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CRNs and Open CRN Models
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Chemical Reaction Networks 4

The dynamic model of a Chemical Reaction Network (CRN) is
built upon the following elements:

I Species: S := {S1 . . . Sn} are constituent molecules
undergoing (a series of) chemical reactions.

I Complexes: C := {C1 . . . Cm} are formally linear
combinations of the species, i.e. Ck :=

∑n
i=1 αk,iSi,

where αk,i are non-negative integer stoichiometric
coefficients.

I Reactions: R := {R1 . . .Rr} where Rk : Ci → Cj . Here Ci
is the reactant (or source) complex, and Cj is the product
complex for k = 1, . . . , r.

I Reaction rate coefficients: κk > 0 that is associated to Rk
for k = 1, . . . , r.
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Dynamic CRN Model 5

Under the assumption of mass action law, the dynamic behavior
of the species’ chemical concentration (x = (xi)

T ∈ Rn>0) during
the reactions is given:

ẋ = Y Aκϕ(x), x(0) = x0 ∈ Rn>0

I Y = [Yij ] ∈ Nn×m, Yij = αij is the complex composition
matrix

I Aκ ∈ Rm×m is the so-called Kirchhoff matrix containing the
reaction rate coefficients:

Aκ(i, j) =

{
κji, for j 6= i
−
∑

` 6=j κj`, if j = i.

I ϕj(x) =
∏n
i=1 x

αij
i for j = 1, . . . ,m are monomial functions CRN
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Open CRN Model 6

Consider constant volume V in the reactor where the reactions
take place:

ẋ = Y Aκϕ(x) +
1

V
(diag(vi)xI − vx), where v =

n∑
i=1

vi.

I xI - concentration of inlet species

I v - volumetric flow rate

vv

v1

v2

v3

v

As follows we assume that V = 1.
CRN
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Physically Motivated Interconnections
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Interconnected CRNs 8

CRN(1)

CRN(2)

CRN(3)

CRN(4)CRN(0) CRN
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CRN Subsystem Model 9

The dynamics of the jth open CRN reads as:

ẋ(j) = Y (j)A(j)
κ ϕ(j)(x(j)) +

∑
`∈N (j)

I

α`jv`x
(`) − vjx(j)

The outlet of the jth CRN is divided into fractions with the
fraction coefficients αji and are fed into the neighboring CRNs.∑

i∈N (j)
O

αji = 1
vv

v1

v2

v3

α11v

α12v

α13v

α14v CRN
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Networks of CRNs 10

Let the Kirchhoff convection matrix of the interconnected CRN
structure:

Cκ =


−v1 α21v2 . . . αN1vN
α12v1 −v2 . . . αN2vN
· · · · · · · · · · · ·

α1Nv1 α2Nv2 . . . −vN


I Due to the definition of fraction coefficients, the column

sum is zero, e.g.
∑N

j=2 α1j = 0.

I Due to the constant volume assumption, the row sum is
zero, e.g.

∑N
`=2 α`1v` = v1.

CRN
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Interconnections with Delay 11

Subsystem models with delay:

ẋ(j) = Y (j)A(j)
κ ϕ(j)(x(j)) +

∑
`∈N (j)

I

α`jv`x
(`)
T i − vjx

(j),

I Discrete delay: x
(`)
T i = x

(`)
i (t− T`j), T`j > 0 delay value.

I Distributed delay:

x
(`)
T i (t) =

∫ ∞
0

g(τ)x
(`)
i (t− τ)dτ =

∫ t

−∞
g(t− τ)x

(`)
i (t)dτ

Here g(τ) is at least piece-wise continuous kernel function such
that

∫∞
0 g(τ)dτ = 1.

CRN
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Interconnections with Distributed Delay 12

Example: Gamma-type kernel function

g(t) =
(n/T )ne−nt/T

(n− 1)!

I T is a scaling parameter (time constant)

I n is a shape parameter (order of the system)

CRN
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Approximation of Distributed Delay 13

Let a single input – single output Linear Time-Invariant (LTI)
system with state-space representation

ẋ(t) = Ax(t) +Bu(t), x(0) = 0

y(t) = Cx(t)

where x(t) : R→ Rn are the time-dependent internal states,
y(t), u(t) : R→ R are the inputs and outputs respectively.
The output of the LTI system:

y(t) =

∫ t

0
CeAτB︸ ︷︷ ︸
g(τ)

u(t− τ)dτ

Here g(t) is the output when the input is the Dirac-delta.
CRN
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Approximation of Distributed Delay 14

The output of an LTI system:

y(t) =

∫ t

0
CeAτB︸ ︷︷ ︸
g(τ)

u(t− τ)dτ

The distributed delay operator:

y(t) =

∫ ∞
0

g(τ)u(t− τ)dτ

This suggests that LTI systems can be a (truncated)
approximation of the distributed delay terms in dynamic
models for a some types of kernel functions.

CRN
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Approximation of Distributed Delay 15

Example: Gamma-type kernel function with n = 1

y(t) =

∫ ∞
0

1

T
e−τ/T︸ ︷︷ ︸
g(τ)

u(t− τ)dτ

The corresponding ODE:

ẏ(t) = v(u(t)− y(t))

Here v = 1/T is the flow rate coefficient.

CRN
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Approximation of Distributed Delay 16

Example: Linear chains

zlzm-1zm z2 z1xk
(2)

C(1,2)

CRN(2)

x1
(2)

x2
(2)

xk
(1)

CRN(1)

x1
(1)

x2
(1)

ż` = v(z`−1 − z`) ż1 = v(x
(1)
k − z1)

The corresponding LTI approximate model is a linear chain
model with the following terms

A =


−v 0 . . . 0 0
v −v . . . 0 0
· · · · · · · · · · · ·
0 0 . . . v −v

 B =


v
0
· · ·
0

 C
T

=


0
0
· · ·
v


CRN
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Diffusive Interconnections 17

Let two CRNs be connected in the following way:

ẋ(i) = Y (i)A(i)
κ ϕ

(i)(x(i)) + δ(x(j) − x(i))

ẋ(j) = Y (j)A(j)
κ ϕ(j)(x(j)) + δ(x(i) − x(j))

The interconnection flow is driven by the concentration (state)
difference.
The interconnection term δ(x(j) − x(i)) represents the simplest
static approximate diffusion model.
The parameter δ > 0 is the diffusion rate coefficient.

CRN
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Diffusive Interconnections 18

ODE model for spatially discretized diffusion

zlzm-1zm z2 z1xk
(2)

Δ(1,2)

CRN(2)

x1
(2)

x2
(2)

xk
(1)

CRN(1)

x1
(1)

x2
(1)

ż` = δ(z`−1 − z`) + δ(z`+1 − z`)

ż1 = δ(z2 − z1) + δ(x
(1)
k − z1)

żm = δ(zm−1 − zm) + δ(x
(2)
k − zm) CRN
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Diffusive Interconnections 19

ODE approximation: Two input – two output LTI system with
the following terms

ẋ = Ax +Bu, x(0) = x0

y = Cx

A =


−2δ δ . . . 0 0
δ −2δ . . . 0 0
· · · · · · · · · · · · · · ·
0 0 . . . δ −2δ

 B =


δ 0
0 0
· · · · · ·
0 δ

 CT =


δ 0
0 0
· · · · · ·
0 δ


CRN
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Interconnected CRNs 20

These cases (distributed delay, diffusion) motivate the analysis
of such networks of CRNs in which the interconnections are LTI
systems.

CRN(2)

LTIB
(2)

CRN(3)

LTIB
(3)

LTIC
(3)LTIC

(2)CRN(1)

LTIC
(1)

CRN
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CRN Model of Interconnected CRNs
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Interconnected CRNs by LTI elements 22

CRN(j)

LTI1
(j)

LTI2
(j)

One directional case: a number of m species is transferred
among the CRN subsystems.

CRN (j) : ẋ(j) = Y (j)A(j)
κ ϕ(j)(x(j))+

m∑
`=1

F
(j)
` y

(j)
I` −H

(j)x(j), x(j)(0) = x
(j)
0

LTI
(j)
` :

{
y

(j)
I` = C

(j)
` x

(j)
I`

ẋ
(j)
I` = A

(j)
` x

(j)
I` +

∑
i∈N (j)

I

B
(j)
i` H

(i)
` x(i), x

(j)
I` (0) = x

(j)
I`0.

L. Márton, G. Szederkényi, K. M. Hangos, Modeling and control of networked kinetic systems with

delayed interconnections, Journal of Process Control, Volume 130, 2023
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Assumptions on Connecting LTI Models 23

I Motivated by the physical examples we assume that A
(j)
` is

Metzler and Hurwitz.

I The inflow rates are considered to be equal to the outflow
rates both in the CRNs and LTI connecting subsystems.
Example: The cumulative inflow rate in the open CRN (j)

subsystem is equal to the outflow rate from this subsystem,
i.e. the row sum of the matrix below is zero:(

F
(j)
1 C

(j)
1 . . . F

(j)
` C

(j)
` . . . F (j)

m C(j)
m −H(j)

)

CRN
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Extended CRN Subsystem 24

The extended subsystem contains a CRN subsystem and the LTI
connecting elements from its input neighborhood set.

CRN(j)

LTI1
(j)

LTI2
(j)

 ẋ(j)

ẋ
(j)
I1

ẋ
(j)
I2


︸ ︷︷ ︸

Ẋ(j)

=

 Y (j) O O I
O I O O
O O I O


︸ ︷︷ ︸

Y(j)


A

(j)
κ O O O

O A
(j)
1 O O

O O A
(j)
2 O

O F
(j)
1 C

(j)
1 F

(j)
2 C

(j)
2 −H(j)


︸ ︷︷ ︸

A
(j)
κ


ϕ(j)(x(j))

x
(j)
I1

x
(j)
I2

x(j)


︸ ︷︷ ︸

Φ(j)(X(j))

+


O O O O

O O O B
(j)
1f
H

(f)
1

O O O B
(j)
2f
H

(f)
2


︸ ︷︷ ︸

B
(j)
f


ϕ(f)(x(f))

x
(f)
I1

x
(f)
I2

x(f)


︸ ︷︷ ︸

Φ(f)(X(f))

+

 O O O O

O O O B
(j)
1g H

(g)
1

O O O B
(j)
2g H

(g)
2


︸ ︷︷ ︸

B
(j)
g


ϕ(g)(x(g))

x
(g)
I1

x
(g)
I2

x(g)


︸ ︷︷ ︸

Φ(g)(X(g))CRN
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Extended CRN Subsystem 25

CRN(j)

LTI1
(j)

LTI2
(j)

Generally, the open CRN model of an extended subsystem can
be written in the following compact form:

Ẋ(j) = Y(j)A
(j)
κ Φ(j)(X(j)) +

∑
i∈N (j)

I

B
(j)
i Φ(i)(X(i))

CRN
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Interconnected Extended CRN Subsystems 26

CRN(3)

LTIA
(3)

LTIB
(3)

CRN(2)

LTIA
(2)

LTIB
(2)

CRN(1)

LTIA
(1)

LTIB
(1)

The state-space realization of the networks has the form:

 Ẋ(1)

Ẋ(2)

Ẋ(3)

 =

 Y(1)A
(1)
κ O B

(1)
3

B
(2)
1 Y(2)A

(2)
κ O

O B
(3)
2 Y(3)A

(3)
κ


 Φ(1)(X(1))

Φ(2)(X(2))

Φ(3)(X(3))



Proposition: The matrices B
(j)
i , can be factorized as:

B
(j)
i = Y

(j)
B

(j)
Ei
, where B

(j)
Ei

=

(
B

(j)
i
O

)
CRN
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Interconnected Extended CRN Subsystems 27

CRN(3)

LTIA
(3)

LTIB
(3)

CRN(2)

LTIA
(2)

LTIB
(2)

CRN(1)

LTIA
(1)

LTIB
(1)

The dynamic network model can be rewritten in the form:
 Ẋ(1)

Ẋ(2)

Ẋ(3)


︸ ︷︷ ︸

Ẋ

=

 Y(1) O O

O Y(2) O

O O Y(3)


︸ ︷︷ ︸

Y


A

(1)
κ O B

(1)
E3

B
(2)
E1

A
(2)
κ O

O B
(3)
E2

A
(3)
κ


︸ ︷︷ ︸

Aκ

 Φ(1)(X(1))

Φ(2)(X(2))

Φ(3)(X(3))


︸ ︷︷ ︸

Φ(X)

The model of the interconnected system has CRN form:

Ẋ = YAκΦ(X). CRN
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Diffusively Connected CRNs 28

zlzm-1zm z2 z1xk
(2)

Δ(1,2)

CRN(2)

x1
(2)

x2
(2)

xk
(1)

CRN(1)

x1
(1)

x2
(1)

The highlighted terms are included in the CRN models at the

boundaries. Let the terms of the modified model be (Y
(1)
, A

(1)
κ ),

and (Y
(2)
, A

(2)
κ ) respectively.

CRN
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Diffusively Connected CRNs 29

zlzm-1zm z2 z1xk
(2)

Δ(1,2)

CRN(2)

x1
(2)

x2
(2)

xk
(1)

CRN(1)

x1
(1)

x2
(1)

x =

 x(1)

z

x(2)

 Y =

 Y
(1)

0 0
0 I 0

0 0 Y
(2)

 Aκ =

 A
(1)
κ Q11 0
Q12 A∆ Q21

0 Q22 A
(2)
κ



Q11 =

 0 0
... ...
0 δ

 Q12 =

[
0 ... 0
0 ... δ

]
A∆ =


−2δ δ . . . 0 0
δ −2δ . . . 0 0
· · · · · · · · · · · · · · ·
0 0 . . . δ −2δ


Q22 =

 0 0
... ...
δ 0

 Q21 =

[
0 ... δ
0 ... 0

]

The global model of the interconnected system:

ẋ = YAκϕ(x) CRN
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Control – Theory of Passive Systems
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Control of Dynamic Systems 31

Let the open dynamic system:

ẋ = f(x,u), x(0) = x0

y = h(x)

I Control problem: Design u in the function of y such to
achieve desired dynamic and steady-state proprieties for
the (controlled) system states.

I Example: all the states remain bounded and the output
converge to a prescribed constant setpoint.

limt→∞y = ySP

CRN
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Feedback Control 32

Let the same open dynamic system:

ẋ = f(x,u), x(0) = x0

y = h(x)

I Static feedback control:

u = u(y)

I Example: linear control

u = −Ky, K = (kij)

I The controlled system is autonomous: ẋ = f(x,u(h(x))

CRN

K
u y

CRN
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Lyapunov Stability of Dynamic Systems 33

Let a dynamic system

ẋ = f(x), x(0) = x0,

Notions from Lyapunov’s stability theory:

I Let x∗ be an equilibrium point of the system, i.e. f(x∗) = 0

I The equilibrium point x∗ = 0 is asymptotically stable if
∀ρ > 0 ∃r > 0 such that ‖x0‖ < r implies ‖x(t)‖ < ρ, ∀t
and limt→∞‖x(t)‖ = 0.

I Lyapunov’s direct method: Let a storage function
S(x) : Rn → R assigned to the system such that
S(x) > 0,∀x 6= 0 and S(0) = 0. If Ṡ(x) < 0, ∀x 6= 0, then
the system is asymptotically stable.
Note that for uniform and global stability decrescency or
radial unboundedness proprieties of S are required.

CRN
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Passive Systems 34

Let an open dynamic system

ẋ = f(x,u), x(0) = x0

y = h(x)

u,y : R→ Rm are the (control) input and output vectors.

I The system is passive if ∃β constant such that∫ t

0
yTudτ ≥ β ∀ u(t).

I If there exists a continuously differentiable storage function
S(·) ≥ 0 such that

S(t) ≤
∫ t

0
yTudτ + S(t = 0) or Ṡ(t) ≤ yTu,

then the system is passive.
CRN
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Passivity of Input-Affine Systems 35

Let an input-affine system:

ẋ = f(x) +G(x)u, x(0) = x0

y = h(x)

G(x) : Rn → Rn×m is a state-dependent input matrix.

I If there exists a continuously differentiable storage function
S(·) ≥ 0, S(0) = 0 such that

∂S

∂x
f(x) ≤ 0

and
∂S

∂x
G(x) = h(x)

then the system is passive.

CRN
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Passivity-based Stabilization of Dynamic Systems 36

Let the dynamic system:

ẋ = f(x,u), x(0) = x0

y = h(x)

I The system is zero state detectable if y = 0 and u = 0
implies that the steady-state of x = 0.

I If the system is zero state detectable and passive, then the
linear diagonal control u = −Ky asymptotically stabilizes
the equilibrium state 0. Here K = diag(ki), ki > 0.

CRN
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Feedback Passivation 37

Let the input-affine system:

ẋ = f(x) +G(x)u, x(0) = x0

y = h(x)

I Let the control transformation:

u = fp(x) +Gp(x)up

I The system with control:

ẋ = f(x) +G(x)fp(x)︸ ︷︷ ︸
fc(x)

+G(x)Gp(x)︸ ︷︷ ︸
Gc(x)

up,

y = h(x)

I The selection of the output (y) and the construction of the
feedback transformation u called feedback passivation.

CRN
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Passivity-based Control of CRNs
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Complex Balanced CRNs 39

Let the CRN model

ẋ = Y Aκϕ(x), x(0) = x0

I An equilibrium point of a CRN’s dynamic model satisfies

Y Aκϕ(x∗) = 0

I The CRN is called complex balanced if

Aκϕ(x∗) = 0.

i.e. the signed sum of incoming and outgoing reaction rates
at equilibrium is zero for each complex.

I If the complex balanced property is satisfied for an
equilibrium point, then it is fulfilled for all the other
equilibrium points.

CRN
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Passivity of Open CRNs 40

Let the open CRN model

ẋ = Y Aκϕ(x) + u, x(0) = x0

The model is passive from the input u to the output

y = Ln(x)− Ln(x∗)

with respect to the storage function

S(x) =

n∑
i=1

[
xi

(
ln
xi
x∗i
− 1

)
+ x∗i

]
.

if the CRN is complex balanced.
L. Márton, K. M. Hangos, G. Szederkényi, Disturbance Attenuation via Nonlinear Feedback for

Chemical Reaction Networks, IFAC-PapersOnLine, Vol. 53, No. 2, 2020, pp 11497-11502. CRN
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Control of Open CRN Models 41

Let the open CRN model

ẋ = Y Aκϕ(x) +Bu + d, x(0) = x0

Here d is an unknown disturbance rate, B is the input matrix.
The control problem:

I Let a setpoint concentration xSP > 0 chosen from the
equilibrium point set of the CRN.

I If d = 0, design the control u such that limt→∞x = xSP
or equivalently limt→∞y = limt→∞(Ln(x)− Ln(xSP )) = 0.

I If d 6= 0, ensure disturbance attenuation, i.e. “minimize”
the effect of d on y.

CRN
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Passivity-based Feedback Control of CRNs 42

The control has a passivation feedback term and a setpoint
tracking term:

u = up + ut

I The first term (up) modifies the rate such that the
dynamics of the controlled CRN “mimics” the dynamics of
a complex balanced CRN with the same monomial vector.

I The second term (up) ensures the setpoint tracking of the
CRN in the presence of disturbances.

CRN
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Design of Passivation Feedback up 43

I First, design a reference Kirchhoff matrix Aκref such that

Aκrefϕ(xSP ) = 0

I Let the passivation feedback in the form:

up = Kpϕ(x)

I We can design such feedback iff

BB†Y (Aκref −Aκ) = Y (Aκref −Aκ)

I If the solvability condition holds, the solution is

Kp = B†Y (Aκref −Aκ) +
(
I −B†B

)
Z

CRN
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Design of Aκref 44

I Let equilibrium state x(j)∗ = (x
(j)∗
1 x

(j)∗
2 x

(j)∗
3 )T ∈ R3

>0 and
the vector of monomial functions:

ϕ
(j)

: R3
≥0 → R

2
≥0 ϕ

(j)
(x

(j)
) =

(
x

(j)
1 x

(j)
2

x
(j)
3

)

I Let a diagonal matrix Pj in the form:

Pj =

(
x

(j)∗
1 x

(j)∗
2 0

0 x
(j)∗
3

)
.

I Let aj > 0 and
A

(j)
0 =

(
−1 1
1 −1

)
.

I The reference Kirchhoff matrix can be constructed as:

A
(j)
κref

= ajA
(j)
0 P

−1
j =


−

aj

x
(j)∗
1 x

(j)∗
2

aj

x
(j)∗
3aj

x
(j)∗
1 x

(j)∗
2

−
aj

x
(j)∗
3

 . CRN
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Setpoint Tracking Design (ut) 45

Let ut = −Kty = −Kt (Ln(x)− Ln(x∗)).

I With this control, the CRN model has the form:

ẋ = Y Aκrefϕ(x)−Kty + d.

I The time-derivative of the storage function satisfies

Ṡ ≤ yT (−Kty + d)

I If the controller gain matrix is chosen such that

kt >
1
2

(
1 + 1

γ

)
, where γ > 0 is the prescribed disturbance

attenuation level, then the disturbance attenuation control
objective

∫ t
0 yTy ≤ γ

∫ t
0 dTd + S(0) is achieved.

CRN
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Implementation of the Control 46

Realistic implementation of the control:

u = up + ut =: diag(vi)xI − vx

The input concentration (xI > 0) is manipulated by the control
mechanism.

Ensuring positivity for xI by manipulating the volumetric flow
rate v:

I Technical assumption 1: 0 < ε < xi < xM

I Technical assumption 2: −uM < ui < uM

I Design vi such that xIi = 1
vi

(ui + vxi) > 0 regardless of the
sign of ui. CRN
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Case Study - CRN Control 47

CRN with constant inflows and mass action kinetics outflows

Ø

A
1

2A
2

A +A
3 4

k
I

k
1

k
3

k
4

k
2

k
O


ẋ1

ẋ2

ẋ3

ẋ4

 =


−(k1 + k4) 0 k3

2k1 −2k2 0
k4 k2 −k3

k4 k2 −k3


︸ ︷︷ ︸

M

 x1

x2
2

x3x4

−


0 0 0
0 0 0
0 0 kO
0 0 kO


︸ ︷︷ ︸

KO

 x1

x2
2

x3c4

+


kI
kI
0
0


︸ ︷︷ ︸

KI1

+


v1xI1 − vx1

v2xI2 − vx2

v3xI3 − vx3

v4xI4 − vx4


︸ ︷︷ ︸

V xI−vx

.
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Simulation Results - Trajectories with Control 48
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Simulation Results - Control Rates 49

0 1 2 3 4 5
0

20

40

v 1

 

 

0 1 2 3 4 5
0

20

40
v 2

0 1 2 3 4 5
0

20

40

v 3

0 1 2 3 4 5
0

20

40

v 4

Time (s)

g = 0.05
g = 0.01

CRN

C



Control of Interconnected CRNs
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Synchronization in Passive Networks 51

Let a network of subsystems

ẋ(j) = f (j)(x(j)) +G(j)(x(j))u(j), x(j)(0) = x
(j)
0

y(j) = h(j)(x(j))

The outputs of the network’s subsystems are synchronized if

limt→∞‖y(`)(t)− y(j)(t)‖ = 0, ∀ `, j
CRN
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Synchronization in Passive Networks 52

The network is synchronized if:

I All the subsystems are passive.

I The underlying graph of the network is strongly connected
(there is a path from each vertex to each vertex)

I The inputs of the subsystems are:

u(j)(t) = k

 ∑
`∈N (j)

I

y(`)(t)− y(j)(t)

 , k > 0
CRN

C



Control of Interconnected CRNs 53

I CRN subsystem model:

dx(j)

dt
= Y

(j)
A

(j)
κ ϕ

(j)
(x

(j)
)+

∑
`∈N(j)

IN

a`jv`x
(`)

(t− T`j)

︸ ︷︷ ︸
Interconnection Inflow

+ aLjvjx
(j)
C︸ ︷︷ ︸

Control Inflow

− vOjx
(j)︸ ︷︷ ︸

Outflow

+ d
(j)︸ ︷︷ ︸

Disturbance

I Bounded disturbance is assumed

‖d(j)‖2 ≤ d(j)
M

I Network structure defined by the Kirchhoff matrix

Cκ =


−v0 α10v1 . . . αN0vN
α01v0 −v1 . . . αN1vN
· · · · · · · · · · · ·

α0Nv0 α1Nv1 . . . −vN


CRN
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Environment 54

CRN(1)

CRN(2)

CRN(3)

CRN(4)CRN(0)

The CRN network is connected through constant inflows (raw
material) and constant outflows (products) to the Environment.
Cumulative inflow rates are equal to cumulative outflow rates.

v0 =

N∑
`=0

α0lv`

Assume that the underlying graph of the interconnected
system has such a spanning tree whose root is the Environment.

CRN

C



Control Problem 55

I Let the setpoint of the jth CRN be x
(j)
SP that belongs to

the equilibrium point set of the jth CRN.

I Design the control input xC for each CRN such to assure
that

limt→∞‖y(j)(t)‖ ≤ ε, ∀ `, j

where ε > 0 is a given control precision and

y(j) = Ln(x(j))− Ln(x
(j)
SP )

L. Márton, G. Szederkényi, K. M. Hangos, Distributed control of interconnected Chemical Reaction

Networks with delay, Journal of Process Control, Vol. 71, 2018, pp. 52-62

CRN
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Control Design 56

Let the control x
(j)
C = x

(j)
p + x

(j)
t + x

(j)
ff

I x
(j)
p = Kpϕ(x(j)) - Local feedback to ensure passivity.

I x
(j)
t = −Kty

(j) - Setpoint tracking term.

I Feedforward term (x
(j)
ff ) - Compensates for the difference

between the physical interconnections and passive outputs.

x
(j)
ff

=
1

αCjvj

 ∑
`∈N(j)

IN

α`jv`

(
y

(`)
(t− T`j)− x

(`)
(t− T`j)

)
− vj

(
y

(j) − x
(j)
) .

CRN
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Analysis of the Controlled Network 57

I Consider the Lyapunov-Krasovskii functional:

SΣ = 2

N∑
j=0

S(j) +

C∑
j=0

N∑
`=0

α`jv`

∫ t

t−T`j
y(`)Ty(`)dξ.

I If the controller gain matrix Kt is chosen such that
kti > 1 + dMi

ε , it can be shown that ṠΣ < 0 for

‖y(j)(t)‖ ≥ ε.

CRN
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Case Study – Process Control System 58

CRN(2)

LTIB
(2)

CRN(3)

LTIB
(3)

LTIC
(3)LTIC

(2)CRN(1)

LTIC
(1)

C1

C2 C3

vD
(2)

vB
(3)

vC

vD
(3)

vC

vC

vB
(2) vu

(2) vu
(3)

xA
(1), xC

(1)

xAc
(1)

xB
(2), xC

(2) , 
xD

(2)

xBc
(2) xBc

(3)

xB
(3), xC

(3) xD
(3)

vAvA

I The process system is designed to extract carbon dioxide
(CO2) from flue gases using lime hydrate (Ca(OH)2).

I Unit 1 is for absorbing the carbon dioxide (specie A) in
water that is in great excess and produces dissolved H2CO3

(carbonic acid - specie C): A
k(1)

−−→ C

I Units 2 and 3 realize a two-stage extractor where specie B
(lime hydrate, Ca(OH)2) and specie C (dissolved H2CO3)

react to form specie D (rag-stone, CaCO3): B + C
k−→ D CRN

C



Case Study – Control Objective 59

CRN(2)

LTIB
(2)

CRN(3)

LTIB
(3)

LTIC
(3)LTIC

(2)CRN(1)

LTIC
(1)

C1

C2 C3

vD
(2)

vB
(3)

vC

vD
(3)

vC

vC

vB
(2) vu

(2) vu
(3)

xA
(1), xC

(1)

xAc
(1)

xB
(2), xC

(2) , 
xD

(2)

xBc
(2) xBc

(3)

xB
(3), xC

(3) xD
(3)

vAvA

I The control aim is to set the outflow concentration of
specie C in CRN (1) high enough to consume most of the
specie A (the carbon dioxide) in the inflow gas. Then we
set the outflow concentration of specie C in CRN (2) and
CRN (3) gradually smaller such that the resulting specie D
can be safely withdrawn as a solid from these units.

CRN
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Case Study – Control Design 60

Example (CRN (2)):
I Control-oriented modeling


ẋ

(2)
C

= −k(2)x
(2)
B
x

(2)
C

+ vCy
(2)
IC
− vCx

(2)
C

ẋ
(2)
B

= −k(2)x
(2)
B
x

(2)
C

+ v
(2)
B
y
(2)
IB
− v(3)

B
x

(2)
B

+ v
(2)
u x

(2)
Bc

ẋ
(2)
D

= k(2)x
(2)
B
x

(2)
C
− v(2)

D
x

(2)
D

, v
(2)
B

+ v
(2)
u = v

(3)
B

I The steady-state value of the specie B can be computed in
function of the prescribed steady-state values of specie C:

k
(2)
x

(2)
BSP

x
(2)
CSP

= vC(x
(1)
CSP

− x(2)
CSP

)

I The control input is the inlet concentration x
(2)
Bc:

x
(2)
Bc

=
v
(2)
D

v
(2)
u

x
(2)
D

+
k

(2)
p

v
(2)
u

(
ln(x

(2)
BSP

)− ln(x
(2)
B

)
)
−
v
(2)
B

v
(2)
u

x
(3)
BSP

+
v
(3)
B

v
(2)
u

x
(2)
BSP

CRN
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Case study – Simulation Results 61

Non-controlled states in subsystem 2

CRN

C



Case Study – Simulation Results 62

Controlled states and control signal of subsystem 2

CRN
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Conclusions 63

I The global models of some interconnected CRNs with
physically motivated interconnections (distributed delay,
diffusion) also have a CRN model form with mass-action
kinetics. This can be explored for analysis and control of
these systems.

I The passivity theory is a convenient approach to develop
setpoint tracking controllers for CRNs in the presence of
disturbances.

I The synchronization problem of passive systems can also
be applied to develop control methods for interconnected
CRNs.

I The passivity-based control design approach is also suitable
to control interconnected Lotka-Volterra systems see e.g.
DOI: 10.1088/1361-6544/abd52b CRN
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