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Introduction to
stochastic reaction networks
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Reaction networks naturally arise as a descriptor across the life sciences

• Reaction networks are a convenient language to mechanistically describe the evolution of
systems in: evolutionary biology, epidemiology, population dynamics, cancerology, neurology
and molecular biology, among others.

• Let us consider a system with N ∈ N∗ types of components which we call species and label
S1, . . . , SN.

• These species can be types of: individuals in an epidemic, animals in an ecosystem, cells in a
body, ion channels in a neuron and molecules in a cell, among others.

• The state of the system is described at any given time by a vector x = (x1, . . . , xN) whose
i-th component corresponds to the abundance of species Si.

• The state can change because of M ∈ N∗ types of events which we call reactions.

• When a reaction fires, some species interact and are consumed while others are produced.

• This is conveniently expressed as:

ν1kS1 + . . .+ νNkSN −−→ ν′1kS1 + . . .+ ν′NkSN, k ∈ [[1,M]]. (1)
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Stochastic models are often required in molecular biology

• (Observation 1) Cell-to-cell variability within populations of genetically identical cells is
omnipresent.

• (Observation 2) Some molecular species are present in low copy numbers within each cell1.

• We can attribute part of the observed variability in the abundance of molecular species to
the random firing of chemical reactions due to the low abundance of some species23.

• (Observation 3) The abundance of molecular species fundamentally takes discrete values.

• Stochastic Reaction Networks (SRNs) account for the random firing of chemical reactions
and the discreteness of the abundance of molecular species.

1Björn Schwanhäusser et al. “Global quantification of mammalian gene expression control”. In: Nature
473.7347 (2011), pp. 337–342.

2Michael B Elowitz et al. “Stochastic gene expression in a single cell”. In: Science 297.5584 (2002),
pp. 1183–1186.

3Peter S Swain, Michael B Elowitz, and Eric D Siggia. “Intrinsic and extrinsic contributions to stochasticity in
gene expression”. In: Proceedings of the National Academy of Sciences 99.20 (2002), pp. 12795–12800.
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Stochastic reaction networks are continuous-time Markov chains

• Let us consider an SRN with a finite number N ∈ N∗ of molecular species.

• The state of the system is described at any given time by a vector x ∈ NN whose i-th
component corresponds to the abundance of species Si.

• Species interact through a finite number M ∈ N∗ of chemical reactions and every time the
k-th reaction fires, the state of the system is displaced by the stoichiometric vector ζk ∈ ZN .

• Let us introduce a propensity function λ = (λk )k∈[[1,M]] which depends on the state of the
system x ∈ NN and a parameter θ ∈ Rd , where d ∈ N∗.

• The dynamics of the system are expressed as a Continuous-Time Markov Chain (CTMC)
(Xθ(t))t∈R+ which is fully specified by the stoichiometry vectors ζk and propensities λk .
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The reaction dynamics can be specified in multiple, equivalent ways (1/3)

• Let us introduce the generator Qθ of the CTMC as the (possibly bi-infinite) matrix defined
by4:

[Qθ]ij :=



∑
k∈Tij

λk (j , θ) if i ̸= j ,

−
M∑

k=1

λk (i , θ) if i = j ,

(2)

where Tij := {k ∈ [[1,M]] | i = j + ζk} is the set of reactions which can take the process from
state j to state i .

• Qθ can also be seen an operator on probability measures.

• It is used to express the Chemical Master Equation (CME).

• In the general stochastic process literature, Qθ is also know as the transition (or jump rate)
matrix and the CME as a Fokker–Planck equation.

4David F Anderson and Thomas G Kurtz. Stochastic analysis of biochemical systems. Vol. 674. Springer
International Publishing, 2015.
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The reaction dynamics can be specified in multiple, equivalent ways (2/3)

• Let us introduce the generator Aθ of the CTMC as the operator defined by5:

Aθf (x) :=
M∑

k=1

λk (x , θ)∆ζk f (x) =
M∑

k=1

λk (x , θ)(f (x + ζk )− f (x)), (3)

for any bounded, real-valued function f on NN .

• Aθ can also be seen as a (possibly bi-infinite) matrix and it is the adjoint of Qθ: A∗
θ = Qθ.

• It is used to express the Kolmogorov equations and the martingale problem for the process
(Xθ(t))

6.

5David F Anderson and Thomas G Kurtz. Stochastic analysis of biochemical systems. Vol. 674. Springer
International Publishing, 2015.

6Stewart N Ethier and Thomas G Kurtz. Markov processes: characterization and convergence. John Wiley &
Sons, 2009.
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The reaction dynamics can be specified in multiple, equivalent ways (3/3)

• Given a collection of independent, unit-rate Poisson processes {(Yk (t))t∈R+}k∈[[1,M]], we
associate to each reaction k a counting process (Rk (t))t∈R+ defined as:

Rk (t) := Yk

(∫ t

0
λk (Xθ(s), θ)ds

)
. (4)

• Its state increases by 1 every time the k-th reaction fires.

• For an initial state x ∈ NN , the dynamics of the CTMC are represented by a stochastic
evolution equation78:

Xθ(t) = x +
M∑

k=1

ζkRk (t). (5)

• Eq. (4) and (5) specify the so-called Random Time Change (RTC) representation of (Xθ(t)).

7David F Anderson and Thomas G Kurtz. Stochastic analysis of biochemical systems. Vol. 674. Springer
International Publishing, 2015.

8Thomas G Kurtz. “Representations of Markov processes as multiparameter time changes”. In: The Annals of
Probability (1980), pp. 682–715.
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Takeaways from the introduction to stochastic reaction networks

• (Takeaway 1) Reaction networks naturally arise as a descriptor across the life sciences.

• (Takeaway 2) Stochastic models are often required in molecular biology.

• (Takeaway 3) Stochastic reaction networks are continuous-time Markov chains.

• (Takeaway 4) The reaction dynamics can be specified in multiple, equivalent ways.
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Introduction to
parameter sensitivity analysis
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Parameter sensitivities are the derivatives of expected network outputs

• Given an output function f : NN −→ R and a terminal time T ∈ R+, we are often interested
in predicting the expected network output defined as:

Ψθ(x , f , t) := E[f (Xθ(t))|Xθ(0) = x] = Ex [f (Xθ(t))]. (6)

• The value of the parameter vector θ is frequently uncertain.

• It is therefore crucial to quantify to which degree the predictions made about the system are
going to be affected by a change in parameters.

• For any i ∈ [[1, d ]], we introduce the first-order parameter sensitivity of the expected network
output with respect to θi as:

S
(i)
θ (x , f , t) :=

∂Ψθ

∂θi
(x , f , t). (7)
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Sensitivities are the basis for theoretical and numerical approaches

• (Motivation 1) Values for sensitivities are used to assess the robustness of predictions to the
value of the parameter vector or the presence/absence of specific reactions.

• (Motivation 2) They can also be used in gradient-based inference procedures.

• (Motivation 3) Expressions for sensitivities can be used as theoretical tools to investigate
system properties like Robust Perfect Adaptation (RPA)910.

9Stephanie K Aoki et al. “A universal biomolecular integral feedback controller for robust perfect adaptation”.
In: Nature 570.7762 (2019), pp. 533–537.

10Ankit Gupta and Mustafa Khammash. “Universal structural requirements for maximal robust perfect
adaptation in biomolecular networks”. In: Proceedings of the National Academy of Sciences 119.43 (2022),
e2207802119.
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Numerical methods to estimate sensitivities broadly fall into three categories

• Numerical methods to estimate sensitivities are well-established across stochastic models,
and broadly fall into three categories11:
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11Søren Asmussen and Peter W Glynn. Stochastic simulation: algorithms and analysis. Vol. 57. Springer, 2007.
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The generator gradient estimator has emerged as a fourth class of methods

• In a 2024 paper12, Wang, Blanchet and Glynn introduced the generator gradient estimator, a
novel unbiased gradient estimator for jump-diffusion Stochastic Differential Equations (SDEs).

• In a short note13, we show that the generator gradient estimator is a close analogue to the
exact Integral Path Algorithm (eIPA) estimator previously introduced by Gupta, Rathinam and
Khammash14.

• There, we also demonstrate that generator gradient estimator is an adjoint state method.

• The scaling of adjoint state methods is known to be independent of the number of
parameters considered, making it well suited for applications which involve deep neural
networks like neural SDEs.

• In the case of the eIPA, the scaling only depends on the number of reactions.

12Shengbo Wang, Jose Blanchet, and Peter Glynn. “An Efficient High-dimensional Gradient Estimator for
Stochastic Differential Equations”. In: arXiv preprint arXiv:2407.10065 (2024).

13Quentin Badolle, Ankit Gupta, and Mustafa Khammash. “The generator gradient estimator is an adjoint
state method for stochastic differential equations”. In: arXiv preprint arXiv:2407.20196 (2024).

14Ankit Gupta, Muruhan Rathinam, and Mustafa Khammash. “Estimation of parameter sensitivities for
stochastic reaction networks using tau-leap simulations”. In: SIAM Journal on Numerical Analysis 56.2 (2018),
pp. 1134–1167.
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Takeaways from the introduction to parameter sensitivity analysis

• (Takeaway 1) Parameter sensitivities are the derivatives of expected network outputs.

• (Takeaway 2) Sensitivities are the basis for theoretical and numerical approaches.

• (Takeaway 3) Numerical methods to estimate sensitivities broadly fall into three categories.

• (Takeaway 4) The generator gradient estimator has emerged as a fourth class of methods.
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Outline of the rest of the talk (30 min)

Part 1 - Estimation of second-order parameter sensitivities (5 min)

Part 2 - An integral formula for second-order parameter
sensitivities (5 min)

Part 3 - Construction of an unbiased estimator of second-order
sensitivities (10 min)

Part 4 - Numerical examples (5 min)

Part 5 - Summary and outlook (5 min)

17 / 47



Part 1 - Estimation of
second-order parameter sensitivities
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Higher-order sensitivities provide refined information on network responses (1/2)

• For any (i , j) ∈ [[1, d ]]2, we introduce the second-order parameter sensitivities as:

S
(i,j)
θ (x , f , t) :=

∂2Ψθ

∂θi∂θj
(x , f , t). (8)

• (Motivation 1) They reflect the curvature of the response surface.

• (Motivation 2) Parameter inference procedures commonly aim at optimizing a loss by
bringing its gradient close to zero.

• In this context, second-order sensitivities are used to quantify the uncertainty in the
estimated parameters which results from the local curvature of the loss landscape.
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Higher-order sensitivities provide refined information on network responses (2/2)

• (Motivation 3) In a growing number of experimental setups, the network response can be
influenced by cues like chemicals or light and the identifiability of the reaction model varies
with the signal1516.

• In these settings, second-order sensitivities can be used to select the most informative input
as part of experimental design.1718.

• (Motivation 4) Finally, second-order sensitivities are also involved in efficient optimisation
routines like the Newton-Raphson algorithm.

• The optimisation algorithms can be used for system identification and the design of control
mechanisms1920.

15Jakob Ruess et al. “Iterative experiment design guides the characterization of a light-inducible gene expression
circuit”. In: Proceedings of the National Academy of Sciences 112.26 (2015), pp. 8148–8153.

16Gianpio Caringella, Lucia Bandiera, and Filippo Menolascina. “Recent advances, opportunities and challenges
in cybergenetic identification and control of biomolecular networks”. In: Current Opinion in Biotechnology. 80
(2023), p. 102893.

17Yannis Pantazis and Markos A Katsoulakis. “A relative entropy rate method for path space sensitivity analysis
of stationary complex stochastic dynamics”. In: The Journal of chemical physics 138.5 (2013).

18Zachary R Fox and Brian Munsky. “The finite state projection based Fisher information matrix approach to
estimate information and optimize single-cell experiments”. In: PLoS computational biology 15.1 (2019),
e1006365.

19Stephen P Boyd and Lieven Vandenberghe. Convex optimization. Cambridge university press, 2004.
20Maurice Filo and Mustafa Khammash. “Optimal parameter tuning of feedback controllers with application to

biomolecular antithetic integral control”. In: 2019 IEEE 58th Conference on Decision and Control (CDC). IEEE.
2019, pp. 951–957.
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The Girsanov transform method provides an unbiased estimator (1/2)

• The Girsanov Transform (GT) method in currently the only unbiased method to estimate
second-order parameter sensitivities of SRNs.

• It relies on an estimator s
(i,j)
θ (f ,T ) defined as2122:

s
(i,j)
θ (f ,T ) = f

(
Xθ(T )

)[ M∑
k=1

∫ T

0

(
∂2 log λk

∂θi∂θj
(Xθ(s), θ)dRk (s)−

∂2λk

∂θi∂θj
(Xθ(s), θ)ds

)

+
M∑

k=1

∫ T

0

(
∂ log λk

∂θi
(Xθ(s), θ)dRk (s)−

∂λk

∂θi
(Xθ(s), θ)ds

)

×
M∑

k=1

∫ T

0

(
∂ log λk

∂θj
(Xθ(s), θ)dRk (s)−

∂λk

∂θj
(Xθ(s), θ)ds

)]
,

(9)

where Xθ(0) = x .

• Depending on the field of application, it is sometimes referred to as the likelihood ratio
method or the REINFORCE algorithm23.

21Peter W Glynn. “Likelihood ratio gradient estimation for stochastic systems”. In: Communications of the
ACM 33.10 (1990), pp. 75–84.

22Sergey Plyasunov and Adam P Arkin. “Efficient stochastic sensitivity analysis of discrete event systems”. In:
Journal of Computational Physics (2007).

23Shakir Mohamed et al. “Monte Carlo Gradient Estimation in Machine Learning.”. In: J. Mach. Learn. Res.
(2020).
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The Girsanov transform method provides an unbiased estimator (2/2)

• (Observation 1) The applicability of the GT method depends crucially on the existence of
the stochastic exponential and the validity of an interchange of derivation and integration.

• These conditions are challenging to verify and have not yet been derived for second-order
sensitivities24.

• (Observation 2) Recall the expression from the previous slide:

s
(i,j)
θ

(f , T ) = f
(
Xθ (T )

)[ M∑
k=1

∫ T

0

 ∂2 log λk

∂θi∂θj

(Xθ (s), θ)dRk (s) −
∂2λk

∂θi∂θj

(Xθ (s), θ)ds


+

M∑
k=1

∫ T

0

(
∂ log λk

∂θi

(Xθ (s), θ)dRk (s) −
∂λk

∂θi

(Xθ (s), θ)ds

) M∑
k=1

∫ T

0

 ∂ log λk

∂θj

(Xθ (s), θ)dRk (s) −
∂λk

∂θj

(Xθ (s), θ)ds

].
• From this, it is clear that the GT estimator is not defined whenever some of the propensities
are proportional to θi and/or θj with the parameter being evaluated at zero.

• This precludes the investigation of the sensitivity of an output to the presence/absence of a
reaction in the important case of mass action kinetics.

• (Observation 3) When applicable, the GT method has been shown to suffer from large
variance not only for SRNs but also for a range of other stochastic models25.

24Ting Wang and Muruhan Rathinam. “On the validity of the Girsanov transformation method for sensitivity
analysis of stochastic chemical reaction networks”. In: Stochastics 93.8 (2021), pp. 1227–1248.

25Shakir Mohamed et al. “Monte Carlo Gradient Estimation in Machine Learning.”. In: J. Mach. Learn. Res.
(2020).
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Finite difference methods provide biased estimators (1/2)

• Pick an ϵ ∈ R∗
+ and introduce θ̂ := (θϵ1, θ

ϵ
2, θ

ϵ
3, θ

ϵ
4) specified by:

θϵ1 := θ + (ei + ej )ϵ, θϵ2 := θ + ei ϵ, θϵ3 := θ + ej ϵ, θϵ4 := θ. (10)

• Finite difference methods provide a biased estimation of the second-order sensitivity by
approximating it as26:

S
(i,j)
θ (x , f ,T ) ≈ Ex

[
f
(
X

(1)
θϵ1

(T )
)
− f

(
X

(2)
θϵ2

(T )
)
− f

(
X

(3)
θϵ3

(T )
)
+ f

(
X

(4)
θϵ4

(T )
)

ϵ2

]
, (11)

where each process indexed by ℓ has generator Aθϵ
ℓ
.

• Eq. (11) is usually replaced by its centred equivalent, leading to a so-called centred finite
difference estimator with bias O(ϵ2).

• In addition, the four processes are often coupled to reduce the variance of the estimator.
One of these coupling schemes is the split coupling with variance O(ϵ−3)27.

• (Observation 1) Any effort in reducing the bias will translate in a sharp increase in variance.

26Elizabeth Skubak Wolf and David F Anderson. “A finite difference method for estimating second order
parameter sensitivities of discrete stochastic chemical reaction networks”. In: The Journal of chemical physics
137.22 (2012).

27David F Anderson. “An efficient finite difference method for parameter sensitivities of continuous time
Markov chains”. In: SIAM Journal on Numerical Analysis 50.5 (2012), pp. 2237–2258.
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Finite difference methods provide biased estimators (2/2)

• This effect is more pronounced for second-order than for first-order sensitivity for which the
corresponding estimator again has bias O(ϵ2) but a variance growing like O(ϵ−1) only.
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(a) First-order split coupling
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(b) Second-order split coupling

Figure: Bias-variance tradeoff for the first- and second-order split coupling methods in the case of a
constitutive gene expression network. The y-axis is in log scale.

• (Observation 2) The GT method can generate one sample of the whole Hessian for multiple
output functions from a single trajectory of the process.

• For non-centred finite differences, 1 + d + d(d + 1)/2 trajectories are needed to get one
sample of the Hessian while 1 + 2d2 trajectories are needed for centred finite differences.
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Part 2 - An integral formula for second-order
parameter sensitivity
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Second-order parameter sensitivities can be represented by an integral formula

• Recall that:

Ψθ(x , f , t) = E[f (Xθ(t))|Xθ(0) = x],

S
(i)
θ (x , f , t) =

∂Ψθ

∂θi
(x , f , t),

S
(i,j)
θ (x , f , t) =

∂2Ψθ

∂θi∂θj
(x , f , t).

Theorem28

Let (Xθ(t)) be the CTMC with generator Aθ defined in eq. (3). Under appropriate
assumptions, S(i,j)

θ (x0, f ,T ) exists and is given by S
(i,j)
θ (x0, f ,T ) = Ex0 [s

(i,j)
θ (f ,T )] where:

s
(i,j)
θ (f ,T ) =

M∑
k=1

[∫ T

0

∂2λk

∂θi∂θj
(Xθ(s), θ)∆ζkΨθ(Xθ(s), f ,T − s)ds

+

∫ T

0

∂λk

∂θi
(Xθ(s), θ)∆ζkS

(j)
θ (Xθ(s), f ,T − s)ds

+

∫ T

0

∂λk

∂θj
(Xθ(s), θ)∆ζkS

(i)
θ (Xθ(s), f ,T − s)ds

]
.

(12)

28Quentin Badolle, Ankit Gupta, and Mustafa Khammash. “Unbiased estimation of second-order parameter
sensitivities for stochastic reaction networks”. In: arXiv preprint arXiv:2410.11471 (2024).
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The proof of the integral representation relies on the split coupling processes

• The proof builds on ideas introduced in ref.293031.

Outline of the proof
Start by introducing the four coupled processes from ref.32.
▶ Step 1: Define the second-order finite difference involving the coupled processes and take

its limit to zero.
▶ Step 1.1: Define a partition of the sample space based on the splitting time between the

processes.
▶ Step 1.2: Enumerate the reaction counting processes which can have caused the splitting.
▶ Step 1.3: Take the limit to zero of the quantities thereby created.

▶ Step 2: Simplify the expression obtained in step 1.

29David F Anderson and Thomas G Kurtz. Stochastic analysis of biochemical systems. Vol. 674. Springer
International Publishing, 2015.

30Ankit Gupta and Mustafa Khammash. “Unbiased estimation of parameter sensitivities for stochastic chemical
reaction networks”. In: SIAM Journal on Scientific Computing 35.6 (2013), A2598–A2620.

31Ankit Gupta, Muruhan Rathinam, and Mustafa Khammash. “Estimation of parameter sensitivities for
stochastic reaction networks using tau-leap simulations”. In: SIAM Journal on Numerical Analysis 56.2 (2018),
pp. 1134–1167.

32Elizabeth Skubak Wolf and David F Anderson. “A finite difference method for estimating second order
parameter sensitivities of discrete stochastic chemical reaction networks”. In: The Journal of chemical physics
137.22 (2012).
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Part 3 - Construction of an unbiased estimator of
second-order sensitivity
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Estimation of the first term in eq. (12) (1/2)

• The Double Bernoulli Path Algorithm (Double BPA or DBPA) follows an approach
analogous to that introduced in ref.33.

• We use the notation (Xθ(t, x)) to explicitly indicate that a process with generator Aθ

started from state x at time 0, whenever needed.

• Introduce what we will call the first-order auxiliary processes:{
X

(p,k,1)
θ (t) := Xθ(t,Xθ(σp)),

X
(p,k,2)
θ (t) := Xθ(t,Xθ(σp) + ζk ),

(13)

where σp is the p-th jump time of the process (Xθ(t)) which we call the main process, taking
σ0 = 0 for convenience.

• Observe that (X
(p,k,2)
θ (t)) starts from the state Xθ(σp) perturbed by the stoichiometry

vector ζk of reaction k.

33Ankit Gupta, Muruhan Rathinam, and Mustafa Khammash. “Estimation of parameter sensitivities for
stochastic reaction networks using tau-leap simulations”. In: SIAM Journal on Numerical Analysis 56.2 (2018),
pp. 1134–1167.
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Estimation of the first term in eq. (12) (2/2)

• In the previous slide, the first-order auxiliary processes were introduced as:{
X

(p,k,1)
θ (t) = Xθ(t,Xθ(σp)),

X
(p,k,2)
θ (t) = Xθ(t,Xθ(σp) + ζk ).

• Using the fact that trajectories of the main process are constant between jump times and
the tower property of conditional expectations, observe in eq. (12) that:

M∑
k=1

E
[∫ T

0

∂2λk

∂θi∂θj
(Xθ(s), θ)∆ζkΨθ(Xθ(s), f ,T − s)ds

]

= E

 ∞∑
p=0

σp<T

M∑
k=1

∂2λk

∂θi∂θj
(Xθ(σp), θ)

∫ σp+1∧T

σp

∆ζkΨθ(Xθ(σp), f ,T − s)ds



= E

 ∞∑
p=0

σp<T

M∑
k=1

∂2λk

∂θi∂θj
(Xθ(σp), θ)

∫ T−σp

T−(σp+1∧T )
(f (X

(p,k,2)
θ (s))− f (X

(p,k,1)
θ (s)))ds

 .

(14)
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The double Bernoulli path algorithm (1/3)

• The second and third term in eq. (12) are estimated by introducing so-called second-order
auxiliary processes similar to the first-order auxiliary processes in eq. (13).

• This approach allows to generate one sample of the whole Hessian for multiple output
functions from a single trajectory of the main process.

• Estimates for the average output Ψθ(x , f , t) and its Jacobian can be obtained from the
same trajectory of the main process.

• (Refinement 1) The split coupling used in ref.34 for finite differences is used to couple
auxiliary processes and reduce the variance of the estimator.

• (Refinement 2) Bernoulli random variables whose rate depend on the derivatives of the
propensities at the current state of the auxiliary processes are introduced to control the
number of such processes.

• This provides an efficient way to modulate the computational cost per trajectory of the
estimator.

34David F Anderson. “An efficient finite difference method for parameter sensitivities of continuous time
Markov chains”. In: SIAM Journal on Numerical Analysis 50.5 (2012), pp. 2237–2258.
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The double Bernoulli path algorithm (2/3)

SECOND-ORDER PROCESS

SECOND-ORDER PROCESS

Unperturbed

Unperturbed

Unperturbed

Perturbed
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Unperturbed

Unperturbed

Unperturbed

Perturbed

Perturbed

Unperturbed

Unperturbed

Perturbed

Perturbed

Perturbed

Perturbed

Perturbed
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FIRST-ORDER PROCESS

MAIN PROCESS

1Reaction 1

Reaction 2

Reaction 1

Reaction 2

Reaction 1

Reaction 2

Reaction 1

Reaction 2

Unperturbed

Perturbed

Reaction 1

Reaction 2

Figure: Representation of the Double BPA as a balanced binary tree where siblings are coupled. The
full tree has 4M2 leaves where M is the number of reactions.
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The double Bernoulli path algorithm (3/3)

Unperturbed

Unperturbed

Perturbed

Perturbed

Unperturbed

Unperturbed

Unperturbed

Perturbed

Unperturbed

Unperturbed

Unperturbed

Unperturbed

Unperturbed

Perturbed

Perturbed

Perturbed

Perturbed

Perturbed

Perturbed
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FIRST-ORDER PROCESS

MAIN PROCESS

SECOND-ORDER PROCESSReaction 1

Reaction 2

Reaction 1

Reaction 2

Reaction 1

Reaction 2

Reaction 1

Reaction 2

Reaction 1

Reaction 2

Figure: Representation of the Double BPA as a balanced binary tree where siblings are coupled.
Bernoulli random variables are symbolised by dots. They are green when they equal 1 (meaning two
coupled auxiliary processes get simulated) and red otherwise. After the introduction of these variables,
only parts of the tree get generated while still leaving the estimator unbiased.
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Part 4 - Numerical examples
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Numerical examples (1/3)

• We now compare the performance of the estimator associated to the DBPA with the only
unbiased alternative, which uses the GT method.

• While both are guaranteed to converge to the exact value as the number of samples
increases, we nonetheless expect them to lead to estimates with different variances or
mean-squared errors for a finite-number of samples.

• Given that the cost per sample, as measured by the average simulation time per sample, a
priori differs between both methods, we assess their performance in terms of the mean-squared
error MSE(tcomp) defined as:

MSE(tcomp) := σ2
Y /n̄(tcomp), (15)

where σ2
Y is the variance of one sample from the DBPA or the GT method and n̄(tcomp) is the

average number of samples generated within a given computational time budget tcomp.

• Introducing M0 := tcomp/n̄(tcomp) the average simulation time per sample and
M := M0σ2

Y the variance-adjusted cost per sample, we have:

MSE(tcomp) = M/tcomp. (16)

• This means that it is sufficient to report M to fully characterise the relative performance of
the two unbiased methods for any computational time tcomp.
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Numerical examples (2/3)

• We consider a gene expression network under the control of the antithetic integral controller
from ref.3536:

S3
λ1−−→ S1 + S3, S1

λ2−−→ S1 + S2, S1
λ3−−→ ∅,

S2
λ4−−→ ∅, S2

λ5−−→ S2 + S4, S3 + S4
λ6−−→ ∅, ∅ λ7−−→ S3,

(17)

where:

λ1(x , θ) = θ1x3, λ2(x , θ) = θ2x1,

λ3(x , θ) = θ3x1, λ4(x , θ) = θ4x2,

λ5(x , θ) = θ5x2, λ6(x , θ) = θ6x3x4,

λ7(x , θ) = θ7.

35Corentin Briat, Ankit Gupta, and Mustafa Khammash. “Antithetic integral feedback ensures robust perfect
adaptation in noisy biomolecular networks”. In: Cell systems 2.1 (2016), pp. 15–26.

36Stephanie K Aoki et al. “A universal biomolecular integral feedback controller for robust perfect adaptation”.
In: Nature 570.7762 (2019), pp. 533–537.
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Numerical results (3/3)

(a) S
(5,7)
θ

(x, f , t) with f (x) = (x2)
2 (b) M for S

(5,7)
θ

(x, f , t) with f (x) = (x2)
2

Figure: Antithetic integral controller. The sensitivity S
(i,j)
θ (x, f , t) is computed using 104 DBPA

simulations and 5 × 105 GT simulations. The parameters of the network are set to θ1 = 1.0, θ2 = 1.0,
θ3 = 2.5, θ4 = 0.5, θ5 = 0.0023, θ6 = 1.0, θ7 = 1.0, θ8 = 1.0, θ9 = 0.5, θ10 = 0.0023. The initial
state is chosen to be x = (0, 0, 0, 0). In the panels on left-hand side, error bars correspond to two
standard deviations. While both methods are unbiased and will lead to the same sensitivity estimate
asymptotically, the DBPA can offer large performance improvements over the GT method by having a
lower variance-adjusted cost per sample M, as showcased in the panels on the right-hand side.
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Summary and outlook
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Summary

• (Summary 1 - part 2) We provided conditions on the existence of second-order sensitivities
of an expected output of interest (see manuscript37).

• (Summary 2 - part 2) We also derived a new integral representation for these second-order
derivatives.

• (Summary 3 - part 3) Based on this formula, we introduced the Double BPA which can
generate unbiased samples of the Hessian of an average output.

• (Summary 4 - part 4) We illustrate on numerical examples that the Double BPA can provide
a substantial performance improvement over the only unbiased alternative previously available
which is based on the GT method.

37Quentin Badolle, Ankit Gupta, and Mustafa Khammash. “Unbiased estimation of second-order parameter
sensitivities for stochastic reaction networks”. In: arXiv preprint arXiv:2410.11471 (2024).
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Outlook (1/3)

• (Outlook 1) The Double BPA relies on exact simulations of the reaction dynamics.

• These simulations can be computationally demanding, especially in the presence of
time-scale separation.

• In the spirit of ref.38, we could extend the approach developed here to rely instead on
approximate simulations like those from the tau-leap algorithms, using again eq. (12) as the
starting point.

• (Outlook 2) In ref.39, the equivalent of eq. (12) for first-order sensitivities was used in the
DeepCME framework.

• In this hybrid Deep Learning-Monte Carlo approach, the expected output Ψθ(x , f , t) was
first approximated using a neural network and this surrogate was used instead of the auxiliary
paths when evaluating the integral over paths.

• Similarly, we envision leveraging eq. (12) together with a neural approximation of Ψθ(x , f , t)
and its first-order sensitivities to avoid the simulation of first- and second-order auxiliary paths
altogether.

38Ankit Gupta, Muruhan Rathinam, and Mustafa Khammash. “Estimation of parameter sensitivities for
stochastic reaction networks using tau-leap simulations”. In: SIAM Journal on Numerical Analysis 56.2 (2018),
pp. 1134–1167.

39Ankit Gupta, Christoph Schwab, and Mustafa Khammash. “DeepCME: A deep learning framework for
computing solution statistics of the chemical master equation”. In: PLoS computational biology 17.12 (2021),
e1009623.
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Outlook (2/3)

• (Outlook 3) Let α := (α1, . . . , αp) be a multi-index. We introduce the α-th order parameter
sensitivity as:

S
(α)
θ (x , f , t) := ∂

(α)
θ Ψθ(x , f , t). (18)

• By inspection of the proof for the first-order sensitivity formula in ref.4041 and that for
second-order sensitivity42, it becomes clear that under appropriate assumptions, it holds that
S
(α)
θ (x0, f ,T ) is the expectation of:

s
(α)
θ (f ,T ) =

M∑
k=1

∑
β s.t.

0≺β≼α

(α
β

)[∫ T

0
∂
(β)
θ λk (Xθ(s), θ)∆ζk ∂

(α−β)
θ Ψθ(Xθ(s), f ,T − s)ds

]
. (19)

40Ankit Gupta and Mustafa Khammash. “Unbiased estimation of parameter sensitivities for stochastic chemical
reaction networks”. In: SIAM Journal on Scientific Computing 35.6 (2013), A2598–A2620.

41Ankit Gupta, Muruhan Rathinam, and Mustafa Khammash. “Estimation of parameter sensitivities for
stochastic reaction networks using tau-leap simulations”. In: SIAM Journal on Numerical Analysis 56.2 (2018),
pp. 1134–1167.

42Quentin Badolle, Ankit Gupta, and Mustafa Khammash. “Unbiased estimation of second-order parameter
sensitivities for stochastic reaction networks”. In: arXiv preprint arXiv:2410.11471 (2024).
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Outlook (3/3)

• (Outlook 4) Assume the process (Xθ(t)) is exponentially ergodic with stationary distribution
πθ.

• We define the steady-state first- and second-order sensitivities as:

S
(i)
θ (f ) := lim

t→∞
S
(i)
θ (x , f , t), (20)

S
(i,j)
θ (f ) := lim

t→∞
S
(i,j)
θ (x , f , t). (21)

• Introduce Fθ and Gθ as solution of so-called Poisson equations43.

Theorem

S
(i,j)
θ (f ) =

M∑
k=1

∑
x∈NN

[
∂2λk

∂θi∂θj
(x , θ)∆ζkFθ(x)

+
∂λk

∂θi
(x , θ)∆ζkG

(j)
θ (x) +

∂λk

∂θj
(x , θ)∆ζkG

(i)
θ (x)

]
πθ(x).

(22)

43Patrik Dürrenberger, Ankit Gupta, and Mustafa Khammash. “A finite state projection method for steady-state
sensitivity analysis of stochastic reaction networks”. In: The Journal of chemical physics 150.13 (2019).
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Thank you for your attention!
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