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Motivation

Q1: Is stability needed? (damped oscillations)
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A standard route: Hurwitz computation

p(λ) = a0λ
n + a1λ

n−1 + · · ·+ an−1λ+ an

H =



a1 a3 a5 . . . . . . . . . 0 0 0

a0 a2 a4
...

...
...

0 a1 a3
...

...
...

... a0 a2
. . . 0

...
...

... 0 a1
. . . an

...
...

...
... a0

. . . an−1 0
...

...
... 0 an−2 an

...
...

...
... an−3 an−1 0

0 0 0 . . . . . . . . . an−4 an−2 an



.

Hurwitz computation for purely imaginary eigenvalues ⇒
good candidate for local Hopf bifurcation (non-resonant, simple, transverse).
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Global Hopf bifurcation I

There are also ‘easier’ results for periodic orbits than local Hopf!

Theorem (Chow, Mallet-Paret, Yorke ’78)

An isolated Hopf point with any net-change of stability implies nonstationary
periodic solutions.

Hopf point: non-hyperbolic equilibrium with invertible Jacobian.
Net-change: the hyperbolic spectrum changes through the Hopf point.

No parity/resonance/transversality checking! Moreover, one gets here a ‘global’
continuum (‘snakes’ tbc). However, stability is not given.
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Pros and cons of Hurwitz

Pros:

1 Characterization of the spectral problem (theory!)

2 Identification of the bifurcation point for Hopf bifurcation

Cons:

1 Computational complexity (doomed for not-small networks)

2 Lack of biochemical insights (black box)

3 Local result, stability not (yet) addressed (numerical simulations)
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Alternative routes

1

2

3

4

Zero-eigenvalue bifurcations (Takens-Bogdanov)
Problem:
Takens-Bogdanov (double zero) ⇒ Hopf (purely imaginary), but ̸⇐
Poincare-Bendixson
Problem:
either dim 2 or very special structure (monotone cyclic feedback systems)

Inheritance (perturbation arguments)
Problem:
Algorithm and/or reaction rates.
Global methods (intermediate value theorem)
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P−-matrices, D-stability

Definition (P−-matrices, or Hicksian)

A matrix A is a P− matrix if any k principal minor of A is of sign (−1)k .
(P−

0 indicates the closure)

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P−
0 matrix, then there exists a positive diagonal

matrix D̄ such that AD̄ has purely imaginary eigenvalues.

Sketch of proof: D-stability requires A to be P−
0 matrix, thus A is not D-stable.

Change of stability along a parametrization [A Id,AD] implies at least one point
with eigenvalue of zero-real part (intermediate value theorem). Binet:

detAD = detA detD ̸= 0,

No zero-eigenvalues, thus purely imaginary.
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P−-matrices, D-stability

Definition (P−-matrices, or Hichsian)

A matrix A is a P− matrix if any k principal minor of A is of sign (−1)k .

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P−
0 matrix, then there exists a positive diagonal

matrix D̄ such that AD̄ has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P− matrix, then there exists a positive diagonal
matrix D̄ such that AD̄ has purely imaginary eigenvalues.

Sketch: Fisher& Fuller proved that if a matrix A is a P− matrix, then there exists
a positive diagonal matrix D̄ such that AD̄ has all negative real eigenvalues.
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Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P−
0 matrix, then there exists a positive diagonal

matrix D̄ such that AD̄ has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P− matrix, then there exists a positive diagonal
matrix D̄ such that AD̄ has purely imaginary eigenvalues.

I think of steady-state Jacobians of reaction networks in form

Jac = AD

Q2: Is Linear Algebra alone able to provide classic local Hopf bifurcation?
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Global Hopf bifurcation II

Theorem (Fiedler, ’85)

ẋ = f (x , λ), f analytic

Assume x̄(λ) an analytic parametrization of a family of steady states for λ ∈ [a, b]
with the following conditions:

1 the Jacobian of x̄(λ) is invertible for all λ

2 the Jacobian of x̄(a) has different hyperbolic spectrum than x̄(b).

Then there are nonstationary periodic solution.

Proof relates to the [Chow, Mallet-Paret, Yorke] result.

Analyticity is used to handle ‘continua’ of Hopf points.
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Two reference examples

Reference example I: positive+negative feedback: Ivanova’s scheme.
Stable but not P−

0 negative diagonal stoichiometric sub-matrix

A →
1

B + C

B →
2

C

C + D →
3

A

D →
4

2B

S =


−1 0 1 0
1 −1 0 2
1 0 −1 0
0 0 −1 −1


stable ev: (0.34± 0.56i − 1,−2.32)

SD =


−1 0 1 0
1 −1 0 2
1 0 −1 0
0 0 −1 −1



d1 0 0 0
0 d1 0 0
0 0 d3 0
0 0 0 d4



For d4 → 0, SD ≈


−1 0 1 0
1 −1 0 0
1 0 −1 0
0 0 −1 0

, with ev (−1.66± 0.56i , 0.32, 0)
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Two reference examples

Reference example II: negative feedback: Janos’ example.
Unstable P− negative diagonal sub-matrix.

A1 →
1
A2 →

2
A3 →

3
A4 →

4
A5 →

5
A6 →

6
A7 →

7
A8 →

8
B + C

2A1 + B →
9
...

2A1 + C →
10

...

S =



−1 0 0 0 0 0 0 0 −2 −2
1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 0 −1


ev: (−2,−1,−1.9± 0.7i ,−1.2± 1.1i ,−0.4± 1i , 0.1± 0.4i) ...we need length!
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Two reference examples

Reference example II: negative feedback: Janos’ example.
Unstable P− negative diagonal sub-matrix.

A1 →
1
A2 →

2
A3 →

3
A4 →

4
A5 →

5
A6 →

6
A7 →

7
A8 →

8
B + C

2A1 + B →
9
...

2A1 + C →
10

...

S =



−1 0 0 0 0 0 0 0 −2 −2
1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0
0 0 0 0 0 0 0 1 −1 0
0 0 0 0 0 0 0 1 0 −1


It is a unstable P− matrix!

13/25



First easy case: parameter-rich kinetics

Definition (V, Stadler ’24)

A kinetic model r(x , p) is parameter-rich if any value r ′jm > 0 of the nonzero
partial derivative

∂rj
∂xm

̸= 0 if m is reactant to j

is attainable at any steady-state value x̄ , for a proper choice of p.

Examples: Michaelis-Menten, Generalized Mass Action, Hill kinetics
(NOT mass action)

Theorem (V, ’23)

If a network endowed with parameter-rich kinetics contains a negative-diagonal
stoichiometric matrix U such that either

1 U is a stable matrix but not a P−
0 matrix, or

2 U is an unstable P− matrix

then there are parameter choices for purely-imaginary eigenvalues.
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First example ‘worked-out’ in Parameter-rich kinetics

A →
1
B + C

B →
2
C

C + D →
3
A

C →
4
E

D →
5
2B

D + E →
6
2E

E →
7

→
FD

D



ẋA = −r1(xA) + r3(xC , xD)

ẋB = r1(xA)− r2(xB) + 2r5(xD)

ẋC = r1(xA) + r2(xB)− r3(xC , xD)− r4(xC )

ẋD = −r3(xC , xD)− r5(xD)− r6(xD , xE ) + FD

ẋE = r4(xC ) + r6(xD , xE )− r7(xE )
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First example ‘worked-out’ in Parameter-rich kinetics

A →
1
B + C

B →
2
C

C + D →
3
A

C →
4
E

D →
5
2B

D + E →
6
2E

E →
7

→
FD

D

Jac =


−r ′1A 0 r ′3C r ′3D 0
r ′1A −r ′2B 0 2r ′5D 0
r ′1A r ′2B −r ′3C − r ′4C −r ′3D 0
0 0 −r ′3C −r ′3D − r ′5D − r ′6D −r ′6E
0 0 r ′4C r ′6D r ′6E − r ′7E


RESCALE:

r ′3D = r ′4C = r ′5D = r ′6D = r ′6E = r ′7E ≈ ε
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First example ‘worked-out’ in Parameter-rich kinetics

A →
1
B + C

B →
2
C

C + D →
3
A

C →
4
E
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D + E →
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E →
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r ′1A r ′2B −r ′3C − ε −ε 0
0 0 −r ′3C −ε− r ′5D − ε −ε
0 0 ε ε ε− ε


at ε = 0 spectrum approximated by−1 0 1 0

1 0 2
1 −1 0
0

−1
1 
0 −1 −1


r ′1A 0 0 0

0 r ′2B 0 0
0 0 r ′3C 0
0 0 0 r ′5D


regular perturbation argument yields purely imaginary eigenvalues for the full
system... 18/25



First example ‘worked-out’ in Parameter-rich kinetics

Stable periodic orbits for the Michaelis-Menten system!



ẋA = −r1(xA) + r3(xC , xD)

ẋB = r1(xA)− r2(xB) + 2r5(xD)

ẋC = r1(xA) + r2(xB)− r3(xC , xD)− r4(xC )

ẋD = −r3(xC , xD)− r5(xD)− r6(xD , xE ) + FD

ẋE = r4(xC ) + r6(xD , xE )− r7(xE )


r1(xA)
r2(xB )

r3(xC , xD )
r4(xC )
r5(xD )

r6(xD , xE )
r7(xE )
FD

 =



2xA
8

xB
1+xB

8
xC xD
1+3xD

64
xC

1+15xC
2

xD
1+xD

512
xD

1+63xD

xE
1+3xE

72
xE

1+11xE
5
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Mass Action

Also mass action has a Jacobian that can be expressed as AD!
(e.g. Clarke’s Stoichiometric Network Analysis)

The core observation is:{
rj(x) = kjx

n

r ′j (x) = nkjx
n−1 = nkxn−1 x

x = nrj (x) 1x
At steady state, linear constraints

Sr(x̄) = Sv = 0

and thus Jacobian
Jac = B(v) diag(1/x̄).
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Mass Action

Jacobian:

Jac = B(v) diag(1/x̄)

Theorem (V, ’24)

If a mass action system has a flux vector v such that either

1 B(v) is a stable matrix but not a P−
0 matrix, or

2 B(v) is an unstable P− matrix

then there are parameter choices for purely-imaginary eigenvalues and consequent
nonstationary periodic solutions.

NOTE: B(v) is fully determined by the stoichiometry of the system.

Q3: Can we get simple sufficient stoichiometric patterns?
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Janos’ example ‘worked-out’ in mass action

→
F
A1 →

1
A2 →

2
A3 →

3
A4 →

4
A5 →

5
A6 →

6
A7 →

7
A8 →

8
B + C

2A1 + B →
9
...

2A1 + C →
10

...

Equilibria constraints:

Sv = 0 ⇔ v = k(5, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

Jac(x) = S diag(v)KT diag 1/x̄ = SS−T diag 1/x̄
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Janos’ example ‘worked-out’ in mass action

→
F
A1 →

1
A2 →

2
A3 →

3
A4 →

4
A5 →

5
A6 →

6
A7 →

7
A8 →

8
B + C

2A1 + B →
9
...

2A1 + C →
10

...

Jac(x) = B(v) diag 1/x̄ = S diag(v)KT diag 1/x̄ = SS−T diag 1/x̄

=


−9 0 0 0 0 0 0 0 −2 −2
1 −1 0 0 0 0 0 0 0 0
0 1 −1 0 0 0 0 0 0 0
0 0 1 −1 0 0 0 0 0 0
0 0 0 1 −1 0 0 0 0 0
0 0 0 0 1 −1 0 0 0 0
0 0 0 0 0 1 −1 0 0 0
0 0 0 0 0 0 1 −1 0 0

−2 0 0 0 0 0 0 1 −1 0
−2 0 0 0 0 0 0 1 0 −1

 diag 1/x̄

eigenvalues of B(v):

(−9.9,−1,−0.5± 0.8i ,−1, 3± 0.9i ,−1.7± 0.3i ,+0, 005± 0.3i)

Unstable P− matrix ⇒ periodic orbits!
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A second criterion: fully-open systems, any type of kinetics

Theorem (V’ 24)

Consider any fully-open reaction network system

ẋ = g(x) := F + f (x)− Dx .

The following statements are equivalent:

1 the system admits a Hopf bifurcation;

2 the system admits an unstable steady state with complex-conjugated
eigenvalues λ1, λ2 with positive-real part

ℜ(λ1) = ℜ(λ2) = p > 0

and no other real eigenvalue λi = p.

Sketch of proof:
1 x̄ s.t. f (x̄) = 0.
2 choose D(β) = β Id, F (β) = β Id x̄
3 g(x̄ , β) = 0 for all β, but shift in spectrum.
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Grazie per l’attenzione!
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