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Problem statement
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Problem statement

Fundamental diagram of traffic flows (flux-density)
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Introduction, motivation

@ Recently, several different research problems have led to
compartmental models (epidemic processes, ribosome flows, traffic
flows)

@ These models are nonnegative and (can be) kinetic

@ Such models are widely used to describe the transition (flow) of
'items’ (molecules, ribosomes, vehicles, pedestrians etc.) between
compartments or (abstract states)

@ Interests, problem statements:

» fundamental dynamical properties

» possible generalizations

> relations between different application fields
» control-related tasks
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Kinetic systems
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Kinetic systems (CRNs)

@ dynamical models which can be formally represented as a set of
" chemical reactions” (transformations)
Molecules taken individually:
@ stochastic discrete event systems
@ Petri net representation: places ~» species, transitions ~~ reactions,
tokens ~» available molecules
@ Turing complete computer’ with an arbitrarily small probability of
error
Continuous concentrations considered:
@ nonnegative nonlinear dynamical systems (ODEs)
o relatively simple mathematical model with a network (directed graph)
structure

@ all kinds of complex dynamical phenomena (multiplicities, oscillations,
chaos, etc.) can be described in a kinetic framework
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Kinetic systems (CRNs)

@ recall from chemistry: 2Hy + Oy — 2H50
@ M species denoted by X = {X1,..., Xy},
species vector: X = [X7 ... Xy|T
e reactions: Cj — C]’, ji=1,...,R
@ source (reactant) and product complexes: C; = ijX and
T =M .
Ci =y, X, where y;,y; € Z} for j=1,...,R
@ reaction graph: directed graph containing the complexes as vertices
and reactions as directed edges

@ graph related notions: strongly connected graph: there exists a
directed path between any pair of its vertices in both directions;
strong component: a maximal strongly connected subgraph; weakly
connected component: subgraph where all vertices are connected to
each other by some (not necessarily directed) path; weakly reversible
graph: each weakly connected component is a strong component
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Kinetic systems (CRNs)

, , S —M
@ The evolution of species concentrations’ (z(t) € R ):

R
i =Y Ki@)y, — vl 2(0) Ry

=1

—M = . . . )
where IC; : R, — R is the rate function corresponding to reaction step i

@ Assumptions on K:

(A1) K, is differentiable,

(A2) o >0 if [y;]; > 0, and D 0 if [y;]; =0,

J J
(A3) K;(z) = 0 whenever z; = 0 such that j € supp(y;).

These guarantee local existence and uniqueness of the solutions as well as
the invariance of the nonnegative orthant for the dynamics

@ special case — mass action kinetics: KC;(z) = k; Hf\il mz[»yj]" (polynomial
nonlinearities)

Kinetic systems can be considered as general descriptors of nonlinear dynamics
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Generality of kinetic systems

dynamical systems ‘ translation and QP embedding

nonnegative systems

quasi—polynomial systems ¢ monomial dynamics
nonnegative polynomial systems ‘ time rescaling
kinetic systems ¢

Lotka—Volterra systems
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Compartmental models

Q=1{q1,q2,--.,qn} set of compartments and state variables
e Fij(q) > 0: flow from g; to g;

e Fio(q) > 0: outflow from ¢; to the environment

e [; > 0: inflow to ¢;

0¢=0= F;=Fp=0

@ can be written as Fj;(q) = fi;j(q)q

¢ =— (fi() + Zfz’j)qz' +Y " fiigi + 1

oy it
q=flq)

@ ~~ Jacobian of f is Metzler matrix with nonpositive column sums
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Some properties of compartmental dynamics

@ Compartmental systems are nonnegative

Chemical reactions without diffusion can be written in compartmental form

Dynamically, "anything can happen” in a nonlinear compartmental system

Linear compartmental systems behave nicely (graph/eigenvalues, Lyapunov
functions, diagonal stability, controllability, observability, identifiability etc.)

@ In many cases, graph structure alone is informative about the qualitative
dynamics even in the nonlinear case
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Generality of compartmental dynamics

@ Any stable nonnegative linear dynamics can be linearly transformed into
compartmental form

@ Any bounded dynamics in R™ can be embedded into a compartmental
system having n + 1 compartments:

.

Theorem (Jacquez, Simon 1993); constructive proof

Let &+ = f(x) be a C* system of n differential equations on an n-
dimensional simplex

E’f:{(ml,...,xn) cxy >0, in<1}
i=1

which points into X7 on its boundary. Then, there exists an auto-
nomous C* closed compartmental system & = f(x) defined on an

(n + 1)-dimensional simplex X! and an invariant n-dimensional

subsimplex ¥ of E?Iel isomorphic to X7 such that f restricted to
3} is the original f.
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(Traffic) flow models

Compartments: road sections

xTj-1 xj Tjs1
I | I
T T T T
L] 5 | LI | L) |
: a f ‘ i s
3 Nj—1 Ny Nj 3 N N; R N; S; EN_HI Sis1 Njn i1 1
P Si-1 Sia Si—1 8- S ; Nj Sjs1 fi+1 ;
Si+ Ny = Ni+ 85y S+ Nj= Ny + S,

e the basic flow equation: py + f(p)e =7 — s

@ approximating ODEs (e.g., compartmental ones) can be obtained by

various spatial discretization methods

@ properties of the obtained ODEs are important for analysis and control
(smoothness, conservation, nonnegativity, kinetic property, etc.)

Gébor Szederkényi (PPKE-ITK) Kinetic flow models

FRK seminar 2024

14/39



Flow models in PDE form
o p(x,t) € Q =0, pmaz): traffic density (e.g., in [cars/km])
@ Consider the conservation law

p(x,t)de = f(p(z;,t)) — f(p(zr,1))

Tr

i,

+/xr r(x,t, p(x,t)) — s(z,t, p(z,t)) de,

Z

for any x; < x,, and where the function p : R x R, — R denotes the
modeled quantity, the function f € C' : R — R is called flux function
(often denoted by @), source r and sink terms s are functions

R x R, x R — R, respectively

@ this can be reformulated in PDE form as
pr+ f(p)a=1—35
Lighthill-Whitham—Richards (LWR) model, 1955

o critical density: perit, where f(perit) = finaa
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Flow models in PDE form
N(t): cumulative number of vehicles to have passed an observer by time ¢

N(t): smooth approximation of N

N

S = N W A

A

N

‘I(t)l

/ N(1)

' N(1)

>
»

t

(Daganzo, C. F. (1997). Fundamentals of transportation and traffic
operations. Emerald Group Publishing Limited.)

Gébor Szederkényi (PPKE-ITK) Kinetic flow models

FRK seminar 2024

16 /39



Flow models in PDE form
@ introducing spatial dependence as well: N (¢, ), N(t,z)

o density:
B ON(t,x) [cars
pla) = ===5 = [0
o flux:
B ON(t,x) rcars
flt,@) = ot [ h }
o N fulfills:

2N (t, x) B 92N (t,x)
ozot  Otox

o therefore,
Oplt,r)  Of(ta)
o Ox
assuming no on and off-ramps (conservation relation)
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Fundamental diagrams of traffic flow

Basic relationship: Q =D -V

(Q [cars/h]: flux, D [cars/km]: density, V' [km/h]: speed)

flux-density diagram:

moving against flow direction

; dQ =y =g Velocity of end of congestion
s
% 9Q _ysp
= d0
% g congestion
= - |
instable stable Dmax D [carskm]
@:V»Q:Vf traffic densi
db raffic density
free flow

source: https://en.m.wikipedia.org/wiki/File:Fundamental_Diagram.PNG
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Fundamental diagrams of traffic flow

speed-density diagram:

V [km/h]

Vf T‘;‘\\\\ free flow

bound flow

—
O [cars’km
Dpmax | ]

traffic density

source: https://en.m.wikipedia.org/wiki/File:Fundamental_Diagram.PNG
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The flux function

@ dual variable: density of free space v = pmax — p

@ assumption: the flux function has the form

f(p) = 9(p, pmax — p) = g(p, V)

where g : Q x Q +— R, satisfies the following assumptions:

Al g is Lipschitz continuous w.r.t. both arguments, with associated
Lipschitz constants K; > 0 and K > 0,

A2 g is non-decreasing in each argument,

A3 g(p,0) = g(0,v) = 0 for all p,v € Q (which ensures that no vehicles is
removed (resp. added) if the road is empty (resp. at capacity).

(above properties motivated by CRN theory)
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Uncertainty of measurements and modeling

fundamental diagrams in practice

00 Speed vs. density
. 2000
80 —— Calibrated curve
Data 1750
70
— __ 1500
= 60 )
= = 1250
£ 50 %
=z S 1000
§ 40 z
&30 ; 750
20 = 500
10 250
0 0
0 20 40 60 80 100 140
Density (veh/mi/In)

Flow vs. density

—— Calibrated curve
Data

0 20 40 60 80 100 120 140
Density (veh/mi/In)

(Cheng, Q. et al. (2021). An S-shaped three-parameter (S3) traffic stream
model with consistent car following relationship. Transportation Research
Part B: Methodological, 153, 246-271.)
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Generality of the flux function
@ any flux function f that can be written as

f(p) = 91(p)g2(pmax — p), p €L,

where g1 and g9 are non-decreasing Lipschitz-continuous functions
with g1(0) = g2(0) = 0, satisfy Assumptions A1-A3

e if we take g1(p) = p, then p — ga2(pmax — p) can be interpreted as the
speed-density relationship of the fundamental diagram

e taking ga2(v) o v yields the so-called Greenshields (quadratic) flux
function (mass action case)

@ can also retrieve trapezoidal fundamental diagrams by considering go
as

Pmax—V1 V. H
R S ——— if 0 <v <,
_ —V1 H
92(v) = Umaxppr:nz(,y if o <v <y,
Umax if 1 <V < Vax,

where vmax: free flow speed, and p1 = pmax — V1, P2 = Pmax — Vo:
critical densities of the fundamental diagram which satisfy

0 < p1 < p2 < Pmax
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Generality of the

flux function

quadratic and trapezoidal fundamental diagrams
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On and off ramps
assumed form of source and sink terms:

T('% t, P) = 1on($)gon(Pon(x, t)v V)v S(l’, t, P) = 10ff(m)goff(pv Voff(x7 t)),

where

@ pon and v traffic density of the on-ramp and the free space density
of the off-ramp, respectively, and are assumed to be taking values in
o

® gon: 2 x Q= Ry and gor : Q x Q1+ R : the traffic flows of the on-
and off-ramp, respectively, and assumed to satisfy Assumptions
A1-A3;

@ spatial position of the on- and off- ramps: indicator functions 1., and
1ofr defined as

_ )L ifzy, <a < Ton _ S L ifzg <@ < Tofr
Lon(2) { 0, otherwise Lote(z) = 0, otherwise

for some z,,, < Ton and Ty < Toff-
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Spatial discretization of flow models in PDE form

e average (traffic) density in the i-th cell:
O~ [ oty
Pi t) = / p .%',t €z,
Az Ti—1/2

where Az = ;19 — ;17 is the length of a cell.
e this gives a finite volume (semi)discretization scheme (called TRM):

pi = é [F(pi—1,pi) — F(pi, pix1) + Ri(pi; t) — Si(pi, t)], (1)

with the so-called numerical flux
F(u, U) = g(”? Pmax — U)v

and initial condition p;(0) = <= [7*1/2 p(x,0) dz € Q

Ti—1/2
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Flux properties

Theorem

The numerical flux F' is consistent with the flux function f (i.e. it satisfies
for any u € Q, F(u,u) = f(u)) and is monotone. As for the TRM defined
in (1), it preserves nonnegativity and capacity, and it is a conservative
finite volume scheme.

different decompositions of f= g(p, pmax — p) can be proposed, e.g.:

IMAK (P, V) = wpr = wp(Pmax — P); (W = Umax/Pmax)
ngnv(pa V) = mln(D(p)a Q(pmax - V))? (2)
gCap(pv V) = D(p)Q(pmax - V)/fmaxa

where D(p) = f(min{p, perit }), Q(p) = f(max(p, perit)): supply and
demand functions, respectively, fiax: maximal flux value

note that ggdnv(p, V) in (2) is the Godunov flux = the Godunov scheme
can be seen as a particular instance of the proposed model class
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The polynomial (mass action) case
the numerical flux is given as

F(pi—1,pi) = gMAK (Pi—1, Pmax — Pi) = WPi—1(Pmax — Pi)
~ —,—
P v
the semi-discretized model is

= ~ [ ( ) —wpi( )
= = [ woi «—pi) — ) . — Di
Pi Az Pi—1\Pma Pi Pi{ Pma: Pi+1

v

inflow fromT)revious cell outflow to next cell
+ Ri(pmax — pist) — Si(pist) |
—— N———
on ramp off ramp
transition rate between cells ¢ and ¢ + 1 depends on

@ number (density) of vehicles in cell 4
@ amount of free space in cell 7 + 1

this is clearly kinetic, but what can be a meaningful reaction network
behind?
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Kinetic interpretation of transition between compartments
@ Q: set of compartments (cells)
@ A C Q x @ set of transitions (no loops)

@ if (g;,q;) € A, then g; is the donor of ¢; and g; is the recipient of ¢;
» set of donors D; and recipients R;

@ kinetic representation of (g;,q;) € A

Ni+8; B4 N+ 8

where N; and S; denote the amount of modeled items (objects) and
available space units in g;, respectively

@ dynamics in a redundant state space (may have any network structure)

=Y Kji(ng, ) = Y Kij(ni, s5)

Jj€D; JER;
si=— Y Kjilng, )+ > Kij(ni,s5)
JED; JER:

@ compartmental in the sense of Jacquez et al. (1993)

@ capacities of compartments are bounded (n;(¢) + s;(t) = n;(0) + 5;(0) =: ¢;)
FRK seminar 2024  28/39



Reduced state space

o ¢; :=mn;(t) + si(t) is the constant capacity of ¢;
> let ¢(™ e R™ be such that cz(»m) =¢
e reduced state space C' := [0,¢1] % [0,c2] X -+ X [0, ¢
hz‘ = Z Kji(nj,ci - n,) - Z Kij(ni,cj - nj)
J€D; JER;
This has the same structure as the semi-discretized flow model
with n; ~» p;, and ¢; ~> pmax

@ including on and off ramps:

Kon,i (t)

Si — Ni, Ni
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Relation between the models

discretized flow model recalled:

‘ 1
pi = E[Q(Pi—la Pmax — Pi) — 9(Pi; Pmax — Pi+1)

+Ri(pmax — Pi, t) - Sz(pza t)],

kinetic equations of the simple tubular (road) structure

7:1,2- — ’Ci—l,i(ni—lv C; — ’I’Ll) — Ki’i-l,-l (ni, Ci+1 — ni-i-l)
+’Con,i (Ci — Ny, t) - Koff,i (ni7 t)

. 1
e |relation: KCji11(p,v) = 279(p, V)
@ mass action case:

IMAK (Pi—1, Pmax — Pi) = WPi—1(Pmax — pi)
Ki-1i(ni—1, ¢ —ni) = kni—1(c; — ny)
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Kinetic view of traffic flows

S;+ N, =N, +5,_, s

it N =N+
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Numerical comparison: solution with a shock wave

0.1pmax  ifx < L/2

p(x,0) = .
0.8pmax otherwise,
—+— Gdnv-semi —+— MAK-semi —— LxF-semi
-—+- Gdnv-full === MAK-full -—+- LxF-full
10"
g
810!
=
1072
10!
g
[SIRN)
3 10
~
107!
10% 10°
Number of space discretization points
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Networked model

possible application: discretization of a roundabout

-
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Traffic control: time-varying reaction rates

extended model:

1

pi(t) = E(Ci(t)Fi(Pi—laPz’)_Ci-i-l(t)Fi—l-l(Pi:Pi+1)+Ri(Pi7t)_Si(Piat))

C(t)
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Traffic control: time-varying reaction rates

densities near and far

— x=-525 —— x=525 — x=-1002.5 —— x=1002.5
1.0 1.0
0.8 0.8
z z
] ]
506 506
3 3
° o
] g
S04 T 04
E E
2 2
0.2 0.2
0.0 0.0
0 2 4 6 8 10 0 4 6 8 10
Time (min) Time (min)
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Further remarks

@ the studied models belong to the class of generalized ribosome flow
models (GRFMs)

@ the reaction rates do not need to be mass action: practically any
fundamental diagram can be described

@ we know a lot about persistence and the existence and uniqueness of
equilibria

we have a whole family of logarithmic Lyapunov functions

we have a port-Hamiltonian description

model calibration (fitting) is quite straightforward

many advantageous properties are preserved in the time-varying case
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Summary

@ the kinetic representation of (traffic) flow models was studied

@ the same model structure can be obtained from
@ a special FVM-type semi-discretization of the flow PDE
@ the kinetic description of compartmental transitions between cells
© (statistical physics, asymmetric simple exclusion processes)

@ main relationship:

species ~~ vehicles and space units
reactions ~» cell transitions

@ (numerical) flux is transparently related to the reaction rate

@ several popular discretization schemes are kinetic with various
reaction rates (not all)

@ the MAK scheme is numerically not the ‘best’, but still converges
well, and gives a second order polynomial model which is
advantageous for analysis, control etc.

@ road networks can also be described in an ODE setting

@ CRNT can be used in another interesting application domain
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