Periodic oscillations without Hurwitz

Nicola Vassena

Leipzig University

30th April 2024

Motivation

Motivation

Q1: Is stability needed? (damped oscillations)

A standard route: Hurwitz computation

$$
\begin{array}{r}
p(\lambda)=a_{0} \lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n} \\
H=\left(\begin{array}{cccccccc}
a_{1} & a_{3} & a_{5} & \cdots & \cdots & \cdots & 0 & 0 \\
a_{0} & a_{2} & a_{4} & & & & \vdots & \vdots \\
0 & a_{1} & a_{3} & & & & \vdots & \vdots \\
\vdots & a_{0} & a_{2} & \ddots & & & 0 & \vdots \\
\vdots & 0 & a_{1} & & \ddots & & a_{n} & \vdots \\
\vdots & \vdots & a_{0} & & & \ddots & a_{n-1} & 0 \\
\vdots & \vdots & 0 & & & & a_{n-2} & a_{n} \\
\vdots & \vdots & \vdots & & & & & \vdots \\
0 & 0 & 0 & \cdots & \cdots & \cdots & a_{n-4} & a_{n-2} \\
\vdots & a_{n}
\end{array}\right) .
\end{array}
$$

Hurwitz computation for purely imaginary eigenvalues \Rightarrow good candidate for local Hopf bifurcation (non-resonant, simple, transverse).

Global Hopf bifurcation I

There are also 'easier' results for periodic orbits than local Hopf!

An isolated Hopf point with any net-change of stability implies nonstationary periodic solutions.

Hopf point: non-hyperbolic equilibrium with invertible Jacobian. Net-change: the hyperbolic spectrum changes through the Hopf point.

No parity/resonance/transversality checking! Moreover, one gets here a 'global' continuum ('snakes' tbc). However, stability is not given.

Pros and cons of Hurwitz

Pros:

(1) Characterization of the spectral problem (theory!)
(2) Identification of the bifurcation point for Hopf bifurcation

Pros and cons of Hurwitz

BIGRADIENTS AND THE PROBLEM OF ROUTH AND HURWITZ*

Pros:

A. S. HOUSEHOLDER \dagger
(1) Characterization of the spectral problem (theory!)
(2) Identification of the bifurcation point for Hopf bifurcation

Pros and cons of Hurwitz

SIAM Review
Vol. 10, No. 1, January, 1968
BIGRADIENTS AND THE PROBLEM OF ROUTH AND HURWITz*

Pros:

(1) Characterization of the spectral problem (theory!)
(2) Identification of the bifurcation point for Hopf bifurcation

Cons:
(1) Computational complexity (doomed for not-small networks)
(2) Lack of biochemical insights (black box)
(Local result, stability not (yet) addressed (numerical simulations)

Alternative routes

(1) Zero-eigenvalue bifurcations (Takens-Bogdanov)

Problem:
Takens-Bogdanov (double zero) \Rightarrow Hopf (purely imaginary), but \nLeftarrow
(2) Poincare-Bendixson

Problem:
either dim 2 or very special structure (monotone cyclic feedback systems)
(0) Inheritance (perturbation arguments)

Problem:
Algorithm and/or reaction rates.
(- Global methods (intermediate value theorem)

Alternative routes

The Poincaré-Bendixson Theorem for Monotone Cyclic Feedback Systems

John Mallet-Paret ${ }^{1}$ and Hal L. Smith ${ }^{2}$

Stable Periodic Solutions for the Hypercycle System
J. Hofbauer, ${ }^{1}$ J. Mallet-Paret, ${ }^{2}$ and H. L. Smith ${ }^{3}$
(1) Zero-eigenvalue bifurcations (Takens-Bogdanov)

Problem:
Takens-Bogdanov (double zero) \Rightarrow Hopf (purely imaginary), but \nLeftarrow
(2) Poincare-Bendixson

Problem:
either dim 2 or very special structure (monotone cyclic feedback systems)
© Inheritance (perturbation arguments)
Problem:
Algorithm and/or reaction rates.
(9) Global methods (intermediate value theorem)

Alternative routes

The Poincaré-Bendixson Theorem for Monotone Cyclic Feedback Systems

John Mallet-Paret ${ }^{1}$ and Hal L. Smith ${ }^{2}$

Stable Periodic Solutions for the Hypercycle System
J. Hofbauer, ${ }^{1}$ J. Mallet-Paret, ${ }^{2}$ and H. L. Smith ${ }^{3}$
(1) Zero-eigenvalue bifurcations (Takens-Bogdanov)

Problem:
Takens-Bogdanov (double zero) \Rightarrow Hopf (purely imaginary), but \nLeftarrow
(2) Poincare-Bendixson

Problem:
either dim 2 or very special structure (monotone cyclic feedback systems)

- Inheritance (perturbation arguments)

Problem:
Algorithm and/or reaction rates.
(9) Global methods (intermediate value theorem)

P^{-}-matrices, D-stability

Definition (P^{-}-matrices, or Hicksian)

A matrix A is a P^{-}matrix if any k principal minor of A is of $\operatorname{sign}(-1)^{k}$. (P_{0}^{-}indicates the closure)

Definition (D-stability)

A matrix A is D-stable if $A D$ is stable for any positive diagonal matrix D.

P^{-}-matrices, D-stability

Definition (P^{-}-matrices, or Hicksian)

A matrix A is a P^{-}matrix if any k principal minor of A is of $\operatorname{sign}(-1)^{k}$. (P_{0}^{-}indicates the closure)

Definition (D-stability)

A matrix A is D-stable if $A D$ is stable for any positive diagonal matrix D.
Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

P^{-}-matrices, D-stability

Definition (P^{-}-matrices, or Hicksian)

A matrix A is a P^{-}matrix if any k principal minor of A is of $\operatorname{sign}(-1)^{k}$. (P_{0}^{-}indicates the closure)

Definition (D-stability)

A matrix A is D-stable if $A D$ is stable for any positive diagonal matrix D.
Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

Sketch of proof: D-stability requires A to be P_{0}^{-}matrix, thus A is not D-stable. Change of stability along a parametrization [AId, $A D$] implies at least one point with eigenvalue of zero-real part (intermediate value theorem). Binet:

$$
\operatorname{det} A D=\operatorname{det} A \operatorname{det} D \neq 0,
$$

No zero-eigenvalues, thus purely imaginary.

P^{-}-matrices, D-stability

Definition (P^{-}-matrices, or Hichsian)

A matrix A is a P^{-}matrix if any k principal minor of A is of $\operatorname{sign}(-1)^{k}$.

Definition (D-stability)

A matrix A is D-stable if $A D$ is stable for any positive diagonal matrix D.
Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

P^{-}-matrices, D-stability

Definition (P^{-}-matrices, or Hichsian)

A matrix A is a P^{-}matrix if any k principal minor of A is of $\operatorname{sign}(-1)^{k}$.

Definition (D-stability)

A matrix A is D-stable if $A D$ is stable for any positive diagonal matrix D.
Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher \& Fuller 1958)

If a matrix A is an unstable P^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

P^{-}-matrices, D-stability

Definition (P^{-}-matrices, or Hichsian)

A matrix A is a P^{-}matrix if any k principal minor of A is of $\operatorname{sign}(-1)^{k}$.

Definition (D-stability)

A matrix A is D-stable if $A D$ is stable for any positive diagonal matrix D.
Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher \& Fuller 1958)

If a matrix A is an unstable P^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

Sketch: Fisher\& Fuller proved that if a matrix A is a P^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has all negative real eigenvalues.

Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher \& Fuller 1958)

If a matrix A is an unstable P^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

I think of steady-state Jacobians of reaction networks in form

$$
J a c=A D
$$

Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P_{0}^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher \& Fuller 1958)

If a matrix A is an unstable P^{-}matrix, then there exists a positive diagonal matrix \bar{D} such that $A \bar{D}$ has purely imaginary eigenvalues.

I think of steady-state Jacobians of reaction networks in form

$$
J a c=A D
$$

Q2: Is Linear Algebra alone able to provide classic local Hopf bifurcation?

Global Hopf bifurcation II

Theorem (Fiedler, '85)

$$
\dot{x}=f(x, \lambda), \quad f \text { analytic }
$$

Assume $\bar{x}(\lambda)$ an analytic parametrization of a family of steady states for $\lambda \in[a, b]$ with the following conditions:
(1) the Jacobian of $\bar{x}(\lambda)$ is invertible for all λ
(2) the Jacobian of $\bar{x}(a)$ has different hyperbolic spectrum than $\bar{x}(b)$.

Then there are nonstationary periodic solution.
Proof relates to the [Chow, Mallet-Paret, Yorke] result.

Analyticity is used to handle 'continua' of Hopf points.

Two reference examples

Two reference examples

Reference example I: positive+negative feedback: Ivanova's scheme. Stable but not P_{0}^{-}negative diagonal stoichiometric sub-matrix

Two reference examples

Reference example I: positive+negative feedback: Ivanova's scheme. Stable but not P_{0}^{-}negative diagonal stoichiometric sub-matrix

$$
\begin{array}{rll}
A & \overrightarrow{1} & B+C \\
B & \overrightarrow{2} & C \\
C+D & \overrightarrow{3} & A \\
D & \overrightarrow{4} & 2 B
\end{array}
$$

$$
S=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 2 \\
1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right)
$$

$$
\text { stable ev: }(-0.34 \pm 0.56 i-1,-2.32)
$$

Two reference examples

Reference example I: positive+negative feedback: Ivanova's scheme. Stable but not P_{0}^{-}negative diagonal stoichiometric sub-matrix

$$
\begin{aligned}
& A \underset{1}{\rightarrow} B+C \\
& B \underset{2}{\overrightarrow{2}} C \\
& C+D \quad \overrightarrow{3} \quad A \\
& D \underset{4}{\rightarrow} \quad 2 B \\
& S D=\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 2 \\
1 & 0 & -1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right)\left(\begin{array}{cccc}
d_{1} & 0 & 0 & 0 \\
0 & d_{1} & 0 & 0 \\
0 & 0 & d_{3} & 0 \\
0 & 0 & 0 & d_{4}
\end{array}\right)
\end{aligned}
$$

For $d_{4} \rightarrow 0, S D \approx\left(\begin{array}{cccc}-1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0\end{array}\right)$, with ev $(-1.66 \pm 0.56 i, 0.32,0)$

Two reference examples

Reference example II: negative feedback: Janos' example. Unstable P^{-}negative diagonal sub-matrix.

Two reference examples

Reference example II: negative feedback: Janos' example. Unstable P^{-}negative diagonal sub-matrix.

$$
\begin{aligned}
& A_{1} \underset{1}{\rightarrow} A_{2} \underset{2}{\rightarrow} \\
& A_{3} \underset{3}{\rightarrow} \\
& A_{4} \underset{4}{\rightarrow} A_{5} \underset{5}{\rightarrow} \\
& A_{6} \underset{6}{\rightarrow} \\
& \hline
\end{aligned} A_{7} \underset{7}{\rightarrow} A_{8} \underset{8}{\rightarrow} B+C
$$

NOTES DES MEMBRES ET CORRESPONDANTS
ET NOTES PRÉSENTEEES OU TRANSMISES PAR LEURS SOINS

CHIMIE PHYSIQUE, - Schéma ridactionnel, catalyse et asolllations chimiques
Note (${ }^{\circ}$) de Claude Hyver, transmise par M. Adolphe Pacault.

$$
2 A_{1}+C \underset{10}{\vec{\rightarrow}} \cdots
$$

Two reference examples

Reference example II: negative feedback: Janos' example. Unstable P^{-}negative diagonal sub-matrix.

$$
A_{1} \rightarrow A_{1} \underset{2}{\rightarrow} A_{3} \underset{3}{\rightarrow} A_{4} \underset{4}{\rightarrow} A_{5} \underset{5}{\rightarrow} A_{6} \underset{6}{\rightarrow} A_{7} \underset{7}{\rightarrow} A_{8} \underset{8}{ } B+C
$$

$$
\begin{aligned}
& \text { C. R. Acad. Se. Parris, L. } 286 \text { (30 janvier 1978) Sirrie C - } 119 \\
& \text { NOTES DES MEMBRES ET CORRESPONDANTS } \\
& \text { ET NOTES PRESENTEES OU TRANSMISES PAR LEURS SOINS }
\end{aligned}
$$

CHIMIE PHYSIQUE, - Schèma rictionnel, catalyse et ascillations chimipues.
Note (*) de Claude Hyrer, transmise par M. Adolphe Pacault
Note (*) de Claude Hyrer, transmise par M. Adolphe Pacault.

$$
S=\left(\begin{array}{cccccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right)
$$

ev: $(-2,-1,-1.9 \pm 0.7 i,-1.2 \pm 1.1 i,-0.4 \pm 1 i, \mathbf{0 . 1} \pm \mathbf{0 . 4 i}) \ldots$ we need length!

Two reference examples

Reference example II: negative feedback: Janos' example. Unstable P^{-}negative diagonal sub-matrix.

$$
A_{1} \underset{1}{\rightarrow} A_{2} \underset{2}{\rightarrow} A_{3} \underset{3}{\rightarrow} A_{4} \underset{4}{\rightarrow} A_{5} \underset{5}{\rightarrow} A_{6} \underset{6}{\rightarrow} A_{7} \underset{7}{\rightarrow} A_{8} \underset{8}{ } B+C
$$

$$
2 A_{1}+B \underset{9}{\rightarrow} \ldots
$$

$$
2 A_{1}+C \underset{10}{\rightarrow} \cdots
$$

$$
S=\left(\begin{array}{cccccccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right)
$$

It is a unstable P^{-}matrix!

First easy case: parameter-rich kinetics

Definition (V, Stadler '24)

A kinetic model $r(x, p)$ is parameter-rich if any value $r_{j m}^{\prime}>0$ of the nonzero partial derivative

$$
\frac{\partial r_{j}}{\partial x_{m}} \neq 0 \quad \text { if } m \text { is reactant to } j
$$

is attainable at any steady-state value \bar{x}, for a proper choice of p.
Examples: Michaelis-Menten, Generalized Mass Action, Hill kinetics (NOT mass action)

Theorem (V, '23)

If a network endowed with parameter-rich kinetics contains a negative-diagonal stoichiometric matrix U such that either
(1) U is a stable matrix but not a P_{0}^{-}matrix, or
(2) U is an unstable P^{-}matrix
then there are parameter choices for purely-imaginary eigenvalues.

First example 'worked-out' in Parameter-rich kinetics

$$
\begin{aligned}
& A \underset{1}{\rightarrow} B+C \\
& D \underset{5}{\rightarrow} 2 B \\
& B \underset{2}{\rightarrow} C \\
& D+E \underset{6}{\rightarrow} 2 E \\
& C+D \underset{3}{\rightarrow} A \\
& E \rightarrow \underset{7}{\rightarrow} \\
& \mathrm{C}_{4}^{\rightarrow} E \\
& \underset{F_{D}}{\vec{~}} D \\
& \left\{\begin{array}{l}
\dot{x}_{A}=-r_{1}\left(x_{A}\right)+r_{3}\left(x_{C}, x_{D}\right) \\
\dot{x}_{B}=r_{1}\left(x_{A}\right)-r_{2}\left(x_{B}\right)+2 r_{5}\left(x_{D}\right) \\
\dot{x}_{C}=r_{1}\left(x_{A}\right)+r_{2}\left(x_{B}\right)-r_{3}\left(x_{C}, x_{D}\right)-r_{4}\left(x_{C}\right) \\
\dot{x}_{D}=-r_{3}\left(x_{C}, x_{D}\right)-r_{5}\left(x_{D}\right)-r_{6}\left(x_{D}, x_{E}\right)+F_{D} \\
\dot{x}_{E}=r_{4}\left(x_{C}\right)+r_{6}\left(x_{D}, x_{E}\right)-r_{7}\left(x_{E}\right)
\end{array}\right.
\end{aligned}
$$

First example 'worked-out' in Parameter-rich kinetics

$$
\begin{aligned}
& A \underset{1}{\rightarrow} B+C \\
& D \underset{5}{\rightarrow} 2 B \\
& B \underset{2}{\rightarrow} C \\
& D+E \underset{6}{\rightarrow} 2 E \\
& C+D \underset{3}{\rightarrow} A \\
& E \underset{7}{\rightarrow} \\
& C \underset{4}{\rightarrow} E \\
& \overrightarrow{F_{D}}{ }^{D} \\
& J a c=\left(\begin{array}{ccccc}
-r_{1 A}^{\prime} & 0 & r_{3 C}^{\prime} & r_{3 D}^{\prime} & 0 \\
r_{1 A}^{\prime} & -r_{2 B}^{\prime} & 0 & 2 r_{5 D}^{\prime} & 0 \\
r_{1 A}^{\prime} & r_{2 B}^{\prime} & -r_{3 C}^{\prime}-r_{4 C}^{\prime} & -r_{3 D}^{\prime} & 0 \\
0 & 0 & -r_{3 C}^{\prime} & -r_{3 D}^{\prime}-r_{5 D}^{\prime}-r_{6 D}^{\prime} & -r_{6 E}^{\prime} \\
0 & 0 & r_{4 C}^{\prime} & r_{6 D}^{\prime} & r_{6 E}^{\prime}-r_{7 E}^{\prime}
\end{array}\right)
\end{aligned}
$$

RESCALE:

$$
r_{3 D}^{\prime}=r_{4 C}^{\prime}=r_{5 D}^{\prime}=r_{6 D}^{\prime}=r_{6 E}^{\prime}=r_{7 E}^{\prime} \approx \varepsilon
$$

First example 'worked-out' in Parameter-rich kinetics

$$
\begin{aligned}
& A \underset{1}{\rightarrow} B+C \quad D \underset{5}{\rightarrow} 2 B \\
& B \underset{2}{\rightarrow} C \\
& D+E \underset{6}{\rightarrow} 2 E \\
& C+D \underset{3}{\rightarrow} A \\
& C \underset{4}{\rightarrow} E \\
& E \rightarrow \underset{7}{\rightarrow} \\
& \overrightarrow{F_{D}} D \\
& J a c=\left(\begin{array}{ccccc}
-r_{1 A}^{\prime} & 0 & r_{3 C}^{\prime} & \varepsilon & 0 \\
r_{1 A}^{\prime} & -r_{2 B}^{\prime} & 0 & 2 r_{5 D}^{\prime} & 0 \\
r_{1 A}^{\prime} & r_{2 B}^{\prime} & -r_{3 C}^{\prime}-\varepsilon & -\varepsilon & 0 \\
0 & 0 & -r_{3 C}^{\prime} & -\varepsilon-r_{5 D}^{\prime}-\varepsilon & -\varepsilon \\
0 & 0 & \varepsilon & \varepsilon & \varepsilon-\varepsilon
\end{array}\right)
\end{aligned}
$$

RESCALE:

$$
r_{3 D}^{\prime}=r_{4 C}^{\prime}=r_{5 D}^{\prime}=r_{6 D}^{\prime}=r_{6 E}^{\prime}=r_{7 E}^{\prime} \approx \varepsilon
$$

First example 'worked-out' in Parameter-rich kinetics

$$
\begin{aligned}
& A \rightarrow B+C \quad D \underset{{ }_{5}}{\rightarrow} 2 B \\
& B \underset{2}{\rightarrow} C \\
& C+D \underset{3}{\rightarrow} A \\
& E \underset{7}{\rightarrow} \\
& C \underset{4}{\rightarrow} E \\
& J a c=\left(\begin{array}{ccccc}
-r_{1 A}^{\prime} & 0 & r_{3 C}^{\prime} & \varepsilon & 0 \\
r_{1 A}^{\prime} & -r_{2 B}^{\prime} & 0 & 2 r_{5 D}^{\prime} & 0 \\
r_{1 A}^{\prime} & r_{2 B}^{\prime} & -r_{3 C}^{\prime}-\varepsilon & -\varepsilon & 0 \\
0 & 0 & -r_{3 C}^{\prime} & -\varepsilon-r_{5 D}^{\prime}-\varepsilon & -\varepsilon \\
0 & 0 & \varepsilon & \varepsilon & \varepsilon-\varepsilon
\end{array}\right)
\end{aligned}
$$

at $\varepsilon=0$ spectrum approximated by

$$
\left(\begin{array}{cccc}
-1 & 0 & 1 & 0 \\
1 & -1 & 0 & 2 \\
1 & 1 & -1 & 0 \\
0 & 0 & -1 & -1
\end{array}\right)\left(\begin{array}{cccc}
r_{1 A}^{\prime} & 0 & 0 & 0 \\
0 & r_{2 B}^{\prime} & 0 & 0 \\
0 & 0 & r_{3 C}^{\prime} & 0 \\
0 & 0 & 0 & r_{5 D}^{\prime}
\end{array}\right)
$$

regular perturbation argument yields purely imaginary eigenvalues for the full svstem

First example 'worked-out' in Parameter-rich kinetics

Stable periodic orbits for the Michaelis-Menten system!

Mass Action

Also mass action has a Jacobian that can be expressed as AD! (e.g. Clarke's Stoichiometric Network Analysis)

The core observation is:

$$
\left\{\begin{array}{l}
r_{j}(x)=k_{j} x^{n} \\
r_{j}^{\prime}(x)=n k_{j} x^{n-1}=n k x^{n-1} \frac{x}{x}=n r_{j}(x) \frac{1}{x}
\end{array}\right.
$$

At steady state, linear constraints

$$
\operatorname{Sr}(\bar{x})=S v=0
$$

and thus Jacobian

$$
J a c=B(v) \operatorname{diag}(1 / \bar{x}) .
$$

Mass Action

Jacobian:

$$
J a c=B(v) \operatorname{diag}(1 / \bar{x})
$$

Theorem (V, '24)

If a mass action system has a flux vector v such that either
(1) $B(v)$ is a stable matrix but not a P_{0}^{-}matrix, or
(2) $B(v)$ is an unstable P^{-}matrix
then there are parameter choices for purely-imaginary eigenvalues and consequent nonstationary periodic solutions.

NOTE: $B(v)$ is fully determined by the stoichiometry of the system.
Q3: Can we get simple sufficient stoichiometric patterns?

Janos' example 'worked-out' in mass action

$$
\begin{gathered}
\overrightarrow{\mathrm{F}} A_{1} \underset{1}{\rightarrow} A_{2} \underset{2}{\rightarrow} A_{3} \underset{3}{\rightarrow} A_{4} \underset{4}{\rightarrow} A_{5} \underset{5}{\rightarrow} A_{6} \underset{6}{\rightarrow} A_{7} \underset{7}{\rightarrow} A_{8} \underset{8}{\rightarrow} B+C \\
2 A_{1}+B \underset{9}{\rightarrow} \cdots \\
2 A_{1}+C \underset{10}{\rightarrow} \cdots
\end{gathered}
$$

Equilibria constraints:

$$
\begin{gathered}
S v=0 \quad \Leftrightarrow \quad v=k(5,1,1,1,1,1,1,1,1,1,1) \\
\operatorname{Jac}(x)=S \operatorname{diag}(v) K^{T} \operatorname{diag} 1 / \bar{x}=S S^{-T} \operatorname{diag} 1 / \bar{x}
\end{gathered}
$$

Janos' example 'worked-out' in mass action

$$
\begin{gathered}
\overrightarrow{\mathrm{F}} A_{1} \rightarrow A_{1} \underset{2}{\rightarrow} A_{3} \underset{3}{\rightarrow} A_{4} \underset{4}{ } A_{5} \underset{5}{\rightarrow} A_{6} \underset{6}{\rightarrow} A_{7} \underset{7}{\rightarrow} A_{8} \underset{8}{\rightarrow} B+C \\
2 A_{1}+B \underset{9}{\rightarrow} \cdots \\
2 A_{1}+C \overrightarrow{10} \cdots
\end{gathered}
$$

$$
\operatorname{Jac}(x)=B(v) \operatorname{diag} 1 / \bar{x}=S \operatorname{diag}(v) K^{T} \operatorname{diag} 1 / \bar{x}=S S^{-T} \operatorname{diag} 1 / \bar{x}
$$

$$
=\left(\begin{array}{cccccccccc}
-9 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -2 & -2 \\
1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & -1 & 0 \\
-2 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & -1
\end{array}\right)
$$

eigenvalues of $B(v)$:

$$
(-9.9,-1,-0.5 \pm 0.8 i,-1,3 \pm 0.9 i,-1.7 \pm 0.3 i,+\mathbf{0}, \mathbf{0 0 5} \pm \mathbf{0 . 3 i})
$$

Unstable P^{-}matrix \Rightarrow periodic orbits!

A second criterion: fully-open systems, any type of kinetics

Theorem (V' 24)

Consider any fully-open reaction network system

$$
\dot{x}=g(x):=F+f(x)-D x .
$$

The following statements are equivalent:
(1) the system admits a Hopf bifurcation;
(2) the system admits an unstable steady state with complex-conjugated eigenvalues λ_{1}, λ_{2} with positive-real part

$$
\Re\left(\lambda_{1}\right)=\Re\left(\lambda_{2}\right)=p>0
$$

and no other real eigenvalue $\lambda_{i}=p$.
Sketch of proof:
(1) \bar{x} s.t. $f(\bar{x})=0$.
(2) choose $D(\beta)=\beta$ Id, $F(\beta)=\beta \operatorname{ld} \bar{x}$
© $g(\bar{x}, \beta)=0$ for all β, but shift in spectrum.

Grazie per l'attenzione!

