Periodic oscillations without Hurwitz

Nicola Vassena

Leipzig University

30th April 2024

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

Motivation

Motivation

Q1: Is stability needed? (damped oscillations)

A standard route: Hurwitz computation

$$p(\lambda) = a_0\lambda^n + a_1\lambda^{n-1} + \cdots + a_{n-1}\lambda + a_n$$

	$(a_1$	a ₃	a_5				0	0	0)	
	a0	a 2	a ₄				÷	÷	÷	
	0	a_1	a ₃				÷	÷	÷	
	:	a_0	a_2	·			0	÷	÷	
H =	:	0	a_1		·		an	÷	÷	
	:	÷	a_0			·	a_{n-1}	0	:	
	:	÷	0				a _{n-2}	an	÷	
		÷	÷				a _{n-3}		0	
	0	0	0				a_{n-4}	a_{n-2}	a _n /	

Hurwitz computation for purely imaginary eigenvalues \Rightarrow good candidate for **local Hopf bifurcation** (non-resonant, simple, transverse).

Global Hopf bifurcation I

There are also 'easier' results for periodic orbits than local Hopf!

Hopf point: non-hyperbolic equilibrium with invertible Jacobian. Net-change: the hyperbolic spectrum changes through the Hopf point.

No parity/resonance/transversality checking! Moreover, one gets here a 'global' continuum ('snakes' tbc). However, stability is not given.

Pros:

- Characterization of the spectral problem (theory!)
- Identification of the bifurcation point for Hopf bifurcation

Pros and cons of Hurwitz

SIAM REVIEW Vol. 10, No. 1, January, 1968

BIGRADIENTS AND THE PROBLEM OF ROUTH AND HURWITZ*

Pros:

A. S. HOUSEHOLDER[†]

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Characterization of the spectral problem (theory!)
- Identification of the bifurcation point for Hopf bifurcation

Pros and cons of Hurwitz

SIAM REVIEW Vol. 10, No. 1, January, 1968

BIGRADIENTS AND THE PROBLEM OF ROUTH AND HURWITZ*

Pros:

- A. S. HOUSEHOLDER[†]
- Characterization of the spectral problem (theory!)
- Identification of the bifurcation point for Hopf bifurcation

Cons:

- Ocomputational complexity (doomed for not-small networks)
- 2 Lack of biochemical insights (black box)
- Solutions Local result, stability not (yet) addressed (numerical simulations)

Alternative routes

Zero-eigenvalue bifurcations (Takens-Bogdanov) Problem: Takens-Bogdanov (double zero) ⇒ Hopf (purely imaginary), but ∉

2 Poincare-Bendixson

Problem: either dim 2 or very special structure (monotone cyclic feedback systems)

Inheritance (perturbation arguments) Problem:

Algorithm and/or reaction rates.

Global methods (intermediate value theorem)

Alternative routes

The Poincaré–Bendixson Theorem for Monotone Cyclic Feedback Systems

Stable Periodic Solutions for the Hypercycle System

John Mallet-Paret¹ and Hal L. Smith²

J. Hofbauer,¹ J. Mallet-Paret,² and H. L. Smith³

Zero-eigenvalue bifurcations (Takens-Bogdanov) Problem: Takens-Bogdanov (double zero) ⇒ Hopf (purely imaginary), but ∉

Poincare-Bendixson

Problem: either dim 2 or very special structure (monotone cyclic feedback systems)

Inheritance (perturbation arguments) Problem:

Algorithm and/or reaction rates.

Global methods (intermediate value theorem)

Alternative routes

The Poincaré-Bendixson Theorem for Monotone Cyclic Feedback Systems

Stable Periodic Solutions for the Hypercycle System

▲ロ▶ ▲□▶ ▲ヨ▶ ▲ヨ▶ ヨー のへで

John Mallet-Paret¹ and Hal L. Smith²

J. Hofbauer, ¹ J. Mallet-Paret, ² and H. L. Smith³

Zero-eigenvalue bifurcations (Takens-Bogdanov)
 Problem:
 Takens-Bogdanov (double zero) ⇒ Hopf (purely imaginary), but ∉

2 Poincare-Bendixson

Problem: either dim 2 or very special structure (monotone cyclic feedback systems)

 Inheritance (perturbation arguments) Problem: Algorithm and/or reaction rates.

Global methods (intermediate value theorem)

Inheritance of oscillation in chemical reaction networks

Murad Banaji^{a,*}

^aMiddlesex University, London, Department of Design Engineering and mathematics, The Burroughs, London NW4 4BT, UK.

Definition $(P^{-}-matrices, or Hicksian)$

A matrix A is a P^- matrix if any k principal minor of A is of sign $(-1)^k$. (P_0^- indicates the closure)

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Definition $(P^{-}-matrices, or Hicksian)$

A matrix A is a P^- matrix if any k principal minor of A is of sign $(-1)^k$. (P_0^- indicates the closure)

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Definition $(P^{-}-matrices, or Hicksian)$

A matrix A is a P^- matrix if any k principal minor of A is of sign $(-1)^k$. (P_0^- indicates the closure)

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Sketch of proof: *D*-stability requires *A* to be P_0^- matrix, thus *A* is not *D*-stable. Change of stability along a parametrization $[A \operatorname{Id}, AD]$ implies at least one point with eigenvalue of zero-real part (intermediate value theorem). Binet:

 $\det AD = \det A \det D \neq 0,$

No zero-eigenvalues, thus purely imaginary.

Definition (P^- -matrices, or Hichsian)

A matrix A is a P^- matrix if any k principal minor of A is of sign $(-1)^k$.

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Definition (P^- -matrices, or Hichsian)

A matrix A is a P^- matrix if any k principal minor of A is of sign $(-1)^k$.

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Definition (P^- -matrices, or Hichsian)

A matrix A is a P^- matrix if any k principal minor of A is of sign $(-1)^k$.

Definition (D-stability)

A matrix A is D-stable if AD is stable for any positive diagonal matrix D.

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Sketch: Fisher& Fuller proved that if a matrix A is a P^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has all negative real eigenvalues.

Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

I think of steady-state Jacobians of reaction networks in form

Jac = AD

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ○ ○ ○

Linear Algebra?

Two complementary results:

Proposition

If a matrix A is stable but not a P_0^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

Corollary (from Fisher & Fuller 1958)

If a matrix A is an unstable P^- matrix, then there exists a positive diagonal matrix \overline{D} such that $A\overline{D}$ has purely imaginary eigenvalues.

I think of steady-state Jacobians of reaction networks in form

$$Jac = AD$$

Q2: Is Linear Algebra alone able to provide classic local Hopf bifurcation?

Global Hopf bifurcation II

An index for global Hopf bifurcation in parabolic systems*)

By Bernold Fiedler at Heidelberg

Theorem (Fiedler, '85)

 $\dot{x} = f(x, \lambda), \quad f \text{ analytic}$

Assume $\bar{x}(\lambda)$ an analytic parametrization of a family of steady states for $\lambda \in [a, b]$ with the following conditions:

- the Jacobian of $\bar{x}(\lambda)$ is invertible for all λ
- **2** the Jacobian of $\bar{x}(a)$ has different hyperbolic spectrum than $\bar{x}(b)$.

Then there are nonstationary periodic solution.

Proof relates to the [Chow, Mallet-Paret, Yorke] result.

Analyticity is used to handle 'continua' of Hopf points.

▲ロ → ▲園 → ▲ 画 → ▲ 画 → 今今で

Reference example I: **positive+negative feedback**: Ivanova's scheme. **Stable but not** P_0^- negative diagonal stoichiometric sub-matrix

Reference example I: **positive+negative feedback**: Ivanova's scheme. **Stable but not** P_0^- negative diagonal stoichiometric sub-matrix

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のくぐ

Reference example I: **positive+negative feedback**: Ivanova's scheme. **Stable but not** P_0^- negative diagonal stoichiometric sub-matrix

$$A \xrightarrow{1} B + C$$

$$B \xrightarrow{2} C$$

$$S = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix}$$

$$C + D \xrightarrow{3} A$$

$$D \xrightarrow{2} 2B$$

$$Stable ev: (-0.34 \pm 0.56i - 1, -2.32)$$

$$SD = \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 0 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} d_1 & 0 & 0 & 0 \\ 0 & d_1 & 0 & 0 \\ 0 & 0 & d_3 & 0 \\ 0 & 0 & 0 & d_4 \end{pmatrix}$$
For $d_4 \rightarrow 0$, $SD \approx \begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 0 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & 0 \end{pmatrix}$, with ev $(-1.66 \pm 0.56i, 0.32, 0)$

Reference example II: negative feedback: Janos' example. Unstable P^- negative diagonal sub-matrix.

Reference example II: **negative feedback**: Janos' example. **Unstable** P^- **negative diagonal sub-matrix**. $A_1 \xrightarrow{1} A_2 \xrightarrow{2} A_3 \xrightarrow{3} A_4 \xrightarrow{4} A_5 \xrightarrow{5} A_6 \xrightarrow{6} A_7 \xrightarrow{7} A_8 \xrightarrow{8} B + C$ C & And Sc. Pers. 1.28 (A juncter 1978) NOTES DIS MEMBRIES ET CORRESPONDANTS ET NOTES PRÉSENTEES OU TRANSMISSE PAR LEURS SONS CONTREMINÉE Contractioned, andre readinger. Note: Contract intervent configure relations: Note: Contract intervent configure

12/25

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

Reference example II: negative feedback : Janos' example. Unstable P^- negative diagonal sub-matrix .											
$A_1 \xrightarrow{1} A_2 \xrightarrow{2} A_3 \xrightarrow{3} A_4 \xrightarrow{4} A_5 \xrightarrow{5} A_6 \xrightarrow{6} A_7 \xrightarrow{7} A_8 \xrightarrow{8} B + C$											
C. R. Acad. Sc. Paris, 1. 286 (30 jamier 1978)			2	$2A_1 +$	$B \xrightarrow{9}$						
CHIMIE PHYSIQUE. – Schéma réactionnel, ca	ET NOTES PRÉSENTÉES OU TRANSMISES PAR LEURS SOINS CHINE PHYSICE - s'Abbre Notember de moltimes denses. Not of a chart byte, manue per M dables Pault. 2 $A_1 + C \xrightarrow{10}{10} \dots$										
	(-1)	0	0	0 0 0	0	0	0	0	-2	-2	
	1	-1	0	0	0		0	0	0	0	
	0	1	-1	0	0	0	0	0	0	0	
	0	0	1	-1	0	0	0	0	0	0	
c	0 0 0	0	0	1	-1	0	0	0	0	0	
5 =	0	0	0 0	0	1	-1	0	0	0	0	
	0	0	0	0	0	1	-1	0	0	0	
	0	0	0	0	0	0	1	-1	0	0	
	0	0	0	0	0	0	0	1	-1	0	
	0 /	0	0	0	0	0	0	1	0	-1/	
ev: $(-2, -1, -1.9 \pm 0.7i, -1.2 \pm 1.1i, -0.4 \pm 1i, 0.1 \pm 0.4i)$ we need length!											
							< 🗗 🕨	<	(≣))	目の	

Reference example II: negative feedback: Janos' example.										
	Uns	table	P^{-}	negat	tive d	liagor	nal su	ıb-ma	itrix.	
A_1	$\xrightarrow{1}{} A_2$	$\frac{1}{2}A_{2}$	$3 \xrightarrow{3} 4$	$A_4 \xrightarrow[4]{}$	$A_5 \xrightarrow{5}{5}$	A ₆ -	$\rightarrow A_7$ -	$\frac{1}{7}A_8$	$\xrightarrow[8]{8} B$	+ <i>C</i>
C. R. Acad. Sc. Paris, t. 286 (30 janvier 1978)		Serie C - 119	2	$2A_1 +$	$B \xrightarrow[]{q}$					
NOTES DES MEMBRES ET CO ET NOTES PRÉSENTÉES OU TRANSM					5					
CHIMIE PHYSIQUE. – Schéma réactionnel, co Note (*) de Claude Hyver , transmise par			4	-71 -	$C \xrightarrow[10]{} 10$					
	(-1)	0	0	0	0	0	0	0	-2	-2
	1	-1	0	0	0	0	0	0	0	0
	0	1	-1	0	0	0	0	0	0	0
	0	0	1	-1	0	0	0	0	0	0
S —	0	0	0	1	-1	0	0	0	0	0
5 –	0	0	0	0	1	-1	0	0	0	0
	0	0	0	0	0	1	-1	0	0	0
	0	0	0	0	0	0	1	-1	0	0
	0	0	0	0	0	0	0	1	-1	0
	(0	0	0	0	0	0	0	1	0	-1/
			It is a	a unst	table	P^- m	atrix!			

First easy case: parameter-rich kinetics

Definition (V, Stadler '24)

A kinetic model r(x, p) is parameter-rich if **any** value $r'_{jm} > 0$ of the nonzero partial derivative

$$\frac{\partial r_j}{\partial x_m} \neq 0 \quad \text{if } m \text{ is reactant to } j$$

is attainable at **any** steady-state value \bar{x} , for a proper choice of p.

Examples: Michaelis-Menten, Generalized Mass Action, Hill kinetics (NOT mass action)

Theorem (V, '23)

If a network endowed with parameter-rich kinetics contains a negative-diagonal stoichiometric matrix U such that either

- U is a stable matrix but not a P_0^- matrix, or
- ❷ U is an unstable P[−] matrix

then there are parameter choices for purely-imaginary eigenvalues.

$$A \xrightarrow{1} B + C \qquad D \xrightarrow{2} 2B$$
$$B \xrightarrow{2} C \qquad D + E \xrightarrow{2} 2E$$
$$C + D \xrightarrow{3} A \qquad E \xrightarrow{7}$$
$$C \xrightarrow{4} E \qquad \xrightarrow{F_D} D$$

$$\begin{cases} \dot{x}_A = -r_1(x_A) + r_3(x_C, x_D) \\ \dot{x}_B = r_1(x_A) - r_2(x_B) + 2r_5(x_D) \\ \dot{x}_C = r_1(x_A) + r_2(x_B) - r_3(x_C, x_D) - r_4(x_C) \\ \dot{x}_D = -r_3(x_C, x_D) - r_5(x_D) - r_6(x_D, x_E) + F_D \\ \dot{x}_E = r_4(x_C) + r_6(x_D, x_E) - r_7(x_E) \end{cases}$$

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = 善 - 釣ぬの

$$A \xrightarrow{1} B + C \qquad D \xrightarrow{2} 2B$$

$$B \xrightarrow{2} C \qquad D + E \xrightarrow{6} 2E$$

$$C + D \xrightarrow{3} A \qquad E \xrightarrow{7}$$

$$C \xrightarrow{4} E \qquad \xrightarrow{E_0} D$$

$$Jac = \begin{pmatrix} -r'_{1A} & 0 & r'_{3C} & r'_{3D} & 0 \\ r'_{1A} & -r'_{2B} & 0 & 2r'_{5D} & 0 \\ r'_{1A} & r'_{2B} & -r'_{3C} - r'_{4C} & -r'_{3D} & 0 \\ 0 & 0 & -r'_{3C} & -r'_{3D} - r'_{5D} - r'_{6D} & -r'_{6E} \\ 0 & 0 & r'_{4C} & r'_{6D} & r'_{6E} - r'_{7E} \end{pmatrix}$$

RESCALE:

$$r'_{3D} = r'_{4C} = r'_{5D} = r'_{6D} = r'_{6E} = r'_{7E} \approx \varepsilon$$

▲□▶ ▲圖▶ ▲臣▶ ★臣▶ ―臣 … のへで

$$A \xrightarrow{1}{} B + C \qquad D \xrightarrow{2}{} 2B$$

$$B \xrightarrow{2}{} C \qquad D + E \xrightarrow{2}{} 2E$$

$$C + D \xrightarrow{3}{} A \qquad E \xrightarrow{7}{}$$

$$C \xrightarrow{4}{} E \qquad \xrightarrow{F_0} D$$

$$Jac = \begin{pmatrix} -r'_{1A} & 0 & r'_{3C} & \varepsilon & 0 \\ r'_{1A} & -r'_{2B} & 0 & 2r'_{5D} & 0 \\ r'_{1A} & r'_{2B} & -r'_{3C} - \varepsilon & -\varepsilon & 0 \\ 0 & 0 & -r'_{3C} & -\varepsilon - r'_{5D} - \varepsilon & -\varepsilon \\ 0 & 0 & \varepsilon & \varepsilon & \varepsilon - \varepsilon \end{pmatrix}$$

RESCALE:

$$r_{3D}^{\prime}=r_{4C}^{\prime}=r_{5D}^{\prime}=r_{6D}^{\prime}=r_{6E}^{\prime}=r_{7E}^{\prime}\approx\varepsilon$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

$A \xrightarrow{1} B + C$	-		$D \xrightarrow{5} 2B$	
$B \xrightarrow{2} C$			$D + E \xrightarrow[6]{} 2E$	
$C + D \xrightarrow{3} A$			$E \xrightarrow[7]{}$	
$C \xrightarrow[4]{} E$			$\xrightarrow[F_D]{} D$	
$Jac=egin{pmatrix} -r_{1A}' \ r_{1A}' \ r_{1A}' \ 0 \ 0 \end{bmatrix}$	$ \begin{array}{c} 0 \\ -r'_{2B} \\ r'_{2B} \\ 0 \\ 0 \end{array} $	$r'_{3C} \\ 0 \\ -r'_{3C} - \varepsilon \\ -r'_{3C} \\ \varepsilon$	$\begin{array}{c} \varepsilon \\ 2r_{5D}' \\ -\varepsilon \\ -\varepsilon - r_{5D}' - \varepsilon \\ \varepsilon \end{array}$	$\begin{pmatrix} 0 \\ 0 \\ 0 \\ -\varepsilon \\ \varepsilon - \varepsilon \end{pmatrix}$

at $\varepsilon = 0$ spectrum approximated by

$$\begin{pmatrix} -1 & 0 & 1 & 0 \\ 1 & -1 & 0 & 2 \\ 1 & 1 & -1 & 0 \\ 0 & 0 & -1 & -1 \end{pmatrix} \begin{pmatrix} r'_{1A} & 0 & 0 & 0 \\ 0 & r'_{2B} & 0 & 0 \\ 0 & 0 & r'_{3C} & 0 \\ 0 & 0 & 0 & r'_{5D} \end{pmatrix}$$

Stable periodic orbits for the Michaelis-Menten system!

$$\begin{pmatrix} \dot{x}_{A} = -r_{1}(x_{A}) + r_{3}(x_{C}, x_{D}) \\ \dot{x}_{B} = r_{1}(x_{A}) - r_{2}(x_{B}) + 2r_{5}(x_{D}) \\ \dot{x}_{C} = r_{1}(x_{A}) + r_{2}(x_{B}) - r_{3}(x_{C}, x_{D}) - r_{4}(x_{C}) \\ \dot{x}_{D} = -r_{3}(x_{C}, x_{D}) - r_{5}(x_{D}) - r_{6}(x_{D}, x_{E}) + F_{D} \\ \dot{x}_{E} = r_{4}(x_{C}) + r_{6}(x_{D}, x_{E}) - r_{7}(x_{E}) \end{pmatrix} = \begin{pmatrix} 2x_{A} \\ 3\frac{x_{B}}{1+x_{B}} \\ r_{1}(x_{A}) \\ r_{3}(x_{C}, x_{D}) \\ r_{5}(x_{D}) \end{pmatrix} = \begin{pmatrix} 2x_{A} \\ \frac{3\frac{x_{B}}{1+x_{B}} \\ \frac{3\frac{x_{B}}{1+x_{B}}} \\ \frac{3\frac{x_{B}}{1+$$

(□▶ ∢母▶ ∢き▶ ∢き⊁ (き)の(?)

Mass Action

Also mass action has a Jacobian that can be expressed as *AD*! (e.g. Clarke's Stoichiometric Network Analysis)

The core observation is:

$$\begin{cases} r_j(x) = k_j x^n \\ r'_j(x) = nk_j x^{n-1} = nk x^{n-1} \frac{x}{x} = nr_j(x) \frac{1}{x} \end{cases}$$

At steady state, linear constraints

$$Sr(\bar{x}) = Sv = 0$$

and thus Jacobian

$$Jac = B(v) \operatorname{diag}(1/\bar{x}).$$

・ロト <
一 ト <
一 ト <
三 ト <
三 ト <
三 ト <
こ へ へ へ 20/25
</p>

Mass Action

Jacobian:

 $Jac = B(v) \operatorname{diag}(1/\bar{x})$

Theorem (V, '24)

If a mass action system has a flux vector v such that either

- B(v) is a stable matrix but not a P_0^- matrix, or
- **2** B(v) is an unstable P^- matrix

then there are parameter choices for purely-imaginary eigenvalues and consequent nonstationary periodic solutions.

NOTE: B(v) is fully determined by the stoichiometry of the system.

Q3: Can we get simple sufficient stoichiometric patterns?

Janos' example 'worked-out' in mass action

$$\xrightarrow{\mathbf{F}} A_1 \xrightarrow{\mathbf{1}} A_2 \xrightarrow{\mathbf{2}} A_3 \xrightarrow{\mathbf{3}} A_4 \xrightarrow{\mathbf{4}} A_5 \xrightarrow{\mathbf{5}} A_6 \xrightarrow{\mathbf{6}} A_7 \xrightarrow{\mathbf{7}} A_8 \xrightarrow{\mathbf{8}} B + C$$

$$2A_1 + B \xrightarrow{\mathbf{9}} \dots$$

$$2A_1 + C \xrightarrow{\mathbf{10}} \dots$$

Equilibria constraints:

・ロト <
一 ト <
三 ト <
三 ト <
三 ト <
こ 、 22/25
</p>

Janos' example 'worked-out' in mass action

$$\xrightarrow{\mathbf{F}} A_1 \xrightarrow{\mathbf{1}} A_2 \xrightarrow{\mathbf{2}} A_3 \xrightarrow{\mathbf{3}} A_4 \xrightarrow{\mathbf{4}} A_5 \xrightarrow{\mathbf{5}} A_6 \xrightarrow{\mathbf{6}} A_7 \xrightarrow{\mathbf{7}} A_8 \xrightarrow{\mathbf{8}} B + C$$

$$2A_1 + B \xrightarrow{\mathbf{9}} \dots$$

$$2A_1 + C \xrightarrow{\mathbf{10}} \dots$$

eigenvalues of B(v):

 $(-9.9, -1, -0.5 \pm 0.8i, -1, 3 \pm 0.9i, -1.7 \pm 0.3i, +0, 005 \pm 0.3i)$

Unstable P^- matrix \Rightarrow periodic orbits!

◆□▶ ◆□▶ ◆三▶ ◆三▶ ◆□▶ ◆□

A second criterion: fully-open systems, any type of kinetics

Theorem (V' 24)

Consider any fully-open reaction network system

$$\dot{x} = g(x) := F + f(x) - Dx.$$

The following statements are equivalent:

- the system admits a Hopf bifurcation;
- One of the system admits an unstable steady state with complex-conjugated eigenvalues λ₁, λ₂ with positive-real part

$$\Re(\lambda_1) = \Re(\lambda_2) = p > 0$$

and no other real eigenvalue $\lambda_i = p$.

Sketch of proof:

1
$$\bar{x}$$
 s.t. $f(\bar{x}) = 0$.

- **2** choose $D(\beta) = \beta \operatorname{Id}, F(\beta) = \beta \operatorname{Id} \overline{x}$
- $g(\bar{x},\beta) = 0$ for all β , but shift in spectrum.

◆ロ▶ ◆昼▶ ◆臣▶ ◆臣▶ 三臣 - のへで - -

Grazie per l'attenzione!

