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Abstract

We state two sufficient criteria for periodic oscillations in mass action systems.
Neither criterion requires a computation of the Hurwitz determinants. Instead,
both criteria exploit the linear algebra concepts of D-stability and P -matrices. The
criteria are complementary: the first is based on a stable matrix that is not a P−

matrix, while the second is based on a P− matrix that is not stable. In analogy,
a qualitatively different interpretation follows: the first criterion relates to positive
feedback in the network, while the second concerns negative feedback. We present
examples that showcase the applicability of both criteria.

As a final independent remark, we prove that for the special case of fully-open
networks, the capacity for Hopf bifurcation is just equivalent to the capacity for a
steady-state with a complex pair of eigenvalues with positive-real part.
Keywords: mass action systems, periodic oscillations, D-stability, P− matrices,
global Hopf bifurcation
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1 Introduction

The quest of finding periodic orbits in polynomial differential equations is notoriously
difficult. A standard approach aims at proving the occurrence of a Hopf bifurcation,
where an equilibrium changes stability and generates a periodic orbit. Purely imaginary
eigenvalues of the Jacobian are a necessary spectral condition for a Hopf bifurcation
to occur. Therefore, the great majority of the literature in reaction networks employs
an explicit Hurwitz criterion [27]. See among others [18, 13, 22, 21, 11, 34, 4]. The
major drawback of the Hurwitz approach is its computational complexity, which limits
its applicability to small networks. Moreover, such a computation may obfuscate, rather
than illuminate, the underlying chemical mechanism that leads to oscillations.
With these motivations, we present two criteria that establish nonstationary periodic

oscillations in mass action systems and do not require any Hurwitz computation. The
first ingredient is the standard Jacobian parametrization by Clarke [10], which expresses
the Jacobian matrix Jac at steady states in the form of

Jac = AD, (1.1)

where D is a parametric positive diagonal matrix. Note that

rankAD = rankA, (1.2)

and thus a change of stability by tuning parameters in D unequivocally leads to purely
imaginary eigenvalues. The second ingredient are the linear algebra concepts ofD-stability
and P− matrices, and in particular an old celebrated result by Fisher and Fuller [17, 16].
We rely on such results to provide manageable sufficient conditions on A for the existence
of a positive diagonal matrix D∗ such that AD∗ has purely imaginary eigenvalues. Finally,
we return to nonlinear dynamics: the third ingredient is a result by Fiedler [14] on global
Hopf bifurcation that - together with the first two ingredients - guarantees the existence
of nonstationary periodic orbits.
The paper is organized as follows. Section 2 introduces setting and notation. Section

3 is dedicated to linear algebra and presents in more detail the concepts of D-stability,
P−-matrices, and the Fisher-Fuller result. Section 4 reviews the parametrization method
Stoichiometric Network Analysis by Clarke. Section 5 contains the main Theorem 5.1 and
- as Corollary 5.2 - the two criteria. Section 6 provides an interpretation of the chemical
mechanism underlying the criteria: Criterion I concerns an unstable-positive feedback
within a stable network; Criterion II concerns an unstable-negative feedback. We present
examples for both criteria in Section 7. Finally, Section 8 provides an independent result
for the special case of fully-open networks. Section 9 summarizes the paper and outlooks
future directions.

2 Reaction networks

A reaction network Γ = (S,R) consists of a set S of species that interact via a set R of
reactions. A reaction i is an ordered association between reactant and product species:

i : si1X1 + ...+ si|S|X|S| −→
i

s̃i1X1 + ...+ s̃i|S|X|S|. (2.1)

Here, X1, ..., X|S| indicate |S| distinct species and the nonnegative integer coefficients
sim, s̃

i
m are the so-called stoichiometric coefficients. A reaction without reactants and
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single product Xm is called an inflow reaction to Xm. Respectively, a reaction without
products and a single reactant Xm is called an outflow reaction from Xm. A network is
called closed if there are no inflow and outflow reactions. At the other extreme, a network
whose reaction set R contains inflow reactions to all its species and outflow reactions from
all of its species is called fully open. Finally, a reaction for which a species Xm is both a
reactant and a product is called explicitly autocatalytic.
Consider the |S|-vector x > 0 of the positive species concentrations in a well-mixed

reactor. The dynamics x(t) follows the system of Ordinary Differential Equations:

ẋ = f(x) := Nr(x), (2.2)

where N is the |S| × |R| stoichiometric matrix, defined by

Nmi := s̃im − sim, (2.3)

and r(x) is the |R|-vector of reaction rates (kinetics). Equilibria vector x̄ with

0 = f(x̄)

are called steady-states of Γ. As our criteria are based on the bifurcation of steady-states,
we consider throughout only networks Γ that admit at least one positive steady-state.
This condition just requires the existence of at least one positive vector v ∈ R|R|

>0, called
here steady-state flux vector such that

Nv = 0, (2.4)

i.e., v is a positive right kernel vector of the stoichiometric matrix. Networks, whose
stoichiometric matrix satisfies (2.4) for a positive vector v > 0, have been called consistent
[3] or also dynamically nontrivial [4].
It is reasonable to assume that each reaction rate ri is a positive monotone function

of the concentrations xm > 0 of those species Xm, which are reactants to i, i.e., for
sim > 0. This class of nonlinearities has been named monotone chemical functions [37]
or weakly monotone kinetics [33] in the literature. A most prominent example is mass
action kinetics [39], which considers any reaction rate ri as a monomial function of the
concentrations:

ri(x) := ai

|S|∏
m=1

xsim
m . (2.5)

The coefficient ai > 0 is a positive parameter, and the exponents sim are the stoichiometric
coefficients of species Xm as a reactant of the reaction i in (2.1). Note that the rate of an
inflow reaction is then constant, i.e., ri(x) = ai. More general polynomial functions such
as Generalized Mass Action kinetics [32] or rational functions such as Michaelis-Menten
[30] and Hill [23] kinetics also fall within the class of monotone chemical functions.

3 Linear algebra: D-stability and P− matrices

This section reviews the standard concepts of D-stability and P− matrices. We refer to
[19, 26] for a more extended overview. We start with the definition of inertia of a matrix.

Definition 3.1 (Inertia of a matrix). The inertia of an n × n square matrix A is a
nonnegative triple

inertia(A) := (σ−
A , σ

+
A , σ

0
A),
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where σ−
A ,σ

+
A and σ0

A are the number of eigenvalues of A with negative-real part, positive-
real part, and zero-real-part eigenvalues, respectively. The eigenvalues are counted with
their multiplicities so that σ+

A + σ−
A + σ0

A = n.

Definition 3.2 ((in)stability, D-(in)stability). A n × n matrix A is stable if all of its
eigenvalues have negative real part, i.e, its inertia is (n, 0, 0). Conversely, A is unstable if
at least one eigenvalue has a positive real part. Moreover, a matrix A is D-stable if AD
is stable for any choice of a positive diagonal matrix D. Conversely, A is D-unstable if
there exists a diagonal matrix D such that AD is unstable.

By choosing D = Id, it is clear that D-stability implies stability, and that instability
implies D-instability. In addition, the D-stability of A necessarily requires the D-stability
of all its principal submatrices, as the next Lemma shows. We fix the notation: let κ be
any choice of k ≤ n indices in {1, ..., n}. A[κ] denotes the principal submatrix of A with
column/row index κ.

Lemma 3.3. If any of the principal submatrices of A is D-unstable, then A is D-unstable.

Proof. By assumption, there exists a choice of κ such that A[κ] is D-unstable. Without
loss of generality, we can assume κ = {1, ..., k}. Choose now D[κ] = diag(d1, ..., dk) such
that A[κ]D[κ] is unstable, and rescale all other entries of D, di with i > k, as di = ε.
Consider now the family of matrices AD(ε). Clearly, for ε = 0, the spectrum of AD(0)
corresponds to the spectrum of A[κ]D[κ] plus n−k eigenvalues zero. In particular AD(0)
is unstable by construction. The continuity of the eigenvalues with respect to the entries
guarantees that such instability persists for ε small enough, which yields the instability
of AD, for a choice of positive D, and thus the D-instability of A.

Unfortunately, proving that a square matrix A isD-stable is computationally nontrivial.
It may precisely reduce to exclude purely-imaginary eigenvalues of AD for any choice of
D, via the Hurwitz computation. To avoid being a dog chasing its tail, we have to rely
on sufficient conditions on A that guarantee the existence of positive diagonal matrices
D1 and D2 such that

inertia(AD1) ̸= inertia(AD2), (3.1)

which sufficiently guarantees that A is not D-stable. The key here is the concept of P−

matrices.

Definition 3.4 (P− and P−
0 matrices). A n× n matrix A is called a P− matrix if all of

its k-principal minors have sign (−1)k. A n × n matrix A is called a P−
0 matrix if all of

its nonzero k-principal minors A[κ] have sign (−1)k.

The set of P−
0 matrices is just the closure of the open set of P− matrices. We recall two

standard results that relate D-stability and P−
0 matrices. The first proposition follows

directly from Lemma 3.3.

Proposition 3.5. Let A be a n× n matrix that is not a P−
0 matrix. Then there exists a

positive diagonal D such that AD is unstable.

Proof. If A is not a P−
0 matrix, then A possesses a principal submatrix A[κ] such that

detA[κ] = (−1)k−1.

In particular A[κ] possesses an odd number of real positive eigenvalues, and it is thus
unstable. Recalling that instability implies D-instability, Lemma 3.3 yields the statement.
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The second is a celebrated result by Michael E. Fisher and A. T. Fuller in 1958 [17],
elaborated also by Franklin M. Fisher in [16]. For the full generality of this theorem, a
further definition is required.

Definition 3.6 (Fisher and Fuller P−
FF matrices). A P−

0 matrix A is called a P−
FF matrix,

or Fisher&Fuller matrix if there is at least a sequence of nested nonsingular principal
matrices

(A[κ1], A[κ2], ..., A[κn−1], A),

of every order |κi| = i = (1, ..., n), such that A[κi−1] is a principal submatrix of A[κi].

Clearly, the following set inclusion holds:

P− matrices ⊂ P−
FF matrices ⊂ P−

0 matrices.

A warning: Fisher [16] uses the word Hichsian to refer to P−
FF matrices. I have found

that such a name can be also found in the literature [19] to refer to P− matrices.

Theorem 3.7 (Theorem 1’ in [16]). Let A be a P−
FF matrix. Then there exists a positive

diagonal D such that AD has all eigenvalues that are real, negative, and simple.

We can derive easy conditions for (3.1) based on Proposition 3.5 and Theorem 3.7. We
do this explicitly in the next two corollaries.

Corollary 3.8 (of Proposition 3.5). Consider a n× n matrix A that is not a P−
0 matrix.

Further, assume that A has no eigenvalue with a positive-real part. Then there exist two
diagonal matrices D1 and D2 such that (3.1) holds.

Corollary 3.9 (of Theorem 3.7). Consider an unstable P− matrix A. Then there exist
two diagonal matrices D1 and D2 such that (3.1) holds.

Proof of both corollaries. Just consider D1 = Id and let D2 be the matrix satisfying the
statement of Proposition 3.5, or respectively Theorem 3.7. In the case of Corollary 3.8,
AD1 = A Id = A has no eigenvalues with positive real part while AD2 has an eigenvalues
with positive real part via Proposition 3.5. Complementarily, in the case of Corollary 3.9
AD1 = A Id = A has eigenvalues with positive real part while AD2 has only eigenvalues
with negative real part via Theorem 3.7.

Purely imaginary eigenvalues of AD The condition (3.1) implies the existence of a
positive matrix D∗ such that AD∗ has purely imaginary eigenvalues. We formally argue
as follows. Let d1 and d2 indicate the vectors in Rn

>0 such that D1 = diag(d1) and
D2 = diag(d2). Consider any regular curve

γ(t) : [0, 1] 7→ Rn,

such that γ(0) = d1 and γ(1) = d2, and the associated eigenvalue curve

Λ(t) : [0, 1] 7→ Rn defined by Λ(t) = (λ1(t), ..., λn(t)) = eigenvalues(A diag(γ(t)).

The condition (3.1) implies a change in the sign of the real part of at least one of the
eigenvalues along the path γ: intermediate value theorem guarantees then the existence
of at least one t∗ such that Λ(t∗) identifies at least one eigenvalue with zero-real part.
Note that

rankA diag(γ(t)) = rankA
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prevents real zero eigenvalues, and thus t∗ identifies at least one pair of purely imaginary
eigenvalues. We conclude this section with an open linear algebra question:

Q∗ : Does it always exist a choice of path γ such that
(i) A diag(γ(t∗)) has a simple pair of purely imaginary eigenvalues λi,j,

(ii) ℜ(λi,j(t))
′ ̸= 0?

h
In the next section, we show how a Jacobian matrix evaluated at steady-states of mass

action systems can be expressed precisely as a product AD. A positive answer to Q∗

would guarantee the applicability of the standard local Hopf theorem [20] (or Theorem
8.1 in Section 8) to prove the existence of periodic orbits. As we do not know the answer
to Q∗ yet, we will argue instead via global Hopf bifurcation. Before doing so, the next
section recalls the standard method Stoichiometric Network Analysis to parametrize the
Jacobian at steady-states of mass action systems.

4 Jacobian parametrization

Bruce L. Clarke developed Stoichiometric Network Analysis in a series of papers: see
[10] and references therein. In the very same paper [10], Clarke also commented on one
possibility to circumvent the computation of Hurwitz determinants by studying the D-
stability of the Jacobian matrix in convex coordinates. This comment highly resonates
with the content of our main Theorem 5.1 below. Clarke further cited a paper of his with
some announced related network results, submitted to ‘Linear Algebra and Applications ’.
To my best effort, however, I have been unable to retrieve such a paper and even to
confirm its publication anywhere: it is not listed as a paper in the database of Linear
Algebra and its Applications nor in Clarke’s publication list. It is nevertheless possible
that what we state here connects to what Clarke had in mind.
We introduce only the necessary standard technicalities, we again refer to [10] for a

thorough overview of the subject. Consider the steady-state flux cone F , i.e. the set of
steady-state flux vectors:

F := {v ∈ R|R|
>0 | Nv = 0}.

In his work, Clarke uses convex coordinates to parametrize F . In particular, via convexity,
one can consider the extreme rays of F , {E1, ..., Ep}, and express each steady-state flux
v ∈ F as a linear combination of such extreme rays:

v = Ej,

where j ∈ Rp
≥0, and the |R|×p extreme-ray matrix E has columns {E1, ..., Ep}. The chosen

parametrization of the flux cone is anyway not relevant in the following arguments.
The relevant observation is perhaps only that the derivative of a univariate polynomial

p(x) = axn can be expressed as

p′(x) = n axn−1 = n axn−1 x

x
= np(x)

1

x
. (4.1)

This implies that the Jacobian matrix Jac of mass action systems (2.2) at a steady-state
x̄ reads:

Jac = fx(x)|x=x̄ = N
r(x)

∂x

∣∣∣∣
x=x̄

= N
r(x)

∂x

∣∣∣∣
x=x̄

diag

(
x̄

x̄

)
= B(v̄) diag

(
1

x̄

)
, (4.2)
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where B(v̄) only depends on the choice of v̄ and not on the value of x̄ anymore. Following
Clarke, a straightforward computation generalizes (4.1) and shows that

B(v̄) = N diag(v̄)Y T , (4.3)

where the |S| × |R| kinetic matrix Y is defined as

Ymi := smi .

Y encodes the exponents of the monomials in (2.2) endowed with mass action kinetics.
Note that the values 1/x̄i can be thought of as positive parameters themselves, hi :=

1/x̄i. Thus, the theory of Stoichiometric Network Analysis identifies two sets of param-
eters: (h, j). One parameter set, j, determines the steady-state flux vector v̄; the other
parameter set, h, determines the steady-state concentrations. The Jacobian matrix can
then be expressed as

Jac(h, j) = N diagEj diag(h)

or, having chosen v̄ a priori, simply

Jac(h, v̄) = B(v̄) diag(h).

We are now ready to proceed to our main result.

5 Nonlinear dynamics: one theorem and two criteria

This section glues the results from Sections 3 and 4 to establish periodic orbits for mass
action systems without any Hurwitz computation. The central nonlinear argument relies
on the theory of global Hopf bifurcation. This body of work appears to be essentially
unknown in reaction network literature, which is mostly concerned with local methods
based on Hurwitz computation. A relevant exception is the work [15] by Fiedler, which
however focuses on the restricted stoichiometric structure of feedback cycles and does not
cover mass action kinetics.
A short guide for neophytes: Alexander & Yorke [1] addressed the possibility of global

bifurcation of periodic orbits. In particular, they established periodic orbits whenever an
odd number of pairs of complex conjugate eigenvalues crosses the imaginary axis, at an
equilibrium with an invertible Jacobian. A joint effort by Chow, Mallet-Paret, and Yorke
[9] extended the very same result to include any net change of stability. The description
of the global continua of periodic orbits, so-called snakes, have been addressed in [29] for
a generic situation. Alligood and Yorke [2] lifted the result in the non-generic case. Via a
further analyticity assumption, Fiedler’s work [14] on general parabolic systems included
Hopf points that are not necessarily isolated: these are the generalities we consider in the
following Theorem 5.1. We state our main result.

Theorem 5.1. Let Γ be a network with stoichiometric matrix N and kinetic matrix Y .
Consider a steady-state flux vector v̄ > 0 such that for

A := B(v̄) = N diag(v̄)Y T ,

rankA = rankN . Assume moreover that there exist two positive diagonal matrices D1

and D2 such that (3.1) holds, i.e.,

inertiaAD1 ̸= inertiaAD2.

Then there exists a choice of reaction rates such that the associated mass action system
(2.2) admits nonstationary periodic solutions.
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Proof. Recall the parameters hi = 1/x̄1. We have

rank(Jac(h, v̄)) = rank(B(v̄) diag(h)) = rank(B(v̄)) = rankN,

that is, the number of zero-eigenvalues is constant for any choice of h and corresponds
only to the trivial zero-eigenvalues coming from linear conserved quantities.
Consider now the two choices of hi, i = 1, 2 such that

diag(h1) = D1 and diag(h2) = D2.

In analogy to what we discussed in Section 3, we may consider any analytic curve γ(β)

in R|S|
>0, β ∈ [0, 1] with γ(0) = h1, γ(1) = h2. That is, γ connects h1 to h2 and thus

parametrizes a family of steady-states of (2.2) with a constant number of zero-eigenvalues
and a change of inertia from β = 0 to β = 1. Due to the analyticity of mass action
systems and the curve γ(h), we can apply [14, Theorem 4.7] and global Hopf bifurcation
yields nonstationary periodic orbits.

Based on the abstract Theorem 5.1, we simply use Corollaries 3.8 and 3.9 to state
computationally manageable sufficient criteria for periodic orbits in mass action systems.
Criterion I builds on Corollary 3.8, and Criterion II on Corollary 3.9.

Corollary 5.2. Assume there exists a steady-state flux vector v̄ such that one of the two
following conditions holds.

1. Criterion I: B(v̄) is stable and not a P−
0 matrix;

2. Criterion II: B(v̄) is an unstable P−
FF matrix.

then there exists a choice of reaction rates such that the associated mass action system
(2.2) admits nonstationary periodic solutions.

Remark 5.3 (Conserved quantities). The formulation of Theorem 5.1 applies also to sys-
tems with conserved quantities. For simplicity of presentation, however, the two sufficient
criteria verbatim apply only to systems without conserved quantities. In fact, the presence
of conserved quantities prevents B(v̄) from having full-rank, and thus in our definitions
B(v̄) cannot be stable nor a P−

FF matrix. It is clear that this is no issue, as the criteria
can be applied identically for the reduced Jacobian in each stoichiometric compatibility
class, after a standard reduction procedure [7, 12].

Remark 5.4. P−
0 matrices as Jacobians have been addressed in reaction networks in [6, 37].

In the first contribution [6], it is shown that a P−
0 Jacobian implies the injective property

and thus excludes multistationarity, i.e., the coexistence of multiple steady-states in the
same stoichiometric compatibility class. Criterion II above, in particular, describes a
mechanism for periodic oscillations in monostationary networks. See [35] for a discussion
with examples of the relationship between periodic oscillations and multistationarity in
chemical reaction networks.

6 Interpretation: Positive and negative feedbacks

In biochemical systems, periodic oscillations have long been associated with the presence
of positive and negative feedbacks, see [36] for a review with historical chemical references.
More abstractly, Thomas conjectured in 1981 that the presence of a ‘negative loop’ in
the system is necessary for stable periodic behavior. In contrast, Ivanova [25] generalized
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positive-feedback cycles into ‘critical fragments’ of the network and conjectured a com-
plementary condition for oscillations: the existence of a critical fragment that does not
involve all species in the network. See Mincheva and Roussel [31] for a review of Ivanova’s
work in English. In the same paper, the authors however note that oscillations can occur
because of factors with different combinations of positive and negative cycles. Gatermann
et al. [18] also acknowledge that oscillations can arise both from positive and negative
feedback. In their own words, they ‘distinguish the type of instability according to the sign
of the underlying feedback loop. If the loop is positive the system is called autocatalytic.
[...] An unstable chemical reaction with only a negative loop with at least three elements
is called a nonautocatalytic oscillator.’
In this section, we interpret our results from such historical perspective. We argue that

the first of our criteria can be interpreted as the presence of unstable positive feedback
within a stable subnetwork, while the second as the presence of unstable negative feedback.
To keep this presentation simple, we proceed informally. We refer the interested reader
to [37, 38], where the following ideas have been discussed in full generality.
Again, let us start with pure linear algebra. We call unstable core an invertible n × n

matrix with a negative diagonal, which is unstable and such that none of its principal
submatrices is unstable. The sign of the determinant distinguishes unstable-positive feed-
back, with sign (−1)n−1, and unstable-negative feedback with sign (−1)n. As a direct
consequence, unstable-positive feedbacks have one single real positive eigenvalue, while
unstable-negative feedbacks have no real positive eigenvalues [38, Lemma 6.3]. Such def-
inition generalizes positive and negative feedback cycles as, e.g.,

F+ :=

−1 0 1
1 −1 0
0 1 −1

 and F− :=

−1 0 −1
1 −1 0
0 1 −1

 ,

where ‘positive’ vs ‘negative’ typically refers to the product of the off-diagonal entries.
The instability of a positive feedback cycle can be always achieved by choosing the

product of the off-diagonal entries larger than the product of the diagonal entries e.g.

F+
u :=

−1 0 2
1 −1 0
0 1 −1

 , with eigenvalues (−1.63± 1.09i, 0.26).

The instability of a positive feedback cycle, in particular, does not depend on its length,
i.e. on the size of the matrix. Consider now a stable 4×4 matrix with a negative diagonal,
such that F+

u is one of its principal matrices, e.g.

As :=


−1 0 2 0
1 −1 0 2
0 1 −1 0
0 0 −1 −1

 , with eigenvalues (−1,−1,−1,−1). (6.1)

As is indeed stable and can be seen as an overlap of the positive feedback cycle F+
u and

the negative feedback cycle in A[(2, 3, 4)]. By construction, it is not a P−
0 matrix because

one of its principal submatrices is an unstable-positive feedback. A stable matrix that
is not a P−

0 matrix is precisely what our Criterion I requires B(v̄) to be. We underline
the assonance with Ivanova’s condition: if A is not a P−

0 matrix but is stable, then the
unstable principal submatrix A[κ] is necessarily a strict submatrix of A, i.e., k < n.

9



In striking contrast, instability for negative feedback cycles does depend on the length
of the cycle. For instance, a negative feedback cycle with diagonal entries F−

ii = −1 and
off-diagonal entries F−

i(i−1) = 1 for i = 2, ..., n and F−
1n = −2 becomes unstable only for

n ≥ 8:

F−
u :=



−1 0 0 0 0 0 0 −2
1 −1 0 0 0 0 0 0
0 1 −1 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 1 −1 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 1 −1 0
0 0 0 0 0 0 1 −1


, (6.2)

with eigenvalues approximately (−2.01±0.42i,−1.42±1.01i,−0.58±1.01i, 0, 0075±0.41i).
We refer to such a heuristic observation as

Negative-feedback instability requires length!

Note also that F−
u is indeed an unstable P− matrix as Criterion II requires B(v̄) to be.

We refer to [28, 15] for an extended analysis of the spectrum of feedback cycles.
We now return to reaction networks and interpret such matrices as stoichiometric ma-

trices of a (sub)network. The negative-diagonal condition simply reflects the fact that the
species Xi corresponding to the ith row is a reactant to the reaction J(i) corresponding to
the ith column. For a general algebraic treatment based on injective ‘Child-Selection maps’
J , we refer again to [37, 38]. Negative-diagonal stoichiometric matrices have been called
Child-Selection (CS-) matrices. In its full generality, omitted here, such an approach does
not depend on the chosen labeling of the network and naturally generalizes to CS-matrices
that do not necessarily have a negative diagonal, depending on the presence of explicitly
autocatalytic reactions. Moreover, stoichiometric autocatalysis, as defined by Blokhuis et
al. [8], has been proven equivalent to the presence of an unstable-positive feedback that
is a Metzler matrix, i.e., has nonnegative off-diagonal entries [38, Thm. 7.3]. With a de-
gree of consistency to Gatermann et al. [18], autocatalytic instabilities are then only due
to the presence of a special type of unstable-positive feedback, while unstable-negative
feedbacks always identify non-autocatalytic instabilities.
We look at the stoichiometry of a network with these lenses: we aim to derive conclu-

sions about the dynamical stability of a steady state. We put mass action systems aside
for a moment, and we consider at first a more general Michaelis–Menten nonlinearity:

ri = ai

|S|∏
m=1

(
xm

1 + bmi xm

)sim

, ai > 0, bmi ≥ 0. (6.3)

Mass action is recovered as the limit case when bmi = 0 for any m and i. The advantage
of including also the bmi parameters is that the mere presence of an unstable core implies
the existence of a choice of parameters ai, b

m
i such that the system admits an unstable

steady-state [38, Corollary 5.1]. Moreover, the presence of stoichiometry like As, (6.1),
(which we refer to as unstable-positive feedback within a stable subnetwork) and F−

u , (6.2),
(unstable-negative feedback) is already a sufficient condition for the presence of a steady-
state with purely imaginary eigenvalues of the Jacobian [37, Corollary 5.17], pointing
at periodic oscillations. The mathematical argument is analogous to Criteria I and II,
respectively. The advantage of considering Michaelis–Menten over mass action is precisely
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that the sufficient conditions can be expressed at the level of naked stoichiometry, without
taking into consideration the steady-state constraints imposed by the flux vector v̄.
Such arguments identically apply to a general class of monotone chemical functions

named parameter-rich [38]. Parameter-rich kinetics include e.g. Michaelis–Menten, Hill,
and Generalized mass action kinetics. Unfortunately, mass action kinetics is not parameter-
rich: the restriction to mass action, bmi ≡ 0 for any m and i, is then more challenging.
However, it has been proved [6, 37] that the absence of unstable-positive feedbacks implies
that the Jacobian is a P−

0 matrix. Thus, Criterion I necessarily requires an unstable-
positive feedback. Furthermore, [38] also conjectured that the absence of D-unstable
CS-matrices characterizes networks that only admit a unique and locally stable steady-
state for any parameter choice. We may then still interpret Criteria I and II in terms
of positive/negative feedback, but the presence of stoichiometries like As and F−

u is no
longer a sufficient condition for the assumptions of Criteria I and II to hold.
At present, the above observations offer thus only guidance on how to find periodic

oscillations in mass action systems. In the next section, based on the above intuitions,
we present three examples that admit periodic orbits.

7 Examples

The first example builds on an unstable-positive feedback within a stable subnetwork,
i.e. stoichiometry of the type of As (6.1), and applies Criterion I. The second and third
examples are centered on unstable-negative feedbacks, i.e. stoichiometry of the type of
F−
u (6.2), and apply Criterion II.

7.1 Example I: unstable-positive feedback within a stable subnetwork

Consider the following network with 5 species and 5 reactions:

A+B →
1

C

B + C →
2

E

C →
3

A+D

D →
4

2B

E →
5

C

(7.1)

The stoichiometric matrix and the kinetic matrix read:

N =


−1 0 1 0 0
−1 −1 0 2 0
1 −1 −1 0 1
0 0 1 −1 0
0 1 0 0 −1

 Y =


1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1

 (7.2)

Note the presence of an unstable-positive feedback−1 0 1
−1 −1 0
1 −1 −1

 , with eigenvalues approx (0.32,−1.66± 0.56i), (7.3)
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as a principal submatrix of a stable negative-diagonal matrix:
−1 0 1 0
−1 −1 0 2
1 −1 −1 0
0 0 1 −1

 , with eigenvalues approx (−0.34± 0.56i,−1,−2.32).

The unique steady-state flux vector is

v̄ = (c, c, c, c, c), for c ∈ R>0.

Clearly, the same vector identifies also a right-kernel vector and thus there is a conserved
quantity Ω, the total concentration:

Ω := xA + xB + xC + xD + xE.

The network is indeed closed, i.e., it does not possess inflows or outflows. The associated
mass action system is:

ẋA = −k1xAxB + k3xC

ẋB = −k1xAxB − k2xBxC + 2k4xD

ẋC = k1xAxB − k2xBxC − k3xC + k5xE

ẋD = k3xC − k4xD

ẋE = k2xBxC − k5xE

(7.4)

Without loss of generality, we fix c = 1 and thus v̄ = (1, 1, 1, 1, 1) and diag(v̄) = Id. We
can then easily compute B(v̄):

B(v̄) = N IdY T =


−1 0 1 0 0
−1 −1 0 2 0
1 −1 −1 0 1
0 0 1 −1 0
0 1 0 0 −1



1 0 0 0 0
1 1 0 0 0
0 1 1 0 0
0 0 0 1 0
0 0 0 0 1



=


−1 −1 1 0 0
−1 −2 −1 2 0
1 0 −2 0 1
0 0 1 −1 0
0 1 1 0 −1


(7.5)

The eigenvalues of B(v̄) are

(λ1, λ2, λ3, λ4, λ5) ≈ (−3,−2.6,−1,−0.38, 0); (7.6)

note the trivial eigenvalue zero due to the presence of one conserved quantity. On the other
hand, corresponding to the unstable positive-feedback (7.3), there is still a 3-principal
minor with determinant of sign (−1)3−1 = 1,

det

−1 −1 1
−1 −2 −1
1 0 −2

 = 1, (7.7)
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and thus B(v̄) is not a P−
0 matrix. Our Criterion I implies nonstationary periodic orbits.

Note that the equilibrium x̄ = (1, 1, 1, 1, 1) is stable in its stoichiometric compatibility
class, because of (7.6). Intuitively, to make the instability of (7.7) dominant, and thus
achieve a Hopf bifurcation, we need to choose h4 = 1/x̄D and h5 = 1/x̄E small enough,
i.e., x̄D and x̄E big enough. For example, the equilibrium x̄ = (1, 1, 1, 10, 10) is unstable
and encircled by a stable limit cycle. We confirm this via numerical simulations, see
Figure 1.

Figure 1: Numerical simulations for system (7.4). The steady-state flux vector has been chosen as
v̄ = (1, 1, 1, 1, 1). The values of the (unique) unstable steady-states are x̄ = (1, 1, 1, 10, 10), which
imply a chice of rates (k1, k2, k3, k4, k5) = (1, 1, 1, 0.1, 0.1). Initial conditions have been chosen x(0) =
(1.1, 0.9, 1, 10, 10). The plot shows convergence to a stable limit cycle.

7.2 Example II and Example III: unstable-negative feedback

Example II For the second case study, we elaborate on a family of examples presented
by Claude Hyver in [24]. The examples comprise n+ 2 species and n+ 2 reactions:

→
F

A1 →
1

A2 →
2

... →
n−1

An →
n

B + C

A1 +B →
n+1

...

A1 + C →
n+2

...

(7.8)

The actual example discussed in [24] included a few more species, probably to enhance
its chemical realism. We focus on the above simplification since it already contains all the
mathematical features of our interest. The associated mass action system is:

ẋA1 = F − k1xA1 − kn+1xA1xB − kn+2xA1xC

ẋA2 = k1xA1 − k2xA2

...

ẋAn = kn−1xAn−1 − knxAn

ẋB = knxAn − kn+1xA1xB

ẋC = knxAn − kn+2xA1xC

(7.9)
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The stoichiometric matrix and the kinetic matrix are of the form:

N =



1 −1 0 ... 0 −1 −1
0 1 −1 ... 0 0 0
0 0 1 ... 0 0 0

...
0 0 0 ... −1 0 0
0 0 0 ... 1 −1 0
0 0 0 ... 1 0 −1


and Y =



0 1 0 ... 0 1 1
0 0 1 ... 0 0 0
0 0 0 ... 0 0 0

...
0 0 0 ... 1 0 0
0 0 0 ... 0 1 0
0 0 0 ... 0 0 1


(7.10)

Without the first inflow column, the stoichiometric matrix is a P− matrix for any n, and
an unstable-negative feedback for n ≥ 7 large enough. Note that it is just a variant of
the negative feedback cycles F−

u , (6.2), where the principal submatrix(
−1 −2
1 −1

)
,

in (6.2) has been replaced by the principal submatrix:−1 −1 −1
1 −1 0
1 0 −1

 .

The unique steady-state flux vector is

v̄ = (3c, c, c, ..., c, c, c).

Choosing c = 1 without loss of generality, we can compute B(v̄):

B(v̄) = N diag(3, 1, 1, ..., 1, 1, 1)Y T

=



−3 0 ... 0 −1 −1
1 −1 ... 0 0 0
0 1 ... 0 0 0

...
0 0 ... −1 0 0
−1 0 ... 1 −1 0
−1 0 ... 1 0 −1


.

(7.11)

B(v̄) is a P− matrix for any n. To confirm this, we argue by induction on n ≥ 2, as it
is enough to note that an increase in n only adds a column and a row

0
...

0 ... 0 −1 0 ... 0
1
...
0 ,


with negative entry on the diagonal, and one single nonzero element in the lower triangular
part. Thus, it boils down only to check whether

−3 0 −1 −1
1 −1 0 0
−1 1 −1 0
−1 1 0 −1

 (7.12)
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Figure 2: Numerical simulations for system (7.9),with n = 10. The steady-state flux vector has been
chosen as v̄ = (3, 1, 1, ..., 1, 1). The values of the (unique) unstable steady-states are x̄ = (1, 1, ..., 1, 0.5),
which imply a choice of rates (F, k1, ..., k12) = (3, 1, 1, ..., 1, 2). We have opted to choose x̄B ̸= x̄C

because the two trajectories would fully overlap otherwise. Initial conditions have been chosen x(0) =
(1.1, 1, 1, ..., 1, 0.5). The plot shows convergence to a stable limit cycle. For graphical simplicity, we only
include trajectories for A1, B,C.

is a P− matrix, which can be done by explicit computation. The case n = 1 must be
checked independently, as B(v̄) takes the different form:

B(v̄) =

−3 −1 −1
0 −1 0
0 0 −1

 ,

which is a P− matrix, since it is upper triangular with negative diagonal.
On the other hand, for n large enough, the stability of B(v̄) is lost, and our Criterion

II implies the existence of periodic orbits. We do not analytically prove here that B(v̄)
is definitely unstable for n large enough. We just check explicitly that for n < 10 B(v̄) is
stable, while for n = 10, 11, 12, 13 a pair of complex conjugate eigenvalues with positive
real part appears:

n = 1, ..., 9 : all eigenvalues with negative real part;

n = 10 : one pair of eigenvalues with positive real part: 0.0049± 0.2631i;

n = 11 : one pair of eigenvalues with positive real part: 0.0091± 0.2424i;

n = 12 : one pair of eigenvalues with positive real part: 0.0119± 0.2248i;

n = 13 : one pair of eigenvalues with positive real part: 0.0139± 0.2096i.

We note a monotonicity in the values of the unstable eigenvalues. This family of networks
confirms that the length of the structure helps periodic oscillations to appear. In Figure 2,
numerical simulations for n = 10, and initial conditions nearby the (unstable) equilibrium
x̄ = (1, 1, 1, ..., 1, 0.5), shows convergence to a stable limit cycle.

Example III For the third case study, we generalize Example C from [38] into a family
of networks with n+ 1 species, A1, ..., An, B, n > 1, and 2n+ 1 reactions:→

Fk

Ak, 2Ak + Ak+1 →
k

2Ak +B k ∈ Zn

B →
n+1

(7.13)
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In [38], numerical simulations for n = 5 showed the presence of a stable limit cycle. Note
that species A1, ..., An together with reactions 1, ..., n give rise to a stoichiometry:

0 0 ... 0 −1
−1 0 ... 0 0
0 −1 ... 0 0

...
0 0 ... −1 0

 , (7.14)

which is indeed a P−
0 matrix for any n and unstable for n ̸= 2, 4: eigenvalues can be

expressed in terms of roots of unit. The matrix does not have a negative-diagonal since
all reactions are explicitly autocatalytic, but in the full generality addressed in [38] such
matrix is also an unstable-positive feedback for n ̸= 2, 4. Again, the length of the cycle
helps instability to arise. The associated mass action system reads:{

ẋAk
= Fk − ak−1x

2
Ak−1

xAk
for k ∈ Zn,

ẋB =
∑n

k=1 ak−1x
2
Ak−1

xAk
− an+1xB.

(7.15)

Fixing all inflow constants Fk ≡ 1 yields a steady-state flux vector

v̄ = (1, 1, 1, ..., 1, 1, n).

We compute

B(v̄) = N diag(v̄)Y T =



−1 0 ... 0 −2 0
−2 −1 ... 0 0 0
0 −2 ... 0 0 0

... 0
0 0 ... −2 −1 0
0 0 ... 0 0 −n


, (7.16)

which is a P− matrix. B(v̄) also inherits the instability of (7.14) for n ≥ 5. Criterion II
implies nonstationary periodic orbits for n ≥ 5. Note that the form (7.15) suggests the
applicability of a Poincaré-Bendixson criterion for monotone cyclic feedback cycles [28]:
we do not pursue here this direction.

8 Fully-open systems

Albeit rather irrealistic, fully-open networks have been considered in relevant reaction
network literature by Shinar & Feinberg [33] and Banaji & Craciun [5], among others.
Our result characterizes the capacity of fully-open networks for Hopf bifurcation in terms
of their capacity to admit a steady state with a complex-conjugate pair of eigenvalues
with a positive-real part. For simplicity, we focus on local Hopf bifurcation. We recall the
standard theorem [20].

Theorem 8.1 (local Hopf bifurcation). Suppose that a parametric system

ẋ = f(x, β), x ∈ Rn, β ∈ R,

has a steady-state (x̄∗, β∗) at which the following two conditions hold:
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1. the Jacobian fx(x)|(x̄∗,β∗) has a simple pair of purely imaginary eigenvalues λ1,2 and
n− 2 eigenvalues with nonzero real part;

2. ℜ(λ1,2(β
∗))′ ̸= 0.

Then there is a local curve of steady-states x̄(β) that changes stability at x̄∗ = x̄(β∗). For
some β values in a neighborhood of β∗, the system admits periodic orbits.

The localization of the periodic orbits in the neighborhood of β depends on the so-
called Lyapunov coefficients, which we do not discuss here. If ẋ = f(x, β) satisfies the two
conditions of Theorem 8.1, we say that the system undergoes a local Hopf bifurcation at
β = β∗. We characterize local Hopf bifurcations for fully-open networks.

Theorem 8.2 (Hopf bifurcation for fully-open networks). Consider a fully-open reaction
network Γ with associated mass action system 2.2. The following are equivalent:

1. There is a choice of reaction rates such that the system undergoes a local Hopf
bifurcation.

2. There is a choice of reaction rates such that the system possesses a positive steady-
state x̄ such that its Jacobian matrix fx(x)|x=x̄ has a simple pair of complex conjugate
eigenvalues λ1,2 with positive real part ℜ(λ1) = ℜ(λ2) > 0 and no further eigenvalues
λi, i ̸= 1, 2, with ℜ(λi) = ℜ(λ1).

Proof. The direction (1 ⇒ 2) is trivial, as it is just one of the conclusions of Theorem 8.1.
For the other direction (2 ⇒ 1), consider the positive steady state x̄ of Γ satisfying the
assumptions. Introduce the positive bifurcation parameter β ∈ R>0 and define{

∆(β) := β Id|S|;

F(β) := ∆(β)x̄.

Above, Id|S| indicates the |S| × |S| identity matrix. We can then consider the following
perturbation of f(x)

ẋ = h(x, β) = f(x) + F(β)−∆(β)x.

Clearly, h(x, 0) = f(x). Moreover, h(x, β) is fully-open as f : we interpret the vector
F(β) as a perturbation of the inflow rates of f and the diagonal entries of ∆(β) as a
perturbation of the outflow rates of f . Moreover, by construction,

h(x̄, β) = f(x̄) + F(β)−∆(β)x̄ = f(x̄) = 0,

i.e., x̄ is a steady state of h(β) for any choice of β. For such perturbed choice of reaction
rates, however, the Jacobian hx(x, β) of h at x̄ reads

hx(x, β)|x=x̄ = fx(x)|x=x̄ − β Id|S|,

i.e., its spectrum corresponds to the spectrum of fx(x)|x=x̄ translated to the left by β.
Consider now the bifurcation value β∗ := ℜ(λ1) > 0. By construction and assumption,
hx(x, β)|x=x̄(x̄, β

∗) possesses a simple pair of purely imaginary eigenvalues µ1, µ2 and no
other eigenvalues with zero real part. Moreover, µ1(β), µ2(β) cross the imaginary axis
transversely, i.e., ℜ(µ′

1,2(β
∗))′ ̸= 0. Indeed: simply note that µ1,2(β) = λ1,2 − β, and thus

|µ′
1,2(β)| ≡ 1 ̸= 0. Thus, we can apply Theorem 8.1, and the fully-open system admits a

local Hopf bifurcation.
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Remark 8.3. For consistency with the rest of the paper, Theorem 8.2 is stated for mass
action systems. An identical proof holds for any fully-open system where inflow rates are
constants and outflow rates are linear: a standard assumption in the dynamical modeling
of biochemical systems. Theorem 8.2 also holds if the outflow rates follow Generalized
Mass Action, Michaelis–Menten, or Hill kinetics. The proof requires a minimal adaptation
in the choice of rates to compute the Hopf bifurcation point. To do this, we refer again
to the concept of parameter-rich kinetics [38].

9 Conclusion

We have stated two complementary criteria that guarantee the insurgence of nonstationary
periodic orbits in mass action systems via a Hopf bifurcation. The criteria rely on the
concept of P− matrices and are thus based on the sign of principal minors of the Jacobian.
They consequently offer an evident computational advantage in comparison to the usual
Hurwitz computation. More in detail, via Stoichiometric Network Analysis, we have
expressed the Jacobian matrix Jac evaluated at a steady state x̄ as

Jac = B(v̄) diag(1/x̄i),

where v̄ is a steady-state flux vector. The first criterion requires that B(v̄) is stable but
not a P−

0 matrix, while the second requires that B(v̄) is an unstable P− matrix. Moreover,
we have interpreted the underlying chemical mechanisms as an unstable-positive feedback
within a stable network (Criterion I) and an unstable-negative feedback (Criterion II).
We have presented three examples where the criteria have been put into practice. Ex-

ample I is a closed network with 5-species and a 3-species unstable-positive feedback:
Criterion I proves the occurrence of a Hopf bifurcation as soon as the concentrations of
the 3 species involved in the unstable-positive feedback become large in comparison to the
others: this way the unstable-positive feedback becomes dominant and drives the dynam-
ics towards an unstable region with the appearance of a stable limit cycle. Examples II
and III are built around unstable-negative feedbacks of size n and apply Criterion II. We
have noted that the instability of negative feedback appears only for a sufficiently large
size. Consequently, both examples are families of networks of any size n: this confirms
the validity of our criteria especially to address large networks. Periodic orbits appear for
n large enough: n ≥ 10 in Example II, n ≥ 5 in Example III.
Finally, as an independent observation, we have proved that the capacity for Hopf

bifurcation of fully-open systems is equivalent to the capacity for an unstable steady-
state with a simple pair of eigenvalues with positive-real part.

Outlook By simple inspection of the stoichiometric matrix N , unstable-positive feed-
backs within a stable subnetwork and unstable-negative feedbacks are sufficient for purely-
imaginary eigenvalues of the Jacobian at steady-states of reaction systems endowed with
parameter-rich kinetics as e.g. Michaelis–Menten. The two criteria, which we stated for
mass action, would offer in principle a similar interpretation but they are nevertheless
sufficient statements only on B(v̄), for a proper choice of steady-state flux vector v̄. A
clear connection between the bare stoichiometry N and the assumptions of the criteria is
still to be investigated. The final goal is to find simple stoichiometric patterns that suffi-
ciently guarantee the applicability of the criteria. Clarifications in this direction will help
a deeper chemical understanding of the chemical mechanism that governs oscillations in
mass action systems. In conclusion, we underline that the stability of the periodic orbits
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is not determined by the stated criteria, and it deserves further analysis.

Acknowledgment: I thank Balázs Boros, Bernold Fiedler, Vilmos Gáspár, Josef Hof-
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