control, Vol. 71, 2018, pp. 52-62
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Control Design 56

Let the control x(]) = x,(g) (J) + ch}

> X;J) = Kpgp(x(])) - Local feedback to ensure passivity.
> ng) = fKty(j) - Setpoint tracking term.

» Feedforward term (x Sc] f)) - Compensates for the difference
between the physical interconnections and passive outputs.

xi’jf) - Z agjve ( () (t — Tyz) — < (t — T({j)) — v (y(j) _ x(j))
Civi N(J)




Analysis of the Controlled Network 57

» Consider the Lyapunov-Krasovskii functional:

N c N ¢
s =23 50 +ZZ%W/ yOT 3O e
=0 Tei

=0 £=0

» If the controller gain matrix K; is chosen such that
ky > 1+ %, it can be shown that Sy; < 0 for

Iy @) = e.




Case Study — Process Control System 58

» The process system is designed to extract carbon dioxide
(CO2) from flue gases using lime hydrate (Ca(OH)2).

» Unit 1 is for absorbing the carbon dioxide (specie A) in

water that is in great excess and produces dissolved HoCO3
(1)
(carbonic acid - specie C): A LAY

» Units 2 and 3 realize a two-stage extractor where specie B
(lime hydrate, Ca(OH)2) and specie C' (dissolved HoCOs3)

react to form specie D (rag-stone, CaCQO3): B 4+ C LAYS! _




Case Study — Control Objective 59

» The control aim is to set the outflow concentration of
specie C'in CRN™ high enough to consume most of the
specie A (the carbon dioxide) in the inflow gas. Then we
set the outflow concentration of specie C' in CRN® and
CRN®) gradually smaller such that the resulting specie D
can be safely withdrawn as a solid from these units.

ICRN|
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Case Study — Control Design 60

Example (CRN(?):
» Control-oriented modeling

@) _ _p2,@ 53 4 ,2) (2)

7’U$

i;‘w I B, §>+v<g> @ _ <3> ORI N NS
W _ w@.0.0 _ B

» The steady-state value of the specie B can be computed in
function of the prescribed steady-state values of specie C":

2) (2 2
KD el polhp = vo@Slp — 28k p)

(2)

» The control input is the inlet concentration x5 :

(2) vED) (2) (2) (2) (2) v(B2) 23 B~ 2(2)
Toe = Ty + (2) (ln(zBSP> —in(ep )) Tpsp T Be) TBsp
u u




Case study — Simulation Results

Non-controlled states in subsystem 2
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Case Study — Simulation Results 62

Controlled states and control signal of subsystem 2
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Conclusions 63

» The global models of some interconnected CRNs with
physically motivated interconnections (distributed delay,
diffusion) also have a CRN model form with mass-action
kinetics. This can be explored for analysis and control of
these systems.

» The passivity theory is a convenient approach to develop
setpoint tracking controllers for CRNs in the presence of
disturbances.

» The synchronization problem of passive systems can also
be applied to develop control methods for interconnected
CRNBs.

» The passivity-based control design approach is also suitable
to control interconnected Lotka-Volterra systems see e.g.
DOLI: 10.1088/1361-6544 /abd52b [Cg
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