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18:30Highest blood pressure

19:00Highest body temperature

Lowest body temperature 04:301

1:00 Melatonin secretion starts

Q1: Is stability needed? (damped oscillations)
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A standard route: Hurwitz computation
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Hurwitz computation for purely imaginary eigenvalues =

good candidate for local Hopf bifurcation (non-resonant, simple, transverse).
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Global Hopf bifurcation |

There are also ‘easier’ results for periodic orbits than local Hopf!

GLOBAL HOPF BIFURCATION FROM A MULTIPLE EIGENVALUE*

Theorem (Chow, Mallet-Paret, Yorke '78)

An isolated Hopf point with any net-change of stability implies nonstationary
periodic solutions.

Hopf point: non-hyperbolic equilibrium with invertible Jacobian.
Net-change: the hyperbolic spectrum changes through the Hopf point.

No parity/resonance/transversality checking! Moreover, one gets here a ‘global’
continuum (‘snakes’ tbc). However, stability is not given.

4/25



Pros and cons of Hurwitz

Pros:
@ Characterization of the spectral problem (theory!)
@ Identification of the bifurcation point for Hopf bifurcation

5/25



Pros and cons of Hurwitz

SIAM Review
Vol. 10, No. 1, January, 1968

BIGRADIENTS AND THE PROBLEM OF ROUTH AND HURWITZ*
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Pros and cons of Hurwitz

SIAM Review
Vol. 10, No. 1, January, 1968

BIGRADIENTS AND THE PROBLEM OF ROUTH AND HURWITZ*
PrOS A. S. HOUSEHOLDER{}
@ Characterization of the spectral problem (theory!)

@ Identification of the bifurcation point for Hopf bifurcation

Cons:
@ Computational complexity (doomed for not-small networks)
@ Lack of biochemical insights (black box)

@ Local result, stability not (yet) addressed (numerical simulations)
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Alternative routes

@ Zero-eigenvalue bifurcations (Takens-Bogdanov)

Problem:

Takens-Bogdanov (double zero) = Hopf (purely imaginary), but +
© Poincare-Bendixson

Problem:

either dim 2 or very special structure (monotone cyclic feedback systems)
@ Inheritance (perturbation arguments)

Problem:

Algorithm and/or reaction rates.

@ Global methods (intermediate value theorem)
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The Poincaré-Bendixson Theorem for Monotone e 3 !
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@ Zero-eigenvalue bifurcations (Takens-Bogdanov)
Problem:

Takens-Bogdanov (double zero) = Hopf (purely imaginary), but +
@ Poincare-Bendixson

Problem:

either dim 2 or very special structure (monotone cyclic feedback systems)
@ Inheritance (perturbation arguments)

Problem:

Algorithm and/or reaction rates.

@ Global methods (intermediate value theorem)

Inheritance of oscillation in chemical reaction networks

Murad Banaji®*

“Middlesez University, London, of The Burroughs, London NW/
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P~-matrices, D-stability

Definition (P~ -matrices, or Hicksian)

A matrix A is a P~ matrix if any k principal minor of A is of sign (—1)k.
(Py indicates the closure)

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.
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P~-matrices, D-stability

Definition (P~ -matrices, or Hicksian)

A matrix A is a P~ matrix if any k principal minor of A is of sign (—1)k.
(Py indicates the closure)

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P, matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

Sketch of proof: D-stability requires A to be Py~ matrix, thus A is not D-stable.
Change of stability along a parametrization [Ald, AD] implies at least one point
with eigenvalue of zero-real part (intermediate value theorem). Binet:

det AD = det Adet D # 0,

No zero-eigenvalues, thus purely imaginary. .
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P~-matrices, D-stability

Definition (P~ -matrices, or Hichsian)

A matrix A is a P~ matrix if any k principal minor of A is of sign (—1)k.

Definition (D-stability)
A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a mat_rix A is stable _but not a P, matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P~ matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

v

Sketch: Fisher& Fuller proved that if a matrix A is a P~ matrix, then there exists

a positive diagonal matrix D such that AD has all negative real eigenvalues. o



Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P, matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P~ matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

A\

| think of steady-state Jacobians of reaction networks in form

Jac = AD
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Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P, matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P~ matrix, then there exists a positive diagonal
matrix D such that AD has purely imaginary eigenvalues.

A\

| think of steady-state Jacobians of reaction networks in form

Jac = AD

Q2: Is Linear Algebra alone able to provide classic local Hopf bifurcation?
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Global Hopf bifurcation Il

An index for global Hopf bifurcation
in parabolic systems*)

By Bernold Fiedler at Heidelberg

Theorem (Fiedler, '85)

x = f(x,A), f analytic
Assume X(\) an analytic parametrization of a family of steady states for \ € |a, b]
with the following conditions:
@ the Jacobian of X(\) is invertible for all A
@ the Jacobian of X(a) has different hyperbolic spectrum than x(b).
Then there are nonstationary periodic solution.

Proof relates to the [Chow, Mallet-Paret, Yorke] result.

Analyticity is used to handle ‘continua’ of Hopf points.
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Two reference examples
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Two reference examples

Reference example |: positive+negative feedback: Ivanova's scheme.
Stable but not P negative diagonal stoichiometric sub-matrix

A —1> B+ C -1 0 1 0
2 1 1 -1 0
C+D ? A 0 0 -1 -1
D — 2B stable ev: (-0.34 £+ 0.56/ — 1, —2.32)
4
-1 0 1 0 d 0 0 O
|1 -1 0 2 0 d 0 0
5D = 1 0O -1 o0 0 0 d3 O

For dy — 0, SD =~
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Two reference examples

Reference example Il: negative feedback: Janos' example.
Unstable P~ negative diagonal sub-matrix.
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Two reference examples

Reference example Il: negative feedback: Janos' example.
Unstable P~ negative diagonal sub-matrix.

A1_1>A2_2>A3?A47>A5?A6_6>A77>A8?B+C

C. R Acad. Sc. Pars, 1. 286 (30 janvier 1978) Serie € - 1

2A 1+ B ‘E;> cee

NOTES DES MEMBRES ET CORRESPONDANTS
ET NOTES PRESENTEES OU TRANSMISES PAR LEURS SOINS

i QU e i s 2A1 + C — ...
o e i e 10
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Two reference examples

Reference example Il: negative feedback: Janos' example.
Unstable P~ negative diagonal sub-matrix.

'-Al_1>A2_2>/q43?A47>A5?A6?A77>A8?B—f—c

2A 1+ B ‘E;> cee
SR o 2A:+ C — ...
10
-1 0 0 0 0 0 0 0 -2 -2
1 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0
5 0o 0 O 1 -1 0 0 0O O O
0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 1 -1 0 0 0
0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 1 -1 0
0 0 0 0 0 0 0 1 0 -1

ev: (—2,-1,-1.9+0.7/,-1.24+1.1/,—0.4 + 1/,0.1 & 0.4i) ...we need length!
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Two reference examples

Reference example Il: negative feedback: Janos’ example.

Unstable P~ negative diagonal sub-matrix.
A A A A A A A A B
1A A3 A As 0 As o A Ag 0 B C

2A: + B ‘E;> ..
ok DT 2A{ + C — ...
10
-1 0 0 0 0 0 0 0 -2 =2
1 -1 0 0 0 0 0 0 0 0
0 1 -1 0 0 0 0 0 0 0
0 0 1 -1 0 0 0 0 0 0
5— 0 0 0 1 -1 0 0 0 0 0
0 0 0 0 1 -1 0 0 0 0
0 0 0 0 0 1 -1 0 0 0
0 0 0 0 0 0 1 -1 0 0
0 0 0 0 0 0 0 1 -1 0
0 0 0 0 0 0 0 1 0 -1

It is a unstable P~ matrix!
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First easy case: parameter-rich kinetics

Definition (V, Stadler '24)

A kinetic model r(x, p) is parameter-rich if any value r; > 0 of the nonzero
partial derivative
or;

# 0 if mis reactant to j
OXpm

is attainable at any steady-state value X, for a proper choice of p.

Examples: Michaelis-Menten, Generalized Mass Action, Hill kinetics
(NOT mass action)

Theorem (V, '23)

If a network endowed with parameter-rich kinetics contains a negative-diagonal
stoichiometric matrix U such that either

Q U is a stable matrix but not a P, matrix, or
@ U is an unstable P~ matrix

then there are parameter choices for purely-imaginary eigenvalues.
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First example ‘worked-out’ in Parameter-rich kinetics

A>B+C D—2B
B?C DJrE?ZE
C+D— A E—
3 7
C— E — D
4 Fp
*%a = —rn(xa) + r3(xc, xp)

xg = n(xa) — n(xg) + 2r5(xp)

Xxc = n(xa) + n(xs) — rs(xc,xp) — ra(xc)
Xp = —I’3(Xc,XD) — r5(xD) - r6(XD,XE) + Fp
XE = r4(Xc) + r(,(X ) — r7(xE)
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First example ‘worked-out’ in Parameter-rich kinetics

A B+C D—2B
B > C D+ E e 2E
C+D— A E—
3 7
C—E — D
4 Fp
A 0 ric rp 0
s —hg 0 2rip 0
Jac = | ri, e —hc— hic —Iip 0
0 0 —r3c rip — sp — fep r6E
0 0 fac 6D ree — 7g

RESCALE:
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First example ‘worked-out’ in Parameter-rich kinetics

A—1> B+ C
B—C
2
C—&—D?A
C—E
4
—ra 0
ra g
Jac=| ri4 g
0 0
0 0

RESCALE:

D?2B
D+E€>2E
E—
7
— D
Fp
e € 0
0 2rip 0
re—¢ —£ 0
—rie —€—rp—e —¢
€ € E—c¢
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First example ‘worked-out’ in Parameter-rich kinetics

ArB+C D—2B
B > C D+E e 2E
C+D—=A E—
3 7
C—E —D
4 Fp
s 0 e € 0
r{A 7"2/3 0 2"5;[) 0
Jac=| ra g —hc—¢ —£ 0
0 0 —Fc —€—Hp—¢ —¢
0 0 € € €—¢€

at € = 0 spectrum approximated by

-1 0 1 0 Ha 0 0 0
1 -1 0 2 0 rg 0 O
1 1 -1 0 0 0 rc O
0 0 -1 -1 0 0 0 rp
regular perturbation argument yields purely imaginary eigenvalues for the full

cvetem
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First example ‘worked-out’ in Parameter-rich kinetics

Stable periodic orbits for the Michaelis-Menten system!

xa = —r(xa) + r3(xc, xp) -
)'<B = n(xa) — n(xg) + 2rs(xp) 2t ?:TXE;
Xc = rl(XA) + r2(XB) - r3(XC’ XD) - r4(XC) '“foﬁf’) _ 1+1ng

X X - XD
xp = —n3(xc,xp) — rs(xp) — re(xp, xg) + Fp '65’%;*;5) o
XE = I’4(Xc) + rﬁ(XDvxE) - r7(XE) FDE 1+63X9 1+3XE

1+11xE
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Mass Action

Also mass action has a Jacobian that can be expressed as AD!
(e.g. Clarke's Stoichiometric Network Analysis)

The core observation is:

ri(x) = kx"
rj(x) = nkix""! = nkx""1% = nrj(x)}

At steady state, linear constraints
Sr(x) =Sv=0

and thus Jacobian
Jac = B(v) diag(1/x).
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Mass Action

Jacobian:

Jac = B(v) diag(1/x)

Theorem (V, '24)

If a mass action system has a flux vector v such that either
@ B(v) is a stable matrix but not a P, matrix, or
@ B(v) is an unstable P~ matrix

then there are parameter choices for purely-imaginary eigenvalues and consequent
nonstationary periodic solutions.

NOTE: B(v) is fully determined by the stoichiometry of the system.

Q3: Can we get simple sufficient stoichiometric patterns?
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Janos’ example ‘worked-out’ in mass action

?Al?AZ?A?,?A[;?A‘F,?Aﬁ?A7?A8?B+C
2A1 + B -;) e
10
Equilibria constraints:
Sv=0 < v=k(5,111,1,1,1,1,1,1,1)

Jac(x) = Sdiag(v)K " diag1/x = SS™ " diag1/x
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Janos’ example ‘worked-out’ in mass action

—F>A1—1>A2?>A3?A47>A5?Aﬁ?A77>A8§>B+C
2A; + B -;) ..
10

Jac(x) = B(v)diag 1/x = Sdiag(v)K " diag1/x = SS~ " diag 1/x

-9 0 0 0 0 0 0 0 -2 —2

1 -1 0 0 0 0 0 0 0 0

0 1 -1 0 0 0 0 0 0 0

0 0 1 -1 0 0 0 0 0 0

0 0 0 1 —1 0 0 0 0 0 H v
- 0 0 0 0 1 -1 0 0 0 0 dlag 1/X

0 0 0 0 0 1 -1 0 0 0

0 0 0 0 0 0 1 —1 0 0

—2 0 0 0 0 0 0 1 -1 0

—2 0 0 0 0 0 0 1 0 -1

eigenvalues of B(v):

(=9.9,—1,—0.5+0.8i,—1,3 £ 0.9/, —1.7 4 0.3/, +0, 005 = 0.3i)

Unstable P~ matrix = periodic orbits!
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A second criterion: fully-open systems, any type of kinetics

Theorem (V' 24)

Consider any fully-open reaction network system

x = g(x) := F + f(x) — Dx.
The following statements are equivalent:
@ the system admits a Hopf bifurcation;

@ the system admits an unstable steady state with complex-conjugated
eigenvalues \1, \» with positive-real part

R(M) =R(A)=p>0

and no other real eigenvalue \; = p.

Sketch of proof:
Q Xst f(x)=0.
@ choose D(B) = pId, F(B) = pBldx
@ g(x,8) =0 for all 3, but shift in spectrum.
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Grazie per |'attenzione!
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