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Encodings allow to consider
Boolean Networks (BNSs)
With several limitations

2 linear reductions for non-linear
Ordinary Differential Equations (ODES)
Forward Reduction (sum-preserving)

dx(t)
—— = F(x(1))
Real
expressions

Real variables

|
x(t+ 1) = F(x(2))

Boolean
expressions

X=(xp...,X

X=(xg,...,%,)
Boolean variables
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Forward bisimulation ODEs:
Linear reduction (sum-preserving) of non-linear
Ordinary Differential Equations (ODES)

Minimization of Dynamical Systems over Monoids
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Forward bisimulation:
Non-linear reduction (preserving monoids operations) of non-linear
ODEs, BNs, Difference Equations,

_ More general reductions
More general family of models
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Boolean Backward equivalence:
Backward Reduction of BNs, partially asynchronous BNs

Different family of models
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Graphical representation
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Graphical representation

i Nodes: Proteins, genes, molecules,
4 chemical compounds etc.

L
@ Green arrows: positive effect

Red arrows: negative effect

Boolean Network

J'][f + l] —— _'-i".'i(f) V:I'l{fj
.I'![lf -+ 1] = M| |:|f} W .I'glzf:l W _'.f';i[f]
.!';;[!‘- t i:l .E'-z(f} M _'.r?;g{f:l



Boolean Network STG: State Transition Graph

A Nodes: Proteins, genes, molecules,
4 chemical compounds etc.

i 101 011
@ Green arrows: positive effect
Red arrows: negative effect / m L
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Attractors
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State Space Explosion

N variables | > 2N gstates

128 variables 2128 states



State Space Explosion

N variables | > 2N states

128 variables 2128 states

Reduction facilitates:

STG generation
Attractor computation
Control
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Model Size | Attractors | Analysis (s)
Original T-Cell 128 —Time Out—

Reduced T-Cell vi | 116 ~—Time Out—

Reduced T-Cell v2 | 98 8 9349.577

Reduced T-Cell v3 | 97 8 1103.912

Reduced T-Cell v4 | 95 2 29.336




Experiments with even larger BN: 321 variables

Model Variables  Attractors analysis
Count  Runtime(s)

Original 321 —Time Out—
Output separated 189 —Time Out—
Ol 70 64 0.668

02 33 64 0.325
Maximal 1 1 0.001

» We consider large model (321 variables) by S.Raza,et al:
A logic-based diagram of signalling pathways central to macrophage activation, BMC systems biology, 2008
» Original model could not be analysed
» Output-separated reduction is still too large, maximal reduction is trivial
* In O1 and O2 we admit to aggregate some outputs

We can perform some analysis of an otherwise not analyzable model
Reductions are useful!



Results on STG generation

Model Original model Input-distinguished Reduced model Mazimal Reduced model
Size STG generation(s)| Reduction (s) Size STG generation(s)|Reduction (s) Size STG generation(s)
B7 | 33  out of memory 0.585 27  out of memory 0.608 25  out of memory
B9 | 28  out of memory 0.449 25  outl of memory 0,416 20 52.8
B10 | 26  out of memory 0.227 23 457 0.145 4 0.006
B11 | 24 984 0.243 23 475 0.207 9 0,280
B12 | 24 98T 0.349 21 102 0.121 4 0.050
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Generalized Forward Bisimulation

Merging of 2 variables

l

Raise the definition of GFB to partition of variables

l

Generalization of GFB over Boolean monoids

|

Generalize GFB on Dynamical Systems over arbitrary Monoids
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Boolean Network

Definition 1. A Boolean network is a pair (X, F) where X = {xy,...,x,} is
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Boolean Network

Definition 1. A Boolean network is a pair (X, F) where X = {xy,...,x,} is
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Boolean Network

Definition 1. A Boolean network is a pair (X, F) where X = {xy,...,x,} is
a set of variables, and F = {f. ..., [z, } is a set of update functions with
fe, :B™ — B.
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Definition 2. A partition P = {Py, P», ...} of the set of variables is a Gener-
alised Forward Bisimulation if and only if the BN can be written in one variable
for each block P; of the partition, representing the disjunction (OR) of the vari-
ables belonging to this block.
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Generalized Forward Bisimulation

Definition 2. A partition P = {Py, P», ...} of the set of variables is a Gener-
alised Forward Bisimulation if and only if the BN can be written in one variable
for each block P; of the partition, representing the disjunction (OR) of the vari-
ables belonging to this block.

Jo, =22V 23
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Generalized Forward Bisimulation

Definition 2. A partition P = {Py, P», ...} of the set of variables is a Gener-
alised Forward Bisimulation if and only if the BN can be written in one variable
for each block P; of the partition, representing the disjunction (OR) of the vari-
ables belonging to this block.

JFI[ = T2 \ I3

for = T1 V23 P = {{z1, 22} {xs}}
f.r.:z _= g A (:L'l V :572)

oV Fey = Fuu Vs [1/ 120/ 21V 22) N fay = Fagl21/0,22/21 V 5]

VP;,Vx;, x; € P; the following formula holds:

A(V fo= \V faloifollas/ @ vay)

P,eP z=p€EFR;
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Generalization to Boolean Monoids

VP;,Vr;, x; € P; the following formula holds:

A ( £ for [2:/0)[z; /(@i Va j)])

P,eP



Generalization to Boolean Monoids

VP;,Vz;, x; € P; the following formula holds:

A ( \/ f*x = \___/jf-’frv[-’f’i/U][ifj/(i‘f-a"‘f’-fj)])

P cF T & T

For an arbitary commutative monoid (B, @), the partition P is a Generalised
Forward Bisimulation if and only if VP;, Vx;, z; € P; the following formula holds:

A (D Ju= @ falesOsllns/ ;)]

IJ EII'J L
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Definition 2. A discrete-time dynamical system (DS) is a pair (X, F) where
X ={x1,...,z,} is a set of variables, and F = {f.,,..., fz } is a set of update
Junctions with f,, : M" — M being the update function of variable x;.

For an arbitary commutative monoid (M, @), the partition P is a Generalised
Forward Bisimulation if and only if VF;,Vz;, x; € P; the following formula holds:

A (D fa= B fulsi/oolle;/(@da))

P,€P z,EP, z 1 € P;



(M, ®) = (R, +)

+ studied before, while * is new.
Example: Lotka-Volterra model

(M, ®) =
(M, &) = (Z,,, max)

(Zy,, min)

Multivalued Networks

a.'.”:r.'l = Uz, (1 — Vg, 'Uri:;;)

at?.-]_r? = U:‘I‘z(l o T'J-rl)

2 if (1 <a(t) <2)V ((zslt) =2 1) A(za(t) 2 1))

if z(t) = 1

otherwise

if xa(t) = 1

otherwise

OtVzs = Vay(1 = 1) ar(t+1) =1 if (1(t) < 1) A (ws(t) > 1)
i : 0 otherwise
has difference equations
1
fIl(S:} = Sz, T TSII(]_ - 53:35.1.'3) ra(t+1)= {“
far(8) = 82y + 782, (1 — 54,) 1
fi‘:ﬁ.(s} = Sxg + TSI;%(]- - 5:::1) r3(t +1) = {i}

that yield for (M, ®) = (R,-) the nonlinear reduction:

aa‘"Uﬂ:l = Uz, (1- Vg, Uu)

at (’sz 1’133”:!.) = 2!"1-‘3’-‘1 Vo (] — Vg, :II



Computation of the largest Bisimulation

Algorithm 1: Compute the largest GFB that refines
the initial partition X'z for a DS (X, F).
Result: Largest GFB H that refines X'y
H + Xg:
while true do
H' 0,
for H € H do
R+ {(zj,x;) € Hx H:if x; # x4,
then ‘I'EM and U7t 1}
H «— H U(H/R);
end
if H =H' then
| return H:
else

end CeXr xpelC
end

| He ]I"E”r, = /\ (@ fay, =

D forlwif0e)lz;/(@iow,)))

apel



Experiments with GinSim & BioModels repositories of BNs

Do we get reductions in practice?
* We consider all 29 BN with outputs from 2 repo

GinSim & BioModels
* Reduction ratio: reduced variables / original variables

* Moderate reduction power:

For AND: 9 reductions have size less than 70% of original

Are these reductions useful?

Yes, these reductions are useful
* We have run attractor analysis on the 29*3 models
Runtime ratio: runtime reduced model / runtime reduced

» For AND, 11 models can be analysed faster
Inless than 30% of the time of the original ones

1.0 B = 2= 2% S
0.9 ,—0-'-""‘"""‘_I.":t:t‘*_:’_’"".ﬂ
w0 i _ __.__.’,J--Q-—. "‘,4’
o 0.8 poee P
2071/ -
o6/ 7
c H a"
9054/ ¢
40‘ Ir Jr
= 0.4 N T
0.3
o 0.2 / e AND
0.1{ e - OR
0.0
NUD XD A D OO NNIAIIAINON ADIAOAYAVAIAZADACAN 2D

BN with outputs in GinSim & BioModels

1.01 ’,<4--:-_-_::;.u-0—0—0—4——0——0-—0
0.91 .__._’__.__._-o——o—-d '/.o
0.81 - a0
8 . I,_,._r "_..--o--d
'{_% 0.7 — i
= 0.6 ;
£ 0.5 f /
E 0.4+ ,’I II’
2 0.31 ¢ T
0.2 ./'—"‘ --e-- AND
Il -o--o-
NUYH XS 0N D9 ,\,0,\'\/\’,1«.\?),\} ”'\3’\:\NQ"»(”’LQ’»\”{‘”L“"»V’LO"LQ"‘D'»Q"‘?
& BioModels

BN with outputs in GinSim



Experiments: Non-linear reduction of ODEs and Difference Eqg.

Do we get non-linear reductions in practice?

* We consider 72 weighted networks up to 200 nodes

From https://networks.skewed.de/

* We consider 2 dynamical interpretation for the adjacency matrix A

x(t+ 1) = A(x(r))

Continuous-time: @ = A(x(?))

dt

Discrete-time:

» Reduction ratio: original variables / reduced variables

* Good reduction power:

We provide the 21 reducible models

12 models have less than 40% of the original number of variables

1.0
0.9
0.8 1

w

S 0.7

S 061

c

S 051

S04

3031

go.
0.2
0.1

P S e

,..,,*__-,--.=::;:::::f’

-
--e-- Discr. time
--+-- Cont. time

0.0

S T I T SRR IR N TR SRR R RN

Reducbile Weighted networks from Netzschleuder (®

Randomized polynomial time reduction algorithm
for (M, ®) = (R, ")

Deterministic version suffers from exponential
complexity and did not scale



https://networks.skewed.de/

Future Work

e On-the-fly computation of GFB
e Extension to hybrid dynamical systems

e Reduction of dynamical systems over arbitrary functions



How do we reduce?

e GFB is implemented in the ERODE tool

www.erode.eu



http://www.erode.eu/
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