


Mathematica® Navigator



This page intentionally left blank



Mathematica® Navigator
Mathematics, Statistics, and Graphics

THIRD EDITION

Heikki Ruskeepää

Department of Mathematics

University of Turku, Finland

AMSTERDAM • BOSTON • HEIDELBERG • LONDON

NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO

Academic Press is an imprint of Elsevier



The book is produced from PDF files prepared by the author with Mathematica®.

Academic Press is an imprint of Elsevier
30 Corporate Drive, Suite 400, Burlington, MA 01803, USA
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

Copyright © 2009, Elsevier Inc. All rights reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the publisher.

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (+44) 1865 843830, fax: (+44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request online
via the Elsevier homepage (http://elsevier.com), by selecting “Support & Contact”
then “Copyright and Permission” and then “Obtaining Permissions.”

Library of Congress Cataloging-in-Publication Data
Ruskeepää, Heikki.
Mathematic navigator : mathematics, statistics, and graphics / Heikki Ruskeepää. – 3rd ed.

p. cm.
Includes bibliographical references and index.
ISBN 978-0-12-374164-6 (pbk. : alk. paper) 1. Mathematics–Data processing. 2. Mathematica

(Computer file) I. Title.
QA76.95.R87 2009
510.285'5–dc22

2008044637

British Library Cataloguing-in-Publication Data
A catalogue record for this book is available from the British Library.

ISBN: 978-0-12-374164-6

For information on all Academic Press publications
visit our Web site at www.elsevierdirect.com

Printed in the United States of America
09 10 11 9 8 7 6 5 4 3 2 1



To Marjatta



This page intentionally left blank



Contents

Preface  xi

1  Starting 1

1.1  What IsMathematica 2

1.2  First Calculations 6

1.3  Important Conventions 12

1.4  Getting Help 15

1.5  Editing 22

2  Sightseeing 25

2.1  Graphics 26

2.2  Expressions 31

2.3  Mathematics 40

3  Notebooks 51

3.1  Working with Notebooks 52

3.2  Editing Notebooks 59

3.3  Inputs and Outputs 70

3.4  Writing Mathematical Documents 78

4  Files 93

4.1  Loading Packages 94

4.2  Exporting and Importing 100

4.3  Saving for Other Purposes 109

4.4  Managing Time and Memory 112

5  Graphics for Functions 115

5.1  Basic Plots for 2D Functions 116

5.2  Other Plots for 2D Functions 132

5.3  Plots for 3D Functions 139

5.4  Plots for 4D Functions 147

6  Graphics Primitives 151

6.1  Introduction to Graphics Primitives 152

6.2  Primitives and Directives 155



7  Graphics Options 179

7.1  Introduction to Options 180

7.2  Options for Form, Ranges, and Fonts 189

7.3  Options for Axes, Frames, and Primitives 195

7.4  Options for the Curve 203

7.5  Options for Surface Plots 210

7.6  Options for Contour and Density Plots 226

8  Graphics for Data 231

8.1  Basic Plots 232

8.2  Scatter Plots 249

8.3  Bar Charts 253

8.4  Other Plots 260

8.5  Graph Plots 267

8.6  Plots for 3D Data 275

9  Data 283

9.1  Chemical and Physical Data 284

9.2  Geographical and Financial Data 293

9.3  Mathematical and Other Data 300

10  Manipulations 315

10.1  Basic Manipulation 316

10.2  Advanced Manipulation 338

11  Dynamics 357

11.1  Views and Animations 357

11.2  Advanced Dynamics 369

12  Numbers 395

12.1  Introduction to Numbers 396

12.2  Real Numbers 403

12.3  Options of Numerical Routines 409

13  Expressions 413

13.1  Basic Techniques 414

13.2  Manipulating Expressions 419

13.3  Manipulating Special Expressions 427

13.4  Mathematical Functions 435

14  Lists 443

14.1  Basic List Manipulation 444

14.2  Advanced List Manipulation 459

viii Mathematica Navigator



15  Tables   4670

15.1  Basic Tabulating   467
15.2  Advanced Tabulating   470

16  Patterns   4910

16.1  Patterns   491
16.2  String Patterns   505

17  Functions   5110

17.1  User-Defined Functions   512
17.2  More about Functions   523
17.3  Contexts and Packages   531

18  Programs   5410

18.1  Simple Programming   542
18.2  Procedural Programming   553
18.3  Functional Programming   568
18.4  Rule-Based Programming   584
18.5  Recursive Programming   596

19  Differential Calculus   6150

19.1  Derivatives   615
19.2  Taylor Series   624
19.3  Limits   630

20  Integral Calculus   6330

20.1  Integration   634
20.2  Numerical Quadrature   644
20.3  Sums and Products   666
20.4  Transforms   670

21  Matrices   6770

21.1  Vectors   677
21.2  Matrices   686

22  Equations   709

22.1  Linear Equations   710
22.2  Polynomial and Radical Equations   716
22.3  Transcendental Equations   730

23  Optimization   7410

23.1  Global Optimization   743
23.2  Linear Optimization   753
23.3  Local Optimization   759
23.4  Classical Optimization   768
23.5  Special Topics   777

Contents ix



24  Interpolation 791

24.1  Usual Interpolation 792

24.2  Piecewise Interpolation 797

24.3  Splines 803

24.4  Interpolation of Functions 806

25  Approximation 811

25.1  Approximation of Data 812

25.2  Approximation of Functions 824

26  Differential Equations 829

26.1  Symbolic Solutions 830

26.2  More about Symbolic Solutions 841

26.3  Numerical Solutions 849

26.4  More about Numerical Solutions 865

27  Partial Differential Equations 885

27.1  Symbolic Solutions 886

27.2  Series Solutions 893

27.3  Numerical Solutions 909

28  Difference Equations 923

28.1  Solving Difference Equations 924

28.2  The Logistic Equation 935

28.3  More about Discrete Systems 950

29  Probability 961

29.1  Random Numbers and Sampling 962

29.2  Discrete Probability Distributions 966

29.3  Continuous Probability Distributions 976

29.4  Stochastic Processes 987

30  Statistics 1003

30.1  Descriptive Statistics 1004

30.2  Frequencies 1011

30.3  Confidence Intervals 1020

30.4  Hypothesis Testing 1024

30.5  Regression 1030

30.6  Smoothing 1041

30.7  Bayesian Statistics 1046

References 1063

Index 1067

x Mathematica Navigator



Preface

What is the difference between an applied mathematician and a pure mathematician?
 An applied mathematician has a solution for every problem,

 while a pure mathematician has a problem for every solution.

Welcome

The  goals  of  this  book,  the  third  edition  of Mathematica  Navigator:  Mathematics,  Statistics,  Graphics,  and
Programming, are as follows:

• to introduce the reader to Mathematica; and
• to  emphasize  mathematics  (especially  methods  of  applied  mathematics),  statistics,  graphics,

programming, and writing mathematical documents.

Accordingly, we navigate the reader through Mathematica  and give an overall introduction. Often we
slow down somewhat when an important or interesting topic of mathematics or statistics is encountered
to investigate it in more detail. We then often use both graphics and symbolic and numerical methods.

Here and there we write small programs to make the use of some procedures easier. One chapter is
devoted to Mathematica as an advanced environment of writing mathematical documents.

The  online  version  of  the  book,  which  can  be  installed  from  the  enclosed  CD-ROM,  makes  the
material easily available when working with Mathematica.

Changes in this third edition are numerous and are explained later in the Preface. The current edition
is  based  on Mathematica  6.  On  the  CD-ROM,  there  is  material  that  describes  the  new  properties  of
Mathematica 7.

‡ Readership

The book may be useful in the following situations:

• for courses teaching Mathematica;
• for  several  mathematical  and statistical  courses  (given  in,  for  example,  mathematics,  engineering,

physics, and statistics); and
• for self-study.

Indeed, the book may serve as a tutorial and as a reference or handbook of Mathematica,  and it may
also be useful as a companion in many mathematical and statistical courses, including the following:

differential  and  integral  calculus  •  linear  algebra  •  optimization  •  differential,  partial  differential,
and  difference  equations  •  engineering  mathematics  •  mathematical  methods  of  physics  •
mathematical  modeling  •  numerical  methods  •  probability  •  stochastic  processes  •  statistics  •
regression analysis • Bayesian statistics



‡ Previous Knowledge

No previous knowledge of Mathematica  is assumed. On the other hand, we assume some knowledge of
various  topics  in  pure  and  applied  mathematics.  We  study,  for  example,  partial  differential  equations
and  statistics  without  giving  detailed  introductions  to  these  topics.  If  you  are  not  acquainted  with  a
topic, you can simply skip the chapter or section of the book considering that topic.

Also, to understand the numerical algorithms, it is useful if the reader has some knowledge about the
simplest  numerical  methods.  Often  we  introduce  briefly  the  basic  ideas  of  a  method  (or  they  may
become clear from the examples or other material presented), but usually we do not derive the methods.
If  a  topic  is  unfamiliar  to  you,  consult  a  textbook  about  numerical  analysis,  such  as Skeel  and Keiper
(2001).

‡ Recommendations

If you are a newcomer to Mathematica,  then Chapter 1, Starting, is mandatory, and Chapter 2, Sightsee-

ing, is strongly recommended. You can also browse Chapter 3, Notebooks, and perhaps also Chapter 4,
Files, so that you know where to go when you encounter the topics of these chapters. After that you can
proceed  more  freely.  However,  read  Section  13.1,  “Basic  Techniques,”  because  it  contains  some  very
common concepts used constantly for expressions.

If you have some previous knowledge of Mathematica, you can probably go directly to the chapter or
section you are  interested  in,  with  the  risk,  however,  of  having to  go  back to  study some background
material. Again, be sure to read Section 13.1.

Contents

The 30 chapters of the book can be divided into nine main parts:

Introduction

1. Starting

2. Sightseeing

Files

3. Notebooks
4. Files
Graphics

5. Grahics for Functions
6. Graphics Primitives

7. Graphics Options

8. Graphics for Data

Data

9. Data

Dynamics

10. Manipulations

11. Dynamics

Expressions

12. Numbers
13. Expressions

14. Lists
15. Tables
16. Patterns
Programs

17. Functions
18. Programs

Mathematics

19. Differential Calculus
20. Integral Calculus

21. Matrices
22. Equations

23. Optimization

24. Interpolation

25. Approximation

26. Differential Equations

27. Partial Differential Equations

28. Difference Equations

Statistics

29. Probability

30. Statistics

Dependencies between the chapters are generally quite low. If you read Chapter 2, Sightseeing, you
will get a background that may serve you well when reading most other chapters; in some chapters, you
will also find references to previous chapters, where you will find the needed background.

The following bar chart shows the numbers of pages of the 30 chapters:

xii Mathematica Navigator



The six  longest  chapters  are 7,  Graphics  Options;  8,  Graphics  for  Data;  18,  Programs;  23,  Optimiza-

tion; 26, Differential Equations; and 30, Statistics.

Next we describe the main parts of the book.

‡ Introduction, Files, Graphics, Data, Dynamics, Expressions, and Programs

The first two chapters introduce Mathematica and give a short overview.

The  next  two  chapters  consider  files,  particularly  files  created  by Mathematica,  which  are  called
notebooks.  We  show  how Mathematica  can  be  used  to  write  mathematical  documents.  We  also  explain
how to load packages, how to export and import data and graphics into and from Mathematica, and how
to manage memory and computing time. You may skip these two chapters until you need them.

Then we go on to graphics. One of the finest aspects of Mathematica  is its high-quality graphics, and
one  of  the  strongest  motivations  for  studying Mathematica  is  to  learn  to  illustrate  mathematics  with
figures.  We  consider  separately  graphics  for  functions  and  graphics  for  data.  In  addition,  we  have
chapters about graphics primitives and graphics options.

New  in Mathematica  6  are  the  built-in  data  sources,  covering  topics  such  as  chemistry,  astronomy,
particles, countries, cities, finance, polyhedrons, graphs, words, and colors.

The main new topic in Mathematica 6 is dynamics. This allows us to easily build interactive interfaces.
The  user  of  such  an  interface  can  choose  some  parameters  or  other  options  and  the  output  will  be
changed dynamically, in real time. This helps in studying various models and phenomena.

Preface xiii



Then  we  study  various  types  of  expressions,  from  numbers  to  strings,  mathematical  expressions,
lists, tables, and patterns.

We  have  two  chapters  relating  to  programming.  The  first  studies  functions  and  the  next  various
styles of programming. Four styles are considered: procedural, functional, rule-based, and recursive.

‡ Mathematics and Statistics

In the remaining 12 chapters,  we study different  areas of pure and applied mathematics and statistics.
The mathematical chapters can be divided into four classes, with each class containing chapters of more
or less related topics. Descriptions of these classes follow.

Topics  of  traditional differential and  integral  calculus  include  derivatives,  Taylor  series,  limits,
integrals, sums, and transforms.

Then we consider vectors and matrices;  linear, polynomial,  and transcendental equations;  and global,
local, and classical optimization.

In interpolation  we  have  the  usual  interpolating  polynomial,  a  piecewise-calculated  interpolating
polynomial,  and splines.  In approximation  we distinguish the approximation of data and functions.  For
the former, we can use the linear or nonlinear least-squares method, whereas for the latter we have, for
example, minimax approximation.

Mathematica  solves differential  equations  both  symbolically  and  numerically.  We  can  solve  first-  and
higher-order  equations,  systems  of  equations,  and  initial  and  boundary  value  problems.  For partial
differential  equations,  we  show  how  some  equations  can  be  solved  symbolically,  how  to  handle  series
solutions, and how to numerically solve problems with the method of lines or with the finite difference
method.  Then  we  consider difference  equations.  For  linear  difference  equations,  we  can  possibly  find  a
solution in a closed form, but most nonlinear difference equations have to be investigated in other ways,
such as studying trajectories and forming bifurcation diagrams.

Lastly,  we  study probability and  statistics. Mathematica  contains  information  about  most  of  the
well-known  probability  distributions.  Simulation  of  various  random  phenomena  (e.g.,  stochastic
processes)  is  done  well  with  random numbers.  Statistical  topics  include descriptive  statistics, frequen-

cies, confidence intervals, hypothesis testing, regression, smoothing, and Bayesian statistics.

Special Aspects

The book explains a substantial portion of the topics of Mathematica.  However, some topics are empha-

sized, some are given less emphasis, and some are even excluded. We describe these special aspects of
the book here.

‡ Breadth

We have had the goal of studying important topics in some breadth and depth. This may mean detailed
explanations, clarifying examples, programs, and applications. It may also mean introducing topics for
which there is little or no built-in material.

The  headings  of  the  chapters  give  a  list  of  topics  that  are  emphasized  in  this  book  and  that  are
explained  in  some  breadth.  However,  some  emphasized  topics  cannot  be  identified  from  the  chapter
headings.  One of them is numerical methods; they are used in every mathematical chapter. Another is
methods relating to data. Indeed, we use several real-life and artificial data sets in chapters about data,
graphics for data, approximation, differential and difference equations, probability, and statistics.

xiv Mathematica Navigator



‡ Depth

To give  an  impression  of  the  depth  of  various  topics,  we  next  describe  some special  topics  in  various
chapters of the book.

• Chapter  3, Notebooks:  An  introduction  to Mathematica  as  an  environment  for  preparing  technical
documents; writing mathematical formulas

• Chapter 5, Graphics for Functions: Stereographic figures; graphics for four-dimensional functions
• Chapter 8, Graphics for Data: Visualizations of several real-life data; dot plots; statistical plots
• Chapter  18, Programs:  Four  styles  of  programming  (procedural,  functional,  rule-based,  and

recursive); emphasis on functional programming; many examples of programs
• Chapter  22, Equations:  Iterative  methods  of  solving  linear  equations;  programs  for  nonlinear

equations
• Chapter 23, Optimization: A program for numerical minimization; a program for classical optimiza-

tion with equality and inequality constraints; dynamic programming
• Chapter 25, Approximation: Graphical diagnostics of least-squares fits
• Chapter  26, Differential  Equations:  Analyzing  and  visualizing  solutions  of  systems  of  nonlinear

differential equations; study of a predator-prey model, a competing species model, and the Lorenz
model;  numerical  solution  of  linear  and  nonlinear  boundary  value  problems;  estimation  of
nonlinear differential equations from data; solving integral equations

• Chapter 27, Partial Differential Equations: Series solutions for partial differential equations; solving
parabolic  and  hyperbolic  problems  by  the  method of  lines; solving  elliptic  problems  by  the  finite
difference method

• Chapter  28, Difference  Equations:  The  logistic  model  as  an  example  of  nonlinear  difference
equations;  bifurcation  diagrams,  periodic  points,  Lyapunov  exponents;  a  discrete-time  preda-

tor-prey  model  as  an  example  of  a  system  of  nonlinear  difference  equations;  estimation  of
nonlinear difference equations from data; fractal images; Lindenmayer systems

• Chapter 29, Probability: Simulation of several stochastic processes
• Chapter  30, Statistics:  Visualizing  confidence  intervals  and  types  of  errors  in  statistical  tests;

confidence intervals and tests for probabilities; local regression; Bayesian statistics; Gibbs sampling;
Markov chain Monte Carlo

‡ Programs

Mathematica  has a large number of ready-to-use commands for symbolic and numerical calculations and
for  graphics.  Nevertheless,  in  this  book  we  also  present  approximately  130  of  our  own  programs.
Indeed,  programming  is  one  of  the  strongest  points  of Mathematica.  It  is  often  amazing how concisely
and efficiently we can write a program even for a somewhat complex problem. We think that our own
programs can be of some value, despite the fact that they are not so fine and powerful as Mathematica’s
built-in commands. We have included our own programs for the following reasons:

1. A self-made implementation shows clearly how the algorithm works. You know (or should know)
exactly what you are doing when you use your own implementation. The ready-made commands
are often like black (or gray) boxes because we do not know much about the methods.

2. Writing our own implementations teaches us programming. We present short programs through-

out the book (especially in the mathematical chapters). In this way, we hope that you will become
steadily more familiar with programming and that you are encouraged to practice program writing.

Preface xv



3. A self-made implementation can be pedagogically worthwhile. For example, we implement Euler’s
method  for  differential  equations.  It  has  almost  no  practical  value,  but  as  the  simplest  numerical
method for initial value problems, it has a certain pedagogical value. Also, programming a simple
method first may help us to tackle a more demanding method later.

‡ Other Special Aspects

We  have  integrated  the  so-called  packages  tightly  into  the  material  covered  in  this  book.  Instead  of
presenting a separate chapter about packages, each package is explained in its proper context.

We have tried to make the structure of the book such that finding a topic is easy. Usually a topic is
considered in one and only one chapter or section so that you need not search in several places to find
the whole story. Each numerical routine is also presented in the proper context after the corresponding
symbolic methods. This helps you to find material for solving a given problem: It is usually best to try a
symbolic method first and, if this fails, to then resort to a numerical method.

Some  topics  of  a  “pure”  nature,  such  as  finite  fields,  quaternions,  combinatorics,  computational
geometry, and graph theory, are not considered in this book; Mathematica  has packages for these topics.
Commands for box and notebook manipulation are treated only briefly. We do not consider MathLink (a
part  of Mathematica  that  enables  interaction  between Mathematica  and  external  programs), J/Link  (a
product that integrates Mathematica  and Java), XML (a metamarkup language for the World Wide Web),
or MathML  (an XML-based markup language for  representing mathematics).  Also,  we do not consider
any  of  the  many  other Mathematica-related  products,  such  as webMathematica, gridMathematica,
CalculationCenter, or the Applications Library packages.

Mathematica 6

‡ Introduction

Mathematica  6  contains  a  huge  amount  of  new  functionality.  The  following  is  a  part  of  an  on-line
document:

Mathematica  6.0  fundamentally  redefines Mathematica  and  introduces  a  major  new  paradigm  for
computation.  Building  on Mathematica’s  time-tested  core  symbolic  architecture,  version  6.0  adds
nearly  a  thousand  new  functions~almost  doubling  the  total  number  of  functions  in  the  system~

dramatically increasing both the breadth and depth of Mathematica’s capabilities, as well as introduc-

ing hundreds of major original algorithms, and perhaps a thousand new ideas, large and small.

To  study the  new features,  see  the  following on-line  documentation  (the  use of  the Documentation

Center is explained in Section 1.4.2, p. 17):

• Help @ Startup Palette, the What’s New in 6 link to Wolfram’s website
• Help @ Documentation Center, the New in 6 links in the home page
• Help @ Documentation Center, the guideêSummaryOfNewFeaturesIn60  document
• Help @ Documentation Center, the guideêNewIn60AlphabeticalListing  document
• Help @ Function Navigator, the New In 6 item

If  you  are  a  new  user  of Mathematica  and  would  like  to  study  the  basics  of Mathematica 6,  see  the
following documents:

• Help @ Startup Palette: the First Five Minutes with Mathematica button
• Help @ Virtual Book: the Introduction item

xvi Mathematica Navigator



‡  New Properties of Version 6

Because the new features are numerous, we do not list them all here. However, we mention some of the
most remarkable new commands and features, classified according to the chapters of the book:

• Chapter  1, Starting: documentation  is  on-line  in  the  form  of  Documentation  Center,  Function
Navigator and Virtual  Book  (we  do  not  have  a  printed  manual);  documentation  is  automatically
updated via the Internet; writing Mathematica inputs is helped by syntax coloring

• Chapter 3, Notebooks: Style, Text, Hyperlink

• Chapter 4, Files: commands of many packages are now built-in; the remaining packages are rebuilt;
look  at  Compatibility/guide/StandardPackageCompatibilityGuide  in  the  Documentation  Center
to obtain information about how to replace the functionality of the old packages

• Chapter 5, Graphics for Functions: GraphicsRow, GraphicsGrid, Tooltip; graphics is handled like
other expressions; the default font in graphics is Times instead of Courier; 3D graphics is adaptive;
contours in contour plots have tooltips; density plots, by default, do not have meshes; 2D graphics
can be interactively drawn and edited; 3D graphics can be interactively manipulated (e.g., rotated);
for animation, use Manipulate or Animate

• Chapter 6, Graphics Primitives: Arrow, Opacity, Inset

• Chapter 7, Graphics Options: Directive, BaseStyle, Filling; the default value of AspectRatio in
Graphics and ParametricPlot is Automatic instead of 1/GoldenRatio

• Chapter 8, Graphics for Data: ListLinePlot, GraphPlot; plotting of several data sets
• Chapter 9, Data: ElementData, CountryData, PolyhedronData, etc.
• Chapter 10, Manipulations: Manipulate (for creating interactive dynamic interfaces)
• Chapter 11, Dynamics: Dynamic (for advanced dynamic interfaces), MenuView, TabView, etc.
• Chapter 15, Tables: Grid, Row, Column

• Chapter 16, Patterns: DictionaryLookup

• Chapter 21, Matrices: Accumulate, PositiveDefiniteMatrixQ

• Chapter 23, Optimization: FindShortestTour

• Chapter 29, Probability: RandomReal, RandomInteger, RandomChoice, RandomSample

• Chapter 30, Statistics: Tally, BinCounts, FindClusters

In  my  opinion,  the  most  impressive  new  commands  in  version  6  are Manipulate, Dynamic,
GraphPlot, and Grid.

Note  that  many  familiar  commands,  such  as NIntegrate  or NDSolve,  have  also  been  enhanced  in
version 6.

In  the  forthcoming  chapters,  we  mark  with (Ÿ6) the  properties  and  commands  of Mathematica
available for the first time in version 6.

‡ Obsolete Properties in Version 6

Version 6 makes obsolete some old commands and features, especially in graphics. First, here are some
changes that relate to the display and arrangement of graphics:

• To  prevent  the  display  of  graphics,  end  the  plotting  command  with ;  instead  of  using  the
DisplayFunction option.

• In programs, enclose a plotting command with Print if that command is not the last command of
the program and you would like the program to show that plot.

• GraphicsArray is obsolete. To show, for example, two plots p1 and p2 side by side, use one of the
following  ways: {p1, p2}, Row[{p1, p2}],  or GraphicsRow[{p1, p2}].  Use GraphicsGrid  for
arrays of plots.

Preface xvii



• To show two plots  side by side,  you can also simply give a list  of  plotting commands {Plot[…],

Plot[…]}.
• To  show  two  plots  on  top  of  each  other,  simply  write Show[Plot[…], Plot[…]];  the

DisplayFunction option is no longer needed.
• Graphics  and Graphics3D  no  longer  need Show  to  display  the  graphics.  Thus,  write

Graphics[{…}] instead of Show[Graphics[{…}].
• Use Inset[gr, pos] instead of Rectangle[{x1, y1}, {x2, y2}, gr].

Some changes that relate to plotting of data are as follows:

• To  plot  data  by  connecting  the  points  with  lines,  use ListLinePlot[data]  instead  of
ListPlot[data, PlotJoined Ø True].

• To  plot  data  by  points  and  connecting  lines,  use ListLinePlot[data, Mesh Ø All]  instead  of
ListPlot[data, PlotJoined Ø True, Epilog Ø {PointSize[s], Map[point, data]}].

• To  plot  data  by  points  and  vertical  lines,  use ListPlot[data, Filling Ø Axis]  instead  of
resorting to Prolog or Epilog.

• To plot several data sets, use ListPlot[{data1, data2, … }] or ListLinePlot[{data1, data2, …

}] instead of resorting to MultipleListPlot in a package.
• To plot several points, simply write Point[points] instead of Map[Point, points].

Here are some changes that relate to styles and options of graphics:

• Use Style instead of StyleForm.
• Use the BaseStyle option instead of the TextStyle option or the $TextStyle global constant.
• Use the MaxRecursion option instead of the PlotDivision option.
• Use the DataRange option instead of the MeshRange option.
• Use the Filling option instead of the FilledPlot command.

Some other changes are as follows:

• Use RandomReal[…], RandomInteger[…],  and RandomComplex[…]  instead  of Random[Real, …],
etc.

• For  random  numbers  from  probability  distributions,  use RandomReal[contDist, n]  or
RandomInteger[discrDist, n] instead of resorting to Random or RandomArray.

• Use Tally instead of Frequencies in a package.

The Third Edition

‡ Main Changes

The  text  has  been  revised  throughout.  Indeed, Mathematica  6  brings  up  so  much  new  and  changed
features that  almost  every topic has undergone a revision and new topics are included. Recall  that the
second edition of this book was based on Mathematica 5.

The main change in the structure of the book is that we have six new chapters: Chapter 6, Graphics
Primitives; Chapter 9, Data; Chapter 10, Manipulations; Chapter 11, Dynamics; Chapter 15, Tables; and
Chapter  16,  Patterns.  On  the  other  hand,  some  chapters  have  been  merged  and  the  result  is  that  the
current edition has but one chapter about the following topics: graphics for functions, graphics for data,
and  graphics  options  (the  second  edition  had  two  chapters  for  each  of  these  topics,  one  for  two-
dimensional and one for three-dimensional graphics).

xviii Mathematica Navigator



The main change in the contents of the book is the transition from version 5 to version 6. In addition,
we have some other enhancements. The chapter on programming is much enhanced and enlarged and
contains much more examples.  The chapter about matrix calculus is  also enhanced.  The chapter about
optimization now includes the method of dynamic programming. Chapters about graphics for data and
optimization have undergone a restructuring.

Note that this book fully utilizes the new features of Mathematica 6. Because version 6 differs so much
from  earlier  versions,  this  book  cannot  practically  be  used  with  older  versions  of Mathematica.  If  you
have Mathematica 5.2 or an earlier version, please use the second edition of Mathematica Navigator.

The CD-ROM contains Help Browser material that describes the new properties of Mathematica 7.

‡ Some Notes

New Features
Some of the new features of version 6 would have warranted a broader and deeper treatment and more
examples of use throughout the book. These features include the creation of dynamic interfaces and the
use  of  the  built-in  data  sources.  However,  to  keep  the  book  at  a  reasonable  size,  we  had  to  limit  the
treatment and the number of examples. We suggest that the reader consults the built-in documentation.
The website http://demonstrations.wolfram.com contains thousands of examples of dynamic interfaces.

Environment
During the writing of this book, I used a Macintosh with MacOS X. Mathematica works in much the same
way  in  various  environments,  but  the  keyboard  shortcuts  of  menu  commands  vary  among  different
environments.  To  some  extent,  we  mention  the  shortcuts  for  the  Microsoft  Windows  and  Macintosh
environments.

Options
Many commands of Mathematica  have options for modifying them. All options have a default value, but
we can input other values. When listing the options, we give either all possible values of them or some
examples  of  possible values,  but we do not  explicitly mention the default  values,  to save space.  In the
context  of  this  book, the  default  value  of  an  option  is  always  the  first  value  mentioned.  After  that  are  other
possible values or examples of other values.

Simulations
In several places in the book, we simulate various random phenomena. Usually, each time a simulation
is run, a slightly different result is obtained. However, in experimenting with the examples of the book,
the reader may want to get exactly the same result as printed in the book. This can be achieved by using
a seed to the random number generator with SeedRandom[n] for a given integer n. With the same seed,
the result  of  a  simulation remains the same in repeated executions.  We use SeedRandom  quite  often in
this book. If you want to get other results of simulation than those of this book, give different seeds or
do not execute SeedRandom[n] at all (in the latter case, the default seed is used).

CD-ROM
The entire book is contained on the CD-ROM that comes with it. With a few easy steps you can install
the  book  into  the  Help  Browser  of Mathematica  (the  CD-ROM  contains  installation  instructions).  With
the  Help  Browser  you  can  easily  find  and  read  sections  of  the  book,  experiment  with  the  commands,
and copy material  from the book to your document. You can see all of the figures of the book in color
and  interactively  study  the  manipulations  and  animations.  The  material  about  the  new  properties  of
Mathematica  7 can also be installed into the Help Browser. In addition, the CD-ROM contains some data
files that are used in the book.

Preface xix



Notation
Throughout  the  book,  the  adjectives  one-,  two-,  three-,  and  four-dimensional  are  abbreviated  1D,  2D,
3D, and 4D, respectively. The symbol Ö is used as a hyphen for Mathematica  commands. In addition, we
use extensively the following handy short notation:

p  Means the same as Pi. The symbol p can be written as ÂpÂ.
¶  Means the same as Infinity. The symbol ¶ can be written as ÂinfÂ.
P…T  Means the same as [[…]]. For example, x[[3]] can also be written as xP3T. The symbols P and
T can be written as Â[[Â and Â]]Â.

¨  Means the same as Transpose. For example, Transpose[x] can also be written as x¨. The symbol ¨
can be written as ÂtrÂ.

/@  Means the same as Map. For example, Map[f[#]&, {a, b, c}] can also be written as f[#]& /@ {a,

b, c}. A third way is to write Table[f[x], {x, {a, b, c}}].

The symbols p and ¶ can also be found from the BasicMathInput palette. For example, instead of

Map@Ò^2 &, Transpose@88Pi, Infinity<<DD

99p2=, 8¶<=

we can write

Ò^2 & êü 88p, ¶<<¨

99p2=, 8¶<=

Questions
If you have questions about the use of Mathematica, do not hesitate to contact me. I try to answer when I
have the time. Also, please send comments and corrections.

Acknowledgments

In  preparing  this  book,  the  main  source  has  been  the  excellent  on-line  Documentation  Center  of
Mathematica  6. The technical support staff at Wolfram Research, Inc., helped me a lot; I especially thank
Eric Bynum, Roberto Cavaliere, Huihua Huang, Yong Huang, Vivec Joshi, and Bruce Miller.

The entire book was written and produced with Mathematica; each chapter is a Mathematica notebook.
The  notebooks  were  connected  into  a  single  project  by  the AuthorTools  package  of Mathematica.  The
package then automatically generated the index (after we had attached the index entries with the cells of
the book, also with the package), and the package also prepared the on-line Help Browser version of the
book.

I have been lucky enough to enjoy excellent working conditions at the Department of Mathematics of
the  University  of  Turku.  For  this  my  sincere  thanks  are  due  to  Professor  Marko  Mäkelä.  I  also  thank
Professor Juhani Karhumäki and Professor Matti Vuorinen for their support and encouragement.

The  third  edition  is  also  published  in  India.  I  am  deeply  indepted  to  Professor  Ponnusamy
Saminathan, Indian Institute of Technology, Madras, Chennai, for suggesting and supporting the Indian
edition.

For their  review of the manuscript  of  the second edition,  I  am very thankful  to Donald Balenovich,
Indiana  University  of  Pennsylvania;  Joaquin  Carbonara,  Buffalo  State  University;  William  Emerson,
Metropolitan  State  University;  Jim  Guyker,  Buffalo  State  University;  Mike  Mesterton-Gibbons,  Florida
State  University;  and  Fred  Szabo,  Concordia  University.  Their  valuable  comments  and  suggestions
greatly improved the second edition.

xx Mathematica Navigator



I also thank the following people for taking the task of writing a review of the second edition of the
book  in  some  journals:  Robert  M.  Lurie  (Mathematica  in  Education  and  Research),  Matti  Vuorinen
(Zentralblatt MATH), K. Waldhör (Computing Reviews), and John A. Wass (Scientific Computing).

Many  readers  of  the  second  edition  have  sent  me  e-mail,  giving  feedback  and  asking  questions.
Thank you all! Your support has encouraged me in writing the third edition.

The anecdotes at the beginning of the chapters are from the wonderful book by MacHale (1993) (the
anecdotes  are  reproduced  or  adapted  with  the  permission  of  the  publishers,  Boole  Press,  26  Temple
Lane, Dublin 2, Ireland).

The  editorial  staff  at  Elsevier  has  done  a  fine  work  with  the  production  of  the  book.  Especially  I
would like to thank Phil Bugeau for efficient project management. I am also very grateful to Dan Hays
and Kristen Cassereau Ng for copy-editing and proofreading the manuscript with great care.

For  financial  support  I  express  my  deep  gratitude  to  Elsevier  Academic  Press  and  Suomen
Tietokirjailijat (The Association of Finnish Non-Fiction Writers).

Lastly, I thank my wife, Marjatta, for her encouragement and support during the work.

Heikki Ruskeepää

Department of Mathematics
University of Turku
FIN-20014 Turku
Finland
ruskeepa@utu.fi

Preface xxi



xxii Mathematica Navigator

This page intentionally left blank



1
Starting

Introduction 1

1.1  What IsMathematica? 2

1.1.1  An Example 2

1.1.2  The Structure ofMathematica 4

1.2  First Calculations 6

1.2.1  Opening, Calculating, and Quitting 6

1.2.2  Names and Decimals 7 %, Out, N

1.2.3  Basic Calculations and Plotting 10 Pi, E, Sqrt, Exp, Sin, D, Integrate, Simplify, Plot, etc.

1.3  Important Conventions 12

1.4  Getting Help 15

1.4.1  Palettes 15

1.4.2  On-line Documentation 17

1.4.3  Other Help 20 ?

1.5  Editing 22

Introduction

In 1903 at a meeting of the American Mathematical Society, F. N. Cole read a paper entitled
 “On the Factorization of Large Numbers.” When called upon to speak, Cole walked to the board
 and, saying nothing, raised two to its sixty-seventh power and subtracted one from the answer.

 Then he multiplied, longhand, 193,707,721 by 761,838,257,287 and the answers agreed. Without
 having said a word, Cole sat down to a standing ovation. Afterwards he announced that it had

taken him twenty years of Sunday afternoons to factorize the Mersenne number 267 - 1.

This  chapter  is  intended  to  give  you  an  impression  of Mathematica  and  to  teach  you  some of  its  basic
techniques  and commands.  A  more  complete  insight  is  given in  the  next  chapter,  in  which we briefly
present a selection of the most important commands of Mathematica.

Although this book puts some emphasis on the methods of applied mathematics, this chapter begins,
in  Section  1.1,  with  a  “pure”  example:  factoring  integers.  We  consider  the  problem  mentioned  in  the
anecdote above and show what we can do nowadays with such powerful systems as Mathematica. This
example will enlighten you regarding some of the major aspects of the program. We emphasize that it is
not  intended  that  you  do  the  calculations  of  this  example,  nor  that  you  should  understand  the  com-

mands we use.

In  Section  1.2,  we  give  a  brief  overview  of  some of Mathematica’s  basic  techniques  and commands,
beginning with the classical starting example of calculating 1 + 2 and ending with calculus and graphics.
Section 1.3  presents  and explains the important conventions of Mathematica,  which often cause trouble
for beginners.



In Sections 1.4 and 1.5, we discuss how you can get help within Mathematica and how you can correct
and edit what you have written. These two sections may give more information than you need now, but
you can read the basic points and return to these sections later, when getting help and editing become
more relevant concerns.

Parts of this chapter depend on the computer you use. We explain only the Windows and Macintosh
environments, although some comments may be found about the basics of Mathematica in a Unix system.

1.1  What Is Mathematica?

1.1.1  An Example

‡ Verifying the Work of Cole

(Note: It is not intended that you do the calculations of Section 1.1.1. The example is only intended to be
read and to demonstrate certain aspects of Mathematica. Your actual lessons begin in Section 1.2.)

Did  you  read  the  anecdote  about  F.  N.  Cole  at  the  beginning of  this  chapter?  Cole  sacrificed  every
Sunday afternoon for 20 years to study the Mersenne number M67 = 267 - 1:

2^67 - 1

147 573 952 589 676 412 927

The  first  line  is  the  command  entered  to Mathematica,  and  the  second  line  is  the  answer  given  by
Mathematica. At last he found that the number is the product of 193,707,721 and 761,838,257,287:

193 707 721 * 761 838 257 287

147 573 952 589 676 412 927

M67  is thus not a prime. Cole’s feat was admirable. Now, after 100 years, we have Mathematica,  and the

situation is totally different. It now takes only a fraction of a second to do the factorization:

FactorInteger@2^67 - 1D êê Timing

80.016942, 88193 707 721, 1<, 8761 838 257 287, 1<<<

Mathematica found that 193,707,721 and 761,838,257,287 are factors of multiplicity 1.

‡ Difficult Factors

However, even today some problems can be surprisingly difficult. When Mathematica,  in my computer
(which is not very fast), factorizes M254, it needs approximately 10,000 seconds or 3 hours and approxi-

mately 200 megabytes of RAM:

FactorInteger@2^254 - 1D êê Timing

810 521.7, 883, 1<, 856 713 727 820 156 410 577 229 101 238 628 035 243, 1<,
8170 141 183 460 469 231 731 687 303 715 884 105 727, 1<<<

MaxMemoryUsed@D

207 758 616

However, note that M254 is very big:

2^254 - 1

28 948 022 309 329 048 855 892 746 252 171 976 963 317 496 166 410 141 009 864 396 001 978 282 Ö

409 983

and two of the three factors are also big. Thus, factoring the number is obviously a difficult task. By the
way, the difficulty of factoring large numbers is a key to some cryptographic methods.

2 Mathematica Navigator



However, for M254, Mathematica can immediately tell that it is not a prime:

PrimeQ@2^254 - 1D êê Timing

80.000223, False<

Indeed, we can easily investigate Mersenne numbers for primality up to, for example, index 607:

Hmp = Table@8i, PrimeQ@2^i - 1D<, 8i, 2, 607<D;L êê Timing

80.417603, Null<

The indices for which the corresponding Mersenne number is a prime are as follows:

Select@mp, Ò@@2DD ã True &D@@All, 1DD

82, 3, 5, 7, 13, 17, 19, 31, 61, 89, 107, 127, 521, 607<

‡ A Demanding Computation

To further illustrate the use of Mathematica, we now factor the Mersenne numbers M2 to M250. (Note that

you  are  not  supposed to  do  the  calculations  in  this  example.  Just  cast  an  admiring glance  at  the  com-

mands. Later in this book you will learn such commands as Total, /@, and Range.) We do not show the
factors themselves; we only count the number of factors:

Ht = Total@FactorInteger@2^Ò - 1D@@All, 2DDD & êü Range@2, 250DL êê Timing

85430.6, 81, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6,
3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6,
8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6,
5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8, 14, 2, 11, 2, 10, 11,
6, 1, 15, 2, 12, 6, 11, 5, 9, 6, 9, 9, 6, 6, 17, 4, 3, 5, 8, 5, 14, 1, 9, 5, 9, 2,
15, 3, 5, 10, 11, 2, 9, 2, 16, 6, 6, 6, 19, 5, 6, 7, 10, 2, 14, 5, 11, 8, 10, 8,
18, 4, 5, 8, 13, 7, 16, 5, 10, 10, 8, 2, 19, 4, 7, 7, 10, 4, 11, 9, 14, 6, 5, 3,
24, 4, 11, 5, 11, 5, 8, 5, 10, 10, 10, 5, 16, 3, 7, 8, 11, 2, 17, 2, 20, 6, 4, 7,
20, 6, 5, 9, 12, 6, 22, 3, 10, 7, 4, 8, 21, 6, 5, 7, 19, 4, 13, 6, 16, 14, 10, 2,
17, 4, 12, 10, 12, 4, 16, 7, 13, 8, 11, 6, 23, 2, 8, 10, 9, 7, 12, 6, 12, 5, 11<<

MaxMemoryUsed@D

83 409 352

Thus,  for  example, M4  has two factors, and M250  has 11 factors.  The computations took approximately

1.5 hours and approximately 80 megabytes of RAM.

‡ A Graphic Illustration

We  continue  studying  Mersenne  numbers  and  now  form  pairs  from  the  indices  and  the  numbers  of
factors:

s = 8Range@2, 250D, t<¨;

(Here,  means a transpose.) Then we find a logarithmic least-squares fit for the number of factors as a
function of the index of the Mersenne numbers:

lsq = Fit@s, 81, Log@iD<, iD

-3.05399 + 2.25251 Log@iD

We then plot the fit and the numbers of factors:

p1 = Plot@lsq, 8i, 2, 250<, PlotStyle Ø BlackD;

p2 = ListLinePlot@s, PlotStyle Ø Black,
Mesh Ø All, MeshStyle Ø 8Black, PointSize@SmallD<D;

Chapter 1  •  Starting 3



Show@p1, p2, AspectRatio Ø 0.3, PlotRange Ø 8-1, 25<, ImageSize Ø 420,
Ticks Ø 8Join@82<, Range@10, 250, 10DD, 81, 5, 10, 15, 20, 24<<D

10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 210 220 230 240 250

5

10

15

20

24

So,  here are the numbers of factors of M2  to M250,  together with the logarithmic fit.  In the figure

we  see  the  prime  Mersenne  numbers  with  indices  2,  3,  5,  7,  13,  17,  19,  31,  61,  89,  107,  and 127.  These
Mersenne primes had all been found by 1913. After the index 127, primes are not very common among
Mersenne  numbers.  The  next  known  primes  occur  with  indices  521  (found  in  1952);  607;  1279;  2203;
2281; 3217; 4253; 4423; 9689; 9941; 11,213; 19,937; 21,701; 23,209; 44,497; 86,243; 110,503; 132,049; 216,091;
756,839;  859,433;  1,257,787;  1,398,269;  2,976,221;  3,021,377;  6,972,593;  13,466,917;  20,996,011;  24,036,583;
25,964,951; 30,402,457 (found in 2005); 32,582,657 (found in 2006).

‡ Lessons Learned

The  preceding  examples  show  how  easy  it  now  is  to  do  long  and  complicated  calculations  and  to
visualize  the  results. Mathematica  is  one  of  the  more  popular  systems  for  doing  such  calculations.
However, even today, with powerful mathematical systems and machines, some problems remain very
time-consuming.

The  example  also  illustrates  some aspects  of Mathematica,  such as  working with  exact  and approxi-
mate  quantities,  using  graphics,  and  making  programs.  In  general, Mathematica  integrates  symbolic
calculation, numerical calculation, graphics, and programming into one system.

Mathematica  contains still another aspect: a document-making environment (in versions of Mathemat-
ica  that  support  the  notebook  interface).  In  this  environment,  you  can  do  symbolic  and  numerical
calculations,  produce  graphics,  and add text  to  explain  what  you  have  done.  The  result  is  a  complete
document  of  your work;  in  fact,  this  book was written with Mathematica.  In  addition,  the document is
interactive.  You  can  change  parameters  and  functions,  redo  calculations,  show  animations,  create
interactive  graphical  interfaces,  and  continuously  develop  the  document.  The  notebook  interface  is
included in both Windows and Macintosh versions of Mathematica.  In  plain Unix,  the interface  is  text-
based  and  thus  all  features  of Mathematica  are  not  supported,  but  the  X  Window  System  supports
notebooks.

1.1.2  The Structure of Mathematica

Mathematica  is a large system: The total installation of Mathematica  takes up approximately 1.1 gigabytes
(Gb) of space on the hard drive. The following are the essential parts of Mathematica:

• the kernel, with the name MathKernel;
• the front end, with the name Mathematica; and
• the packages, with the name Packages.

Next we consider each of these three components individually.

4 Mathematica Navigator



‡  The Kernel

The main component  of Mathematica  is  the  kernel;  it  does all  of  the computations.  It  is  written mainly
with  the  C  programming  language  and  is  one  of  the  largest  mathematical  systems  ever  written.  The
total  number of  lines  of  code in the kernel  is  approximately  2.5  million.  An important  thing to under-

stand is that the kernel is the same in all environments; this means that you get the same results in all
environments (except possibly for the precision of floating-point calculations).

Mathematica  commands are easy to use and quite versatile. However, behind the commands there is a
huge  amount  of  mathematical  knowledge and a  vast  amount  of  work.  For  example,  behind the single
command Integrate, there are approximately 600 pages of C code and 500 pages of Mathematica code.

‡ The Front End

The front end is an environment for communicating with the kernel. When you open Mathematica,  you
open  the  front  end.  Commands  are  entered  into  the  front  end,  and  they  are  sent  automatically  to  the
kernel  (the communication between the front end and the kernel is done with MathLink,  a  system that
handles  communication  between  parts  of Mathematica  and  between Mathematica  and  other  programs).
The result of a calculation is then displayed by the front end. Figures come from the kernel in the form
of PostScript code, and the front end then creates a screen image from this code. The front end contains
approximately 700,000 lines of system-independent C++ source code.

There are two types of front ends: notebook and text-based.

A  notebook  front  end  is,  for  example,  in  the  Windows,  Macintosh,  and  X  Window  versions  of
Mathematica.  A  notebook  is  an  interactive  document.  It  contains  the  commands  you  have  entered  and
their  results,  graphics  (including  animations),  dynamic  graphical  interfaces,  and  comments  you  have
added. You can do any kind of correcting, editing, and formatting in a notebook. In fact, you can make a
notebook into a whole document of your work, even a book. (The chapters of this book were made as
separate notebooks.)

The text-based front end is not nearly so handy and versatile as the notebook front end. This type of
front  end is  found in the plain Unix version of Mathematica.  With this kind of  front end you can enter
commands  and  see  the  results,  but  editing  is  very  limited.  Another  disadvantage  is  that  pictures  are
displayed in separate windows.

‡ The Packages

The  packages  supplement  the  kernel.  They  are  not  normally  loaded  when Mathematica  is  loaded;  you
have to manually load the packages you want to use. Packages contain commands considered not to be
as central and as common as the commands in the kernel. Packages are written using the programming
capabilities of Mathematica.

To  the  packages  that  come  with Mathematica  you  can  also  add  the  vast  collection  of  packages  and
other  material  found  at http://library.wolfram.com/.  In  addition,  you  can  write  your  own  packages
and programs.

Furthermore,  there  are  collections  of  Wolfram  application  packages  and  third-party  application
packages; see www.wolfram.com/products.

Chapter 1  •  Starting 5



1.2  First Calculations

1.2.1  Opening, Calculating, and Quitting

‡ Opening Mathematica

To open Mathematica, do the following:

• In Windows and Macintosh environments: open Mathematica as other programs
• In Unix with X Window: type mathematica

• In plain Unix: type math

When  you  open Mathematica  in  a  notebook  environment,  you  get  an  empty  notebook.  A  cursor
appears once you have pressed the first key.

‡ Calculating

Now, are you ready to begin? Let us start modestly and try to calculate 1 + 2. Press these three keys:

1 + 2

The  command  is  executed  (i.e.,  sent  to  the  kernel  for  processing)  by  pressing  a  special  key  or  key
combination.

To execute a command, press Û or ˜÷Á

In Windows and Macintosh interfaces, both ways work (Û is the key at the bottom right corner of
the keyboard; ˜÷Á means that you are holding down the Shift key while at the same time pressing the
Return key ¿). In Unix, it may be that ˜÷Á is the only possibility.

Note  that  although  we  have  spoken  about  “executing  a  command,”  this  is  not  in  keeping with  the
official  terminology.  We should speak about  “evaluating  an  input.”  You should know the  official  term
evaluation, but we ourselves feel free to use the more concrete term execution.

So,  after  typing  the  command or  input 1 + 2,  press  any  of  the  executing  or  evaluating  keys  or  key
combinations.  Now the kernel  begins  to  evaluate  the input.  In most microcomputers,  the kernel  is  not
loaded until you ask it to do a calculation. This means that the first calculation takes some time, even if
it is as simple as 1 + 2. After you have entered the input, the label In[1]:= appears before the input, and
the result has the label Out[1]=. You get

1 + 2

3

Note  that  here  we  do  not  show  the In  and Out  labels.  Indeed,  by  adjusting  the  preferences  of
Mathematica, we can turn the labels off. In a Macintosh, the preferences can be found from the Mathemat-
ica @ Preferences… menu. Go then into the Evaluation preferences and click Show In/Out names to be off.
The input and the output can be distinguished by the font: The input is in boldface Courier, whereas the
output is in plain Courier. Try the next command (note that although you again cannot see a cursor in
the notebook, just start typing; the new command appears where you see a horizontal line):

18 ê 4

9

2

6 Mathematica Navigator



Fractions  are  automatically  simplified,  and  they  are  written  in  a  2D  form  (instead  of 9 ê2).  If  the
expression contains a decimal number, then the result is also a decimal number:

10 ê 3.

3.33333

‡ Correcting

You may observe an error in a command when you write it, or after executing the command Mathemat-
ica may give you an error message telling you that there is something wrong with the command.

In a notebook environment (e.g.,  Windows, Macintosh, or X Window), you can do standard editing
as  with  a  word  processor.  For  example,  to  delete  an  incorrect  character,  just  move  the  cursor  to  the
desired location by pressing the arrow keys or with the mouse and press the backspace key or the delete
key  to  remove  the  character  to  the  left  or  right,  respectively.  You  can  also  highlight  a  portion  of  an
input, cut it (‚ÎxÏ; on a Macintosh, use Ì in place of ‚) or copy it (‚ÎcÏ), and then paste it (‚ÎvÏ) to a
new location.

Once you have a corrected input, execute it. Note that after correcting a command you can leave the
cursor  where  it  is  and then  execute  the  command;  the  cursor  need not  be  at  the  end of  the  command

when  you  execute  it.  We  consider  editing  in  more  detail  in Section 1.5,  p. 22.  (In  plain  Unix,  possibly

only the backspace key can be used to edit the input; arrow keys may not function. Using special editing
commands such as Edit together with an editor such as Emacs can help a lot in plain Unix.)

‡ Quitting Mathematica

To quit Mathematica, do the following:

• In Windows, Macintosh, and X Window: quit Mathematica as other programs
• In plain Unix: execute the command Quit

Do not quit right now. Instead, continue reading and experimenting.

‡ Aborting a Calculation

You  may  sometimes  observe  that  a  calculation  is  useless  (perhaps  because  there  was  an  error  in  the
input or you do not have time to wait for the answer). You can then abort the calculation.

To abort a calculation, do the following:

• In Windows, Macintosh, and X Window: choose Abort Evaluation from the Evaluation menu, or
press ‡Î.Ï (ÌÎ.Ï on a Macintosh)

• In plain Unix: press ‚Î c Ï Á a Á

It may happen that when you try to abort a calculation it seems that the calculation just goes on and
on.  You  can  then  quit Mathematica  (after  possibly  saving  the  notebook)  and  start  a  new  session.  In
notebook  environments,  you  can  also  only  quit  the  kernel  by  choosing Evaluation @ Quit  Kernel @

Local. Start a new session by executing an input or by choosing Evaluation @ Start Kernel @ Local.

1.2.2  Names and Decimals

‡ Before Continuing

Now we continue exploring Mathematica. Please note the following very important point:

Chapter 1  •  Starting 7



• When you try the examples of the book with your machine, write the commands exactly as they are
printed here.

Mathematica  will  not  forgive  even  the  smallest  error  in  syntax.  Be  especially  careful  with  small  and
capital  letters:  All Mathematica  names  such  as Sin  or Integrate  begin  with  a  capital  letter.  Also,  you
have to write all arguments in functions and commands in square brackets [ ], for example, Sin[x] and
Integrate[a + b x, x]; parentheses ( ) are not allowed. Parentheses are only used for grouping terms
in  expressions.  Note  that Mathematica  automatically  adds  spaces  in  some  places  in  your  input  (e.g.,
around + or =).

You  probably  will  occasionally  get  error  messages  and  wrong  results  because  the  syntax  was  not
correct. Do not worry. This is normal. Getting used to Mathematica takes time, and only by working with
the program can you learn to use it efficiently.

During  a  session,  do  not  just  enter  one  input  after  another  in  a  hurry.  Think  carefully  about  each
input and each result~how the input is written and what the result is. In this way, you will learn more
effectively.

Also,  once  you  have  tried  some  of  the  examples  in  this  book,  you  can  try  other  examples.  This  is
recommended because by trying similar examples you strengthen your skills and get a clearer impres-

sion of each command and technique.

‡ Referring to Earlier Results

%  Refers to the last result
%%  Refers to the next-to-last result
%%...%  Refers to the kth previous result if there are k % marks
Out[n]  or %n  Refers to the result in the output line Out[n]

Often you want to refer to earlier results. The percent mark % and the output names can be used for
this. Try the following commands:

353^4

15 527 402 881

30^4 + 120^4 + 272^4 + 315^4

15 527 402 881

%% - %

0

Try also the output names by executing, for example, Out[4] + Out[5] or %4 + %5.

Using % can become a problem if the command you execute contains errors to be corrected. Suppose
you first calculate

16^2

256

Then you want to calculate 162 - 152, but you write

% + 15^2

481

If you now correct the command to read % - 15^2, you do not get what you want because % now refers
to the result 481 of the last (wrong) command. So, you have to correct the command to read %% - 15^2.

8 Mathematica Navigator



In general, if you correct several times a command that originally contained a %, you have to add one
% each time. This may become awkward. It may be clearer to assign names to expressions, as explained
later.

A way to refer to the last command and its result is to choose Insert @ Input from Above or Insert @
Output from Above.

‡ Giving Names

a = value  Assign value for a

a  Show the value of a

a =. Clear the value of a

Another  technique  for  referring to  earlier  results  is  to  give  names to  results.  Later,  you can use the
names as needed. For example, what is the probability of getting two 6’s when tossing a die six times?

a = Binomial@6, 2D

15

b = H1 ê 6L^2 * H5 ê 6L^4

625

46 656

c = a * b

3125

15 552

You can always ask the value of a variable simply by entering the name of the variable:

a

15

When  a  symbol  is  no  longer  used,  it  is  useful  to  clear  the  value  of  the  variable  so  that  it  does  not
cause trouble later:

a =.

Now a has no value, as we see if we ask the value of a:

a

a

Mathematica printed only the name of the variable.

Note that we can see from the color of a symbol whether it has a value: A blue symbol does not have
a value, whereas a black symbol does have a value.

‡ Decimal Values

expr//N  or N[expr] Calculate a decimal value for expr

You have perhaps noted that all calculations with integers and fractions are kept in an exact form; a
decimal value is not automatically computed. A decimal value can be asked for with N. It can be used in
two equivalent forms. The form expr//N  may be easier to write than the form N[expr]. For example,

Chapter 1  •  Starting 9



b

625

46 656

% êê N

0.0133959

c êê N

0.200939

N@cD

0.200939

We can also ask directly for the decimal value (without first asking for a simplified fraction):

H1 ê 6L^2 * H5 ê 6L^4 êê N

0.0133959

Note that, from now on, we here and there show the results of commands next to each command to
save space.

1.2.3  Basic Calculations and Plotting

‡ Basic Arithmetic

a + b a - b a b  or a*b a/b a^b

The basic arithmetic operations plus, minus, division, and power are expressed in the usual manner,
but  multiplication  is  different.  With Mathematica,  multiplication  is  usually  expressed by  a  space  (press
the space bar once). If you are more comfortable with the asterisk *, you can use it. For example,

a = 5 5

b = 3 3

a b 15

Note that if you write ab  without a space, Mathematica  treats this as a single variable with the name
ab:

ab ab

We have not defined a value for the variable ab, so Mathematica just writes the name of the variable. This
is a common error when using Mathematica. You have to write a b with a space or a*b with an asterisk if

you want multiplication. Multiplication is explained further in Section 1.3, p. 13.

‡ Basic Constants

Pi, E, I, Infinity

These well-known constants are usually denoted by p, e, i, and ¶ in mathematical texts. For example,

Pi êê N 3.14159

E êê N 2.71828

I^2 -1

10 Mathematica Navigator



1 ê Infinity 0

Negative infinity is -Infinity. Note that Mathematica writes Pi as p, E as ‰, I as Â, and Infinity as ¶:

8Pi, E, I, Infinity<

8p, ‰, Â, ¶<

We can also write Pi as p, Infinity as ¶, and so on by using the Escape key, as follows:

To write p, type ÂpÂ
To write ¶, type ÂinfÂ

Just press the Â, p, and Â keys in turn. From now on in this book, we write Pi as p and Infinity as ¶.

‡ Basic Functions

Sqrt[z]  or z^(1/2)  (square root)
Exp[z]  or E^z  (exponential function)
Log[z], Log[b, z]  (natural logarithm and logarithm to base b)
Abs[z]  (absolute value)

Sin[z], Cos[z], Tan[z], Cot[z], Sec[z], Csc[z]

ArcSin[z], ArcCos[z], ArcTan[z], ArcCot[z], ArcSec[z], ArcCsc[z]

n!, Binomial[n, m]

Max[{x, y, ...}], Min[{x, y, ...}]

Note that the natural logarithm is Log[z].  [In many mathematical texts, log(z) means a logarithm to
base  10,  whereas  the natural  logarithm is  denoted by ln(z).]  The arguments  in trigonometric  functions
are in radians, and the values of the inverse trigonometric functions are in radians. Binomial  gives the
binomial coefficient. Max and Min give the maximum and the minimum of the arguments. For example,

Exp@Log@Sqrt@xDDD x

Cos@p ê 4D
1

2

ArcCos@1 ê Sqrt@2DD
p

4

We throw a die 10 times and find the maximum of the results:

a = RandomInteger@81, 6<, 10D

83, 5, 2, 4, 3, 4, 3, 1, 5, 4<
Max@aD 5

The value of the variable a is a list~an ordered collection of elements enclosed in curly braces {}.

‡ Basic Calculus

D[expr, x]  Derivative of expr with respect to x

Integrate[expr, x]  Indefinite integral of expr with respect to x

Integrate[expr, {x, a, b}]  Definite integral of expr with respect to x from a to b

Simplify[expr]  or expr//Simplify  Simplify the expression

Chapter 1  •  Starting 11



Again a note about terminology. We have spoken about commands such as D or Integrate, but the
official  term  is  a function.  However,  we  feel  free  to  speak  about  commands  and  use  the  term function
mainly for such expressions as Sin[x], which are official mathematical functions. For example,

D@x Sin@xD, xD x Cos@xD + Sin@xD
Integrate@x^2 Exp@xD, 8x, 0, 1<D -2 + ‰

Integrate@p x ê Hq + r xL, xD p
x

r
-

q Log@q + r xD

r2

We check the last integral by calculating the derivative of the result:

D@%, xD p
1

r
-

q

r Hq + r xL
After simplification, we get the desired result:

% êê Simplify
p x

q + r x

‡ Basic Plotting

Plot[expr, {x, a, b}]  Plot expr when x takes on values from a to b

Mathematica has many plotting commands, but Plot is the basic one. An example:

Plot@Exp@-xD Sin@2 xD, 8x, 0, 2 p<D

1 2 3 4 5 6
-0.1

0.1

0.2

0.3

0.4

0.5

In notebooks, plotting is this easy. You can also change the size of a figure: Click on it and then drag
one of the handles. In plain Unix, things may be not so simple. Ask for more information from a person
who knows your environment.

Congratulations!  Now  you  have  used Mathematica  for  some  simple  calculations  and  you  have  an
impression of how Mathematica  works. We will give you a better overview of Mathematica  in Chapter 2.
However, first, in Section 1.3, we summarize the basic conventions of Mathematica.  Then we explain, in
Section  1.4,  how  you  can  get  information  about  the  commands  of Mathematica.  Section  1.5  considers
writing, correcting, and editing in Mathematica.

1.3  Important Conventions

You  have  observed  that  all  of  the  built-in Mathematica  names  we  have  presented  have  begun  with  a
capital letter and that all arguments have been given in square brackets [ ].  These are two of the most
important conventions in Mathematica. Here are the six most important ones:

12 Mathematica Navigator



• All built-in Mathematica names begin with a capital letter.
• Multiplication must be expressed by a space or an asterisk (*). (For numerical multipliers or

complete expressions, nothing is needed.)
• All arguments are given in square brackets [ ].
• Parentheses ( ) are used only for grouping terms.
• Curly braces { } are used for lists.
• Double square brackets [[ ]] are used to extract elements from lists.

It  takes  some  time  to  get  used  to  these  conventions,  and  at  the  beginning  you  will  often  get  error
messages and wrong results because you have not remembered these rules. Later, you may see that the
conventions have advantages. Let us consider the conventions in more detail.

‡ Names

Mathematica  is case sensitive. If a name is Sin, you cannot write sin or SIN; you must write Sin exactly.
It is recommended that all names you introduce (like a, b, and c previously) begin with a small letter. If
this convention is  followed, then it  is  always clear which names are built-in and which are defined by
the user. Such a distinction makes reading the Mathematica code easier; you need not remember whether
a  name  is  your  own.  Also,  you  cannot  mistakenly  define  a  symbol  with  the  same  name  as  a  built-in
command, thereby avoiding any confusion.

Many built-in names consist of several words run together, such as FindMinimum, and in these cases
each individual word begins with a capital letter. If you define a name consisting of several words, you
can use capital letters in the middle of the name, as in randomWalk; this makes reading the name easier.

Another  convention  is  that  all  built-in  names  and  words  are  written  completely;  abbreviations  are
not used. This can make some names long (e.g., InverseLaplaceTransform or NoncentralChiSquare-

Distribution),  but  the  advantage  is  that  such  complete  names  are  often  easier  to  remember  than
abbreviated names. Some abbreviations exist, however, such as D (derivative), Det (determinant), and Tr

(trace).  Names may be as  long as  you want.  Names cannot  begin with a  number.  User-defined names
are also often written in full without abbreviations [the longest I have seen is in Shaw & Tigg (1994, p.
104): NapoleonicMarchOnMoscowAndBackAgainPlot].

Let us try out an example with the capital first letter. Instead of the correct form Sin[p/2], write

sin@p ê 2D sinB
p

2
F

Note that,  in the command, sin  remained blue, and this means that Mathematica  does not know about
sin. We did not get the expected result 1. We correct the command:

Sin@p ê 2D 1

‡ Multiplication

Multiplication was already considered in Section 1.2.3, p. 10, but let us still try some examples:

a = 3 3

b = 4 4

8a b, a * b, ab<

812, 12, ab<

Recall  that you cannot write ab  if you want a  times b.  If you write ab, Mathematica  understands it as a
variable with the name ab. Some more examples:

Chapter 1  •  Starting 13



85 a, a5, d He + fL, Hd + eL Hf + gL, Sin@xD Cos@yD<

815, a5, d He + fL, Hd + eL Hf + gL, Cos@yD Sin@xD<

Note that with a numeric multiplier, we do not need to write a multiplication indicator such as a space
or an asterisk. We can write 5a; Mathematica automatically adds a space between the terms. However, a5

is interpreted as a name. No space or asterisk is needed with parentheses either:  We can write c(d+e)

and (c+d)(e+f),  and Mathematica  adds  the  space.  A  multiplication  indicator  is  generally  not  needed
between complete expressions. For example, we can write Sin[x]Cos[y], and, again, Mathematica  adds
the space.

If a multiplication occurs at the end of a line, then it is safe to use the asterisk (*). Place the asterisk
either  at  the  end  of  the  first  line  or  at  the  beginning  of  the  next  line.  If  you  do  not  use  the  asterisk,
Mathematica  understands  the  two  rows  as  separate  commands,  if  they  can  be  interpreted  as  complete
commands.

‡ Arguments

In  traditional  mathematical  notation,  parentheses  are  used  for  two  purposes:  for  arguments  and  for
grouping terms. Mathematica  avoids this ambiguity by using different notation for these two purposes:
square  brackets  for  arguments  and parentheses  for  grouping.  For  example,  if  we  write,  instead  of  the
correct form Sin[p/3], what you see below, we get a wrong result:

Sin Hp ê 3L
p Sin

3

Mathematica  interprets  the  expression  according  to  its  standard  rules: Sin  is  a  variable  by  which  we
want to multiply Pi/3. Note that the parentheses are red to remind that the syntax is incorrect. Here is
the correct command:

Sin@p ê 3D
3

2

‡ Grouping

Be  careful  in  entering  expressions.  Parentheses  are  sometimes  easily  forgotten,  and  the  result  will  be
incorrect.  Special  care  is  necessary  with  quotients  and  rational  powers.  Here  are  some  examples  of
quotients:

81 ê 4 Sqrt@xD Log@xD, 1 ê H4 Sqrt@xDL Log@xD, 1 ê H4 Sqrt@xD Log@xDL<

:
1

4
x Log@xD,

Log@xD

4 x

,
1

4 x Log@xD
>

Thus, a/b*c in interpreted as (a/b)*c and not as a/(b*c). Here are some examples of powers:

8E^-1, E^-1 ê 2, E^H-1 ê 2L<

:
1

‰

,
1

2 ‰

,
1

‰

>

Thus, a^b/c  is interpreted as (a^b)/c  and not as a^(b/c).  Remember to write the necessary parenthe-

ses,  and  if  you  are  uncertain  whether  you  should  use  parentheses  or  not,  go  ahead  and  use  them
because unnecessary parentheses are harmless. Note that if you want to square Sin[x], you can simply
write Sin[x]^2. If you want to calculate the value of Sin at x^2, write Sin[x^2].

14 Mathematica Navigator



‡ Lists

Lists are like vectors:  A list  is,  mathematically,  an ordered set  of  elements.  Lists are used to store data
and expressions. Here is an example of a list with three elements:

c = 86, 2 E, Sin@1.2 pD< 86, 2 ‰, -0.587785<

Curly braces are reserved for lists. Another example:

d = 8Cosh@3D, Pi, 2< 8Cosh@3D, p, 2<

Calculations with lists are simple because all operations are automatically done element by element:

d^2 9Cosh@3D2, p
2, 4=

c + d 86 + Cosh@3D, 2 ‰ + p, 1.41221<

Double square brackets are used to extract elements from lists. For example:

c@@2DD 2 ‰

In place of [[…]] we can also use P…T; here, P and T can be written as Â[[Â and Â]]Â.

1.4  Getting Help

1.4.1  Palettes

Some  palettes  can  help  you  when  you  are  entering  input  for Mathematica  in  notebook  environments.
Palettes can be accessed from the Palettes menu. Below we show four palettes: AlgebraicManipulation,
BasicMathInput, BasicTypesetting, and SpecialCharacters.

Chapter 1  •  Starting 15



‡  AlgebraicManipulation

The AlgebraicManipulation  palette contains such commands as Expand, Factor,  and Simplify.  As an
example, type the following:

Hf + gL^6

Then  select  the  whole  expression  with  the  mouse  and  click Expand  in  the  palette.  The  expression  is
expanded.  Then  click Factor  in  the  palette.  The  expression  is  now  factored.  In  this  way,  whatever  is
currently selected in your notebook will  be inserted into the position of the selection placeholder, É,  that
can be seen in the commands of the palette.

‡ BasicMathInput

The BasicMathInput  palette  contains  buttons  to  perform  some  basic  calculations  and  to  input  some
basic symbols. Suppose you want to calculate the derivative of x sinHxL + cosHxL. First click the derivative
button Ñ É, then write x, press Í, write (x Sin[x] + Cos[x]), and execute the resulting command:

x Hx Sin@xD + Cos@xDL x Cos@xD

You  can  also  do  the  following:  Write (x Sin[x] + Cos[x]),  select  the  whole  expression,  click  the
derivative button, press x, and execute.

For  another  example,  suppose  you  want  to  calculate  the  definite  integral  of x sinHxL  + cosHxL  on

H0, 2 pL. First click the integral button ŸÑ
Ñ
É „Ñ, then write 0, press Í, write 2, click p on the palette, press

Í, write (x Sin[x] + Cos[x]), press Í, write x, and execute:

‡
0

2 p

Hx Sin@xD + Cos@xDL „x -2 p

You can also do this the other way: Write first (x Sin[x] + Cos[x]),  select the whole expression, click
the integral button, and fill the limits and the integration variable with the help of Í.

This palette also contains buttons for powers, fractions, roots, sums, products, 2 2 matrices, and part

extraction. Also included are the four basic symbols p  (= 3.14159...), ‰  (= 2.71828...), Â  ( = -1 ),  and ¶

(= infinity).

‡ BasicTypesetting

The BasicTypesetting  palette  contains  many mathematical  characters  and constructs,  useful  especially
in  writing  mathematical  text  with Mathematica. Mathematica  as  a  writing  environment  is  considered  in
Chapter 3.

‡ SpecialCharacters

The SpecialCharacters  palette  contains  all  of  the  characters  that  can  be  entered  into Mathematica.  The
characters are in groups such as Greek letters, script letters, general operators, and arrows. Just put the
cursor in the place in your notebook where you want to add a character, choose a suitable group from
the palette, and click on a character. The selected character can now be seen in an enlarged form. Then
click Insert.

16 Mathematica Navigator



1.4.2  On-line Documentation

‡ Documentation Center

Mathematica 6 used in notebook environments incorporates an excellent help system called the Documen-

tation Center. Go to the Help menu and choose Documentation Center (or press ˜ÎF1Ï in Windows or
the Help key in Macintosh). The home page of the center appears:

In  the  home  page,  the  material  about Mathematica  is  classified  into  seven  topics  such  as  Core
Language and Visualization and Graphics. Inside each topic, we have a list of narrower topics; they are
hyperlinks  to  the  corresponding  documents.  In  these  documents,  we  have  classified  lists  of  suitable
commands  associated  with  the  topic  in  question;  such  documents  are  called guide  documents.  Each
command  is  again  a  hyperlink  to  a  document  in  which  the  command  is  explained  in  detail;  such
documents  are  called reference  documents.  The  guide  and  reference  documents  also  have  hyperlinks  to
documents  explaining  the  use  of  the  commands;  such  documents  are  called tutorial  documents.  Each
document also has an input field for searching a topic.

The Documentation Center can also be used as follows. In your notebook (not in the Documentation
Center), type a command such as Solve,  leave the cursor at the end of the word, and press the F1 key
(in  Macintosh  the  Help  key  can  also  be  pressed)  or  choose Help @ Find  Selected  Function.  The  page
explaining the command appears.

Note  that  you  can  have  multiple  help  windows  open.  Indeed,  every  time  you  choose Help @

Documentation Center a new help window opens.

The  Documentation  Center  includes  the  equivalent  of  50,000  pages  of  material,  with  more  than
100,000  examples  and  more  than  150,000  links.  The  center  contains  345  guide  documents,  655  tutorial
documents, and thousands of reference documents (as of Mathematica 6.0.2).

The examples  in the reference documents contain commands that  have already been executed. You
can also execute them anew and you can add new calculations.  Note that  all  these calculations do not
have  any  effect  in  your  own  notebook.  For  example,  a  package  may  have  been  loaded  in  a  reference
document. If you want to use the same package in your own document, you have to load the package in
your document.

Chapter 1  •  Starting 17



Note that  the packages of Mathematica  also have guide,  tutorial,  and reference documents;  they can
be accessed from the guide documents of the packages. Hyperlinks to these guide documents are given

in Section 4.1.1, p. 94.

‡ Function Navigator and Virtual Book

In  addition  to  Documentation  Center, Mathematica  also  contains  two  useful  views  of  information:
Function  Navigator  and  Virtual  Book  (new  in Mathematica  6.0.2).  Below  we  show  the  Documentation
Center, the Function Navigator, and the Virtual Book, all opened to show functions or topics in dynamic
interactivity.

The  Function  Navigator  and  Virtual  Book  can  be  accessed  from Help @ Function  Navigator  and
Help @ Virtual Book. Actually, we only have one window that shows either the Function Navigator or
the Virtual Book; the choice can be made at the top of the window. The main topics accessible in these
windows are classified similarly as the topics in the Documentation Center.

A guide document shown by Documentation Center gives a short introduction to the topic and lists
of commands with short descriptions for main commands; the page also has links to other guide pages
(e.g., Options & Styling) that contain more complete lists of commands. The commands are links to the
corresponding reference documents.

The Function Navigator centers to give lists of commands classified to several topics; each command
is  a  link  to  the  corresponding  reference  document.  So,  the  Function  Navigator  can  be  used to  quickly
show lists of commands and to show reference documents.

The  Virtual  Book  contains  links  to  tutorial  documents.  The  tutorials  are  comprehensive  enough  to
constitute  a  virtual  book  about Mathematica.  Users  of  previous  versions  of Mathematica  have  read The
Mathematica Book, the complete manual of Mathematica, but in version 6 we no longer have the manual as
a printed book. Instead, all documentation is now on-line. This has the advantages that there is no limit
on the amount of material and the material can be continuously updated.

18 Mathematica Navigator



In addition to the Virtual Book, we mention the following guide and tutorial documents:

• guideêNewIn60AlphabeticalListing • guideêSummaryOfNewFeaturesIn60
• guideêListingOfNamedCharacters • guideêListingOfAllFormats
• tutorialêTraditionalFormReferenceInformation • tutorialêIncompatibleChanges

See  also  the  following  web  documents: Overview of Mathematica, Wolfram Mathematica 6,
Wolfram Mathematica 6 Comparative Analyses, and The Wolfram Technology Guide.

‡ Finding Information

With the Documentation Center, Function Navigator, and Virtual Book, finding suitable information is
efficient and easy. The input field in the Documentation Center can also be used to search information
about  a  given  topic.  The  suitable  document  may  open  directly  or,  if  there  are  several  suitable  docu-

ments, we get a list of links. From this list, we often easily find a suitable document.

If  we  would  like  to  get  directly  to  a  document  in  the  Documentation  Center,  we  have  to  write  its
name.  Generally,  the  names  of  the  documents  begin  with ref,  guide,  or tutorial.  Examples  of  names  of
documents are as follows:

Kernel:
ref/Integrate: detailed information about Integrate

guide/Calculus: lists of commands related to calculus
tutorial/IndefiniteIntegrals: a tutorial of indefinite integration

Packages:
LinearRegression/ref/Regress:  detailed  information  about Regress  from  the LinearRegression

package
LinearRegression/guide/LinearRegressionPackage: lists of commands from the package
LinearRegression/tutorial/LinearRegression: a tutorial of the package

Notebooks:
ref/character/Rule: detailed information about the Ø character
guide/MathematicalTypesetting: lists of commands related to mathematical typesetting
tutorial/TwoDimensionalExpressionInputOverview: a tutorial of entering 2D inputs

Formats:
ref/format/EPS: detailed information about the EPS format
guide/ListingOfAllFormats: a list of all formats
tutorial/ImportingAndExportingData: a tutorial of importing and exporting data

Messages:
ref/message/General/plln: detailed information about the General::plln message
guide/Messages: a list of commands related to messages
tutorial/Messages: a tutorial of messages

Menus:
ref/menuitem/New: explanation of the File @ New menu command
guide/FileMenu: a list of the File menu items

In the way, the documents of the Documentation Center are located at Mathematica 6 @  Documenta-

tion @ English @ System. There, we have folders ReferencePages, Guides, and Tutorials.

Chapter 1  •  Starting 19



‡ Automatic Updates

Mathematica has an automated way to update the information in the Documentation Center. Information
in the center is in the form of so-called paclets.  Often they are documentation notebooks, but they may
also  be  data.  Wolfram  Research  has  a  paclet  server  containing  the  latest  information. Mathematica  in
your computer weekly contacts this server and checks which paclets have updated documentation (the
updates  are  not  loaded  at  this  stage,  however).  In  this  way, Mathematica  maintains  local  indices  of
paclets  in  your  computer.  Now,  when  you  ask  information  about,  for  example, Solve, Mathematica
checks  from  the  indices  whether  new  information  is  available.  If  yes, Mathematica  contacts  the  paclet
server,  loads  the  update,  and  then  shows  this  latest  information  to  you.  If  no,  then  an  update  is  not
needed and Mathematica shows the current information available in your computer.

Mathematica’s  use of  the Internet  can be controlled from Help @ Internet Connectivity….  Note that
some data collection functions may not work without an Internet connection.

‡ Introductions

If  you  are  a  new user  of Mathematica  and  would  like  to  study the  basics  of Mathematica 6,  look  at  the
following documents:

• Help @ Startup Palette: the First Five Minutes with Mathematica button
• Help @ Virtual Book: the Introduction item

If you are an old user of Mathematica  and would like to study the new features in Mathematica  6, look
at the following documents:

• Help @ Startup Palette: the What’s New in 6 link to Wolfram’s website
• Help @ Documentation Center: the New in 6 links in the home page
• Help @ Documentation Center: the guideêSummaryOfNewFeaturesIn60 document
• Help @ Documentation Center: the guideêNewIn60AlphabeticalListing document
• Help @ Function Navigator: the New In 6 item

The Preface also contains information about the new functionality of Mathematica  6  and about obsolete
properties.

‡ Help Browser

The home page of the Documentation Center has a link Installed Add-Ons. By clicking this link we get a
list of add-ons that have been installed into the so-called Help Browser of Mathematica. Prior to version
6, the Help Browser was the main help system. In version 6, the main help system is the Documentation
Center, whereas the Help Browser only contains help material of add-ons of Mathematica.  For example,
the material on the CD-ROM of this book can be installed into the Help Browser, so that the book can be
easily browsed within Mathematica.

1.4.3  Other Help

‡ The Question Mark

With  the  question  mark  (?)  and  asterisk  (*),  we  can  get  lists  of  names  containing  certain  characters.
Suppose you are interested in finding a minimum of a function. Perhaps such a command has Mini  in
its name, and so we ask Mathematica to give a list of all names containing Mini:

20 Mathematica Navigator



? *Mini*

System`

DigitBlockMinimum MinimalPolynomial NMinimize

FindMinimum Minimize

Now we  can  ask  for  information  about  these  commands  by  clicking the  names  of  the  commands.  For
example, if we click Minimize, we get the following short information:

Minimize@ f , 8x, y, …<D minimizes f with respect to x, y, ….

Minimize@8 f , cons<, 8x, y, …<D minimizes f subject to the constraints cons.

Minimize@8 f , cons<, 8x, y, …<, domD minimizes

with variables over the domain dom, typically Reals or Integers.à

By clicking the à  link,  we get  Documentation Center to open,  and the information about Minimize  is
displayed.

Another way to use the question mark is to directly ask information about a particular command:

? Minimize

Minimize@ f , 8x, y, …<D minimizes f with respect to x, y, ….

Minimize@8 f , cons<, 8x, y, …<D minimizes f subject to the constraints cons.

Minimize@8 f , cons<, 8x, y, …<, domD minimizes

with variables over the domain dom, typically Reals or Integers.à

?Abcd*  Give a table of all names beginning with Abcd

?*abcd  Give a table of all names ending with abcd

?*abcd*  Give a table of all names containing abcd somewhere

?Name  Give information about Name

??Name  Give also attributes and options of Name

The double question mark gives the same information as the single question mark and, in addition,
information about attributes and options.

‡ Completing Names and Making Templates

Mathematica  has  quite  long  names  for  some  commands,  but  in  notebook  environments  you  can  let
Mathematica do some of the typing work. Use palettes or the following technique.

Suppose  we  want  to  write  the  command InterpolatingPolynomial.  We  first  write,  for  example,
Interpo,  and  then  press ‚Îk Ï  (or ÌÎ k Ï  on  a  Macintosh);  this  is  the  same  as  choosing Complete
Selection in the Edit menu. We get the following list:

Here are all  the commands beginning with Interpo.  From the list,  we can choose the one we want by
clicking  with  the  mouse  or  by  highlighting  the  appropriate  command  with  the  arrow  keys  and  then
pressing Á. Interpo is then automatically completed according to your choice.

Chapter 1  •  Starting 21



Now  that  we  have  the  complete  name  of  the  command InterpolatingPolynomial,  we  can  press
˜÷‚Îk Ï  (or ˜÷ÌÎk Ï  on  a  Macintosh);  this  is  the  same  as  choosing Make  Template  from  the Edit
menu. We get a template for the command:

InterpolatingPolynomial@8 f1, f2, …<, xD

This is useful if we do not remember the syntax of a command. Now we can replace 8 f1, f2, …< with

our data and x with our variable and then execute the command.

If the name of the command is uniquely determined by the first letters we have written, then ‚Îk Ï

will  complete  the  name  directly,  and ˜÷‚Îk Ï  will  complete  the  name and  make  a  template  for  the
command. Try typing InterpolatingP and then pressing ‚Îk Ï or ˜÷‚Îk Ï.

‡ Syntax Coloring

In  writing  commands, Mathematica  uses  colors  to  indicate  various  aspects  of  syntax.  To  see  the  colors
explained, open Preferences  from a menu (in a Macintosh, this menu command is in the Mathematica
menu)  and  go  to Appearance @ Syntax  Coloring.  For  example,  variables  for  which  we  have  not  given  a
value  are  blue,  syntax  errors  purple,  emphasized syntax errors  red  on a  yellow background,  unrecog-

nized  options  red,  and  arguments  of  functions  green.  Missing  arguments  are  represented  by  a  red Ô
symbol. The colors help in getting the commands into a correct form. From Help @ Why the Coloring…
we can see real-time explanations of the colors as we write an input.

‡ Balancing Paired Characters

When writing commands and programs with Mathematica, you may use many parentheses ( ), brackets
[ ],  and  curly  braces { }.  It  may  be  difficult  to  see  whether  they  are  correctly  balanced. Mathematica
helps with this as follows: Unbalanced characters are shown in purple, and each time you write ), ], or
}, Mathematica highlights the corresponding (, [, or { for a short time.

You can also use Check Balance from the Edit menu or press ˜÷‚Îb Ï (or ˜÷ÌÎb Ï on a Macintosh).
Place the cursor somewhere in the command and then press the previously mentioned key combination.
The smallest balanced part containing the cursor will be highlighted; if a correctly balanced part cannot
be found, nothing happens.

In the Edit menu, we also have the Extend Selection command (‚÷Î . Ï). Put the cursor somewhere in
a command. By repeatedly pressing ‚÷Î . Ï, larger and larger subexpressions are selected. Triple-click on
a function to select the function and its arguments.

‡ Help from Wolfram Research

Help can also be found at the website http://support.wolfram.com of Wolfram Research. To display the
version of Mathematica  you are using (and thus find the appropriate information), execute the command
$Version. Execute SystemInformation[] to get a detailed summary of your Mathematica installation.

1.5  Editing

‡ Correcting

In notebooks, you can use all the usual editing methods familiar from word processors. Look at the Edit
menu for editing commands.

Note especially  that you can edit  all  old  inputs  and execute  them anew.  To recalculate  an input,  simply
place the cursor anywhere in the command and then execute the command.

22 Mathematica Navigator



In particular,  if  an input  resulted in errors,  you do not  need to retype the input;  simply correct  the
old input by means of standard editing and then execute the input again. Note also that the input and
output  numbers  are  assigned in  the  order  of  execution  and not  according to  the  physical  order  of  the
commands in the notebook.

‡ Using Cells

You have probably noted the brackets at the right side of the Mathematica  window. They indicate cells.
An input is in a cell, the result is in another cell, and these two cells together form a higher-level cell.

A  new  input  cell  is  automatically  created  when  you  start  typing  after  a  command  is  executed.  A
notebook is a structured document that is organized into a sequence of cells.

You can insert new cells between old cells.  Simply place the cursor between two cells so that the cursor
becomes  horizontal,  and  then  click  with  the  mouse  and  start  typing.  In  this  way,  you  can  insert  new
calculations among old ones.

The cells are handy for moving a part of a notebook to another place: Just click on the cell bracket so
that it becomes black, and then cut or copy the cell and paste it to a new location. You can select several
cells  by  dragging  with  the  mouse  over  the  cell  brackets.  You can copy material  from one notebook to
another notebook with the usual copy-and-paste techniques. Copying is easy to do by selecting cells.

If you want to re-execute several cells, select the cell brackets and then execute them in the standard
way.

Double-clicking a cell bracket closes the cells inside it so that only the first cell is visible. In this way,
you get a short outline of your notebook. Double-clicking the cell bracket of a closed cell opens the cell
again.  Double-clicking an input cell  hides the output cell,  and double-clicking an output cell  hides the
input cell.

‡ Each Command into Its Own Cell

Mathematica is an interactive calculator that is designed such that we can easily proceed step by step: We
execute one command and then proceed to the next command. A common bad habit is to write several
commands  in  one  cell  and  then  execute  all  the  commands  at  the  same  time.  When  this  happens,  the
connection between inputs and the corresponding outputs becomes obscured. For example,

f = x Sin@xD
Integrate@f, xD
D@f, xD
x Sin@xD
-x Cos@xD + Sin@xD
x Cos@xD + Sin@xD

Here we put three commands into one cell. The outputs are shown one after another. This is not clear. In
addition, if one of the commands contains an error, we have to execute all the commands anew instead
of only re-executing the corrected command.

So, write each command in its own cell:

f = x Sin@xD

x Sin@xD
Integrate@f, xD

-x Cos@xD + Sin@xD
D@f, xD

x Cos@xD + Sin@xD

Chapter 1  •  Starting 23



As  previously  stated,  a  new  input  cell  is  automatically  created  when  you  start  typing  after  a  com-

mand is executed. If you want to write several commands before you execute any of them, create a new
cell  for  each command as  follows:  Write  a  command,  press  the down arrow key ( ),  and start  writing
the next command. (Instead of the arrow key, you can also place the cursor below the last command so
that the cursor becomes horizontal, click with the mouse, and start typing the next command.)

Note that if a calculation takes some time, you need not be idle. You can write (but not execute) new
commands so that they are ready when the present command has been executed. You can also edit the
notebook in any way you like while you await the execution of a command.

‡ Editing Inputs

Sometimes  you  want  to  slightly  modify  an  old  input  and  then  execute  it  again.  You  have  several
options. First, you can directly edit the old input and then re-execute it, as previously explained.

Second, you can select an old input or a part of it with the mouse, copy the selection, paste it to a new
location,  edit,  and execute.  A whole input can be selected by clicking the cell  bracket,  and the cell  can
then be copied and pasted.

Third, if the input you want to modify is the last input, you can get a copy of it by pressing ‚Î l Ï (or
ÌÎl Ï on a Macintosh); this is the same as choosing Input from Above in the Insert menu.

Mathematica  divides  long  inputs  automatically  into  several  lines.  However,  you  can  also  press  the
Return key (Á) here and there to make long code easier to read.

You can also execute a part of an input. Select with the mouse the part you want to execute, and then
press ‡÷Á or Ì÷Á (this corresponds to Evaluation @ Evaluate in Place). Only the selected part is then
executed.

‡ Editing Outputs

You also have access to the results Mathematica writes. For example, you can copy a result or a part of it,
paste the copy to a new cell, edit the new command, and then execute it.

If  you  want  to  edit  the  result  of  the  last  command,  you  can  get  a  copy  of  the  result  by  pressing
˜÷‚Î l Ï  (or ˜÷ÌÎ l Ï  on  a  Macintosh);  this  is  the  same as  choosing Output  from Above  in  the Insert
menu.

‡ Opening a Saved Notebook

Note that if you open a saved notebook and continue calculations, you cannot directly use any results in the saved
document.  You  have  to  recalculate  all  the  commands  with  the  results  you  need  in  your  new  session.
Suppose,  for  example,  that  the  saved  notebook  contains  the  result  of int = Integrate[Sqrt[x]

Sin[x], x]. When you open the notebook, int has no value. If you need the value of int in your new
session, you have to execute anew the integrating command.

‡ Writing a Document with Mathematica

You can write a whole document with Mathematica  by calculating, plotting, and adding text comments
to the results. To modify the look of the document, you can use styles  and style sheets. These are consid-

ered in detail in Chapter 3.

After you have written your document with Mathematica, check spelling by placing the cursor at the
beginning of the document and then choosing Edit @ Check Spelling…. English is built into Mathemat-
ica, but you can buy dictionaries of other languages from Wolfram Research.

24 Mathematica Navigator



2
Sightseeing

Introduction 25

2.1  Graphics 26

2.1.1  Graphics for Functions 26 Plot, Show, GraphicsRow, Plot3D, ContourPlot, ListPlot, etc.

2.1.2  Graphics for Data 29 ListPlot, ListLinePlot

2.1.3  Manipulations 30 Manipulate

2.2  Expressions 31

2.2.1  Numbers and Expressions 31 N, RandomReal, /., Simplify, FullSimplify, Factor, Expand, etc.

2.2.2  Lists and Tables 34 MatrixForm, TableForm, Grid, Row, Total, Tally, Range, Table, Map, etc.

2.2.3  Functions and Programs 39 Module

2.3  Mathematics 40

2.3.1  Differential and Integral Calculus 40 D, Series, Limit, Integrate, NIntegrate, Sum

2.3.2  Matrices 42 Transpose, Det, Inverse, Eigenvalues

2.3.3  Equations 43 Solve, NSolve, FindRoot

2.3.4  Optimization 45 Minimize, NMinimize, FindMinimum, etc.

2.3.5  Interpolation and Approximation 46 Interpolation, Fit

2.3.6  Differential Equations 48 DSolve, NDSolve

Introduction

The relationship between pure and applied mathematics is based on trust and understanding:
 The pure mathematicians don’t trust the applied mathematicians,

 and the applied mathematicians don’t understand the pure mathematicians.

Welcome  all  mathematicians,  pure  and  applied,  and  everyone  else,  too,  to  a  quick  sightseeing  tour
through  the  vast  and wonderful Mathematica  factory,  which  produces  graphics,  eigenvalues,  integrals,
and  so  much  more.  We  will  visit  the  three  main  divisions  of  the  factory:  Graphics,  Expressions,  and
Mathematics.  In  each  division,  we  will  show  you  only  the  most  important  or  most  basic  machines  (a
total of approximately 60, leaving more than 3000 that are not shown). We will introduce each machine
only briefly,  but we encourage you to spend more time investigating and experimenting (at your own
risk, of course; use a helmet, because every erroneous input is thrown out of the machine).

Later,  we  will  explain  all  this  and  much  more  in  detail,  but  the  knowledge  you  get  during  this
sightseeing  tour  may  suffice  for  awhile.  In  fact,  this  short  tour  gives  you  snapshots  of  Chapters  5
through 28. Please note that what you will see in this chapter is not anything spectacular but only some
very basic facts. Later, we will show you some much more impressive results.



2.1  Graphics

2.1.1  Graphics for Functions

‡ Graphics for 2D Functions

Plot[f, {x, a, b}]  Plot f when x takes on values from a to b

Plot[{f1, f2}, {x, a, b}]  Plot f1 and f2 in the same figure

Show[p1, p2]  Show figures p1 and p2 superimposed

We plot two functions in the same figure (recall that p can be written as Pi or as ÂpÂ):

Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Note that the curves automatically have different colors. We can also first plot the two figures separately:

p1 = Plot@Sin@xD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

p2 = Plot@Cos@xD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Then we can combine them (now the curves have the same color):

Show@p1, p2D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

We could also do as follows:

26 Mathematica Navigator



Show@Plot@Sin@xD, 8x, 0, 2 p<D, Plot@Cos@xD, 8x, 0, 2 p<DD

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

‡ Arranging Graphics

{p1, p2} (Ÿ6)  Show figures p1 and p2 side by side in a list form
Row[{p1, p2}] (Ÿ6)  Show figures side by side in two graphics
GraphicsRow[{p1, p2}] (Ÿ6)  Show figures side by side in one graphic
GraphicsGrid[{{p1, p2}, {p3, p4}}] (Ÿ6)  Show figures as an array

The figures can be placed side by side:

8p1, p2<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

Here, note the list  structure {…, …}  of  the output. In the following way we get the two figures side by
side without the list structure:

Row@8p1, p2<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

This output still contains two separate plots. If we like to get one figure containing the two plots, we can
write as follows:

GraphicsRow@8p1, p2<, ImageSize Ø 260D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Here we used the ImageSize  option to enlarge the figure (the arrow Ø  can be  written by pressing the
hyphen and greater-than keys in turn; Mathematica will then replace them with a genuine arrow).

Chapter 2  •  Sightseeing 27



‡ Showing the Whole Function

We can enter the expression to be plotted directly in the plotting command, as we have done thus far,
but we can also first give a name to the expression:

f = x^2 Exp@-xD Sin@xD;

To save space, in this book we often suppress the display of outputs by ending the command with the
semicolon. Then, plot the function:

Plot@f, 8x, 0, 14<D

2 4 6 8 10 12 14

-0.2

-0.1

0.1

0.2

In this example, we do not see the whole function in the given interval. Indeed, sometimes Mathemat-
ica  cuts  a  part  of  the  figure  out  in  order  to  give  you  a  closer  look  at  the  more  interesting  parts  of  the
curve.  You  can  control  the  range  of y  values  by  using  the PlotRange  option.  If  you  want  to  see  the
whole function, give the option PlotRange Ø All:

Plot@f, 8x, 0, 14<, PlotRange Ø AllD

2 4 6 8 10 12 14

-0.2

0.2

0.4

‡ Suppressing the Display

With the semicolon, we can also suppress the display of graphics;

p1 = Plot@Sin@xD, 8x, 0, 2 p<D;
p2 = Plot@Cos@xD, 8x, 0, 2 p<D;

The plots were prepared, but they were not shown. The plots can then be superimposed or shown side
by side:

Show@p1, p2D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

GraphicsRow@8p1, p2<, ImageSize Ø 230D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

28 Mathematica Navigator



‡  Graphics for 3D Functions

Plot3D[f, {x, a, b}, {y, c, d}]  Plot f as a surface
ContourPlot[f, {x, a, b}, {y, c, d}]  Plot f as contours
DensityPlot[f, {x, a, b}, {y, c, d}]  Plot f as a density plot

We plot a function of two variables as a surface, contour, and density plot:

f = Sin@x^2D Cos@Sqrt@yDD;

8Plot3D@f, 8x, 0, 3<, 8y, 0, 4<D,
ContourPlot@f, 8x, 0, 3<, 8y, 0, 4<D,
DensityPlot@f, 8x, 0, 3<, 8y, 0, 4<D<

: , , >

On the contours in a contour plot, the function takes on a constant value; dark areas are lower than light
areas. By moving the mouse pointer over the contour plot (without pressing the mouse button), we can
see the values of the contours. In the density plot, dark areas are also lower than light areas.

2.1.2  Graphics for Data

ListPlot[data]  Plot data as points
ListPlot[data, Filling Ø Axis] (Ÿ6)  Plot data as points and vertical lines

ListLinePlot[data] (Ÿ6)  Plot data as joining lines
ListLinePlot[data, Mesh Ø All] (Ÿ6)  Plot data as joining lines and points

The data are given in either of the following forms:

8y1, y2, ..., yn<

88x1, y1<, 8x2, y2<, ..., 8xn, yn<<

In the former case, the x values are automatically 1, 2, 3, …; in the latter case, we give explicit x values.
Here are some data and three plots:

data = 880, 5<, 81, 7<, 82, 8<, 83, 7<, 84, 9<, 85, 8<,
86, 6<, 87, 5<, 88, 5<, 89, 4<, 810, 5<, 811, 3<, 812, 0<, 813, 1<<;

Chapter 2  •  Sightseeing 29



GraphicsGrid@88ListPlot@dataD, ListPlot@data, Filling Ø AxisD<,
8ListLinePlot@dataD, ListLinePlot@data, Mesh Ø AllD<<, ImageSize Ø 300D

2.1.3  Manipulations

To create an interface enabling the interactive choice of the value of the parameter u with a slider and
showing the corresponding value of expr:

Manipulate[expr, {u, umin, umax}] (Ÿ6) u can have any value between umin and umax

Manipulate[expr, {u, umin, umax, du}] u can have any value between umin and umax in steps of du

With a  manipulation we can investigate  how an expression changes when one or  more parameters
change. The main use of manipulations is to study plots, but other expressions can also be manipulated.
Here are two examples. In the first manipulation, parameters a and b take on values from 0 to 2:

Manipulate@Plot@Sin@a xD Cos@b xD, 8x, 0, 2 p<,
PlotRange Ø 8-1.05, 1.05<, ImageSize Ø 200D, 8a, 0, 2<, 8b, 0, 2<D

The sliders can be moved with the mouse so that we can see in real time how the plot changes. In the
second  manipulation,  the  parameter n  takes  on  values  from  0  to  6  in  steps  of  1~that  is,  the  discrete
values 0, 1, 2, …, 6:

30 Mathematica Navigator



Manipulate@
Plot@Sinc@n xD, 8x, 0, 2 p<, PlotRange Ø 8-0.25, 1.05<, ImageSize Ø 200D, 8n, 0, 6, 1<D

2.2  Expressions

2.2.1  Numbers and Expressions

‡ Numbers

N[expr]  or expr//N  Calculate a decimal value of expr
N[expr, n]  Calculate a decimal value of expr to n-digit precision

Here is a decimal value for p:

p êê N 3.14159

Now we ask for a decimal value to 30-digit precision:

N@p, 30D 3.14159265358979323846264338328

RandomReal[{a, b}, n] (Ÿ6) n random numbers from the interval (a, b)
RandomInteger[{k, l}, n] (Ÿ6) n random numbers from the integers from k to l

SeedRandom[n]  Reseed the random number generator with the integer n

Random  numbers  can  be  used  in  simulating  various  phenomena.  Here  are  some  uniform  random
numbers:

RandomReal@80, 1<, 7D

80.335378, 0.0610635, 0.892345, 0.0844273, 0.748569, 0.451667, 0.704084<
Then we simulate die tossing:

SeedRandom@1D; RandomInteger@81, 6<, 24D

85, 3, 5, 1, 2, 1, 1, 3, 1, 1, 4, 6, 3, 1, 4, 5, 5, 2, 4, 4, 5, 2, 5, 3<
Bad luck as usual: only one 6, although four were expected.

Chapter 2  •  Sightseeing 31



‡ Calculating the Value of an Expression

x = a  Give x the value a
expr Show the value of expr when x has the value a

If you want to calculate the value of an expression for a certain value of a variable, one possibility is
to explicitly give the value for the variable and then ask the value of the expression:

expr = Sin@xD Cos@xD;

x = p ê 6;

expr
3

4

This method has the drawback that from now on x has the value p ê 6 in all expressions, and this may
give unintended results.  For example, if  you now try to calculate the derivative of the expression, you
get an error message:

D@expr, xD

General::ivar :
p

6
is not a valid variable. à

p

6

3

4

Mathematica  could not calculate the derivative with respect to a constant p ê 6. So, if you give values for
variables, remember to remove the values when you no longer need them:

x =.

expr /. x Ø a  Replace x by a in expr

The  arrow  can  be  written  as ->  (Mathematica  automatically  replaces  these  characters  by  a  genuine
arrow Ø).  This  is  the  recommended  method  to  calculate  the  value  of  an  expression  for  a  value  of  a
variable. For example:

expr ê. x Ø p ê 6
3

4

This  is  a  very  important  technique.  Here, x Ø p/6  is  a  transformation  rule.  It  can  be  applied  to  any
expression by preceding the transformation rule with /. . Note that now x has no value:

x x

Another example:

ArcSin@xD ê. x Ø 1
p

2

‡ Manipulating Expressions

Simplify[expr]  Simplify expr

FullSimplify[expr]  Simplify expr thoroughly
Factor[expr]  Factor expr
Expand[expr]  Expand expr

Apart[expr]  Give the partial fraction expansion of expr

32 Mathematica Navigator



Note that these commands can also be used in the following way: expr // Simplify. For example,

a = H1 + xL^2 + H1 + xL H2 + xL H1 + xL2
+H1 + xL H2 + xL

a êê Simplify 3 +5 x +2 x2

a êê Factor H1 + xL H3 + 2 xL
a êê Expand 3 +5 x +2 x2

FullSimplify  is  often  good  for  simplifying  special  functions.  In  the  following  example, Simplify
does not work, but FullSimplify does:

n! ê Hn - 1L! êê Simplify
n!

H-1 + nL!
n! ê Hn - 1L! êê FullSimplify n

We calculate a partial fraction expansion:

H1 + x + x^2 - x^3L ê Hx + 2L^2 êê Apart

5 - x +
11

H2 + xL2
-

15

2 + x

‡ Function Application

f[expr]  Standard function application
expr // f  Postfix function application
f @ expr  Prefix function application

Thus  far,  we  have  seen  that  we  can  write N[expr]  or Simplify[expr]  but  we  can  also  write
expr // N and expr // Simplify. The use of the square brackets is the standard way to apply functions.
The  use  of //  is  called  a  postfix  function  application.  We  also  have  a  prefix  function  application:
N @ expr, Simplify @ expr. In the following example, we use all three function applications:

8N@pD, p êê N, Nüp<

83.14159, 3.14159, 3.14159<
The  standard  notation  also  applies  for  functions  with  several  arguments: f[x, y].  The  postfix  and

prefix notations can only be used for functions with one argument.

‡ Some Display Techniques

Sometimes  we  need  not  see  the  result  of  a  computation.  For  example,  we  already know the  result  for
certain, the result is so large an expression that it is useless to see it, or it takes too much time to have it
displayed on the screen. We can prohibit displaying the result by ending the command with a semico-
lon (;).

expr; Calculate the value of expr but do not display the result

We do not want to see 100! (a number with 158 digits):

a = 100!;

a ê 99! 100

We can execute several commands at the same time using the semicolon:

Chapter 2  •  Sightseeing 33



expr1; expr2; expr3  Calculate the expressions; display the last result
expr1; expr2; expr3;  Calculate the expressions; do not display anything

We calculate other factorials and display only the final result:

b = 97!; c = 3!; a ê Hb cL 161 700

If you want to display the values of all expressions, you can place the expressions in a list with curly
braces:

{expr1, expr2, expr3}  Calculate the expressions; display all values

8Sin@p ê 4D, Sin@p ê 5D, Sin@p ê 6D, Sin@p ê 7D<

: 1

2

,
5

8
-

5

8
,

1

2
, SinBp

7
F>

% êê N 80.707107, 0.587785, 0.5, 0.433884<
For long expressions, it often suffices to see only some parts. This can be done with Short:

Short[expr]  Give expr in a shortened form
Short[expr, c] Give expr in a shortened form having length c

We generate 50 uniform random numbers but show only a few of them:

t = RandomReal@80, 1<, 50D;

Short@tD

80.214152, á48à, 0.130847<
Short@t, 4D

80.214152, 0.613783, 0.767945, á44à, 0.011151, 0.44259, 0.130847<
In the first case 48 values and in the latter case 44 values are not shown. (To find an appropriate length,
such as 4, for the expression may take some experimenting.)

Before we continue, we clear the values of a, b, c,  and t.  We could write a=.; b=.; c=.; t=.,  but a
more convenient way is the following:

Clear@a, b, c, tD

2.2.2  Lists and Tables

‡ Lists

{a, b, c}  A 1D list
list[[i]] ith part of list
Length[list]  Number of elements in list

Sort[list]  Sort the elements of list into canonical order

{{a, b, c, d}, {e, f, g, h}}  A 2D list
list[[i, j]]  (i, j)th part of list

In place of [[…]] we can also use P…T; here, P and T can be written as Â[[Â and Â]]Â.

34 Mathematica Navigator



Lists are very basic objects in Mathematica;  you will use them all the time. Vectors and matrices are in
fact lists, and in many other computations you need lists. Lists can have as many elements as you want
them to have (an empty list is {}). Lists with lists as elements are 2D, 3D, and higher-dimensional lists.
We define two lists:

a = 8x, y, z, v<;

b = 883, 2, 5, 4<, 84, 1, 6, 2<, 83, 1, 1, 6<<;

Picking a part of a list is easy:

a@@3DD z

b@@2DD 84, 1, 6, 2<
b@@2, 3DD 6

Here are the lengths of the lists:

Length@aD 4

Length@bD 3

We try Sort:

Sort@8r, 4, P, 2, q, p, 3<D

82, 3, 4, p, P, q, r<
Note that calculations with lists are automatically done element by element:

2 83, 2, 5, 4< 86, 4, 10, 8<
83, 2, 5, 4<^2 89, 4, 25, 16<
83, 2, 5, 4< + 84, 1, 6, 2< 87, 3, 11, 6<

‡ Tables

MatrixForm[m]  Display matrix m in a 2D matrix form
TableForm[m]  Display m in a 2D tabular form
Grid[m] (Ÿ6)  Display m in a 2D tabular form
Row[v] (Ÿ6)  Form a row from a list v

Matrices can be displayed handily with MatrixForm:

b êê MatrixForm

3 2 5 4

4 1 6 2

3 1 1 6

TableForm prints a table:

b êê TableForm

3 2 5 4

4 1 6 2

3 1 1 6

Grid also prints a table:

Chapter 2  •  Sightseeing 35



b êê Grid

3 2 5 4

4 1 6 2

3 1 1 6

As we will  see in Chapter 15,  with Grid  we can form advanced tables.  With Row  we can put elements
side by side:

Row@8"1000th prime is ", Prime@1000D<D

1000th prime is 7919

‡ Statistics

Total[list]  The sum of the elements of list
Accumulate[list] (Ÿ6)  The cumulative sums of the elements of list
Tally[list] (Ÿ6)  The frequencies of the elements of list
Mean[list], Variance[list], StandardDeviation[list]

We simulate the tossing of a die 20 times:

c = RandomInteger@81, 6<, 20D

84, 4, 3, 3, 2, 4, 6, 4, 1, 5, 3, 1, 6, 5, 2, 4, 1, 2, 3, 1<
Calculate the sum, mean, (unbiased) variance, and standard deviation:

8Total@cD, Mean@cD, Variance@cD, StandardDeviation@cD< êê N

864., 3.2, 2.58947, 1.60918<
The cumulative sums are as follows:

Accumulate@cD

84, 8, 11, 14, 16, 20, 26, 30, 31, 36, 39, 40, 46, 51, 53, 57, 58, 60, 63, 64<
Here are the frequencies:

Tally@cD êê Sort

881, 4<, 82, 3<, 83, 4<, 84, 5<, 85, 2<, 86, 2<<

‡ Forming Lists

Range[m]  Form the list {1, 2, …, m}
Range[m, n]  Form the list {m, m + 1, …, n}
Range[m, n, d]  Form the list {m, m + d, m + 2 d, …, n}

With Range, we can easily form equally spaced numbers:

Range@6D 81, 2, 3, 4, 5, 6<
Range@0, 6D 80, 1, 2, 3, 4, 5, 6<
Range@0, 7, 2D 80, 2, 4, 6<

Table[expr, {i, a, b}]  Form a list of values of expr when i takes on values from a to b (in steps
of 1)

Table[expr, {i, a, b}, {j, c, d}]  Index i takes on values from a to b and, for each i, j takes on
values from c to d

36 Mathematica Navigator



Table is one of the most useful commands in Mathematica. It forms a list from a general rule. Iteration
specification of the form {i, a, b} is most common, but other forms can also be used:

{n}  Form a list from n values of expr
{i, b}  Index i has values from 1 to b (in steps of 1)
{i, a, b}  Index i has values from a to b (in steps of 1)
{i, a, b, d}  Index i has values from a to b in steps of d

As can be seen, if the starting value of i  is 1, it can be left out (but it can also be written), and if the
step size is 1, it, too, can be left out. For example,

Table@0, 810<D

80, 0, 0, 0, 0, 0, 0, 0, 0, 0<
Table@n!, 8n, 10<D

81, 2, 6, 24, 120, 720, 5040, 40 320, 362 880, 3 628 800<
Table@Sin@n p ê 6D, 8n, 0, 6<D

:0,
1

2
,

3

2
, 1,

3

2
,

1

2
, 0>

Table@Exp@xD, 8x, 0., 3., 0.5<D

81., 1.64872, 2.71828, 4.48169, 7.38906, 12.1825, 20.0855<
Table@1 ê Hi + j - 1L, 8i, 4<, 8j, 4<D

::1,
1

2
,

1

3
,

1

4
>, :1

2
,

1

3
,

1

4
,

1

5
>, :1

3
,

1

4
,

1

5
,

1

6
>, :1

4
,

1

5
,

1

6
,

1

7
>>

Often  it  is  useful  to  make  pairs  of  the  value  of  the  index  and  the  corresponding  value  of  the
expression:

Table@8x, Exp@xD<, 8x, 0., 3.<D

880., 1.<, 81., 2.71828<, 82., 7.38906<, 83., 20.0855<<
In the following example, we study the recursion formula xi-1 = 3.7 xiI1 - xiM, i  = 0, 1,  2,  …. We start

from x0 = 0.5 and do 200 iterations:

x = 0.5; t = Table@x = 3.7 x H1 - xL, 8200<D;

ListPlot@t, AspectRatio Ø 0.4, PlotRange Ø 8-0.05, 1.05<, ImageSize Ø 300D

50 100 150 200

0.2

0.4

0.6

0.8

1.0

Clear@a, b, c, f, x, tD

Chapter 2  •  Sightseeing 37



‡ Advanced List Manipulation

Sometimes  we  want  to  tabulate  an  expression  for  such  irregular  values  of  a  variable  that  cannot  be
formed by an iteration specification; instead, we have the values of the variable as a list. Table can also
be used in such cases, although Map is an alternative. Map can also be replaced with /@:

Table[f[x], {x, {a, b, c}}] (Ÿ6)  Calculate {f[a], f[b], f[c]}

Map[f[#]&, {a, b, c}]  Calculate {f[a], f[b], f[c]}

f[#] & /@ {a, b, c}  Calculate {f[a], f[b], f[c]}

Examples:

Table@f@xD, 8x, 8a, b, c<<D 8f@aD, f@bD, f@cD<
Map@f@ÒD &, 8a, b, c<D 8f@aD, f@bD, f@cD<
f@ÒD & êü 8a, b, c< 8f@aD, f@bD, f@cD<

Other examples:

Table@x^2, 8x, 8a, b, c<<D 9a2, b2, c2=
Map@Ò^2 &, 8a, b, c<D 9a2, b2, c2=
Ò^2 & êü 8a, b, c< 9a2, b2, c2=

Note that the following is the easiest way to form the squares of the elements of a list:

8a, b, c<^2 9a2, b2, c2=
Map  or /@  is  one  of  the  most  useful  commands  for  manipulating  lists.  In  this  book,  we  use Map

extensively. With Map we can map each element of a given list with a given function. The effect of Map is
that  each  element  of  the  list  is  substituted  in  turn  for #,  and  a  list  is  formed  from  the  results.  The
function  is  given  in  a  special  form having the  name pure  function.  In  such  a  function,  the  argument  is
expressed as #, and at the end of the function we have &.

Next, we tabulate values of the sin function:

Sin@Ò p ê 6D & êü 81, 2, 4, 6<

:1

2
,

3

2
,

3

2
, 0>

The result is the value of sinHn p ê 6L for n = 1, 2, 4, 6. Recall the b we defined previously:

b = 883, 2, 5, 4<, 84, 1, 6, 2<, 83, 1, 1, 6<<;

Now we find the maximum element of each list of b:

Max@ÒD & êü b 85, 6, 6<
If the function to be mapped is a single built-in command with one argument (e.g., Max), it suffices to

write  the  name  of  the  function  (i.e.,  we  need  not  write #  and &).  Therefore,  we  can  simply  write  the
following:

Max êü b 85, 6, 6<
b =.

38 Mathematica Navigator



2.2.3  Functions and Programs

‡ Functions

f[x_] := expr Define a function

When defining a function, it is important to remember the underscore (_) after each argument (x_ is
actually  a pattern).  The  underscore  makes  the  function capable  of  calculating the value of  the function
for any value of the argument. The colon (:) before the equals sign results in the value of expr not being
calculated in the definition; the value is calculated only when using the function.

In everyday use of Mathematica, we rarely need to define functions for expressions to be, for example,
differentiated, integrated, or plotted. Mostly we can use the expressions as such or we can give a name
to the expression and then use that name.

For  example,  consider  integration.  First,  we  directly  enter  the  expression  to  be  integrated  into  the
command:

Integrate@x ê Ha + xL, xD x -a Log@a + xD
Then we give a name for the expression and use that name:

f = x ê Ha + xL;

Integrate@f, xD x -a Log@a + xD
We can also define a function and then use it:

g@x_D := x ê Ha + xL

Integrate@g@xD, xD x -a Log@a + xD
However, this is unnecessarily complicated. The first two methods are the most useful. Giving a name is
especially handy if we do several calculations with the same expression.

Function  definitions  are  mostly  used  to  form  more  complicated  functions  and  programs.  For
example, here is a function for calculating the characteristic polynomial of a matrix:

charPoly@m_, x_D := Det@m - x IdentityMatrix@Length@mDDD

The following is an example of using the function:

charPoly@882, 5<, 83, 1<<, xD -13 -3 x +x2

‡ Programs

f[x_] := Module[{local variables}, body] Define a function as a module

More complicated programs are often written as modules. In a module, we can define local variables
that are only used within the module and that have no values outside the module.

As an example,  we  develop a  program to  simulate  random walk,  in  which the  object  starts  at  zero
and moves one step up or down, each with a probability of 0.5. In the following way, we can generate
the steps:

SeedRandom@2D;
RandomInteger@80, 1<, 20D
81, 0, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1, 0, 1, 1<

Chapter 2  •  Sightseeing 39



2 % - 1

81, -1, 1, 1, 1, -1, -1, -1, 1, 1, 1, -1, -1, 1, -1, -1, 1, -1, 1, 1<
Here,  we first  generated 20  random 0’s and 1’s.  Each element of  this list  is  multiplied with 2,  and 1 is
then subtracted from each element. The result is a list of random 1’s and -1’s. The random walk is the
cumulative sum of the steps. Cumulative sums can easily be calculated with Accumulate:

Accumulate@%D

81, 0, 1, 2, 3, 2, 1, 0, 1, 2, 3, 2, 1, 2, 1, 0, 1, 0, 1, 2<
Thus, a program for a random walk with n steps could be written as follows:

randomWalk@n_D := Module@8steps, walk<,
steps = 2 RandomInteger@80, 1<, nD - 1;
walk = Accumulate@stepsD;
ListLinePlot@walk, ImageSize Ø 200DD

The variables steps and walk in the program are local and thus they have no value outside the module.
We simulate 200 steps of the random walk:

SeedRandom@2D;
randomWalk@200D

50 100 150 200

5

10

15

Commands in a program can often be nested, as in the following:

randomWalk2@n_D :=
ListLinePlot@Accumulate@2 RandomInteger@80, 1<, nD - 1DD

In this way, the code of the program becomes shorter, but the readability of the code may also become
weaker.

2.3  Mathematics

2.3.1  Differential and Integral Calculus

‡ Differential Calculus

D[f, x]  Derivative of f with respect to x

D[f, x, x]  Second-order derivative of f with respect to x

D[f, x, y]  Mixed second-order derivative of f with respect to x and y

Series[f, {x, a, n}] nth-order Taylor series of f with respect to x at a
Limit[f, x Ø a]  Limit of f as x approaches a

Here are some examples:

a = x Sin@yD;

40 Mathematica Navigator



8D@a, xD, D@a, yD, D@a, x, xD, D@a, x, yD, D@a, y, yD<

8Sin@yD, x Cos@yD, 0, Cos@yD, -x Sin@yD<
Series@Sin@Sqrt@xDD, 8x, 0, 4<D

x -
x3ë2

6
+

x5ë2

120
-

x7ë2

5040
+ O@xD9ë2

Limit@H1 + c ê xL^x, x Ø ¶D ‰
c

(Recall that ¶ can be written as Infinity or as ÂinfÂ.)

‡ Integral Calculus

Integrate[f, x]  Indefinite integral of f with respect to x

Integrate[f, {x, a, b}]  Definite integral of f when x varies from a to b

NIntegrate[f, {x, a, b}]  Calculate the definite integral by numerical methods
Sum[f, {i, a, b}] Sum of the values of f when i varies from a to b

Prepare to see special functions when you integrate functions that are not easy:

a = Integrate@Sin@Exp@xDD, xD SinIntegralA‰xE
This is one of the many special functions in Mathematica.  Do not worry! You can do the same with the
special  functions  as  you  do  with  the  more  usual  functions.  For  example,  you  can  check  the  result  by
differentiation:

D@a, xD SinA‰xE
You can ask for a value:

a ê. x Ø 1. 1.82104

You can ask for a plot:

Plot@a, 8x, 0, 3<D

0.5 1.0 1.5 2.0 2.5 3.0

1.2

1.4

1.6

1.8

a =.

Sometimes even Mathematica does not know an integral:

Integrate@Sin@Sin@xDD, 8x, 0, 1<D ‡
0

1

Sin@Sin@xDD „x

Mathematica  just  writes  the  command as  such.  You can  then  resort  to  numerical  integration (Gaussian
quadrature):

NIntegrate@Sin@Sin@xDD, 8x, 0, 1<D 0.430606

Sums are calculated like integrals:

Sum@1 ê 2^n, 8n, 1, 10<D
1023

1024

Chapter 2  •  Sightseeing 41



Sum@1 ê n^2, 8n, 1, ¶<D
p2

6

Sum@r^n, 8n, 1, m<D
r H-1 + rmL

-1 + r

2.3.2  Matrices

{a, b, c}  A vector
{{a, b, c, d}, {e, f, g, h}}  A matrix with two rows

A 1D list is also a vector; a 2D list is a matrix. Vectors and matrices can have as many elements as you
want. Mathematica  does  not  distinguish  column and row vectors  but,  nevertheless,  it  does calculations
with matrices and vectors so that the results are, almost always, what you intended. We define a vector:

a = 82, 5<;

A  useful  fact  to  know  is  that Mathematica  automatically  does  all  operations  with  vectors  element  by
element:

8a^2, Sqrt@aD, a ê 83, 6<<

:84, 25<, : 2 , 5 >, :2

3
,

5

6
>>

Here is a matrix:

MatrixForm@m = 882, 1<, 83, 2<<D

2 1

3 2

Note that MatrixForm  is used only in displaying matrices. You cannot do any calculations with such a
form. If you would write m = {{2, 1}, {3, 2}} // MatrixForm, then the value of m would be the matrix
form  of the given matrix, and with such an m  we cannot calculate. However, you could write (m = {{2,

1}, {3, 2}}) // MatrixForm.

a m  The product of a scalar a and a vector or matrix m

m + n  The sum of two vectors or matrices m and n

m^2  The squares of the elements of a vector or matrix m

m.n  The product of two vectors or matrices m and n

Transpose[m]  or m¨  The transpose of a matrix m (write ¨ as ÂtrÂ)
Det[m]  The determinant of a square matrix m

Inverse[m]  The inverse of a square matrix m

Eigenvalues[m]  The eigenvalues of a square matrix m

Note that the point (.)  has to be used when calculating products of vectors and matrices; the space
and  the  asterisk  do  not  work  properly.  You  cannot  use  powers,  either.  Thus,  to  calculate  the  second
matrix power of a matrix m, you have to write m.m; you cannot write m^2 (this only calculates the squares
of each element). Also, to calculate the inverse of a matrix m, you have to write Inverse[m]; you cannot
write m^-1. The transpose command ¨ can be written as ÂtrÂ.

In the following example, a is interpreted to be a row vector:

a.m 819, 12<
Here, a is a column vector:

42 Mathematica Navigator



m.a 89, 16<
We calculate the square, transpose, determinant, inverse, and eigenvalues of m:

m.m 887, 4<, 812, 7<<
m¨ 882, 3<, 81, 2<<
Det@mD 1

Inverse@mD 882, -1<, 8-3, 2<<

Eigenvalues@mD :2 + 3 , 2 - 3 >
Clear@a, mD

2.3.3  Equations

‡ Polynomial Equations: Exact Solutions

expr1 ã expr2  An equation (ã can be written as ==)
Solve[eqn, x]  Solve a (polynomial) equation with respect to x

Solve[{eqn1, eqn2}, {x, y}] Solve two (polynomial) equations with respect to x and y

Equations  are  formed  with  two  equal  signs  (==),  but Mathematica  replaces  them  with  the  special
symbol ã. Forgetting the second = is a common error; remember that = is used only to assign values for
variables.

Here is a polynomial equation familiar to you (we give the name eqn to this equation):

eqn = a x^2 + b x + c ã 0

c + b x + a x2
ã 0

sol = Solve@eqn, xD

::x Ø
-b - b2 - 4 a c

2 a
>, :x Ø

-b + b2 - 4 a c

2 a
>>

The result is in the form of transformation rules. If you want only the values of x, apply the transforma-

tion rule to x (see Section 2.2.1, p. 32):

x ê. sol

:-b - b2 - 4 a c

2 a
,

-b + b2 - 4 a c

2 a
>

We can also check that the solution is correct by inserting the solution into the equation:

eqn ê. sol êê Simplify

8True, True<
Then  we  solve  two  linear  equations  (larger  systems  are  solved  similarly).  Enclose  a  system  of

equations and the variables within curly braces ({ }):

Solve@82 x + 5 y ã 4, x - 3 y ã 3<, 8x, y<D

::x Ø
27

11
, y Ø -

2

11
>>

Chapter 2  •  Sightseeing 43



‡ Polynomial Equations: Numerical Solutions

NSolve[eqn, x] Solve a (polynomial) equation with numerical methods

Polynomial equations of a degree higher than four can rarely be solved:

eqn2 = x^5 - x^3 + x^2 - 2 ã 0;

Solve@eqn2, xD

99x Ø RootA-2 + Ò12
- Ò13

+ Ò15 &, 1E=,

9x Ø RootA-2 + Ò12
- Ò13

+ Ò15 &, 2E=, 9x Ø RootA-2 + Ò12
- Ò13

+ Ò15 &, 3E=,

9x Ø RootA-2 + Ò12
- Ò13

+ Ò15 &, 4E=, 9x Ø RootA-2 + Ò12
- Ò13

+ Ò15 &, 5E==
We did not obtain the solution in an explicit  form (Mathematica  only gives a symbolic list  representing
the five roots). We can now ask a decimal value:

% êê N

88x Ø 1.17525<, 8x Ø -1.09595 - 0.361002 Â<, 8x Ø -1.09595 + 0.361002 Â<,
8x Ø 0.508323 - 1.00984 Â<, 8x Ø 0.508323 + 1.00984 Â<<

We can also directly resort to numerical methods:

NSolve@eqn2, xD

88x Ø -1.09595 - 0.361002 Â<, 8x Ø -1.09595 + 0.361002 Â<,
8x Ø 0.508323 - 1.00984 Â<, 8x Ø 0.508323 + 1.00984 Â<, 8x Ø 1.17525<<

‡ Transcendental Equations

Solve can solve some transcendental equations:

Solve@Exp@a xD ã b, xD

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. à

::x Ø

Log@bD
a

>>
However, FindRoot is the general-purpose command for such equations. It calculates a zero iteratively
by Newton’s method and other methods.

FindRoot[eqn, {x, x0}] Solve an equation with numerical methods, starting from x0

To find a zero for the following function, we first plot it:

f = Exp@-xD - 0.5 x;

Plot@f, 8x, 0, 3<D

0.5 1.0 1.5 2.0 2.5 3.0

-1.5

-1.0

-0.5

0.5

1.0

The zero seems to be near one, and so we start from this point:

x0 = FindRoot@f ã 0, 8x, 1<D 8x Ø 0.852606<

44 Mathematica Navigator



The value of the function at this point is zero, with a high degree of accuracy:

f ê. x0 -5.55112 μ 10-17

2.3.4  Optimization

‡ Global Optimization: Exact Solutions

Minimize[f, vars]  Give the global minimum of f with respect to variables vars
Minimize[{f, cons}, vars]  Minimize subject to constraints cons

We also have Maximize that is used in the same way. Consider the following function:

f = x^4 - 2 x^3 - 2 x^2 - 1;

Plot@f, 8x, -2, 3<D

-2 -1 1 2 3
-5

5

10

15

20

The function has a finite global minimum point but not a finite global maximum point:

Minimize@f, xD 8-9, 8x Ø 2<<
Maximize@f, xD

Maximize::natt : The maximum is not attained at any point satisfying the given constraints. à

8¶, 8x Ø -¶<<
The function also has a local minimum point and a local maximum point. They can be found by constrain-
ing x suitably:

Minimize@8f, x < 0<, xD :- 19

16
, :x Ø -

1

2
>>

Maximize@8f, -1 ê 2 < x < 2<, xD 8-1, 8x Ø 0<<
Next, we solve a linear programming problem:

Minimize@8x + y, y ¥ x, y ¥ -2 x + 1<, 8x, y<D

:2

3
, :x Ø

1

3
, y Ø

1

3
>>

‡ Global Optimization: Numerical Solutions

NMinimize[f, vars]  Give the global minimum of f with respect to variables vars
NMinimize[{f, cons}, vars]  Minimize subject to constraints cons

We also have NMaximize  that is used in the same way. For the following function, we do not get an
explicit minimum point with Minimize:

f = x^6 + x^4 + x + 1;

Chapter 2  •  Sightseeing 45



Minimize@f, xD

:1 + RootA1 + 4 Ò13
+ 6 Ò15 &, 1E + RootA1 + 4 Ò13

+ 6 Ò15 &, 1E4
+ RootA1 + 4 Ò13

+ 6 Ò15 &, 1E6
,

9x Ø RootA1 + 4 Ò13
+ 6 Ò15 &, 1E=>

We can ask for the solution in a decimal form:

% êê N 80.569105, 8x Ø -0.555036<<
We can also directly resort to numerical methods:

NMinimize@f, xD 80.569105, 8x Ø -0.555036<<

‡ Local Optimization

FindMinimum[f, {x, x0}]  Find a local minimum of f starting from x0

FindMinimum[f, {{x, x0}, {y, y0}, … }]  Start from x0, y0, …

We also have FindMaximum  that is used in the same way. These commands use iterative methods to
find local minimum and maximum points. Consider the following function:

f = Cos@xD + Log@1 + xD;

Plot@f, 8x, 0, 2<D

0.5 1.0 1.5 2.0

0.8

0.9

1.0

1.1

1.2

1.3

The maximum seems to be near 0.5 and so we start from this point:

x0 = FindMaximum@f, 8x, 0.5<D 81.29686, 8x Ø 0.650752<<
Thus, the local maximum is at the point 0.650752, and the maximum value is 1.29686. The derivative of
the function at the given point is indeed zero with a high degree of accuracy:

D@f, xD ê. x0@@2DD 6.83054 μ 10-12

2.3.5  Interpolation and Approximation

‡ Interpolation

Interpolation[data]  Find a piecewise third-degree interpolating polynomial for data

Let us first generate some data:

points = Table@8x, Cos@Exp@xDD<, 8x, 0., 2., 0.2<D

880., 0.540302<, 80.2, 0.342328<, 80.4, 0.0788896<,
80.6, -0.248685<, 80.8, -0.608957<, 81., -0.911734<, 81.2, -0.984107<,
81.4, -0.610894<, 81.6, 0.238328<, 81.8, 0.972854<, 82., 0.448356<<

46 Mathematica Navigator



p1 = ListPlot@pointsD

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

We now calculate a piecewise third-degree interpolating polynomial through the points:

int = Interpolation@pointsD

InterpolatingFunction@880., 2.<<, <>D
Mathematica  calls the result an interpolating function. We do not see the actual function but, rather, only
the interval where it is defined. However, we can calculate values of the interpolating function:

int@1.5D -0.208865

We can plot it:

p2 = Plot@int@xD, 8x, 0, 2<D

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

The interpolating function goes exactly through all the given points and is of degree 3 between each
pair of points:

Show@p1, p2D

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

The  result  is  a  good  representation  of  the  data.  In  Section  2.3.6,  when  we  solve  differential  equations
numerically,  we  encounter  these  functions:  The  numerical  solution  is  expressed  as  an  interpolating
function.

‡ Approximation

Fit[data, basis, var] Fit data by a linear combination of functions of var in basis

Fit  calculates  a  least-squares  function  to  smoothly  represent  data  containing  errors.  Consider  the
following data:

data = 880, 0.185<, 81, 0.935<, 82, 0.649<, 83, 1.231<, 84, 2.279<,
85, 3.913<, 86, 4.670<, 87, 5.620<, 88, 6.767<, 89, 9.044<, 810, 11.045<<;

Chapter 2  •  Sightseeing 47



p1 = ListPlot@dataD

0 2 4 6 8 10

2

4

6

8

10

The points seem to follow roughly a quadratic pattern, and so we try a quadratic fit:

lsq = Fit@data, 81, x, x^2<, xD

0.293972 + 0.146282 x + 0.0910618 x2

p2 = Plot@lsq, 8x, 0, 10<D

2 4 6 8 10

2

4

6

8

10

To see how close the fit is to the data, we can show both:

Show@p1, p2D

2 4 6 8 10

2

4

6

8

10

The fit seems to be good.

2.3.6  Differential Equations

‡ Symbolic Solutions

sol = y[t] /. DSolve[eqn, y[t], t]  Give the general solution of a differential equation
sol = y[t] /. DSolve[{eqn, y[a] ã a}, y[t], t]  Solve a first-order initial value problem
sol = y[t] /. DSolve[{eqn, y[a] ã a, y'[a] ã b}, y[t], t]  Solve a second-order initial value

problem
Plot[sol, {t, a, b}]  Plot the solution

A  differential  equation  is  like  a  usual  equation  containing ==,  but  now  the  equation  contains  an
unknown function such as y[t]  and its derivatives such as y'[t]  and y''[t].  Note that initial  condi-
tions must also be written as equations (containing ==).

DSolve  can solve a large number of differential equations. We first ask for a general solution to the
following linear equation with constant coefficients:

eqn1 = y'@tD ã a y@tD + b y£@tD ã b + a y@tD

48 Mathematica Navigator



DSolve@eqn1, y@tD, tD ::y@tD Ø -
b

a
+ ‰

a t C@1D>>
The  solution  is  in  the  familiar  form  of  a  transformation  rule.  The C[1]  is  an  undetermined  constant.
Often, it is useful to directly ask the value of y[t]:

y@tD ê. DSolve@eqn1, y@tD, tD :- b

a
+ ‰

a t C@1D>
Then we solve a first-order initial value problem:

eqn2 = y'@tD + 2 t y@tD - t ã 0;

sol2 = y@tD ê. DSolve@8eqn2, y@0D ã 0<, y@tD, tD

:1

2
‰
-t2 J-1 + ‰

t2N>
We plot the solution:

Plot@sol2, 8t, 0, 3<D

0.5 1.0 1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

Next, we solve a second-order initial value problem and plot the solution:

eqn3 = y''@tD + y@tD ã -t;

sol3 = y@tD ê. DSolve@8eqn3, y@0D ã 0, y'@0D ã 1<, y@tD, tD

8-t + 2 Sin@tD<
Plot@sol3, 8t, 0, 8<D

2 4 6 8

-7
-6
-5
-4
-3
-2
-1

‡ Numerical Solutions

If Mathematica is not able to solve a differential equation symbolically with DSolve, then we can resort to
numerical  methods with NDSolve.  We can simply replace t  with {t, a, b}  defining the interval Ha, bL
where the solution is calculated.

sol = y[t] /. NDSolve[{eqn, y[a] ã a}, y[t], {t, a, b}]  Solve a first-order equation numeri-
cally

sol = y[t] /. NDSolve[{eqn, y[a] ã a, y'[a] ã b}, y[t], {t, a, b}]  Solve a second-order
equation numerically

Plot[sol, {t, a, b}]  Plot the solution

Mathematica cannot solve the following nonlinear initial value problem:

Chapter 2  •  Sightseeing 49



eqn4 = y''@tD ã -y@tD^2 + t;

DSolve@8eqn4, y@0D ã 0, y'@0D ã 1<, y@tD, tD

DSolveA9y££@tD ã t - y@tD2, y@0D ã 0, y£@0D ã 1=, y@tD, tE
However, we can use numerical methods and obtain an approximate solution:

sol4 = y@tD ê. NDSolve@8eqn4, y@0D ã 0, y'@0D ã 1<, y@tD, 8t, 0, 7<D

8InterpolatingFunction@880., 7.<<, <>D@tD<
The solution is expressed as an interpolating function~that is, as a piecewise third-degree interpolating

polynomial (we considered these in Section 2.3.5, p. 46). We plot the solution:

Plot@sol4, 8t, 0, 7<D

1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

50 Mathematica Navigator



3
Notebooks

Introduction 51

3.1  Working with Notebooks 52

3.1.1  Saving, Opening, and Printing 52

3.1.2  Cell Styles and Style Sheets 54

3.1.3  Palettes, Hyperlinks, and Slide Shows 56 CreatePalette, PasteButton, Hyperlink

3.2  Editing Notebooks 59

3.2.1  Methods of Editing 59

3.2.2  Modifying Styles 63

3.2.3  Useful Options 65 FontFamily, FontSize, LineSpacing, CellMargins, CellFrame, etc.

3.3  Inputs and Outputs 70

3.3.1  Forms of Input and Output 70 StandardForm, TraditionalForm, Style, Text, Panel, Pane, etc.

3.3.2  Writing Special Characters 74

3.3.3  Writing 2D Expressions 76

3.4  Writing Mathematical Documents 78

3.4.1  Introduction 78

3.4.2  Display Formulas 80

3.4.3  Inline Formulas 86

3.4.4  Automatic Numbering 89

Introduction

During his stay in Berlin, Euler developed the habit of writing memoir after memoir,
 placing each when finished on top of a pile of manuscripts. Whenever material was needed

 to fill the journal of the Academy, the printers would help themselves to a few papers
 from the top of the pile. This meant that papers at the bottom remained there a long time

 and earlier papers often contained developments and improvements on later papers.

Note that you may skip this chapter if you, right now, do not need to do the following:

•  get  more  information  about  notebooks  (saving,  opening,  printing,  styles,  style  sheets,  palettes,
hyperlinks, slide shows);

• edit the outlook of notebooks;
• write special characters and 2D formulas with the keyboard; or
• write a mathematical document with display and inline formulas.

Regardless  of  your level  of  comfort  with Mathematica,  it  may be helpful  for  you to read Sections 3.1.1,
3.1.2, and 3.3.1.



This chapter emphasizes Mathematica  as a writing tool.  Indeed, you can use Mathematica  to write all
kinds  of  mathematical  and  other  documents. Mathematica  is  a  strong  alternative  to  traditional  writing
tools  because  it  has  the  remarkable  advantages  that  the  whole  document  can  be  done  with  the  same
high-quality  application  (e.g.,  graphics,  tables,  or  formulas  need  not  be  prepared  with  other  applica-

tions)  and  that Mathematica’s  computing  power  gives  you  excellent  possibilities  to  do  all  kinds  of
calculations needed for the preparation of your document.

Adding  notebook  material  into  the Help  Browser  and  other  advanced  matters  about  notebooks  are
explained in a  separate document, Using Author Tools.nb,  that  can be found on the CD-ROM included
with this book. Note also the GUIKit`, Notation`, and XML` packages.

3.1  Working with Notebooks

3.1.1  Saving, Opening, and Printing

‡ Saving

Mathematica  documents  are  called notebooks.  To  save  a  notebook  for  the  first  time,  choose Save  As…
from  the File  menu;  later,  choose Save  to  save  the  modified  notebook.  It  is  customary  to  give  the
notebook a name ending with .nb.  The handling of file names depends somewhat on the system used.
For  example,  in  Windows,  the  name of  a  notebook  will  automatically  end  with .nb,  and  without  this
extension the system does not automatically know that the file should be opened with Mathematica. On
the other hand,  in MacOS X, Mathematica  does not  suggest  a  name ending with .nb;  indeed, the name
can be without that extension.

You  can  arrange  for  the  notebook  to  be  automatically  saved  after  each  command (you must,  how-

ever,  do the first saving). Choose Option Inspector…  from the Format  menu and then choose Scope  to
be Selected Notebook  and View  to be by category.  Then go to Notebook Options @ File Options  and click the
box for NotebookAutoSave.

The notebook can also be saved in certain special formats such as LaTeX, HTML, or PDF by choosing
Save As Special… from the File menu.

‡ Opening

A saved notebook can be opened by double-clicking the document or by choosing Open… from the File
menu. Recently used notebooks are listed in the File @ Open Recent menu. When you open a notebook,
you may observe that it no longer has the In- and Out-labels such as In[1] and Out[1].

After opening a notebook, you can continue working with it by adding new calculations, deleting old
calculations, and doing other kinds of editing and modifying (this topic was considered in Section 1.5, p.

22).

One important thing to know is that when you open an old notebook, you cannot directly use any of its
results in the new session.  For example, suppose that in the old notebook you have defined a = 5.  When
you open the notebook, the variable a has no value. If you want a to have the value 5 in the new session,
you  have  to  execute  the  command a = 5  anew  (place  the  cursor  anywhere  in  the  relevant  cell  and
execute).  Similarly,  all  the results  you want to use in the new session have to be recalculated. In other
words, you can use only the results that have been calculated in the current session.

A straightforward way to continue working with an old notebook is to re-execute all its commands
by choosing Evaluation @ Evaluate Notebook. However, some commands may require substantial time
for execution. A better method in such a situation may be to use the old outputs directly.

52 Mathematica Navigator



For example, if you have calculated an integral, take a copy of the output cell, place the cursor at the
beginning  of  the  output,  write int =,  and  execute.  Now  you  have  the  value  of  the  integral  in int

without having to recalculate the integral. You can also save results to files and then load them in later

sessions (see Section 4.3.1, p. 109).

‡ Spell Checking and Hyphenating

One  of  the  last  steps  in  preparing  a  document  is  the  checking  of  the  spelling.  Choose Edit @ Check
Spelling…. Mathematica  comes  with  English  spell  checking,  but  you  can  buy  spell  checking  for  many
other  languages;  contact  Wolfram  Research.  A Spelling  Language  menu  command  then  appears  in
either  the Edit  or  the Format  menu  so  that  you  may  choose  the  language used.  To  find some options
that  control  the  spell  checker,  open  the  Option  Inspector  by  choosing Format @ Option  Inspector…,
choose Scope to be Selected Notebook, and go into Formatting Options @ Text Content Options @ SpellingOp-

tions.

Note that, if you want it to, Mathematica will automatically hyphenate words according to the rules of
English. To turn hyphenation on or off,  open Option Inspector, choose Scope  to be Selected Notebook,  go
into Formatting Options @ Text Layout Options, and click the box for Hyphenation. The international spell-
checking products also contain hyphenation rules for other languages.

‡ Adjusting Printing Settings

Before printing the notebook, we can check, from File @ Printing Settings, the page setup, the margins,
and the headers and footers. Headers and footers can be adjusted in the following window:

Here, we can adjust the starting page number; whether the notebook has separate left and right pages;
and what to include in the left, center, and right of the headers and footers. For example, the top right
header is, by default, as follows:

Cell[TextData[{
Cell[TextData[{ValueBox[“FileName“]}], “Header“],
Cell[““, “Header“, CellFrame -> {{0, 0.5}, {0, 0}}, CellFrameMargins -> 4], ““,
Cell[TextData[{CounterBox[“Page“]}], “PageNumber“]}],

 CellMargins -> {{Inherited, 0}, {Inherited, Inherited}}]

Chapter 3  •  Notebooks 53



This means that at the right we have the name of the file, a vertical line, and the page number. The code
can be changed. For example, at the left of the right page header we can have the following code:

Cell[TextData[“Chapter 3  •  Notebooks“], “Header“]

At the right of the right page header we can have the following code:

Cell[TextData[CounterBox[“Page“]], “PageNumber“]

If you want page numbers such as i, ii, iii, iv, etc., define them as follows:

CounterBox[“Page“, CounterFunction -> RomanNumeral]

The styles  “Header” and “PageNumber” can be adjusted by the style sheet (see Section 3.2.2,  p. 63)

and the margin above the header by an option (see Section 3.2.3, p. 69).

‡ Adjusting Page Breaks

Before printing,  it  may also be useful to see the page breaks.  Choose File @ Printing Settings @ Show
Page  Breaks.  The  appearance  of  the  notebook  on  the  screen  changes  to  reflect  the  printed  output.  A
page break between two cells is shown by a gray, thick line, and a page break within a cell is shown by a
short horizontal line at the right of the window. The current page number can be seen in the bottom left
corner of the window.

In some special cases, you may want to manually adjust the automatically set page breaks. Suppose
you want  a  page break between two cells.  Put  the cursor  between the cells  (a  horizontal  line appears)
and choose Insert @ Page Break. Now there is a forced page break between the cells. Page break options

are considered in Section 3.2.3, p. 69.

‡ Printing

To print your notebook, choose File @ Print…. You can print the whole notebook or a selected range of
pages. You can also print selected cells by dragging over their cell brackets (or clicking the cell bracket
of the first cell  and then shift-clicking the cell  bracket of the last cell) to select them and then choosing
File @ Print Selection…. If you have problems with fonts when printing graphics, you may find useful

information in Section 7.2.4, p. 193.

3.1.2  Cell Styles and Style Sheets

‡ Mathematica as an Advanced Writing Tool

An  important  point  to  understand  is  that Mathematica  is  an  advanced  environment  for  technical  writing.
Indeed, with Mathematica we can write a complete document with title, headings, texts, formulas, tables,
graphics, inputs, and outputs. For example, each chapter of this book is a Mathematica notebook.

When  using Mathematica  as  a  writing  environment,  two  things  are  important:  cell  styles  and  style
sheets. These are considered next. Mathematica as a writing tool is considered in Section 3.4.

‡ Cell Styles

In Mathematica, each cell has a style. The names of the styles can be seen by choosing Format @ Style (the
styles can also be seen from a toolbar; choose Window @ Show Toolbar). For example, when we write a
new command, the style is automatically Input,  and the style of the result is Output.  We can add text
into the notebook with the Text style. Titles and headings of sections can be written with styles such as
Title, Section, and Subsection.

54 Mathematica Navigator



The default style of a new cell is Input. However, we can change the style of a cell by highlighting its
bracket  and  then  choosing  an  appropriate  style  from Format @ Style.  Or  we  can,  before  we  write
anything, choose the style of the next cell and then type the text. Within a cell of a certain type, we can
apply other styles for smaller parts.

If we want to change the appearance of all cells of a certain type in our notebook, we can just change

the style of that cell; see Section 3.2.2, p. 63.

One  tip  is  that  if  you  intend to  write  a  new cell  with  the  same style  as  the  current  cell  (e.g., Text),
choose Insert @ Cell with Same Style or press ‡÷Û in Windows or ı÷Á in Macintosh.

‡ Style Sheets

The  cell  styles  have  default  settings  (font,  face,  size,  color,  etc.),  but  we  can  adjust  these  if  we  are  not
satisfied with them. One way to adjust the styles is to choose an appropriate style sheet. A style sheet is a
special  notebook  that  defines  styles  for  a  normal  notebook.  The  style  sheets  can  be  seen  by  choosing
Format @ Stylesheet. The default style sheet is Default, but there are several others, such as JournalArti-
cle, Textbook, StandardReport, and Correspondence. In preparing a notebook, try various style sheets
and choose the one you prefer.

Note  that  different  style  sheets  define  different  sets  of  cell  styles.  For  example,  for  the Memo  style
sheet, we have in Format @ Style only the styles Section, Text, and Input.

Note also that for a given style sheet, Format @ Style does not necessarily list all available styles. For
example, for the Default style sheet, the following styles are not listed but are available: Subsubsubsec-
tion, Subsubsubsubsection, SmallText, Subsubitem,  and various styles for headers, footers, and page
numbers. These styles can be used by choosing Format @ Style @ Other…, typing the name of the style
in a separate dialog, and clicking OK.

With more advanced style sheets,  even more styles are not shown in the list  of styles.  For example,
for the Textbook  style sheet, a minority of available styles are listed. As an example, for equations, the
style menu for this style sheet only lists the Equation  and EquationNumbered  styles, but we also have
the following styles related with equations: EquationGroup, EquationGroupAligned, EquationGroup-
Numbered, EquationGroupAlignedNumbered, EquationNumber, EquationGrid, SplitEquation,
Piecewise,  and Matrix.  The  styles BookChapterNumber  and BookChapterTitle  (important  with
numbered equations) are also not listed.

After  you have chosen an appropriate  style  sheet,  it  may be that  you would still  like to change the

styles of some cells. This can easily be done, as is shown in Section 3.2.2, p. 63. We can even create new

style sheets.

‡ Screen Environments

In addition to style sheets,  we have screen environments  in Format @ Screen Environment.  These allow
you  to  modify  the  appearance  of  your  notebook  according  to  how  you  plan  use  it.  When  writing  the
notebook, you can use the Working  environment (with large fonts); for presentations, the Presentation
environment  (with  still  larger  fonts);  for  slide  shows,  the SlideShow  environment  (with  slide  show
controllers);  for  small  screens,  the Condensed  environment  (with  small  fonts  and  a  condensed  style);
and before printing, the Printout environment (to see how the notebook will look when printed).

A simple way to change the size of the text on the screen is to choose an appropriate magnification
percentage from the bottom of the notebook window or from Window @ Magnification.

Chapter 3  •  Notebooks 55



3.1.3  Palettes, Hyperlinks, and Slide Shows

‡ Palettes

Palettes,  which  are  available  from  the Palettes  menu,  help  when  you  are  writing  inputs;  see Section

1.4.1, p. 15. In addition to the built-in palettes, you may find other things you want to do with a palette.

To  create  your  own  palette  that  pastes  something  when  a  button  is  pressed,  use  the  following
commands:

CreatePalette[buttons, WindowTitle Ø "title"] (Ÿ6)  Create a palette with the given buttons
and given title

PasteButton[label, expr] (Ÿ6)  Create a button that pastes expr when the button is pressed; put
label on the button

Button[label, action] (Ÿ6)  Create a button that does action when the button is pressed; put
label on the button

As an example, we create a palette containing various plotting commands for data:

CreatePalette@Column@8
PasteButton@"Points", ListPlot@ÉDD,
PasteButton@"Points and vertical lines", ListPlot@É, Filling Ø AxisDD,
PasteButton@"Joining lines", ListLinePlot@ÉDD,
PasteButton@"Joining lines and fill", ListLinePlot@É, Filling Ø AxisDD,
PasteButton@"Joining lines and points", ListLinePlot@É, Mesh Ø AllDD,
PasteButton@"Joining lines, points, and fill",
ListLinePlot@É, Mesh Ø All, Filling Ø AxisDD<D,

WindowTitle Ø "Plot Data as"D êê Quiet

NotebookObjectB Plot Data as F

Here, we wrote the symbols É by writing \[SelectionPlaceholder] or ÂsplÂ; the symbol can also be
found  from  the SpecialCharacters  palette.  With Quiet,  we  asked  not  to  show  some  noninteresting
messages.  After  executing  the  command,  we  can find the  palette  at  the  top right  corner  of  the  screen.
The palette looks like the following:

To use the palette, click, for example, ListPlot[Ç] and write, in place of the placeholder, a list of points
to be plotted. Then execute the command. Or, write first the data to be plotted, select it, click a button in
the palette, and execute.

To save the palette so that it appears in the Palettes menu, do as follows. Click the close button of the
palette.  You  are  asked  to  save  the  palette;  save  it  to  a  place  you  prefer.  Choose Palettes @ Install
Palette…,  select  the  file  you saved,  give  the  palette  a  suitable  name,  and click Finish.  The  palette  now
appears in the Palettes menu.

56 Mathematica Navigator



‡  Hyperlinks

Hyperlinks  are  special  buttons  that  consist  of  underlined  words  in  blue  type.  When  a  hyperlink  is
clicked, Mathematica  jumps  to  a  cell  of  the  current  notebook,  to  a  cell  in  another  notebook,  to  another
notebook,  or  to  a  URL. As an example,  suppose that  we want to create a  hyperlink from HERE to the
cell above containing the subsubsection heading Hyperlinks. Do the following:

• Select the destination cell (the cell bracket containing Hyperlinks in our example).
• Choose Cell @ Cell Tags @ Add/Remove Cell Tags…. A dialog box appears (see the figure on the

left below). At the bottom of the dialog, write a word or phrase (e.g., “Hyperlinks”) as the cell tag.
It identifies the destination cell. Click Add; you can also close the dialog.

• Select the word(s) (the word “HERE” in our example) in the notebook that will represent the
hyperlink~that is, the words you want to be able to click in order to jump to the destination cell.

• Choose Insert @ Hyperlink…. In the dialog box (see the figure on the right below), we can see all
cell tags of the current notebook. Select the tag (“Hyperlinks” in our example) you created
previously, and then click OK.

In  the  same  way,  we  can  create  other  kinds  of  hyperlinks.  For  example,  to  create  a  hyperlink  to
another  notebook,  simply  select  the  word(s)  in  the  notebook  that  will  represent  the  hyperlink,  choose
Insert @ Hyperlink…, in the dialog box browse to the notebook, and click OK. To create a hyperlink to,
for  example,  http://www.wolfram.com,  write  and  select  a  word  such  as  Wolfram,  choose Insert @

Hyperlink…, in the dialog box write the address http://www.wolfram.com, and click OK. You will get
a link such as Wolfram.

The text of the hyperlink button can be edited by clicking the text near the button and then moving
the cursor with the arrow keys into the button.

Hyperlink["label", "URI"] (Ÿ6)  Create a hyperlink that is displayed as label

Hyperlinks can also be created with the previous command. Here is an example:

Hyperlink@"Wolfram", "http:êêwww.wolfram.com"D
Wolfram

Chapter 3  •  Notebooks 57



Similarly, we can create hyperlinks to the Documentation Center:

Hyperlink@"Integrate", "paclet:refêIntegrate"D
Integrate

Hyperlink@"calculus", "paclet:guideêCalculus"D
calculus

Hyperlink@"indefinite integrals", "paclet:tutorialêIndefiniteIntegrals"D
indefinite integrals

Hyperlink@"Fourier series package", "paclet:FourierSeriesêtutorialêFourierSeries"D
Fourier series package

‡ Slide Shows

To create a slide show, choose File @ New @ Slide Show. A template of a slide show opens. Modify the
template  as  you  want,  and  then  choose Format @ Screen  Environment @ SlideShow.  To  change  the
appearance of the slide show, try several style sheets.

In  the  creation  of  a  slide  show,  we  can  also  use  the Slide  Show  palette  available  from Palettes @

SlideShow:

A new template for a slide show can be obtained by clicking New Template. A new slide can be added
by clicking New Slide. The slide show environment can be chosen by clicking Slide Show; we can go back
to normal view by clicking Normal.  With Table of Contents  we get the contents as a separate palette that
has hyperlinks to the slides.

If  you  want  to  convert  a  usual  notebook  into  a  slide  show,  click Convert  Notebook.  A  new window,
Notebook -> Slideshow, appears:

58 Mathematica Navigator



In this window, it reads “Choose the styles to use” and below it we have a list of the cell styles appear-

ing in our notebook. This means that we have to select the cell styles according to which the notebook is
divided into slides. For example, if our notebook contains several Section style cells and we want each
section  to  become  a  slide,  then  we  should  choose  the  Section  style  by  clicking  the  corresponding
checkbox. Then click Convert. To see the new slide show, click Slide Show on the SlideShow palette.

With the palette, we can also manually convert a usual notebook into a slide show. Put the cursor
at a location where you want to begin a new slide, click the triangle before Extras…, and choose Paste…
@ Navigation Bar  from the palette.  If  you want the Previous/Next buttons at the end of a slide, put the
cursor at this location and choose Paste… @ Previous/Next  from the palette. Do this for each slide. Then
click Slide Show.

From the Extras  we can also choose the style sheet, presentation size, and magnification of the slide
show.

3.2  Editing Notebooks

3.2.1  Methods of Editing

‡ Steps

When  creating  a  document  with Mathematica,  you  want  to  be  aware  of  how  the  document  looks  on
screen and when printed out. The look can be adjusted in many ways. Proceed with the following steps:

• Step 1: Select a style sheet. Try several style sheets from Format @ Stylesheet (Section 3.1.2, p. 55),

and choose the one you like most.
• Step 2: Modify styles. If some styles do not satisfy you in all respects, modify these styles.
• Step 3: Adjust the notebook. If you still find some small parts of the document needing adjustment,

modify these parts directly in the document.

The  key  to  modifying  a  notebook  is  the  use  of  style  sheets  and  styles.  The  notebook  should  be
modified directly only in exceptional cases. Why? To save your work and to maintain the consistency of
the look of the document. Suppose you want to change the font size of all text cells. You could manually
change the style of each text cell, but if you then continue writing your document, you have to modify
all new text cells as well. If you instead modify the styles, all text cells immediately change accordingly,
and all new text cells also have the correct style.

Thus, resist direct modification of the notebook, and modify the styles instead. The editing of styles is

described in Section 3.2.2, p. 63.

‡ Methods

Whether you modify the styles or the document, you can use several methods in the modification:

• Method 1: Use the Format menu.
• Method 2: Use options directly.
• Method 3: Use the Option Inspector.

In the following section, we consider these methods in turn. In each method, we set values of some
front-end options. All options can be set with the third method and most options with the second method,
whereas only a small number of options (although important ones) can be set with the Format menu.

Chapter 3  •  Notebooks 59



The Option Inspector is a tool that is used to view and modify various options of cells and notebooks,
among other things. The options can also be adjusted directly, without the Option Inspector. When we
use the Format  menu,  we actually  also adjust  options.  Many options are explained in the Documenta-

tion Center under tutorial/ManipulatingNotebooksOverview.

‡ Method 1: Using the Format Menu

The editing tool used most often may be the Format menu. With it we can set various font options: Font,
Face, Size, Text  Color,  and Background  Color.  We  can  also  adjust Cell  Dingbat, Magnification
(magnifies  a  selection), Text  Alignment, Text  Justification, Word Wrapping,  and Spelling Language.
Furthermore, with Format  we can choose the Style  of each cell, use style sheets by Stylesheet  and Edit
Stylesheet, and choose a Screen Environment.

To use the Format  menu,  first  select  with the mouse the part of the document you want to modify.
The part is typically a cell  (click its cell  bracket),  but it  can also be a part of a cell (drag over the part),
several cells (drag over their cell brackets), or a group of cells (click its bracket). Then, choose a suitable
command from the Format menu. As an example, write an EmphasizedText cell:

Here is some text.

Increase the size of the font to 14 so that the cell becomes

Here is some text.
To show that the Format menu actually uses options, we next show how to look at the internal code

that Mathematica uses for cells.

‡ Method 2: Using the Options Directly

Front-end  options  are  normally  not  visible;  we  only  see  the  effect  of  the  options.  However,  with  a
special menu command, we can see the internal code behind a cell:

• Put the cursor somewhere in the cell, or select the bracket of the cell.
• Open the code of the cell by choosing Cell @ Show Expression or pressing ˜÷‚ÎeÏ (˜÷ÌÎeÏ on a

Macintosh).
• Modify the code, if you so choose.
• Close the code by choosing the same menu command again; the cell is then formatted according to

the code.

As examples, here are the codes of the two text cells we considered previously:

 Cell["Here is some text.", "EmphasizedText"]

 Cell["Here is some text.", "EmphasizedText", FontSize->14]

In  both cases,  the text  is  in  an EmphasizedText  style  cell  and the  latter  cell  has an option for  the font
size. So, we have shown that the Format menu actually uses options.

When  the  code  is  open,  we  also  have  the  possibility  to  modify  it.  This  is  the  second  method  of
modification  mentioned  previously,  “Use  options  directly.”  We can  directly  write  new options,  delete
options, and change values of options. For example, we could have opened the code of the cell of “Here
is some text.”, written the option FontSize -> 14, and then closed the code. It may be that the more you
use options and learn their names, the more you will like the direct modification of the code of the cells.

In Section  3.2.3,  p. 65,  we  list  some  useful  options,  many  of  which  are  not  available  with  the Format

menu.

60 Mathematica Navigator



‡  The Structure of Expressions and Notebooks

It may be interesting to look at the code of a mathematical result. For example,

a = Sqrt@8D + Sin@Pi ê 6D
1

2
+ 2 2

The code of the output cell is as follows (put the cursor in the result and press ˜÷‚ÎeÏ):

 Cell[BoxData[
 RowBox[{
 FractionBox["1", "2"], "+",
 RowBox[{"2", " ",
 SqrtBox["2"]}]}]], "Output",

 CellChangeTimes->{3.3931306115955353`*^9}]

We see that the formula is built up from various box constructs.

A  whole  notebook  consists  of  a  list  of  cells,  together  with  possible  options.  The  general  form  of  a
notebook  is  thus Notebook[{cell1, cell2, …}, options].  In  this  way, Mathematica  represents  cells
and  notebooks  as  text  expressions  containing  only  7-bit  ASCII  characters.  From  this,  it  follows  that
notebooks work independently of the platform they are opened with and thus can be used unchanged
with any computer system. We shall  not  go into the details of cell  and notebook expressions here. We
only study the use of the front-end options.

‡ Method 3: Using the Option Inspector

The Option Inspector is a special window where we can view and modify the options of the front end.
The window can be opened by choosing Format @ Option Inspector…,  and it  looks like this (here we
have opened some groups of options):

Chapter 3  •  Notebooks 61



The  options  are  grouped  into  six  categories: Global, Notebook, Cell, Editing, Formatting,  and Graphics
options.  In the figure above,  we can see options such as PageWidth  and TextAlignment  together with
their current values. There are several hundred options, but most of us will never need the majority of
them.  Clicking  a  triangle  before  a  category  opens  the  category  into  a  list  of  subcategories  or  options.
This categorical listing is the default way that the Option Inspector shows the options.

To use the Option Inspector to modify a part of your document, do the following:

• Select the part of your document that you want to modify with options (typically the part is a cell,
but it can also be a part of a cell or several cells).

• Open the Option Inspector by choosing Format @ Option Inspector… or pressing ˜÷‚ÎoÏ
(˜÷ÌÎoÏ on a Macintosh).

• Set the values of the options you want. The values of many options can be set by check boxes, pop-
up menus, or dialog boxes, but if you type the value, you have to press the return key Á after typing
for your setting to go into effect.

• Go back to your document (you can leave the Option Inspector open, in case you need it again).

An option for which we have set a nondefault value has a check mark symbol before it. Clicking the
check mark changes the value of the option to the default value and removes the check mark.

After  experimenting  with  some  options  of  a  cell,  we  may  find  that  we  would  like  to  return  to  the
default option values for this cell. Select the cell bracket and choose Format @ Clear Formatting.

‡ More about the Option Inspector

At  the  top  of  the  window,  we  can  select  the  scope  of  the  option  settings  and the  way the  options  are
listed in the Option Inspector. We can also search suitable options.

The  scope  can be Selection, Selected  Notebook,  or Global  Preferences  (we  can  also  choose  from a  list  of
open notebooks).  Indeed, a  key property of  Option Inspector is  that  it  allows us to specify the level at
which we want to set the value of an option:

• If the scope is Selection, the option settings only affect the part of the current notebook that is
selected with the mouse (the selected part may be a cell, several cells, or a part of a cell).

• If the scope is Selected Notebook, the option settings only affect the current notebook.
• If the scope is Global Preferences, the option settings affect the whole Mathematica application~the

current session and all future sessions, all currently open notebooks, and all notebooks opened or
created in the future.

When working with Option Inspector, it is important to choose the suitable level; otherwise, you can
easily  generate  unwanted  effects.  Note  also  that  some  options  cannot  be  set  at  all  levels;  options  that
cannot be set at the currently selected level are dimmed.

The options in the Option Inspector can be listed in three ways: by category, alphabetically, or as text. A
listing by category is useful if you want to find out what options are available for a certain purpose. An
alphabetical  listing  is  useful  if  you  already  know  the  option  you  want  to  apply.  The  text  view  only
shows the nondefault options as text, such as “FontSizeØ12”; this view cannot be used to set the value
of an option.

At  the  top of  the Option Inspector  window is  a  field in which we can write  a  word to be  searched
from the names of the options. For example, write font in the field to get a list of options containing font.

In  the  next  section,  we  show  how  we  can  edit  styles,  and  the  section  following  that  gives  lists  of
useful options (approximately 50 options).

62 Mathematica Navigator



3.2.2  Modifying Styles

‡ Modifying Styles

As noted in Section 3.2.1, p. 59, notebooks should be edited mainly by modifying styles, and they should

be directly edited only in exceptional cases. In this section, we show how to modify styles.

The  starting  point  in  modifying  the styles  of  a  notebook is  the choice of  a  suitable  style  sheet  from
Format @ Stylesheet. Choose a style sheet that is as close to your needs as possible. If the styles do not
fully satisfy you, you may want to make some modifications to the styles. Proceed as follows:

• Choose Edit Stylesheet… from the Format menu. A notebook appears with the title Private Style
Definitions for ….

• From Choose a Style to Modify, choose the style(s) you want to modify. The corresponding style
definition cells appear in the notebook. These cells show how cells having these styles look out.

• Modify the style definition cells by using the methods explained in Section 3.2.1, p. 59: Use the

Format menu, use options directly, or use the Option Inspector. You can immediately see the
corresponding changes in your notebook.

• If a style is not mentioned in Choose a Style to Modify or if you want to define a new style, use the
Enter a style name input field to give a suitable name for the style; the corresponding style defini-
tion cell appears in the document. Edit this cell as you want. A new style appears in Format @
Style.

• The Private Style Definitions notebook can be left open (for later modifications) or it can be closed
(without saving).

Note  that  in  the  previous  procedure,  the  name  of  the  menu  command Edit  Stylesheet…  gives  a
somewhat  wrong  impression:  We  did  not  edit  the  style  sheet.  Rather,  we  created  some  private  style
definitions for  our current  notebook (and only for  it).  The private  styles  are based on the chosen style
sheet; we only tell how we want to change the styles.

Below we show a Private Style Definitions  notebook. The styles are based on the Default  style sheet,
or, as is said in the notebook, the base definitions of the styles are inherited  from the Default style sheet.
We have changed the style of Section, Subsection, and Subsubsection by adding color definitions.

Chapter 3  •  Notebooks 63



The modified and new styles  work immediately.  Whatever you have written in your notebook and
whatever you write later will  follow the modified styles.  If  you later edit the styles of the notebook in
question, the same Private Style Definitions notebook opens and you can continue modifying the styles.

‡ Creating New Style Sheets

As noted, the procedure we described previously only modifies the styles of the current notebook. If you
want to use your own styles for several notebooks, you should create your own style sheet as follows:

• Proceed as discussed previously: Choose Format @ Edit Stylesheet… and edit the styles and add
the new styles you want.

• Save the style sheet by choosing Format @ Save As…. You can save it with the name and to the
place you want.

• Install the new style sheet by choosing File @ Install…, select Type of Item to Install to be Stylesheet,
select Source to be From File…, select the new style sheet, give the style sheet a suitable name, and
click Finish. The new style sheet now appears in Format @ Stylesheet.

Later, if you want to continue editing the new style sheet, open a document using that style sheet and
choose Format @ Edit  Stylesheet….  The  appearing Private  Style  Definitions  for  …  notebook  contains  a
hyperlink to the style sheet; click it. The style sheet opens and you can edit it; the changes are automati-
cally saved.

‡ Creating New Styles

If  you  find  yourself  occasionally  manually  modifying  a  new  cell  of  your  document,  this  may  be  an
indication that you should define a new cell style to your style sheet. To create a new style, we can use
the Enter a style name  input field in the Private Style Definitions for … notebook as described previously.
Another way is to copy a suitable style definition cell from a style sheet:

• For a notebook, choose a style sheet that contains a style you want to copy. Choose Format @ Edit
Stylesheet, and click the hyperlink to the style sheet.

• Copy a style definition cell, paste the cell into your style sheet, select the cell bracket of the new cell,
choose Cell @ Show Expression, write a new representative name into StyleData["name"], and
choose Cell @ Show Expression again.

• Change the style of the cell according to your needs (e.g., using the Format menu). The new style
then either appears in Format @ Style or can be used by writing the name of the style into the
window opened by Format @ Style @ Other….

The default  is  to  place  new styles  at  the end of  the Style  menu.  With the MenuPosition  option we
can define a suitable place. Select the cell bracket of the new style, choose Format @ Option Inspector…,
set Scope  to be Selection,  and set  the value of  the mentioned option to,  for  example,  10 if  you want the
style to be the 10th item in the Style menu.

‡ Changing the Size of Printed Text

In  some style  sheets,  the  sizes  of  texts  are  quite  small  when printed.  If  you would like  to  increase  the
sizes  of  texts,  this  can  be  done by  editing  a  style  sheet;  for  more details,  see the following FAQ docu-

ment:
http:êêsupport.wolfram.comêmathematicaêinterfaceêprintêincreasingprintoutfont.html.

64 Mathematica Navigator



3.2.3  Useful Options

‡ Formatting Options: Fonts

Most options concerning fonts can be set with the Format  menu. These options can also be found from
the Option Inspector, and they can be written directly into the code of the cells.

FontFamily  Examples of values: "Times", "Arial", "Helvetica", "Courier"
FontSize  Examples of values: 12, 10, 9
FontWeight  Examples of values: "Plain", "Bold"
FontSlant  Examples of values: "Plain", "Italic", "Oblique"
FontTracking  Examples of values: "Plain", "Condensed", "Extended"
FontColor  Examples of values: Automatic, RGBColor[1, 0, 0]
FontOpacity  Examples of values: Automatic, 0.5
Background  Examples of values: None, RGBColor[1, 1, 0]
Magnification  Examples of values: 1, 0.75, 1.5
FontVariations  An example: {"Underline" Ø True, "Outline" Ø True}; possible variations:

"Underline", "Outline", "Shadow", "StrikeThrough", "Masked", "CompatibilityType", and
"RotationAngle"; each can be set to False or True, except that "CompatibilityType" can be set
to "Normal", "Superscript", or "Subscript", and "RotationAngle" to an angle

These options can be found from the Option Inspector under Formatting Options @ Font Options. Note
that the value of FontColor and Background for cells cannot be a special color directive such as Red or
Blue; the value has to be given with RGBColor, Hue, GrayLevel, or CMYKColor (however, colors such as
Red or Blue work in graphics).

For color definitions, see Section 6.2.8, p. 168. In the following example, we use several font options:

An example of font options
The code of this cell is as follows:

 Cell[TextData[StyleBox["\tAn example of font options",
 Background->RGBColor[1, 1, 0]]],
 "Text",
 CellMargins->{{Inherited, Inherited}, {1, 2}},
 CellChangeTimes->{3.393143437924532*^9},
 FontFamily->"Times", FontSize->14,
 FontWeight->"Bold", FontSlant->"Italic",
 FontColor->RGBColor[1, 0, 0]]

‡ Formatting Options: Text Layout

The look of a document is greatly affected by various margins and spacings; we present lists of options
that  can be used to adjust  these.  The values of  many of these options are given in printer’s  points.  One
printer point is approximately 1/72 of an inch. The values of some options are given in ems or x-heights.
An em is approximately the width of an “m,” and x-height is the height of an “x.”

LineSpacing  Specifies the spacing between successive lines of text; value is of the form {c, n},
meaning that the height of each line is c times the height of the contents of the line plus n printer’s
points (n may be negative); value can also be of the form {c, n, max}, meaning that the extra space
is limited to max times the height of a single line

Chapter 3  •  Notebooks 65



g g
ParagraphSpacing  The extra space between two paragraphs (a new paragraph begins after each

explicit Á character); value is of the form {c, n}, meaning that the extra space is c times the
height of the font plus n printer’s points

ParagraphIndent  The indentation, in printer’s points, of the first line of a paragraph (a new
paragraph starts at the beginning of a cell and after each explicit Á); a negative value causes all
but the first line to be indented

TabSpacings  The number of spaces, in ems, that the cursor advances (at most) when Í is pressed in
a text cell; examples of values: 4, {10, 15, 12, 7}

TabFilling  Determines how a Í is represented; examples of values: None, ".", "Underline",
"GrayUnderline"

These options can be found from the Option Inspector under Formatting Options @ Text Layout Options.

LineSpacing and CellMargins, together with fonts and their sizes, are important options that affect
the  overall  look  of  the  pages  of  your  document.  Usually,  each  paragraph  is  in  its  own  cell,  and  then
CellMargins  determines  the  spacing  between  paragraphs.  However,  if  you  write  several  paragraphs
into the same cell, then ParagraphSpacing  determines the space between the paragraphs in such cells.
With LineSpacing,  any of c, n,  or max  can also be zero,  and then the spacing is determined only with
the height of the contents or only with the given printer’s points. A typical value of this option is {1, 3}.

With  a  negative ParagraphIndent,  we  get  paragraphs  like  this  one.  Usually,  we  need  both  indented
and nonindented paragraphs. A normal paragraph is indented, but the first paragraph in a section is
nonindented.  If  the  same  paragraph  continues  after  a  formula,  we  also  need  a  nonindented  para-

graph.  One way to  use  both indented and nonindented paragraphs is  to  let  a  text  cell  have a  zero
indentation and to press Í if an indentation is needed; we can give TabSpacings a suitable value.

If one value, for example, m, is given for TabSpacings, then the width of the space between two tab
stops is m; that is, tab stops are at positions m, 2m, 3m, etc. However, if the value is a list such as {m, n, k},
then the widths of  the spaces between tab stops are m, n, k, k, k,  etc.  The default  is  that  a  tab is  repre-

sented  as  white  space,  but  we  can  use  any  character,  such  as  a  period ".",  and  also  the  values
Underline and GrayUnderline.

TextAlignment  Examples of values: Left, Right, Center
TextJustification  Examples of values: 0 (natural spacing) 0.5, 1 (full justification)
PageWidth  Examples of values: WindowWidth, PaperWidth, n (in printer’s points)

Hyphenation  Possible values: False, True (see Section 3.1.1, p. 53)

HyphenationOptions Ø {"HyphenationMinLengths" Ø {m, n}}  A minimum of m and n characters
can be split off the start and end of a word, respectively; default value: {3, 3} (this option is most
easily set with the Option Inspector)

These options can be found from the Option Inspector under Formatting Options @ Text Layout Options.

‡ Formatting Options: Formulas

The following options are useful  when writing mathematical  formulas (the  first  option is  explained in

Section 3.4.3, p. 88).

LimitsPositioning  How to display limits in constructs such as sum, product, union, intersection,
lim, max, and min; possible values: Automatic, True (display the limits as in ⁄i=1

n  when the

formula is inline), False (display the limits as in⁄
i=1

n
)

66 Mathematica Navigator



ScriptMinSize  Minimum font size used in subscripts, etc.; default values: 9 (on screen), 5 (on
paper)

ScriptSizeMultipliers  How much smaller to render each successive level of subscripts, etc.;
default value: 0.71

These  options  can  be  found  from  the  Option  Inspector  under Formatting  Options @ Expression
Formatting.  The  first  is  under Specific  Box  Options  in OverscriptBoxOptions, UnderscriptBoxOptions,  and
UnderoverscriptBoxOptions. The last two options are under Display Options.

‡ Formatting Options: Frame Boxes

If we want a frame around a smaller part than a cell, we select that part and choose Insert @ Typesetting

@ Add Frame. An example is sinHxL2 + cosHxL2 = 1 . As another example, we emphasize a display formula:

lim
xØ¶

1 +
a

x

x

= ‰

Such frames can be controlled with FrameBoxOptions, presented later.

The values of some options we will present from now on may be given in the form {{left, right},

{bottom, top}},  meaning that  numerical  values  are  given that  control  the left,  right,  bottom,  and top
parts. This value is written below in the short form {{l, r}, {b, t}}.

FrameBoxOptions Ø {opts}  Options controlling the frame around a box (to get a frame, use Insert @
Typesetting @ Add Frame); the following options can be given:

BoxFrame  Whether to draw lines around a frame box. Value may be True, False, f, or {{l, r}, {b,
t}}, where each number is the thickness of the frame or a part of it in printer’s points (the value
True implies the value 1).

FrameMargins  Margins between the contents of a grid box and the surrounding frame. Left and
right margins are given in ems, and bottom and top margins are given in x-heights. Value may be
True, False, m, or {{l, r}, {b, t}} (the value True implies the value {{1, 1}, {1, 1}}).

FrameStyle  Style of the frame; an example of value: {RGBColor[0, 0, 1]}
BaseStyle  Base style of the frame; an example of value: {RGBColor[1, 0, 0]}
Background  Background color; an example of value: RGBColor[0, 1, 0]

These  options  can  be  found  from  the  Option  Inspector  under Formatting  Options @ Expression
Formatting @ Specific Box Options @ FrameBoxOptions.

‡ Cell Options: General

CellMargins  Margins, in printer’s points, around a cell; value is of the form {{l, r}, {b, t}},
where each number is the size of a part of the margin (note that left and right margins can be set
with the ruler, available from Window @ Show Ruler; its unit can be set with RulerUnits)

CellDingbat  Dingbat to be used to emphasize a cell; examples of values: None, "‡", "\
[FilledSmallSquare]"

Background  Background color of a cell; examples of values: Automatic, RGBColor[1,0,0]
Magnification  Magnification factor for the cell; examples of values: 1, 0.75, 1.5
ShowCellLabel  Whether to show cell labels; possible values: True, False

Chapter 3  •  Notebooks 67



The first  four  options  can be  found from the Option Inspector  under Cell  Options @ Display  Options
and the last option under Cell Options @ Cell Labels.

CellMargins determines, in addition to the white space to the left and right of the content of the cell,
the white space between cells. Usually, each paragraph of text is written into its own cell, and then the
cell margins determine the spacing between paragraphs.

One  application  of Magnification  may  be  as  follows.  When  using  magnification  values  of  more
than 100% from Window @ Magnification,  all text remains in the window, but it may be that graphics
can  no  longer  be  seen  completely.  Setting Magnification Ø 1  for  plots  keeps  the  size  of  graphics  the
same, irrespective of the magnification percentage used for the notebook.

Normally,  we  have  labels  such  as In[1]:=  and Out[1]=  before  inputs  and  outputs.  With  the
ShowCellLabel  option,  we  can turn the labels  off.  This  can also be  done with Mathematica @ Prefer-
ences @ Evaluation @ Show In/Out Names.

‡ Cell Options: Cell Frames

CellFrame  Whether a frame is drawn around a cell; value may be False, True, f, or {{l, r}, {b,
t}}, where each number is the absolute thickness of the frame or a part of it in printer’s points (the
value True implies the value 0.25)

CellFrameMargins  Margins, in printer’s points, inside a frame; value may be m or {{l, r}, {b, t}}
(typical default value is 8)

CellFrameColor  Color of the frame; examples of values: GrayLevel[0], RGBColor[1,0,0]
CellFrameLabels  Labels of the frame; value is of the form {{left text, right text}, {bottom

text, top text}} (the style of frame labels can be adjusted by using the style sheet)
CellFrameLabelMargins  Margins, in printer’s points, between a cell frame and the labels; value

may be m or {{l, r}, {b, t}} (typical default value is 6)

These options can be found from the Option Inspector under Cell Options @ Cell Frame Options.

With CellFrame, we can form various frames, such as the following ones:

CellFrame Ø True

CellFrame Ø {{0, 0}, {0, 0.25}}

CellFrame Ø {{0, 0}, {0.25, 0}}

CellFrame Ø {{5, 0}, {0, 1}}

CellFrame Ø True, Background Ø GrayLevel[0.85]

In the following example, we have cell frame labels:

left right

bottom

top

 A text with a frame and frame labels.

68 Mathematica Navigator



‡ Cell Options: Page Breaks

Page breaks can be seen by choosing File @ Printing Settings @ Show Page Breaks. Page breaks can be
manually  added with Insert @ Page  Break.  The  following  options  give  a  more  detailed  control  of  the
page breaks.

PageBreakAbove  Whether a page break should be made above a cell; possible values: Automatic,
True, False

PageBreakBelow  Whether a page break should be made below a cell; possible values: Automatic,
True, False

PageBreakWithin  Whether a page break should be allowed within a cell; possible values:
Automatic, True, False

GroupPageBreakWithin  Whether a page break should be allowed within a group of cells; possible
values: Automatic, True, False

PrintingOptions Ø {"PageHeaderMargins" Ø {left, right}}  Vertical margins, in printer’s
points, above the header of the left and right facing pages, respectively (recall that the margins of
the pages can be set with File @ Printing Settings @ Printing Options…)

The first four options can be found from the Option Inspector under Cell Options @ Page Breaking; the
last option is in Notebook Options @ Printing Options @ PrintingOptions.

‡ Notebook Options

Next, we list some options typically specified at the notebook or global level.

DragAndDrop  Whether to allow us to drag a selection to a new location with the mouse; possible
values: False, True

EvaluationCompletionAction  What to do when an evaluation is completed; examples of values:

{}, {"ShowTiming"} (see Section 4.4.1, p. 112)

"GraphicsPrintingFormat"  Format in which PostScript graphics are to be printed; possible values:

"Automatic", "RenderInFrontEnd", "DownloadPostScript", "Bitmap" (see Section 7.2.4, p. 193)

ImageSize  Size of an image; default value: {350, 350} (see Section 5.1.1, p. 120)

InputAutoReplacements  Sequences of characters that are automatically replaced with other
characters; default value for input cells: {"->" Ø "Ø", ":>" Ø "ß", "<=" Ø "§", ">=" Ø "¥", "!="

Ø " ", "==" Ø "ã", ParentList}

NotebookAutoSave  Whether the notebook should automatically be saved after each command

execution; possible values: False, True (see Section 3.1.1, p. 52)

RulerUnits  Determines the units in the ruler toolbar; possible values: "Inches", "DecimalInches",
"Points", "Picas", "Centimeters", "Millimeters"

SpellingOptions  Determines settings for spell checking (see Section 3.1.1, p. 53)

‡ Preferences

The preferences of Mathematica  can be found (in a Macintosh) from Mathematica @ Preferences. There,
we  can  globally  adjust  many  options.  For  example,  the  following  figure  shows  how  the  display  of
numbers can be adjusted.

Chapter 3  •  Notebooks 69



3.3  Inputs and Outputs

3.3.1  Forms of Input and Output

‡ Forms of Output

Mathematica  can show results in several forms. The forms are InputForm, OutputForm, StandardForm,
and TraditionalForm.  The default form is StandardForm.  As an example, we calculate an integral and
show the result with all four format types:

Integrate@Sqrt@xD ê Ha^2 + b^2 xL, xD êê InputForm

(2*Sqrt[x])/b^2 - (2*a*ArcTan[(b*Sqrt[x])/a])/b^3

Integrate@Sqrt@xD ê Ha^2 + b^2 xL, xD êê OutputForm

                       b Sqrt[x]
            2 a ArcTan[---------]                       --------
2 Sqrt[x]                  a
--------- - -----------------------------    -------------------- 
    2                 3
   b                 b

Integrate@Sqrt@xD ê Ha^2 + b^2 xL, xD êê StandardForm

2 x

b2
-

2 a ArcTanB b x

a
F

b3

Integrate@Sqrt@xD ê Ha^2 + b^2 xL, xD êê TraditionalForm

2 x

b2
-

2 a tan-1 b x

a

b3

InputForm  is a linear or 1D form that uses only standard characters. OutputForm  is a 2D form that
also  uses  only  standard  characters.  Both  of  these  forms  are  only  rarely  used.  One  application  of  the
input form is to ask for all of the 16 decimals that Mathematica uses in its internal calculations:

70 Mathematica Navigator



p êê N 3.14159

% êê InputForm 3.141592653589793

StandardForm  is  a  2D  form  and  uses  special  characters  such  as ,  special  spacings,  and  special
character sizes. This is the default form of output (so writing //StandardForm above was unnecessary).

TraditionalForm  imitates all aspects of traditional mathematical notation. For example, variables are
in italics,  arguments  of  functions are in parentheses (  )  and not  in square brackets [  ],  and other tradi-
tional  notations  such  as tan-1  (instead  of  ArcTan)  are  used.  This  form  is  mainly  used  in  preparing
mathematical documents.

In addition to the commands such as InputForm, we can also use the menu command Cell @ Convert
To.

Note that Mathematica has many more formatting commands:

Names@"*Form"D
8AccountingForm, BaseForm, BlankForm, BoxForm, CForm, ColonForm, ColumnForm,
DisplayForm, EdgeForm, EngineeringForm, FaceForm, FontForm, FortranForm,
FullForm, HoldForm, HorizontalForm, HornerForm, InputForm, LineForm, LongForm,
MathMLForm, MatrixForm, NumberForm, OutputForm, PaddedForm, ParentForm,
PointForm, PolynomialForm, PrecedenceForm, PrintForm, PromptForm, RealBlockForm,
RecurringDigitsForm, RuleForm, ScientificForm, SequenceForm, ShowShortBoxForm,
SpaceForm, StandardForm, StringForm, StyleForm, SyntaxForm, TableForm,
TeXForm, TextForm, TraditionalForm, TreeForm, ValueForm, VerticalForm<

For dynamic ways to show outputs, see Chapters 12 and 13.

‡ Style and Text

Style[expr, dirsOpts] (Ÿ6)  Show expr with the specified directives and options
Text[expr] (Ÿ6)  Show expr in plain text format

Style is mainly used to adjust font properties. Font directives and options are considered in Section

6.2.6,  p. 163.  We  have  such  options  as FontSize, FontWeight, FontSlant, FontColor, FontFamily,

and Background.  However,  the size,  weight,  slant,  and color  can also be defined simply by giving the
value of the option (i.e., the option itself need not be mentioned):

Style@Integrate@x Sin@xD, xD, 12, Bold, Italic,
Blue, FontFamily Ø "Helvetica", Background Ø YellowD
-x Cos@x D+Sin@x D

With Text we can easily change the usual Courier font in the outputs to the Times font:

Integrate@x Sin@xD, xD êê Text

-x Cos@xD+ Sin@xD

One of the options of Style is DefaultOptions. This option may sometimes be useful to change the
style of some objects without having to put the same set of options into each object:

Style@8Graphics@8Red, Circle@D<D, Graphics@8Green, Rectangle@D<D,
Graphics@8Blue, Disk@D<D<, DefaultOptions Ø 8Graphics Ø 8Background Ø Yellow<<D

: , , >

Chapter 3  •  Notebooks 71



‡  Framed, Panel, Labeled, and Pane

Framed[expr] (Ÿ6)  Put a frame around expr

Panel[expr] (Ÿ6)  Display expr as a panel
Panel[expr, title]  Give the panel the title title
Panel[expr, title, pos]  Put the title at position pos

Labeled[expr, label] (Ÿ6)  Give expr the label label
Labeled[expr, label, pos]  Put the label at position pos

Pane[expr, w] (Ÿ6)  Show expr as a pane; set the width to w printer’s points
Pane[expr, {w, h}]  Set the width and height to w and h printer’s points, shrinking the contents if

necessary

With Framed we can use the options Background, FrameMargins, FrameStyle, and ImageMargins.

Integrate@x Sin@xD, xD êê Framed

-x Cos@xD + Sin@xD

Framed@Integrate@x Sin@xD, xD, FrameMargins Ø 7D

-x Cos@xD + Sin@xD

With a panel we get a gray background:

Panel@Integrate@x Sin@xD, xDD

-xCos@xD+ Sin@xD

Panel@Integrate@x Sin@xD, xD, "Integral"D
Integral

-xCos@xD+ Sin@xD

Panel@Integrate@x Sin@xD, xD, "Integral", BottomD

-xCos@xD+ Sin@xD

Integral

Examples of a label:

Labeled@Integrate@x Sin@xD, xD, "Integral" êê TextD
-x Cos@xD + Sin@xD

Integral

Labeled@Integrate@x Sin@xD, xD, "Integral" êê Text, 88Top, Right<<D
Integral

-x Cos@xD + Sin@xD
A pane is useful if we would like to put the output on an area of fixed width and/or fixed height:

Table@Prime@nD, 8n, 1, 30<D
82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97, 101, 103, 107, 109, 113<

72 Mathematica Navigator



Pane@Table@Prime@nD, 8n, 1, 30<D, 200D
82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73,
79, 83, 89, 97, 101, 103, 107, 109, 113<

Some commands have the Frame  option and various options for  labels.  However,  with Framed  and
Labeled we get somewhat different results. Here, we use Plot as an example:

8Plot@Sin@xD, 8x, 0, 2 p<, Frame Ø TrueD,
Plot@Sin@xD, 8x, 0, 2 p<D êê Framed<

:

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

8Plot@Sin@xD, 8x, 0, 2 p<, PlotLabel Ø Sin@xDD,
Labeled@Plot@Sin@xD, 8x, 0, 2 p<D, Sin@xD êê Text êê TraditionalFormD<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
sinHx L

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

sinHxL

>

‡ Forms of Input

Inputs can be written both in a 1D and in a 2D form. For example:

Integrate@7 ê 2 Hx^2 + a Pi ê xL Sqrt@xD, 8x, 0, 1<D 1 +7 a p

‡
0

1 7

2
x2 +

a p

x
x „x 1 +7 a p

In  the  latter  form,  we  used  the BasicMathInput  palette;  see Section  1.4.1,  p. 15,  regarding  the  use  of

palettes  to  write  2D  inputs.  In Section  3.3.3,  p. 76,  we  learn  how  to  write  2D  inputs  without  palettes

using special key combinations.

Choosing between the 1D and 2D input forms may mainly be a matter of habit. I personally use 1D
inputs because they are straightforward to write with the keyboard and because I then do not need the
mouse,  the  palettes,  or  special  key  combinations.  However,  2D  inputs  are  very  clear  and  illustrative
because  they  resemble  traditional  mathematical  notation.  From  a  2D  input,  we  can  more  easily  check
that  the  input  is  correct.  Using  palettes  to  form  inputs  may  be  handy  at  least  in  the  early  stages  of
learning  the  use  of Mathematica  because  the  user  then  does  not  need  to  remember  the  form  of,  for
example,  an  integrating  command.  A  compromise  may  be  to  write  in  2D  form  only  the  parts  of  the
input that can easily be written with the keyboard:

IntegrateB7
2

x2 +
a p

x
x , 8x, 0, 1<F 1 +7 a p

Still  another  way  is  to  write  a  1D  input  and  then  convert  it  to  2D  form  with Cell @ Convert  To @

StandardForm. In Sections 3.3.2 and 3.3.3, we learn how to write special characters and 2D inputs.

Chapter 3  •  Notebooks 73



3.3.2  Writing Special Characters

‡ Introduction

Mathematica  has  a  large  set  of  special  characters  such as p, ¶, œ,  and ⁄.  To write  these  characters,  we
have several possibilities. As an example, we consider various ways to write ¶.

1. In an input, we can write Infinity.
2. From the keyboard, we can possibly find ¶ (on a Macintosh, press ıÎ5Ï).
3. All  characters  have  a full  name;  for ¶,  it  is  \[Infinity].  After  we  have  typed  ],  the  sequence  of

characters transforms to ¶.
4. Many characters also have an alias. For ¶, it is ÂinfÂ (Â means the escape key; it appears as Ç on

the screen). After pressing the second Â, the sequence of characters transforms to ¶. This is a very
handy way to type special characters, although we have to remember the aliases.

5. Many  characters  can  be  found in  the BasicMathInput  palette;  more  are  found in  the BasicType-
setting  and SpecialCharacters  palettes (the latter palette can also be opened from Insert @ Special
Character…). By moving the mouse over the BasicTypesetting  palette, we can see the aliases of the
characters at the bottom of the palette. By clicking a character in the SpecialCharacters  palette, we
can see both the full name and the alias of the character. In this way, we can learn the aliases and
full names so that we possibly more rarely need to use the palettes.

In  addition,  characters  can  be  typed  using  TeX  aliases  such  as Â\inftyÂ  or  HTML  and  SGML
aliases.

During the early stages of learning to use Mathematica,  it may be handy to use the palettes. In time, it
may be more useful to learn the aliases of the characters you need often. When we next study in some
detail the special characters of Mathematica, we will give the aliases of the characters. Characters are also
explained in the Documentation Center under tutorialêMathematicalAndOtherNotationOverview.

‡ Greek and Other Letters

char. a b g d e z h q J i k ø l m n x o p v r s t u f j c y w

alias a b g d e ce z h q cq i k ck l m n x om p cp r cr s t u f j c y o

char. A B G D E Z H Q I K L M N X O P R S T U ¢ F C Y W

alias A B G D E Z H Q I K L M N X Om P R S T U cU F C Y O

The second and fourth  rows tell  how the  alias  of  a  Greek letter  is  formed:  For example,  to  write g,
press ÂgÂ,  or  to  write G,  press ÂGÂ.  In  general,  these  aliases  are  easy  to  remember:  The  alias  is
formed  by  the  corresponding  usual  letter  (exceptions  are  q  for q  and  y  for y,  among  others).  The  “c”
letter in some aliases comes from “curly.” If you do not remember this kind of short alias, you can use a
longer alias containing the whole name of the Greek letter, for example, ÂgammaÂ or ÂGammaÂ.

In  addition to  Greek letters, Mathematica  has script  letters  such as , , , , , , , , , ,  Gothic
letters such as , , , , , , , , , , and double-struck letters such as , , , , , , , , , . Their
aliases are formed by enclosing, for example, sca, scA, goa, goA, dsa, or dsA with Â keystrokes.

In the following table, we have collected some special symbols:

char. p ‰ Â ¶

alias p ee ii inf dsC dsR dsQ dsZ dsN

74 Mathematica Navigator



For example, to write p, type ÂpÂ. Note that among the Greek letters, only p has a special meaning
in Mathematica. , , , , and  are often used to denote the set of complex, real, rational, integer, and
natural numbers, respectively. In outputs, Mathematica  uses the first four symbols given in the table for

Pi (= 3.141), E (= 2.718), I (= -1 ), and Infinity, respectively:

8Pi, E, I, Infinity< 8p, ‰, Â, ¶<

‡ Mathematical Symbols

char. ° μ ä ÿ , “ „ Ÿ ò ⁄ P

alias +- -+ * cross . sqrt pd del dd int cint sum prod

char. œ – Õ Œ ‹ › « ª º > @

alias el !el sub sub= un inter es === ~~ ~= ~== != prop

char. fl ñ Ø ö ¨ " $ ± fl fi Ÿ X \
alias => <=> -> --> <-> fa ex !ex and or not < >

char. æ d t ` p P T ± †

alias co tr ct hc lf rf lc rc @@ DD pw deg fssq

For example, to write ±, type Â+|Â. The symbol  means multiplication, ä the cross-product of two
vectors,  partial differentiation, “ a gradient or a backward difference, „ the differential in an integral,
«  an empty set,  conjugate,  transpose, æ  conjugate transpose,  Hermitian conjugate, d  and t  left and
right floor, ` and p left and right ceiling,  a piecewise definition, and ° degree.

Among  the  symbols  in  the  table,  many  have  special  mathematical  meanings  in Mathematica.  Such
symbols include , ä, ,, , Ÿ, ⁄, ¤, , œ, ‹, ›, fl, ", $, fl, fi, ¬, , , æ, , d, t, `, p, , and °. For example,

:2 μ 4, 81, 2, 3<ä8a, b, c<, ,
4, xSin@xD, ‡ Sin@xD „x, ‚

i=1

4

i,

8a, b, c< › 8a, c, d<, Ÿ HTrueÏ FalseL, H2 - 3 IL , d5.8t, 180 ± êê N>
88, 8-3 b + 2 c, 3 a - c, -2 a + b<, 2,
Cos@xD, -Cos@xD, 10, 8a, c<, True, 2 + 3 Â, 5, 3.14159<

‡ Characters for Fine-Tuning

\@InvisibleSpaceD ÂisÂ \@InvisibleCommaD Â ,Â
\@VeryThinSpaceD ÂâÂ \@NonBreakingSpaceD ÂnbsÂ
\@ThinSpaceD ÂââÂ \@NoBreakD ÂnbÂ
\@MediumSpaceD ÂâââÂ \@IndentingNewLineD ÂnlÂ
\@ThickSpaceD ÂââââÂ \@AlignmentMarkerD ÂamÂ

For each character, the table shows the full name and the alias.  Mathematica has some special charac-

ters that are useful for fine-tuning text and expressions. One of them is an invisible comma. An example
is xij,  where  we  used  an  invisible  comma  between i  and j.  If  we  write i  and j  one  after  another,  the

indices are not italicized: xij.  If  we write a space between i  and j,  the indices may be too far from each

other: xi j.

Another special character is an invisible space. An example is xy,  where we used an invisible space

between x  and y.  Such an xy  may be used as the product of x  and y  if we think that a space between x

Chapter 3  •  Notebooks 75



and y  is  not  aesthetically  what  we want: x y.  We also have an implicit  plus to  display mixed fractions

such as 5 3
4

; write the implicit plus as Â+Â.

We also have spaces of various widths; note that â  means the space key. Not shown in the previous
box are  the  corresponding negative spaces  from \[NegativeVeryThinSpace]  to  \[NegativeThickSpace],
which  allow  us  to  move  characters  nearer  to  each  other.  We  also  have  a  space  that  does  not  allow  a
break (i.e., the words on both sides of the nonbreaking space will always be on the same text line) and a
character  that  does not  allow a  break.  Note  that  the special  spaces  are of  fixed width and thus do not
stretch like a normal space.

An  indenting  character  inserts  a  line  break  while  always  maintaining  the  correct  indenting level  [a
usual  new  line  character  (¿)  sets  the  indenting  level  at  the  time  the  new  line  is  started].  With  an
alignment  marker,  we  can  tell  how  to  align  rows,  for  example,  in  a  mathematical  formula  containing

several rows (see Example 5 in Section 3.4.2, p. 83).

‡ Keys on a Keyboard

char. ¯ â Í ¿ Á Û ˜ ‚ ‡ Ç Â · Ì ı „ Î Ï ÷

alias spc space tab ret âret ent sh ctrl alt esc âesc cmd cl opt âdel @ D kb

These characters are useful in describing the use of the keyboard.

3.3.3  Writing 2D Expressions

‡ 2D Constructions

Recall that we can write inputs in a 2D form by using palettes. Now we learn how to write such inputs
with the keyboard. These techniques are also useful when writing formulas in a mathematical document
(see Section 3.4).

2D expressions are written with the control key. Here is a list of mathematical constructions made in
that manner (these can also be found by choosing Typesetting and Table/Matrix from the Insert menu).

‚ÎêÏ Go to the numerator of a fraction to be written or to the
denominator of a fraction whose numerator is already written

‚ÎüÏ or ‚Î2Ï Go into a square root

‚Î^Ï or ‚Î6Ï Go to the superscript position He.g., of a powerL

‚Î_Ï or ‚Î-Ï Go to the subscript position He.g., of a variable or derivativeL

‚Î&Ï or ‚Î7Ï Go to the overscript position He.g., of a sum, product, or integralL

‚Î+Ï or ‚Î=Ï Go to the underscript position He.g., of a sum, product, integral, or limitL

‚Î%Ï or ‚Î5Ï Go from superscript position to subscript position or vice versa,
or from overscript position to underscript position or vice versa,
or from the root position to the exponent position or vice versa

‚Î,Ï Add a column to a table or matrix

‚Î¿Ï Add a row to a table or matrix

‚ÎâÏ Return from a special position

‚Î.Ï Select the next larger subexpression

76 Mathematica Navigator



The symbols ‚Î/Ï  mean that we hold down the ‚ key while pressing /. The symbol ¿ means the
return  key,  and â  means  the  space  key.  Some  constructions  can  be  made  in  two  ways.  The  first  way
mentioned  should  be  possible  with  most  keyboards,  whereas  the  second  should  work  with  any
keyboard. If  both work with your keyboard, choose the way you feel more comfortable with or that is
easier for you to remember.

In formulas, we can move the cursor with the arrow keys ( , Ø, Æ, and ). To go to the next selection
placeholder (É), press Í.

To form derivatives,  integrals,  sums, and products,  we need the characters , Ÿ, „, ⁄,  and ¤  („  is  a
special  differential  used  in  integrals).  They  can  be  written  by  enclosing  pd,  int,  dd,  sum,  and  prod

between two Â keystrokes (see Section 3.3.2, p. 75).

Use ‚ÎâÏ to get out of the denominator of a fraction, to get out of a square root, to get down from a
power, to get to the baseline from an index, and so on.

‡ Examples

The following are simple examples of writing 2D formulas with the keyboard:

To write in the form type

aêb
a

b
a ‚Îë Ï b ‚ÎâÏ

Sqrt@aD a ‚Î2Ï a ‚ÎâÏ

x^2 x2 x ‚Î^ Ï 2 ‚ÎâÏ

x@nD xn x ‚Î_Ï n ‚ÎâÏ

xbar x
ê

x ‚Î & Ï _ ‚ÎâÏ

Next are more elaborate constructs:

To write in the form type

D@a + b x, xD xHa + b xL ÂpdÂ‚Î_Ï x ‚ÎâÏ Ha + b xL

Integrate@a + b x,
8x, c, d<D

Ÿ
c

d

Ha + b xL „x ÂintÂ‚Î + Ï c ‚Î % Ï d ‚ÎâÏ

Ha + b xL ÂddÂ x

Sum@x^i, 8i, 0, n<D ⁄i=0
n xi ÂsumÂ‚Î + Ï i = 0 ‚Î % Ï n ‚ÎâÏ

x ‚Î^ Ï i ‚ÎâÏ

88a, b, c<, 8d, e, f<<
a b c

d e f
Ia ‚Î, Ï b ‚Î, Ï c ‚Î¿Ï

d Í e Í f ‚ÎâÏ M

Piecewise@880, x § 0<,
81, x > 0<<D

0 x § 0

1 x > 0
ÂpwÂ 0 ‚Î, Ï x § 0 ‚Î¿Ï 1 Í x > 0

Note that parentheses are needed around the expression to be differentiated, integrated, or summed
if the expression is in the form of a sum.

Note also that we have shown one way to write the expressions, but often we have several possibili-

ties. For example, to write a+b

c+d
, we can first press ‚Î/Ï and then fill in the numerator and denominator.

We can also first  write a + b,  then press ‚Î.Ï  two times to  select  the numerator,  then press ‚Î/Ï,  and
lastly type the denominator.

Chapter 3  •  Notebooks 77



Remember that matrices of size 2 2 can be formed with the BasicMathInput palette. A handy way to
create matrices is to use Insert @ Table/Matrix.  In the appearing dialog box, ask for a matrix, and then
enter the number of rows and columns. We get a blank matrix:

K Ñ Ñ Ñ

Ñ Ñ Ñ
O

By  pressing Í,  we  can  then  go  through  the  matrix  and  enter  the  elements.  If  we  ask  for  a  table,  the
result does not have the parentheses.

Writing  2D  formulas  is  easier  than  it  seems  to  be  when  looking  at  the  previous ‚  and Â  key
sequences. Indeed, Mathematica’s way of writing formulas is one of the best and easiest in the market, if
not the best and easiest. Try it.

3.4  Writing Mathematical Documents

3.4.1  Introduction

‡ Mathematica as a Writing Tool

As noted in Section 3.1.2,  p. 54, Mathematica  is  an  advanced  environment  for  technical  writing. One of  the

advantages of using Mathematica  as a writing tool is that the whole document can be prepared with just
one application.

For  example,  graphics  can  be  created  with Mathematica,  and Mathematica  writes  the  results  of
mathematical  computations  in  a  form ready  to  be  printed.  Writing  and computation  take  place  in  the
same application so that they have a fruitful interaction: When writing the text,  you may observe new
needs for mathematical computation, and from the results, you may observe new things to be reported.

In addition, the properties of Mathematica  needed for using Mathematica  as a writing environment are
of high quality. For example, with Mathematica we get first-rate

• text layout by using styles and style sheets (Section 3.1.2, p. 54);

• formulas by using the traditional form (Sections 3.4.2, p. 80, and 3.4.3, p. 86);

• graphics of PostScript form (Chapters 5 through 8);
• tables with many kinds of fine-tuning (Chapter 15);

• indexes with hyperlinks (see Author Tools, p. 79); and

• Help Browser material with hyperlinks (see Author Tools, p. 79).

Furthermore, Mathematica,  as  one  of  the  most  powerful  mathematical  systems  available,  helps  you
with all  kinds of  computations  needed to prepare your document. Mathematica  documents can also be

converted into LATEX, HTML, PDF, RTF, and PS documents from File @ Save As….

Whereas text layout, graphics, and tables are considered elsewhere, in Sections 3.4.2 through 3.4.4 we
present  some  other  material  that  is  helpful  to  know  when  using Mathematica  as  a  writing  tool.  In
particular,  we  show  how  to  write  mathematical  formulas  and  how  to  number  formulas  and  sections
automatically.

‡ Selecting a Style Sheet

The key to writing with Mathematica  is the use of styles  (Section 3.1.2, p. 54). With styles, you can easily

write  titles,  headings,  text,  and  formulas.  Styles  help  in  getting  a  consistent  look  throughout  the
document.

78 Mathematica Navigator



Remember that the styles of cells vary according to the style sheet you use (see Section 3.1.2). You may
start  the  writing  work  with  the Default  style  sheet,  but  at  some  point  you  should  consider  the  style
sheet  in  more  detail.  Regarding  equation  numbers,  with  all  style  sheets  we  can  get  simple  equation
numbers  such  as  (7)  with  the DisplayFormulaNumbered  style.  Structured  equation  numbers  such  as
H2.7L  can be obtained by using the EquationNumbered  style with the Textbook  style sheet (see Section

3.4.4, p. 90). After choosing a style sheet, you may want to modify it (see Section 3.2.2, p. 63).

‡ Main and Working Documents

When  writing  a  mathematical  document  with Mathematica,  it  may  be  useful  to  work  simultaneously
with two documents:  a main document  and a working document.  The main document will  grow into the
final  publication,  whereas  all  computations  are  done  in  the  working  document.  Mathematical  results,
tables, and graphics are copied from the working document into the main document. This division into
two documents may be needed because the main document may not contain the Mathematica commands
but  only  the  results.  The  working  document  contains  all  used Mathematica  commands  so  that  all
computations can easily be done again.

The  working  document  should  include  the  same sections  as  are  in  the  main document  so  that  you
can easily find the computations of a certain section. Add into the working document comments about
the computations, such as any difficulties that may arise; they may be valuable if you need to do similar
computations at a later time.

When you  have  completed  the  writing  project,  you  will  then  have  the  main document  ready to  be
printed and the working document that will enable you to redo and modify computations as needed.

‡ Author Tools

In preparing a long, possibly book-sized document, and adding documents into the Help Browser, the
add-on package AuthorTools may be very valuable. With the author tools, we can do the following:

• create a table of contents with hyperlinks;
• add index entries into the document;
• create an index with hyperlinks;
• create a Browser Categories file (for adding information into the Help Browser); and
• create a Browser Index file (to add the index entries into the Master Index of the Help Browser).

With this package, we can also compare differences among notebooks; restore corrupted notebooks;
create bilaterally formatted cells (for displaying examples of Mathematica calculations); extract all cells of
a  particular  type  and  save  them  in  a  desired  format;  insert  objects  to  display  the  current  values  of
variables such as the date, time, and the file name; and set printing options such as headers and footers.

Each  of  these  operations  can  be  done  either  on  a  single  notebook  or  on  a  set  of  notebooks.  For
example, we can generate a unified index or table of contents for a book consisting of several notebooks.
We  used  the  package  in  the  writing  of  this  book  to  add  the  index  entries,  to  create  an  index,  and  to
create the Browser Categories and Browser Index files.

Look  at http://support.wolfram.com/mathematica/packages/authortools/authortoolsinv6.html  for
information about the AuthorTools package in Mathematica 6. This page says, “The AuthorTools app pack
is included with Mathematica 6, but it is considered legacy code and may not work as well with version 6
as it  did in previous versions of Mathematica.  It  is  included to help you during the transition to newer
functions and syntax.”

Chapter 3  •  Notebooks 79



3.4.2  Display Formulas

‡ Styles for Display Formulas

We  can  distinguish  two  types  of  formulas: display  formulas  and inline  formulas.  Display  formulas  are
displayed  in  their  own  lines  of  text,  whereas  inline  formulas  are  written  inside  normal  text.  Before
explaining how to write display formulas, we consider the styles used for them.

To  write  formulas,  each  style  sheet  (except Demonstration)  has  the  styles DisplayFormula  and
DisplayFormulaNumbered. These styles can be used either directly with Format @ Style or by choosing
Format @ Style @ Other…  and then typing the name of the style; the latter method has to be used with
the Article  and Book type style sheets. The Article  and Book type style sheets have the styles Equation
and EquationNumbered in Format @ Style (other style sheets do not have these styles).

The styles DisplayFormula and Equation have some differences in the alignment of the formula. The
styles DisplayFormulaNumbered  and EquationNumbered  have  the  difference  that  the  former
generates simple numbers such as H7L throughout the notebook, whereas the latter generates structured
numbers such as H2.7L,  where the first number refers to the chapter number and the second number to
the  formula  within  that  chapter  [however,  in  the JournalArticle  style  sheet,  the EquationNumbered
style gives a simple number such as H7L].

Recommendations are as follows. If you want to use structured equation numbers, use the Textbook

style sheet and the styles Equation  and EquationNumbered  (see more details in Section 3.4.4, p. 90). If

unstructured equation numbers suffice, use any of the other style sheets and the styles DisplayFormula
and DisplayFormulaNumbered  (however,  with  the JournalArticle  style  sheet,  it  is  easiest  to  use  the
styles Equation and EquationNumbered because these are in the style menu).

Numbered equations are considered in Section 3.4.4, p. 89.

‡ Writing Display Formulas

To write a  display formula (a mathematical  formula in a separate line),  complete the following simple
steps:

• Write the formula in the usual Input style by using any of the various ways to write inputs (see

Section 3.3.1, p. 73): Write usual 1D mathematica code (e.g., Sum[Subscript[a, i], {i, n}]) or

write 2D formulas (e.g.,⁄i=1
n ai) with the keyboard or by using the BasicMathInput and

SpecialCharacters palettes.
• You can execute any part of the formula by selecting that part with the mouse and choosing

Evaluation @ Evaluate in Place or by pressing ‡÷Á (Ì÷Á on a Macintosh).
• Transform the formula into the traditional mathematical form by letting the cursor be in the

formula and choosing Cell @ Convert To @ TraditionalForm or by pressing ˜÷‚ÎtÏ (˜÷ÌÎtÏ on a
Macintosh). Lastly, choose, from Format @ Style, the cell style to be one of DisplayFormula,
DisplayFormulaNumbered, Equation, or EquationNumbered.

Sometimes you may want to nudge some parts of a formula. For example, to nudge to the left, press
‚Î Ï  several  times.  Another  way  to  nudge  is  the  use  of  the  menu  commands,  found  in Insert @

Typesetting.

To write an inline formula (a mathematical formula among text), see Section 3.4.3, p. 86.

80 Mathematica Navigator



‡ Example 1

Suppose we want to write the following formula:

fn =‡
0

p sinHxL

n + x
„ x, n = 1, 2, …

First, we write the following input:

Subscript@f, nD = Integrate@Sin@xD ê Hn + xL, 8x, 0, p<D
Then we transform the cell into traditional form:

fn =‡
0

p sinHxL
n + x

‚x

Lastly, we transform the cell into the Equation style:

fn =‡
0

p sinHxL

n + x
„ x

We can write “n = 1, 2, …” at the end. Note that here we showed the formula in three separate forms in
three cells to show how the formula proceeds, but normally the conversions are done in only one cell.

‡ Comment

The previous  method of  writing  formulas  works  but  has  the  restriction that  the  formula to  be  written
has  to  follow  correct Mathematica  syntax;  otherwise,  the  transformation  into  traditional  form  does  not
succeed. For example, we cannot write “n = 1, 2, …” at the end of the input:

Subscript@f, nD = Integrate@Sin@xD ê Hn + xL, 8x, 0, p<D, n = 1, 2, …

This input simply does not transform into the traditional form. Therefore, often we have to afterwards
add some minor components such as “n = 1, 2, …” into the formula.

Next, we present a modified way to write formulas; I have been comfortable with this way.

‡ Using a Template

Now we present a way to write formulas in which we first prepare a template for a formula. Each time
we would like to write a formula, we take a copy of this template and then write the formula. Thus, first
prepare a template as follows:

• Write template in the Input style.
• Transform the cell into the traditional form by letting the cursor be in the input and choosing Cell @

Convert To @ TraditionalForm or by pressing ˜÷‚ÎtÏ (˜÷ÌÎtÏ on a Macintosh).
• Choose, from Format @ Style, the cell style to be one of DisplayFormula, DisplayFormulaNum-

bered, Equation, or EquationNumbered.

The result of these steps is a template like the following:

template

Chapter 3  •  Notebooks 81



We  can  hold  the  template  at  the  end  of  our  document  or  in  a  separate  notebook.  Now,  each  time  we
want  to  write  a  formula,  we  take  a  copy of  this  cell,  remove “template”,  and write  a  new formula.  In
writing, we can use palettes or write 2D formulas directly with the keyboard. We can also use Mathemat-
ica  commands  such  as  Integrate,  but  then  we have  to  again transform the  formula  into  the  traditional
form.

In this method, the formula need not be in the correct Mathematica  syntax. On the other hand, if we
now  want  to  execute  a  part  of  the  formula,  we  get  the  warning  that  the  traditional  form  has  some
restrictions in mathematical interpretation.

‡ Example 2

We want to write the same formula as in Example 1. We take a copy of the template and, with the aid of
BasicMathInput palette or the keyboard, write the formula. It comes ready without any transformations:

fn =‡
0

p sinHxL

n + x
„ x, n = 1, 2, …

In writing the formula, do not type any spaces because the traditional form automatically writes spaces
at suitable places.

‡ Example 3

Next, we want to write the following formula, which is a special case of the formula we considered in
Examples 1 and 2:

f1 = CiH1L sinH1L -CiH1 + pL sinH1L + cosH1L H-SiH1L + SiH1 + pLL

Copy the formula we wrote in Example 2, delete “n = 1, 2, …”, and replace n with 1:

f1 =‡
0

p sinHxL

1 + x
„ x

Select the integral and choose Evaluation @ Evaluate in Place.

‡ Example 4

Now we want to write this formula:

‡
0

p sinHxL

n + x
„ x = CiHnL sinHnL -CiHn + pL sinHnL + cosHnL HSiHn + pL - SiHnLL

Because we now want to use an assumption, we write Mathematica code:

Integrate@Sin@xD ê Hn + xL, 8x, 0, p<D =

Integrate@Sin@xD ê Hn + xL, 8x, 0, p<, Assumptions Ø n > 0D
Execute the right-hand side by pressing ‡÷Á:

Integrate@Sin@xD ê Hn + xL, 8x, 0, p<D = CosIntegral@nD Sin@nD -

CosIntegral@n + pD Sin@nD + Cos@nD H-SinIntegral@nD + SinIntegral@n + pDL
Convert this into traditional form and equation:

‡
0

p sinHxL

n + x
„ x = CiHnL sinHnL -CiHn + pL sinHnL + cosHnL HSiHn + pL - SiHnLL

82 Mathematica Navigator



‡ Example 5

To write the formula,

d =‡
0

1 log7HxL

1 - x2

„ x

= -
1

768
p 9275 p6 logH4L + 133 p4 Alog3H4L + 12 zH3LE+ 21 p2Alog5H4L + 120 zH3L log2H4L + 720 zH5LE+

3 Alog7H4L + 420 zH3L log4H4L + 15 120 zH5L log2H4L + 10 080 zH3L2 logH4L + 90 720 zH7LE=
= -5040.39

so that the equal signs are aligned, first write as follows:

d = Integrate@Log@xD^7 ê Sqrt@1 - x^2D, 8x, 0, 1<D =

Integrate@Log@xD^7 ê Sqrt@1 - x^2D, 8x, 0, 1<D =

Integrate@Log@xD^7 ê Sqrt@1 - x^2D, 8x, 0, 1<D êê N

Then execute separately the second and the third integral:

d = Integrate@Log@xD^7 ê Sqrt@1 - x^2D, 8x, 0, 1<D =

-
1

768
p I275 p6 Log@4D + 133 p4 ILog@4D3

+ 12 Zeta@3DM +

21 p2 ILog@4D5
+ 120 Log@4D2 Zeta@3D + 720 Zeta@5DM +

3 ILog@4D7
+ 420 Log@4D4 Zeta@3D + 10 080 Log@4D Zeta@3D2

+

15 120 Log@4D2 Zeta@5D + 90 720 Zeta@7DMM = -5040.389239250824`

Convert this to traditional form and equation:

d =‡
0

1 log7HxL

1 - x2

„ x =

-
1

768
p I275 p6 logH4L + 133 p4 Ilog3H4L + 12 zH3LM + 21 p2 Ilog5H4L + 120 zH3L log2H4L + 720 zH5LM +

3 Ilog7H4L + 420 zH3L log4H4L + 15 120 zH5L log2H4L + 10 080 zH3L2 logH4L + 90 720 zH7LMM = -5040.39

To fine-tune the formulas,  add a  return character  before  the second and third equal  signs,  write an
alignment marker (ÂamÂ) before each equal sign, write a no break sign (ÂnbÂ) after the third equal
sign,  select  the  cell  bracket,  and  choose Format @ Text  Alignment @ On  AlignmentMarker.  Lastly,
replace  some  usual  parentheses  with  brackets  ([  ])  and  curly  braces  ({  })  to  make  the  formula  more
readable.

‡ Example 6

Next, we write the following formula:

‡ xa „ x =
xa+1

a+1
, a -1,

logHxL, a = -1.

To begin, write the integral with the template:

Chapter 3  •  Notebooks 83



‡ xa „ x =

Then write and execute the following command:

PiecewiseB:: xa+1

a + 1
, a != -1>, 8Log@xD, a == -1<>F êê TraditionalForm

xa+1

a+1
a -1

logHxL a -1

Copy this result and paste into the previous formula:

‡ xa „ x =
xa+1

a+1
a -1

logHxL a -1

Lastly, select the cell bracket of the formula and choose Insert @ Typesetting @ Add Frame or click the
†  button in the BasicTypesetting  palette. If the frame seems to be too thick, select the cell bracket of the
formula and, with the Option Inspector, change the value of BoxFrame to, for example, 0.25:

‡ xa „ x =
xa+1

a+1
a -1

logHxL a = -1

Previously, we wrote the piecewise definition as a Mathematica  command. Another way to write the
formula is  to write directly a  2D formula.  Take a copy of the template we created previously,  paste it,
and write, using the BasicMathInput palette or direct 2D input, as follows:

‡ xa „ x =
xa+1

a+1
a -1

logHxL a = -1

Here, to begin the piecewise definition, type ÂpwÂ. To create slots for the four parts of the definition,
type ‚Î,Ï. Fill in the slots. To align the columns left, select the cell bracket of the formula, and using the
Option Inspector, set the value of the GridBoxAlignment option to {"Columns" -> {{Left}}}.

To fine-tune the formula, type a comma or period at suitable places. If you want to adjust the frame
(thickness,  margins,  background,  etc.),  select Format @ Option  Inspector,  go  to Formatting  Options @

Expression Formatting @ Specific Box Options @ FrameBoxOptions, and set the values of suitable options.

‡ Example 7

To write the formula,

lim
xØ¶

a

x
+ 1

x

= ‰a

use the BasicMathInput  palette or direct 2D input. First, click the ‡
Ñ

 button in the palette, and write lim

into the upper box and x Ø ¶ into the lower box. Then, write the rest of the formula. Another way is to
write a Mathematica command:

Limit@H1 + a ê xL^x, x Ø ¶D = Limit@H1 + a ê xL^x, x Ø ¶D
Execute the right-hand side, and convert the cell to traditional form and equation.

84 Mathematica Navigator



‡ Example 8

To write this one,

1 1 1 1
k

0 0 0 0
n

use the template  we created previously and click É
Ñ

 two times from the BasicMathInput  palette  to  get

three  placeholders.  Write  “1 1 1 1”  in  the  first  box;  write ÂâââÂ  between  each  character.  The  three
dots  can  be  found  from  the SpecialCharacters  palette  under Textual  Forms.  Type ß  from  the  same
palette in the second box, and k in the last box. Copy this whole expression, paste it next to the expres-

sion, and replace the 1’s with 0’s and k with n.

‡ Example 9

To write the matrix

a11 a12 a1 n

a21 a22 a2 n

ª ª ª

am 1 am 2 am n

paste  a  copy  of  the  template  we  created  previously  and  insert  a H4μ 4L  empty  matrix  with Insert @

Table/Matrix @ New….  Then  fill  in  the  elements.  The  characters  (center  ellipsis)  and ª  (vertical
ellipsis)  can  be  found  from  the SpecialCharacters  palette  under Textual  Forms.  Note  that  for  the
elements in the last row, we have to type a space between the indices to get m and n italicized.

The space between the indices in the last column and last row may not satisfy you. To get the indices
closer to each other,  write an invisible comma between the indices with Â,Â. In this way, we get the
following matrix:

a11 a12 a1n

a21 a22 a2n

ª ª ª

am1 am2 amn

‡ Example 10

With the BasicMathInput  palette, we can write expressions such as x  and x. With the BasicTypesetting

palette, many other similar expressions can be written: x†, x+, x+, x-, x-, x, x, x, x*, x*, x£, x , x° , x– , xè , and x` .

Still more similar expressions can be written by clicking the buttons ‡Ñ, ‡Ñ, ‡Ñ
Ñ, Ñ‡, Ñ‡, ‡

Ñ

, ‡
Ñ

, or ‡
Ñ

Ñ

 in the

BasicTypesetting  palette  and filling  the  slots  with  suitable  characters.  Recall  (Section  3.3.3,  p. 76)  that

the constructions ‡Ñ, ‡Ñ, ‡
Ñ

, and ‡
Ñ

 can also be written with the keyboard by typing ‚Î^Ï, ‚Î_Ï, ‚Î&Ï,

or ‚Î+Ï,  respectively.  In  addition,  we  have  the  following  characters,  familiar  from  matrix  calculus:
(ÂcoÂ),  (ÂtrÂ), æ (ÂctÂ), and  (ÂhcÂ) (they are written without the ‡Ñ construct).

Chapter 3  •  Notebooks 85



3.4.3  Inline Formulas

‡ Writing Inline Formulas

An inline formula is  among the text of  a Text-style  cell.  Such formulas are often small,  such as i, ai, x,

f HxL, f £HxL, f ë x,
f

x
, x , sinHxL, a ê b, a

b
, limxØ¶ J1 +

a
x
N
x
= ‰x, Ÿ sinHxL „x, Ÿo

pcosHxL „x, or ⁄i=1
¶ 1 ë i2. If the

formula is larger, it is often more useful to put it in a separate line as a display formula.

Note  that Mathematica  formats  inline  formulas  lower  as  display  formulas  (as  is  usual  in  traditional
mathematical  notation).  For  example,  in  a  fraction,  the font  size is  smaller;  in  a  limit,  the variable  and
limiting value are written as a subscript next to “lim”; and in a definite integral or sum, the lower and
upper limits are written as sub- and superscripts (and not as under- and overscripts).

To  write  an  inline  formula,  we  begin  and end the  formula  with  the special  key combinations ‚÷Î(Ï
and ‚÷Î)Ï. The simple steps are as follows:

• Begin the formula by typing ‚÷Î(Ï or ‚÷Î9Ï.
• Write the formula.
• End the formula by typing ‚÷Î)Ï or ‚÷Î0Ï.

The formula can be written in any way: linearly, in a 2D form with the keyboard (see Section 3.3.3, p.

76), or in a 2D form with the palettes. 2D formulas are automatically in the traditional form. Linear 1D

formulas  such  as Integrate@a ê H1 + xL, xD  can  be  transformed  into  the  traditional  form  by selecting  the

formula  with  the  mouse  and  choosing Cell @ Convert  To @ TraditionalForm  or  pressing ˜÷‚ÎtÏ
(˜÷ÌÎtÏ on a Macintosh).

I  often write  the simplest  formulas (e.g.,  variables,  special  characters,  subscripts,  powers,  functions,
square roots, and fractions) with the keyboard and less simple formulas (e.g., integrals and sums) with
palettes.

Note  that  a  part  of  an inline  formula can also be  executed by selecting that  part  and then choosing
Evaluation @ Evaluate in Place or by pressing ‡÷Á (Ì÷Á on a Macintosh). However, this may seldom
be needed because inline formulas are, as a rule, simple.

‡ Example 1

We want to write a simple text cell:

Assume that x is positive. Then…

Just begin a Text cell by pressing ‡Î7Ï, write the text before x, then write ‚÷Î(Ï x ‚÷Î)Ï, and continue the
text.  Note that  you need not  worry about italicizing the variable; Mathematica  does it  for you. Another
way  to  write x  is  to  press ‚÷ÎiÏ  x ‚÷ÎiÏ  to  italicize  the  variable.  Choose  the  way  you  find  easiest.  I
consistently use ‚÷Î(Ï … ‚÷Î)Ï for all inline formulas, even formulas as simple as x.

‡ Example 2

Next, we want to write the following text cell:

Consider the function f HxL = a sinHx + pL. Let…

86 Mathematica Navigator



To  write  the  formula,  press ‚÷Î(Ï,  write  f(x)=aâsin(x+ÂpÂ),  press ‚÷Î)Ï,  and  continue  the  text.  Note
that  when  writing  the  formula  you  should  not  press  the  space  key  in  any  other  place  besides  in
multiplications; Mathematica adds suitable spaces when needed (e.g., before and after = or +).

‡ Example 3

Now, we write the following text cell:

Let f HxL = a
x

 and assume that…

To write the formula, do one of the following:

• Use the keyboard: ‚÷Î(Ï f(x)=a ‚÷Î/Ï x ‚÷Î)Ï (see Section 3.3.3, p. 76).

• Use the BasicMathInput palette to write the fraction: ‚÷Î(Ï f(x)= a
x
‚÷Î)Ï.

• Write the formula linearly as ‚÷Î(Ï f(x)=a/x ‚÷Î)Ï, select a/x, and press ˜÷‚ÎtÏ.

‡ Example 4

Let us now write the following formula in the text cell:

If the integral Ÿ0
¶

f HxL „x converges, then…

Do one of the following:

• Use  the  keyboard  to  write  the  lower  and  upper  bounds  of  the  integral  as  sub-  and  superscripts:
‚÷Î(Ï ÂintÂ ‚÷Î_Ï 0 ‚÷Î%Ï ÂinfÂ ‚÷ÎâÏ f(x) ÂddÂ x ‚÷Î)Ï. (This is easier than it looks; try it.)

• Use the BasicInput palette to write the integral: ‚÷Î(ÏŸ0
¶

f HxL „x‚÷Î)Ï (go with Í from one selection

placeholder to the next one).
• Write  the  formula  linearly  as ‚÷Î(ÏIntegrate[f[x],{x,0,Infinity}]‚÷Î)Ï,  select  the  formula,  and  press
˜÷‚ÎtÏ.

‡ Example 5

Now we want to write the following:

Because Ÿ
1

a+x2
„x =

1

a
tan-1 x

a
, then…

First, write the following with the BasicMathInput palette:

Because Ÿ
1

a+x2
„x = Ÿ

1

a+x2
„x, then…

Select the latter integral and execute it with ‡÷Á. Here is the result:

Because Ÿ
1

a+x2
„x =

tan-1
x

a

a
, then…

To make the formula lower, cut the denominator, insert a fraction after the equal sign, write 1 into the
numerator, and paste the cut square root into the denominator:

Because Ÿ
1

a+x2
„x =

1

a
tan-1 x

a
, then…

Chapter 3  •  Notebooks 87



In this way, you can also modify the results Mathematica gives.

‡ Example 6

The following is another way to write the same formula:

Because Ÿ
1

a+x2
„x =, then…

Then execute the integral:

Integrate@1 ê Ha + x^2L, xD
ArcTanB x

a
F

a

Copy the result into the formula:

Because Ÿ
1

a+x2
„x =

ArcTanB x

a

F

a
, then…

Select  the  value  of  the  integral,  convert  it  into  traditional  form,  and  then  move  the  denominator  as
shown previously. In this way, results from calculations can be inserted into inline formulas.

‡ Example 7

In display formulas, the default is that constructs such as a sum, product, union, intersection, lim, max,
or min are written in a tall form:

‚
i=1

n

ai +Ê
i=1

n

ci + lim
xØ0

f HxL +max
i

8di<

However, in an inline formula the default is that these constructs are displayed in a low form:

⁄i=1
n ai +‹i=1

n ci + limxØ0 f HxL + maxi 9di=

This is a very useful property. However, we have an option, LimitsPositioning, that also enables us to
get tall forms in inline formulas. This option can be found from the Option Inspector when the View  is
set  to  be alphabetically.  In  the Option Inspector,  we can see that  the option can be used in underscript-

boxes ‡
Ñ

,  overscriptboxes ‡
Ñ

,  and  underoverscriptboxes ‡
Ñ

Ñ

.  If  we  select  the  cell  bracket  of  the  previous

formula  and  set,  with  Option  Inspector, LimitsPositioning  (UnderscriptBoxOptions)  to  be False,
the lim and max constructs become tall:

⁄i=1
n ai +‹i=1

n ci + lim
xØ0

f HxL + max
i

9di=

If  we set LimitsPositioning  (UnderoverscriptBoxOptions)  to be False,  the sum and union become
tall:

⁄
i=1

n
ai + ‹

i=1

n
ci + limxØ0 f HxL + maxi 9di=

If  we  set  both LimitsPositioning  (UnderscriptBoxOptions)  and LimitsPositioning  (UnderoverÖ
scriptBoxOptions) to be False, all constructs become tall:

88 Mathematica Navigator



⁄
i=1

n
ai + ‹

i=1

n
ci + lim

xØ0
f HxL + max

i
9di=

3.4.4  Automatic Numbering

‡ Introduction

Sections and some formulas in a mathematical document are often numbered so that we can easily refer
to them. Often, we also want to refer to some page numbers of our document. With Mathematica,  we can
give the numbers manually and also write references to them manually, but we can also let Mathematica
automatically choose the appropriate numbers.

In a small document, the numbers of sections and references to page numbers can easily be written
manually,  and  to  some  extent  the  same  is  true  for  formulas.  However,  in  a  larger  document  the
automatic numbering becomes more tempting because chances increase that sections and formulas are
moved  to  other  places  and  new  sections  and  new  formulas  are  written  among old  ones.  After  such  a
modification,  automatic  numbers  and  references  to  them  are  again  correct  without  your  having  to
manipulate  them  in  any  way,  whereas  manually  given  numbers  and  references  to  them  have  to  be
manually  corrected.  However,  using  the  automatic  numbering  system  of Mathematica  often  requires
some work in the form of handling so-called cell tags. Next, we consider automatic numbering of pages,
formulas, and sections.

‡ Referring to Page Numbers

Suppose you want to write “According to Theorem 2.3 (see p. XXX) …”, where XXX should be replaced
with the correct  page number. First,  you have to assign a cell  tag  to the cell  that contains Theorem 2.3.
Select the cell bracket of the theorem, and do the following:

• Choose Cell @ Cell Tags @ Add/Remove Cell Tags…; the following window appears:

• Write a name (e.g., Theorem 2.3) for the cell into the Cell tag field and click Add.

To create a reference to the page number of Theorem 2.3, put the cursor in the place where you want
to refer to the theorem (i.e., after “see p. ”) and do the following:

Chapter 3  •  Notebooks 89



• Choose Insert @ Automatic Numbering…; the following window appears:

• Set Counter to be Page.
• From the list All cell tags in the notebook, click the cell tag of the theorem, and click OK.

The page number now appears, at the location of the cursor, in the form XXX. When the document is
printed,  XXX is  automatically replaced with the correct  page number.  Before printing,  you can see the
correct page number by choosing File @ Printing Settings @ Show Page Breaks. The page number also
has the useful property that when it is clicked on, the document is scrolled to the cell to which the page
number refers.

By the way, a list of all cell tags of the current notebook can be seen by choosing Cell @ Cell Tags @

Find Cell Tag. By selecting a cell tag from the list, the notebook is scrolled to the corresponding cell. The
cell tags can be seen in the notebook by choosing Cell @ Cell Tags @ Show Cell Tags.

‡ Manual Numbering of Formulas

Before explaining the automatic numbering of formulas, we show how to manually add a number to a

formula. First, write the formula (see Section 3.4.2, p. 80):

f = a + b x

Add the formula number as a cell  frame label as follows. Select the cell bracket of the formula, choose
Format @ Option  Inspector,  set View  to  be alphabetically,  and  find  the  option CellFrameLabels.  The
default value of this option is {{None, None}, {None, None}}. Replace the second None with “(3.1)“ and
press Á. The formula now has the given number:

(3.1)f = a + b x

‡ Automatic Numbering of Formulas

All  style  sheets  (except Demonstration)  have  styles  for  automatically  numbered formulas;  see Section

3.4.2,  p. 80.  To repeat, if  you want to use structured equation numbers such as H2.7L,  use the Textbook

style sheet and the styles Equation  and EquationNumbered. If unstructured equation numbers such as
H7L suffice,  use any of the other style sheets and the styles DisplayFormula  and DisplayFormulaNum-
bered (however, with the JournalArticle style sheet, it is easiest to use the styles Equation and Equation-
Numbered because these are in the style menu). The automatic numbers of formulas are useful because
they automatically change if we add or remove formulas.

90 Mathematica Navigator



To create a formula with an unstructured number, first write a formula, then select the cell bracket of
the formula, and choose the style to be DisplayFormulaNumbered:

(1)f = a+ b x

To create a formula with a structured number, use the Textbook  style sheet. The first number, such
as 2 in H2.7L, refers to a chapter. Thus, you have to compose the document by chapters. Each chapter may
contain sections,  subsections,  etc.  For each chapter,  you have to create,  with the BookChapterNumber
style, a cell containing the number of the chapter. Of course, it is also useful to create a chapter title; use
the BookChapterTitle style. These two styles are not listed in the style menu, so choose Format @ Style @

Other… and type the name of the style.

If you would like to remove the number of an equation, just choose the style of the cell to be Display-
Formula or Equation.

‡ Referring to Numbered Formulas

To be able to refer to a numbered formula, we have to first assign a cell tag to the formula. Select the cell
bracket of the numbered formula, and do the following:

• Choose Cell @ Cell Tags @ Add/Remove Cell Tags….
• Write a name for the formula into the Cell tag field and click Add.

To create a reference to a numbered formula, put the cursor in the place where you want to refer to
the numbered formula, and do the following:

• Write the opening parenthesis ( and choose Insert @ Automatic Numbering….
• Set Counter to DisplayFormulaNumbered (or EquationNumbered)
• From  the  list All  cell  tags  in  the  notebook,  click  the  cell  tag  of  the  formula,  click OK,  and  write  the

closing parenthesis ).

The  number  of  the  formula  now appears  at  the  location  of  the  cursor.  This  reference  automatically
changes if the number of the formula changes. By clicking the number, the notebook is scrolled to where
the formula is located.

‡ Modifying Automatic Numbers of Formulas

In the Textbook  style sheet, the working of the numbering of formulas is based on chapters. However,
you may want to create numbers where the first part is based on, for example, sections. Do as follows.
Set the style sheet to be Textbook and choose Format @ Edit Stylesheet….

From Choose a style to modify select Section, choose Format @ Option Inspector…, and find the option
CounterAssignments.  Its  value  is  a  list.  Add  the  element {"EquationNumbered", 0}  into  the  list.  In
this way, we tell that the counter for equations is reset to zero at the beginning of each section.

From Choose a style to modify select EquationNumbered, choose Format @ Option Inspector…, and find
the  option CellFrameLabels.  In  its  value,  replace CounterBox["BookChapterNumber"]  with
CounterBox["Section"].  In  this  way,  we  tell  that  the  first  number  for  an  equation  should  be  the
number of the current section (and not the current chapter).

‡ Automatic Numbering of Sections

Manual numbering of sections is, of course, very easy: Just write a suitable number at the beginning of
the  heading  of  the  section.  With  automatic  numbering,  however,  we  have  the  advantage  that  the
numbers of  sections and references to them are correct  after modifications in the order of the sections.
To give an automatic number to a section, place the cursor at the beginning of the section heading and
do the following:

Chapter 3  •  Notebooks 91



• Choose Insert @ Automatic Numbering….
• Set Counter to be Section and click OK.

If you want an automatic number for a subsection, such as 2.4, first create the number 2 of the section
in the way we showed previously, type a period, and then create the number 4 of the subsection in the
same way (just set Counter to Subsection). Similarly, we can create numbers for sub-subsections.

To make creating section numbers easier, you can create a notebook having one section, one subsec-

tion, and one sub-subsection with automatic numbers. Then copy a suitable heading from this notebook
each time you would like to start a new section.

‡ Referring to Numbered Sections

Suppose we want to write “In Section X we have shown…”, where we want, in place of X, the correct
section number to appear. In that section, we have a certain cell to which we want to refer. To write such
a  reference,  first  assign  a  cell  tag  to  the  corresponding  cell:  Select  the  cell  bracket,  choose Cell @ Cell
Tags @ Add/Remove Cell Tags…, write a name for the cell, and then click Add.

A reference to the cell is then written in the same way a reference is written for a numbered equation:
Choose Insert @ Automatic Numbering…, set Counter to Section, click the cell tag of the cell in question,
and click OK.

To write  a  reference to  a  cell  in  a  subsection,  first  assign a  cell  tag to  that  cell.  To write  a  reference
such  as  “In  Subsection  X.Y  we  will  show  that…”,  first  create  the  section  number  X  with Insert @

Automatic  Numbering…  as  above,  type  a  period,  and  then,  in  the  same  way,  create  the  subsection
number Y. Likewise, we can create a reference to a sub-subsection.

‡ Automatic Numbering of Figures, Tables, etc.

To create  automatic  numbers  for  figures  and tables,  first  choose  a  style  sheet  having the  styles Figure
and Table; such style sheets are among the Article and Book type style sheets.

After you have created a figure, select its cell bracket and set its style to be Figure.  Create a caption
below the figure by choosing the FigureCaption  style and writing the caption. In the caption, create an
automatic  number  for  the  figure  by  choosing Insert @  Automatic  Numbering…,  setting Counter  to  be
Figure, and clicking OK.

After you have created a table, select its cell bracket and set its style to be Table. Create a title below
the table by choosing the TableTitle  style and writing the title. In the title, create an automatic number
for the table by choosing Insert @ Automatic Numbering…, setting Counter to be Table, and clicking OK.

To  refer  to  a  figure  or  table,  first  create  a  cell  tag  to  the  corresponding  cell.  Then  choose Insert @

Automatic Numbering…, set Counter to be, for example, Figure, click the cell tag, and click OK.

In the same way we can use automatic numbers for pictures and programs, for example.

92 Mathematica Navigator



4
Files

Introduction 93

4.1  Loading Packages 94

4.1.1  Standard Packages 94 <<

4.1.2  Forgetting to Load 96

4.1.3  Other Packages and Add-Ons 97 $BaseDirectory, $UserBaseDirectory

4.2  Exporting and Importing 100

4.2.1  Exporting and Importing Data 100 Export, Import, $ExportFormats, FilePrint, etc.

4.2.2  Exporting and Importing Graphics 105 Export, Import, $ExportFormats, etc.

4.2.3  Locating the File 107 Directory, $Path, SetDirectory, ResetDirectory, FileNames

4.3  Saving for Other Purposes 109

4.3.1  Continuing Work in Later Sessions 109 >>, <<, Save, >>>, DumpSave

4.3.2  Exporting to TeX, C, Fortran, and HTML 111 TeXForm, CForm, FortranForm, MathMLForm

4.4  Managing Time and Memory 112

4.4.1  Managing Time Consumption 112 Timing, TimeConstrained, TimeUsed, DateList, etc.

4.4.2  Managing Memory Consumption 113 ByteCount, MaxMemoryUsed, MaxMemoryUsed, Share, etc.

Introduction

The world’s greatest and most powerful computer was constructed, so mathematicians decided
to test it out by seeing if it could make any impression on some classical unsolved problems. They
decided on Fermat’s last theorem (this happened prior to the work of Andrew Wiles), namely that
xn +yn = zn has no solutions over the natural numbers for n ¥ 3. For days they fed it with every

known piece of information, conjecture, and partial result, and at last they set it to work. After a few
minutes it printed out: “I have a wonderful proof of this result, but my memory is too small to store it.”

Note  that  you  may  skip  this  chapter  if  you  right  now  do  not  need  (or  already  know  how)  to  do  the
following:

• use the packages of Mathematica;
• read data or graphics from a file;
• write data or graphics into a file;
• save results for later use;
• convert results and notebooks for TeX, HTML, C, or Fortran;
• speed up calculations; or
• save memory consumption.



With packages we can give added functionality to Mathematica. Section 4.1 describes various types of
packages, their loading, and what to do if we forget to load a package.

Read Section 4.2.1 if you have data in a file and you want to visualize or analyze it with Mathematica
by,  for  example,  using some plotting commands or some statistical  methods.  You then need to import
the data in such a way that Mathematica understands it. This means that you must form lists that contain
the elements of the data. We consider here some simple examples, but real-life data are considered, for
example, in Chapter 10. Data can also be exported for use in other applications.

You  may  want  to  export  a Mathematica  plot  to  another  application  or  to  import  into Mathematica  a
plot made by another application. Section 4.2.2 is devoted to these topics.

In  Section  4.3,  we  consider  saving  and  loading  results.  This  may  be  useful  if  we  want  to  continue
calculations  in  later  sessions.  We  also  consider  converting Mathematica  notebooks  and  results  to  the
forms required by TeX, HTML, C, and Fortran.

In Section 4.4, we show some ways to manage and save computing time and computer memory.

4.1  Loading Packages

4.1.1  Standard Packages

‡ Types of Packages

Mathematica  packages supplement  the kernel  by providing more commands.  We have several  types of
packages. To see the types of packages, write as follows:

SetDirectory@$InstallationDirectory <> "êAddOns"D; FileNames@"*Packages"D

8ExtraPackages, LegacyPackages, Packages<

The directory Packages  contains the standard packages (or the standard extra packages, as they also
are called) of Mathematica  6.  In ExtraPackages  we have a few extra packages. LegacyPackages  contains
the packages of Mathematica  5.2; note that they are now obsolete. Much of the functionality of the legacy
packages  has  been  included  in  the  ordinary Mathematica  6,  and  for  much  of  the  functionality  of  the
legacy packages that has not been included in the ordinary Mathematica 6, we have new packages. Let us
look at the various packages in more detail.

‡ Standard Packages

A list of the standard packages can be seen by clicking, in the home page of the Documentation Center,
the Standard  Extra  Packages  hyperlink.  The  resulting  page  has  hyperlinks  to  the  documentation  of  the
packages. To see the names of all the packages, we could also write as follows:

SetDirectory@$InstallationDirectory <> "êAddOnsêPackages"D; FileNames@D

However,  we do not show the result here. Instead, we show the packages classified to several groups.
Each package shown here is also a hyperlink to the guide page in the Documentation Center. For most
packages, the guide page also contains a link to a tutorial page.

• Advanced commands: Developer`, Experimental`

• Algebra: FiniteFields`, Quaternions`

• Calculus: FourierSeries`, VariationalMethods`, VectorAnalysis`

• Differential equations: EquationTrekker`, NumericalDifferentialEquationAnalysis`

• Discrete mathematics: Combinatorica`, ComputationalGeometry`, GraphUtilities`

• Geometry: Polytopes`, PolyhedronOperations`

94 Mathematica Navigator



• Graphics: BarCharts`, ErrorBarPlots`, Histograms`, PieCharts`, PlotLegends`, VectorFieldPlots`, WorldPlot`

• Miscellaneous: Benchmarking`, Calendar`

• Music: Audio`, Music`

• Notebooks: GUIKit`, Notation`, XML`

• Number theory: PrimalityProving`

• Numerical mathematics: ComputerArithmetic ,̀ FunctionApproximations`, NumericalCalculus ,̀ Splines`

• Physics: BlackBodyRadiation`, Geodesy`, PhysicalConstants ,̀ ResonanceAbsorptionLines`,
StandardAtmosphere`, Units`

• Statistics: ANOVA`, HierarchicalClustering ,̀ HypothesisTesting`, LinearRegression`,
MultivariateStatistics`, NonlinearRegression`, RegressionCommon`, StatisticalPlots`

‡ Using Standard Packages

The  packages  are  not  normally  loaded  when Mathematica  is  loaded.  Instead,  we  have  to  take  care  of
loading each package we intend to use. To load a package, do as in the following example:

<< NumericalCalculus`  Load the numerical calculus package

Instead of <<,  we can also use the Get  command. At the end of the name of a package, we have the
backquote or grave accent character ` (this is actually a context mark in Mathematica). Note that after the
`  you  always  have  to  press  the  space  key  so  that  the  accent  character  appears.  We  now  load  the
numerical calculus package:

<< NumericalCalculus`

We can then ask a table of the names defined in the package:

? NumericalCalculus`*

NumericalCalculus`

EulerRatio ExtraTerms NLimit NSeries Terms

EulerSum ND NResidue Radius
WynnDegrÖ

ee

NLimit@expr, z -> z0D numerically finds the limiting value of expr as z approaches z0.à

By  clicking,  in  the  table,  a  name  such  as NLimit,  we  get  a  short  description  of  that  name  (as  shown
previously). To find more information about NLimit, click the à button. At the bottom of the resulting
page, we can click the Numerical Calculus Package hyperlink to get a description of the whole package.

After loading a package, we can use its commands:

NLimit@Sin@xD ê x, x Ø 0D 1.

We can even open a package to look at the code. Just choose Open  from the File  menu and select a
package  from $InstallationDirectory <> "/AddOns/Packages".  Looking  at  the  code  of  a  package
may  be  interesting  if  you  are  wondering  how  the  package  works.  You  can  then  perhaps  even  learn
something about programming with Mathematica.

Chapter 4  •  Files 95



‡ Automating Loading

In $UserBaseDirectory, we have a Kernel  folder and there an initialization file called init.m. Each time
the kernel  is started, the commands in the initialization file are executed. So,  if  you frequently use, for
example,  the NumericalCalculus`  package,  write << NumericalCalculus`  in the initialization file.  Then
you can always use the commands of this package without loading it.

4.1.2  Forgetting to Load

‡ Forgetting to Load a Package: Shadowing

Let us see what happens if we forget to load a package. We start a new session and try to use NLimit:

NLimit@Sin@xD ê x, x Ø 0D

NLimitB
Sin@xD

x
, x Ø 0F

It  did not work because we forgot to load the appropriate package. Note that the NLimit  command is
blue, indicating that Mathematica  does not know about it. So, we try to solve the problem by loading the
package:

<< NumericalCalculus`

NLimit::shdw :

Symbol NLimit appears in multiple contexts 8NumericalCalculus ,̀ Global`<; definitions in

context NumericalCalculus` may shadow or be shadowed by other definitions. à

The package was loaded, but now the NLimit  command we previously used became red to remind us
that  there  is  a  problem with the command. As the message states,  we now have two NLimit  symbols:
the one in the package and the one we (unintentionally) created when trying to use NLimit. One of the
two  symbols  may  “shadow”  the  other~that  is, Mathematica  has  to  use  one  of  these  symbols  and

disregard  the  other.  The  problem  (shadowing)  is  explained  in Section  17.3.2,  p. 533.  Let  us  now  try

NLimit:

NLimit@Sin@xD ê x, x Ø 0D 1.

It worked. If we want to resolve the shadowing problem and get rid of the red color, we can remove our
own NLimit:

Remove@Global`NLimitD

In  summary,  suppose  that  we  forget  to  load  a  package~that  is,  we  use  a  command  of  a  package
before  loading  the  package.  If  we  then  load  the  package,  it  works  but  we  get  the  warning  about
shadowing  and  the  command  we  have  used  becomes  red.  (This  is  an  improvement  compared  with
earlier  versions  of Mathematica.  Previously,  if  a  package  was  loaded  after  trying  to  use  one  of  its
commands, the command still did not work.)

‡ Forgetting to Load a Package: Recommendations

How to avoid the problem of shadowing? We simply remove, before loading the package, the command
we have tried to use. Here is an example. We start a new session and try again to use NLimit:

NLimit@Sin@xD ê x, x Ø 0D

NLimitB
Sin@xD

x
, x Ø 0F

We  observe  that  we  forgot  to  load  the  package.  Before  loading  the  package,  we  remove  the NLimit

symbol we have (unintentionally) created:

96 Mathematica Navigator



Remove@NLimitD

Then we load the package:

<< NumericalCalculus`

Now NLimit becomes black so that we do not have any problems with it. Then we can use NLimit:

NLimit@Sin@xD ê x, x Ø 0D 1.

Here is a summary:

If you forget to load a package before using one of its commands, do as follows:
• remove the name you have tried to use;
• load the package; and
• use the command of the package again.

However, note that even without removing the name, the package works, as we previously saw.

Another solution to the shadowing problem is to quit the kernel from Evaluation @ Quit Kernel and
then restart  the kernel  from Evaluation @ Start  Kernel  (or  simply by executing a  command),  but then
we may need to do some calculations again.

4.1.3  Other Packages and Add|Ons

‡ Extra Packages

Here are the extra packages:

SetDirectory@$InstallationDirectory <> "êAddOnsêExtraPackages"D; FileNames@D

8DifferentialEquations, Integration,
LinearAlgebraExamples, Optimization, StatisticsExamples, Utilities<

Here, DifferentialEquations` , Integration`, Optimization`, and Utilities`  actually contain several packages, as
follows:

• DifferentialEquations`: InterpolatingFunctionAnatomy`, NDSolveProblems`, NDSolveUtilities`

• Integration`: NIntegrateUtilities`

• Optimization`: MPSData`, UnconstrainedProblems`

• Utilities`: CleanSlate`, URLTools`

Directories Optimization/Data, LinearAlgebraExamples/Data ,  and StatisticsExamples/Data contain  data
files:

• Optimization/Data: afiro.mps, ganges.mps, shell.mps, standmps.mps

• LinearAlgebraExamples/Data : can__229.psa, cavity01.rua, dwg961b.cua, dwg961b.mtx, dwt_1005.psa,
gr_30_30.rsa, nos6.mtx, simplematrix.dat, west0381.mtx, wm1.rra

• StatisticsExamples/Data: iris.dat

‡ Using Extra Packages

To load, for example, the NDSolveProblems package, write

<< DifferentialEquations`NDSolveUtilities`

The package defines the following names:

Chapter 4  •  Files 97



? DifferentialEquations`NDSolveUtilities`*

DifferentialEquations`NDSolveUtilities`

CompareMethods InvariantErrorPlot

FinalSolutions InvariantErrorSampleRate

InvariantDimensions RungeKuttaLinearStabilityFunction

InvariantErrorFunction StepDataPlot

FinalSolutions@sys, solsD gives the end point solutions sols for the system

sys specified as an NDSolveProblem.

By clicking,  in  the  previous  table,  a  name such as FinalSolutions,  we  get  a  short  description of  that
name (as shown previously). To get more information about the package, search, in Help @ Documenta-
tion Center, Differential Equations package and then click Utility Packages for Numerical Differential Equation
Solving.

To use the data files in the extra packages, import them into Mathematica.  Here is an example (we use
the directory notation / of a Macintosh computer; we only show two rows of the file):

Hdata = Import@"StatisticsExamplesêDataêiris.dat"DL êê Short

885.1, 3.5, 1.4, 0.2<, á148à, 85.9, 3., 5.1, 1.8<<

For Import, see Section 4.2.1, p. 100.

‡ Legacy Packages

If  you  have  used Mathematica  5.2  or  earlier  versions,  note  that  the  old  packages,  called  the legacy
packages,  are  now  obsolete.  They  may  work,  but  they  are  not  documented  in Help @ Documentation
Center.  Much of  the  functionality  of  the  old  packages has been included in the basic Mathematica.  For
example, LogPlot,  earlier  in  the Graphics`Graphics`  package,  is  now  a  built-in  command.  Other
packages have been replaced with new packages. For example, the functionality of the old Statistics`Con-

fidenceIntervals`  package  is  now  in  the  new HypothesisTesting`  package.  For  information  about  the
legacy  packages,  look  at CompatibilityêguideêStandardPackageCompatibilityGuide  in  the  Documentation
Center.

If we load a legacy package, we get a message telling about the status of the package. For example,

<< Graphics`Graphics`

General::obspkg :

Graphics`Graphics` is now obsolete. The legacy version being loaded may conflict with current

Mathematica functionality. See the Compatibility Guide for updating information. à

Thus, the package is obsolete. By clicking the à button, we get more information about how to replace
the package with new functionality of version 6. Here is another example:

<< Statistics`ConfidenceIntervals`

General::newpkg :

Statistics`ConfidenceIntervals` is now available as the Hypothesis Testing Package.

See the Compatibility Guide for updating information. à

Thus, the package is replaced by a new package. Again, by clicking the à button, we get more informa-

tion about how to replace the package with the new package.

98 Mathematica Navigator



‡ Other Packages and Applications

In  addition  to  the  packages  that  come  with Mathematica,  you  may  have  additional  packages  and
applications.  If  you want  them to  be  available  for  all  users,  put  them in the Applications  folder that  is
located in the $BaseDirectory. For example, on my Macintosh with MacOS X, here is the location:

$BaseDirectory

êLibraryêMathematica

On a Windows machine, the location may be C:\Documents and Settings\All Users\Application Data\Mathe-

matica.  On  the  other  hand,  if  you  want  the  packages  to  be  available  only  for  you,  put  them  in  the
Applications  folder that  is  located in the $UserBaseDirectory.  For example,  on my Macintosh,  here is
the location:

$UserBaseDirectory

êUsersêheikkiêLibraryêMathematica

On a  Windows machine,  the  location  may be  of  the  form C:\Documents  and Settings\username\Applica-

tion Data\Mathematica.

Next,  we  describe  a  way  to  automatically  install  a  palette,  style  sheet,  or  package  to  the  correct
location.

‡ Automatic Installation of Palettes, Style Sheets, and Packages

If you have a new palette, style sheet, or package that you want to install into the correct location, use
File @ Install…. The following dialog opens:

From Type of Item to Install, choose Palette, Stylesheet, or Package. From Source, select the file you want to
install. In Install Name, type a suitable name for the palette, style sheet, or package. You can also choose
the Default Installation Directory. Finally, click Finish.

Style sheets and palettes are put in the SystemFiles  folder, which is located in the same directories as
the Application  folder  we  considered  previously.  Style  sheets  are  put  in SystemFiles @ FrontEnd @

StyleSheets and palettes in SystemFiles @ FrontEnd @ Palettes.

Chapter 4  •  Files 99



4.2  Exporting and Importing

4.2.1  Exporting and Importing Data

‡ Export and Import

In Sections 4.2.1 and 4.2.2, we consider Export and Import. These are versatile commands to use for the
writing and reading of data and graphics (and other material) in more than 100 formats. Next, we study
the  export  and import  formats~that  is,  file  formats  to  which Mathematica  is  able  to  write Mathematica
material and file formats from which Mathematica  is able to read material into Mathematica.  The formats
that can be used both in exporting and in importing are (in a Macintosh) as follows:

ef = $ExportFormats;
if = $ImportFormats;

Intersection@ef, ifD

83DS, ACO, AIFF, AU, AVI, Base64, Binary, Bit, BMP, Byte, BYU, BZIP2, CDF,
Character16, Character8, Complex128, Complex256, Complex64, CSV, DICOM,
DIF, DXF, ExpressionML, FASTA, FITS, FLAC, GIF, Graph6, GZIP, HarwellBoeing,
HDF, HDF5, HTML, Integer128, Integer16, Integer24, Integer32, Integer64,
Integer8, JPEG, JPEG2000, JVX, List, LWO, MAT, MathML, MGF, MOL, MTX, MX, NB,
NOFF, OBJ, OFF, Package, PBM, PCX, PDF, PGM, PLY, PNG, PNM, PPM, PXR, RawBitmap,
Real128, Real32, Real64, RIB, RTF, SCT, SND, Sparse6, STL, String, Table, TAR,
TerminatedString, Text, TGA, TIFF, TSV, UnsignedInteger128, UnsignedInteger16,
UnsignedInteger24, UnsignedInteger32, UnsignedInteger64, UnsignedInteger8,
UUE, WAV, Wave64, WDX, XBM, XHTML, XHTMLMathML, XLS, XML, XYZ, ZIP<

The  formats  that  can  only  be  used  in  exporting  are  as  follows  (in  a  Windows  machine,  this  list  also
includes EMF and WMF):

Complement@ef, ifD

8EPS, FLV, Maya, MIDI, PICT, POV, SVG, SWF, TeX, VRML, X3D, ZPR<

The formats that can only be used in importing are as follows:

Complement@if, efD

8ApacheLog, CDED, CUR, DBF, Directory, EDF, GTOPO30, ICO, LaTeX, MBOX, MDB,
MPS, MTP, NetCDF, ODS, PDB, QuickTime, RSS, SDTS, SXC, USGSDEM, VCF, XPORT<

A mathematician or statistician may mainly be interested in reading existing data files into Mathemat-
ica  and writing Mathematica  graphics into files that some other programs can use. Note that in place of
Export, we can also use the menu command File @ Save Selection As to save material in PDF or HTML
form  and  many  graphics  forms.  Also,  in  place  of Import  we  can  use  the  menu  command Insert @

Picture @ From File to import graphics.

The  page guideêListingOfAllFormats  in  Documentation  Center  lists  all  exporting  and  importing
formats.

100 Mathematica Navigator



‡ Exporting and Importing Data

Export["file", data, "format"]  Write data into file in format

data = Import["file", "format"]  Read file into data in format

FilePrint["file"] (Ÿ6)  Look at file

FileFormat["file"] (Ÿ6)  Try to determine the format of file

$ExportFormats  Show all available export formats
$ImportFormats  Show all available import formats

Examples of formats:
List  A column. Exporting: put each item of a 1D list in its own line. Importing: form a 1D list.
Table  A table with space| or tab|separated values; default file extension .dat. Exporting: put each

sublist of a 2D list in its own line, separating items in a line with tabs. Importing: form a 2D list.
CSV  A table with comma|separated values; default file extension .csv. Works similarly as Table.
Text  A text file; default file extension .txt. Exporting: put the whole text into the file, using several

lines if the text contains newline characters \n. Importing: form a single string from the text.
Lines  Importing: form a string from each line of a text file to form a 1D list of strings.
Words  Importing: form a string from each word of a text file to form a 1D list of strings.

Note that the Table, CSV,  and Text  formats can also be indicated by the extensions .dat, .csv,  and
.txt  of  the  file.  For  example,  instead  of Export["file", data, "Table"],  we  can  write
Export["file.dat", data];  instead  of Import["file.dat", "Table"],  we  can  simply  write
Import["file.dat"].

Export and Import accept various options; see Documentation Center for more details.

For easy reference, here are the two most important commands to use to read data files:

data = Import["file", "List"]  Read a 1D table of file into data

data = Import["file", "Table"]  Read a 2D table of file into data

Note that by default, Export writes the file into the current working directory; the command to view
this directory is Directory[].  Also by default, Import  searches for a file only from certain directories;
these directories can be seen by asking the value of $Path. If you want to write a file into or read a file
from a nondefault directory, you have to specify the full name of the file or modify the default directo-

ries (see Section 4.2.3, p. 107).

Next, we consider some special cases in more detail.

‡ A Column

Export["file", data, "List"]  Write 1D list data into a column file file

data = Import["file", "List"]  Read a column file, forming a 1D list data

Consider the following example:

data1 = 823, 41.7, 39.5, 143, 8.4 μ 10^-7<;

Write the list into a file columndata.dat, putting each item in its own row:

Export@"columndata.dat", data1, "List"D

columndata.dat

Chapter 4  •  Files 101



Look at the file:

FilePrint@"columndata.dat"D

23
41.7
39.5
143
8.4e-7

Note that small and large numbers are written in a C- or Fortran-like e-form.

Suppose then that we have data in columndata.dat. The file in this example is written by Mathematica,
but it  could be  done with a  text  editor  by saving the file  in a  plain text  format.  Now we read the file,
forming a 1D list:

data1a = Import@"columndata.dat", "List"D

923, 41.7, 39.5, 143, 8.4 μ 10-7=

‡ A Table

For 2D lists, we need not declare the type of the data if we use the extension .dat:

Export["file.dat", data]  Write 2D list data into a tab|separated file file.dat

data = Import["file.dat"]  Read a tab| or space|separated file, forming a 2D list data

If we do not use the standard extension, we have to declare the type as Table:

• Export["file", data, "Table"]  Write 2D list data into a tab|separated file file

• data = Import["file", "Table"]  Read a tab| or space|separated file, forming a 2D list data

Consider the following data:

data2 = 8823, 41.7, 39.5<, 8143, 8, 56<, 828.8, 74, 13<<;

Export it in a table form:

Export@"tabledata.dat", data2D;

Look at the resulting file:

FilePrint@"tabledata.dat"D

23 41.7 39.5
143 8 56
28.8 74 13

Next, we read the file, forming sublists from the rows:

data2a = Import@"tabledata.dat"D

8823, 41.7, 39.5<, 8143, 8, 56<, 828.8, 74, 13<<

‡ A Table with Textual Items

Define the following data:

data3 = 88"Results from an experiment"<, 8"Individual", "Measurement"<,
8"a", 23<, 8"b", 41.7<, 8"c", 39.5<, 8"d", 143<, 8"e", 8<<;

Write it into a file:

Export@"alphanumericdata.dat", data3D;

When looking at the file, we see that the quotation marks have been dropped:

102 Mathematica Navigator



FilePrint@"alphanumericdata.dat"D

Results from an experiment
Individual Measurement
a 23
b 41.7
c 39.5
d 143
e 8

Then read the file:

data3a = Import@"alphanumericdata.dat"D

88Results, from, an, experiment<, 8Individual, Measurement<,
8a, 23<, 8b, 41.7<, 8c, 39.5<, 8d, 143<, 8e, 8<<

All textual items were converted into strings, as we can see by asking the InputForm:

% êê InputForm

{{"Results", "from", "an", "experiment"},
 {"Individual", "Measurement"}, {"a", 23},
 {"b", 41.7}, {"c", 39.5}, {"d", 143}, {"e", 8}}

We can drop the first two rows:

data3b = Drop@data3a, 2D

88a, 23<, 8b, 41.7<, 8c, 39.5<, 8d, 143<, 8e, 8<<

If we begin to analyze the measurements, we can assign them to a variable meas:

8ind, meas< = data3b¨

88a, b, c, d, e<, 823, 41.7, 39.5, 143, 8<<

In general, a textual item can be a string such as "Donkey", which has the quotation marks, or a word
such  as Donkey,  which  does  not  have  quotation  marks.  When  exporting  a  string,  the  text  is  written
without  quotation  marks,  but  when  exporting  a  textual  item  that  is  not  a  string,  its value  (if  any)  is
written. When importing a textual item such as Donkey, the item is converted to a string ("Donkey").

‡ Text

Export["file.txt", data]  Write a single string data into a text file file.txt; the file will contain
several lines if data contains newline characters \n

Export["file.txt", data]  Write a list of strings data into a text file file.txt; each string will be
in its own line

data = Import["file.txt"]  Read a text file; the whole file will be a single string; the string will
contain newline characters \n, if the file contains several lines

data = Import["file.txt", "Lines"]  Read a text file; each line of the file will be a string; the result
is a 1D list of strings

data = Import["file.txt", "Words"]  Read a text file; each word of the file will be a string; the
result is a 1D list of strings

As shown previously, for text data, we need not declare the type of the data if we use the extension
.txt. If we do not use this standard extension, we have to declare the type as Text~that is,

• instead of Export["file.txt", data] write Export["file", data, "Text"];
• instead of Import["file.txt"] write Import["file", "Text"].

As an example, consider the following text:

Chapter 4  •  Files 103



data5 = "A mnemonic for the digits of pi = 3.1415926535:\nMay
I have a large container of coffee - sugar and cream?"

A mnemonic for the digits of pi = 3.1415926535:
May I have a large container of coffee - sugar and cream?

Here, \n is a newline character, which inserts a line break. Write the text into a text file (in Text form):

Export@"textdata.txt", data5D;

In the file, each \n has generated a new line:

FilePrint@"textdata.txt"D

A mnemonic for the digits of pi = 3.1415926535:
May I have a large container of coffee - sugar and cream?

If we read the file in Text form, we get a single string with newline characters \n:

data4a = Import@"textdata.txt"D

A mnemonic for the digits of pi = 3.1415926535:
May I have a large container of coffee - sugar and cream?

% êê InputForm

"A mnemonic for the digits of pi = 3.1415926535:\nMay \
I have a large container of coffee - sugar and cream?"

As we can see from the InputForm, the whole file became a single string. Using the Lines format gives a
list of two strings, one for each line:

data4b = Import@"textdata.txt", "Lines"D

8A mnemonic for the digits of pi = 3.1415926535:,
May I have a large container of coffee - sugar and cream?<

% êê InputForm

{"A mnemonic for the digits of pi = 3.1415926535:", "May \
I have a large container of coffee - sugar and cream?"}

With Words, each word is transformed into a string:

data4c = Import@"textdata.txt", "Words"D

8A, mnemonic, for, the, digits, of, pi, =, 3.1415926535:, May,
I, have, a, large, container, of, coffee, -, sugar, and, cream?<

% êê InputForm

{"A", "mnemonic", "for", "the", "digits", "of", "pi", "=",
 "3.1415926535:", "May", "I", "have", "a", "large",
 "container", "of", "coffee", "-", "sugar", "and", "cream?"}

‡ Other Commands

For reading files, Mathematica  also has ReadList, which allows, for example, detailed declaration of the
types of items of the files. Files can also be read item by item with OpenRead, Read, Skip, and Close. For
item-specific writing, we have OpenWrite, OpenAppend, and Write.

The contents of files can be searched with FindList:

FindList["file", "text"]  Get a list of all lines in file containing text

FindList@"alphanumericdata.dat", "c"D

8c 39.5<

Mathematica  has  tools  to  work  with  databases;  see guideêDatabaseConnectivity  and
DatabaseLinkêtutorialêOverview  in the Documentation Center.

104 Mathematica Navigator



4.2.2  Exporting and Importing Graphics

Export["file", fig, "format"]  Write graphics fig into file in format

fig = Import["file", "format"]  Read file into graphics fig in format

$ExportFormats  Show all available export formats
$ImportFormats  Show all available import formats

Examples of vector graphics formats:
EPS  Encapsulated PostScript format (.eps) (only exporting)
PDF  Adobe PDF format (.pdf)
WMF, EMF  Windows metafile/enhanced metafile formats (.wmf, .emf) (only exporting)

Examples of raster image formats:
GIF  GIF format (.gif)
JPEG  JPEG format (.jpeg, .jpg)
TIFF  TIFF format (.tiff, .tif)

BMP  Microsoft bitmap format (.bmp)
WMF, EMF  Windows metafile/enhanced metafile formats (.wmf, .emf) (only exporting)
PICT  Macintosh PICT format (.pict) (only exporting)

Options of Export include:
ImageSize  Absolute size of the image in printer’s points (1/72 inch)
ImageResolution  Resolution of the image in dpi (dots per inch)
ImageRotated  Whether to rotate the image to get an image in the landscape form

In place of Export, we can also use the menu command File @ Save Selection As to save graphics in
many  different  formats.  This  menu  command  supports,  for  example,  the  following  formats: EPS, PDF,
GIF, JPEG, TIFF,  and BMP.  Also, in place of Import,  we can use the menu command Insert @ Picture @

From File to import graphics.

Most  formats  can  be  indicated  by  the  extensions  of  the  file  names;  the  extensions  are  given  in
parentheses  above.  For  example,  instead  of Export["file", fig, "EPS"],  we  can  write
Export["file.eps", fig];  instead  of Import["file.gif", "GIF"],  we  can  simply  write
Import["file.gif"].

When  exporting,  the  vector  graphics  formats  are  independent  of  the  setting  for ImageResolution,
whereas  the  raster  image  formats  depend  on  the  value  of  this  option.  When  exporting  or  importing,
Rasterize (Ÿ6) can be used to get the file in raster format.

Export and Import accept various options; see Documentation Center for more details.

Note that by default, Export writes the file into the current working directory; the command to view
this directory is Directory[].  Also by default, Import  searches for a file only from certain directories;
these directories can be seen by asking the value of $Path. If you want to write a file into or read a file
from a nondefault directory, you have to specify the full name of the file or modify the default directo-

ries (see Section 4.2.3, p. 107).

Chapter 4  •  Files 105



‡ Example

We first make a plot:

fig = Plot@Sin@xD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Then we export it into an EPS file:

Export@"fig.eps", fig, ImageSize Ø 100D

fig.eps

This file can then be used, for example, in MS|Word. As an example of importing, we show one of the
example figures of Mathematica:

Import@"ExampleDataêconeflower.jpg", ImageSize Ø 90D

‡ Exporting Graphics into Microsoft Word

If  you are  preparing a  mathematical  document  with Microsoft  Word,  you may want  to  produce some
plots with Mathematica and insert them into your Word document. First, make the plot:

fig = Plot@Sin@xD, 8x, 0, 2 p<D

To  export  the  plot  into  Word,  the  best  method  may  vary  from  system  to  system,  but  the  following
method should work on a PC or Macintosh.

Adjust the size of the plot to be suitable for the Word document, click on the plot, choose File @ Save
Selection As, choose the format of the file to be EPS, give the file a name ending with .eps, and save the
plot  in  a  suitable  place.  Then  go  to  your  Word document,  place  the  cursor  at  a  suitable  point,  choose
Insert @ Picture @ From File, locate and click the file you saved from the dialog box, and click Insert.

The inserted figure  will  only be  shown in Word as  a  box that  contains some information about the
figure;  however,  when  printed,  the  figure  should  be  OK.  In  Word,  do  not  adjust  the  size  of  the  plot
because the size of all text in the plot then also changes, which should be avoided; any changes in size
should be done with Mathematica, which does not change the size of text.

In exporting as EPS, we can use the "PreviewFormat" option to get the figure shown in Word:

Export@"fig.eps", fig, "PreviewFormat" Ø "TIFF"D

Possible  values  of  the  option  are None  (the  default), "TIFF", "Metafile"  (WMF),  and "Interchange"

(EPSI).

On  some  PC  systems, Save  Selection  As  may  also  yield  a  good  result  with  the  Metafile  format.
Export can also be tried:

Export@"fig.wmf", fig, ImageSize Ø sD

106 Mathematica Navigator



‡  Exporting Graphics into LaTeX

To export a plot into a LaTeX document, save the plot in EPS format, either with File @ Save Selection
As or  with Export["fig.eps", fig].  Save  the  file  in  the  same  folder  where  you  have  saved  your
LaTeX document.

In  the  starting  rows  of  the  document,  add \usepackage[dvips]{graphicx}.  At  a  suitable  place  in
the  document,  add \includegraphics{fig.eps}.  If  you  want  to  modify  the  plot,  write
\includegraphics[key=value]{fig.eps}, where key is width, height, angle, or scale. For example,
write \includegraphics[width=8cm]{fig.eps}. This kind of command adds the plot in the place you
have chosen.

A more recommended method is to use a figure environment, as follows:

\begin{figure}[htbp]

\includegraphics[width=8cm]{fig.eps}

\caption{caption to be added}

\label{name used to refer to the plot}
\end{figure}

Now  LaTeX places  the  plot  in  the  best  position,  a  caption  can  be  added,  and we  can  refer  to  the  plot
with \ref. The placement of the plot in the example is directed with [htbp]. This asks to place the plot
at the present point (h = here), if possible, but if not possible, then at the top of the page (t = top), then at
the bottom of the page (b = bottom), and then in a separate page (p = page), in this order of preference.

4.2.3  Locating the File

‡ The Default Locations

As noted previously,  using short names of files such as data1.dat  with Export  and Import  has some
restrictions.  With Export, Mathematica  saves  the  file  in  a  default  location;  the  location  can  be  seen  by
using the command Directory[]. With Import, Mathematica  only searches the file from a list of default
locations; this list can be seen by using the command $Path.

Directory[]  The default directory where Export writes a file
$Path  The default list of directories from which Import searches a file

More generally, Directory[] gives the current working directory, and $Path gives the search path (i.e.,
the  default  list  of  directories  to  search  in  attempting  to  find  an  external  file).  On  my  Macintosh  with
MacOS X, the directories are as follows:

Directory@D

êUsersêheikki
Short@$Path, 3D

8êApplicationsêMathematica 6.0.appêSystemFilesêLinks, á15à,
êApplicationsêMathematica 6.0.appêDocumentationêEnglishêSystem<

Thus,  your files are,  by default,  saved in your home directory such as "/Users/heikki" .  By investigating
the output of $Path,  we observe that  when your files are read,  they are searched, among others,  from
your home directory such as "/Users/heikki" , from the current working directory represented by ".", and
from a directory such as "Users/heikki/Library/Mathematica/Applications".

Chapter 4  •  Files 107



If it  suits you that Export  writes files into Directory[]  and Import  searches files only from $Path,
then  you  can  use  short  names  for  the  files.  Otherwise,  we  have  two  possibilities.  Either  use  the  full
names of files or modify the values of Directory[]  and $Path.  First, we consider an example of using
full names.

‡ Using Full Names of Files

We have a folder DataFiles  in our home directory "/Users/heikki" , and now we write a data file into this
folder.  Because  this  is  not  the  default  location,  we  have  to  give  more  information  about  the  saving
location. Because DataFiles is a subdirectory of our home directory, it suffices to specify the subdirectory:

data5 = 8846, 71<, 822, 38<<;

Export@"DataFilesêdata5.dat", data5D

DataFilesêdata5.dat

We could also use a full name of the file:

Export@"êUsersêheikkiêDataFilesêdata6.dat", data5D

êUsersêheikkiêDataFilesêdata6.dat

Then we read these files. Again, because DataFiles  is a subdirectory of a directory ("/Users/heikki")  in
$Path, it suffices to specify the subdirectory:

data5a = Import@"DataFilesêdata5.dat"D

8846, 71<, 822, 38<<

We could also use a full name of the file:

data6a = Import@"êUsersêheikkiêDataFilesêdata6.dat"D

8846, 71<, 822, 38<<

Note that you need not write the full names by yourself; let Mathematica do it. Simply choose Insert @
File Path and then in the dialog box select the file in which you are interested. The full name of this file
is  now pasted at  the current  location of  the cursor.  Note  also that  the full  names are different  in form
with various computer systems. ToFileName can be used to form file names from directories.

‡ Modifying the Current Working Directory

Directory[]  Give the current working directory
SetDirectory["dir"]  Set the current working directory
ResetDirectory[]  Reset the current working directory to its previous value
FileNames[]  List all files in the current working directory

The current working directory can be changed by SetDirectory:

SetDirectory@"êUsersêheikkiêDataFiles"D

êUsersêheikkiêDataFiles

This is now the current working directory:

Directory@D

êUsersêheikkiêDataFiles

Export now writes files into this default directory (without having to use full names of files). Therefore,
exporting a file into DataFile is easy:

108 Mathematica Navigator



Export@"data7.dat", data5D

data7.dat

Because $Path contains the current working directory ".", we can also import the file with a short name:

Import@"data7.dat"D

8846, 71<, 822, 38<<

We can go back to the original directory by ResetDirectory[]:

ResetDirectory@D

êUsersêheikki

This is now the current working directory:

Directory@D

êUsersêheikki

‡ Modifying the Search Path

A nondefault folder can easily be added into the search path:

$Path = Append@$Path, "êUsersêheikkiêDataFiles"D;

Now we can easily read files from this folder:

Import@"data7.dat"D

8846, 71<, 822, 38<<

If you will read data from a certain folder in several sessions, you may consider adding a command
$Path = Append[$Path, "…"]  in  the init.m  file,  which  can  be  found  in  a Kernel  folder  in
$UserBaseDirectory.  If  you  modify $Path  in  this  way,  then  every  time  you  open Mathematica,  the
$Path variable has the appropriate value and you can easily read the data.

4.3  Saving for Other Purposes

4.3.1  Continuing Work in Later Sessions

‡ Continuing without Recalculation

As noted in Section 3.1.1, p. 52,  when we open a notebook to continue calculations, we cannot directly

use any results that are already in the notebook. Suppose a notebook contains the following calculation:

int = Integrate@2 x Sin@xD Exp@xD, xD êê Simplify

‰
x HCos@xD - x Cos@xD + x Sin@xDL

Now we open this  notebook and want  to continue by differentiating the integral.  Note that  opening a
notebook  only  shows  the  notebook  on  the  screen;  opening  it  does  not  execute  any  commands.  Thus,
after  opening  the  notebook,  we  cannot  write D[int, x]  because Mathematica  does  not  yet  know  the
value of int. We have to tell Mathematica the value. We have at least three ways to do this:

• execute anew the command defining int;
• write int = at the beginning of the value of int and execute the resulting command; or
• save the value of int into a file; in a new session, load the file to get the value of int.

The first method is very straightforward if the execution of the command does not take much time.

Chapter 4  •  Files 109



The  second  method  also  is  very  handy  and  quick:  We  get  the  value  of int  without  doing  the
calculation  anew.  Note  that  the  output  of  the  original  command  changes  to  an  input.  If  you  want  to
keep the original output untouched, take a copy of the output and write int =  at the beginning of the
copy:

int = ‰x HCos@xD - x Cos@xD + x Sin@xDL

‰
x HCos@xD - x Cos@xD + x Sin@xDL

The  third  method  may  be  worth  considering  if  you  have  a  very  large  expression  that  is  clumsy  to
keep and handle in the notebook but with which you want to continue calculations in later sessions. The
expression  may  be,  for  example,  a  large  symbolic  expression,  a  complicated  plot,  or  a  large  set  of
generated random numbers. Saving and loading an expression is considered in the following section.

The  three  methods  also  work  for  graphics.  In  the  second method,  take  a  copy of  a  plot  of  interest,
paste the plot after p1 =,  and execute. Now you have the plot in the variable p1  and you can modify it
with options by using Show. For a plot, to get its full code with primitives, directives, and options, take a
copy of the plot, select the plot, and choose Cell @ Convert To @ StandardForm.

Remember also the mouse manipulations of plots mentioned in Section 5.1.1, p. 120, and interactive

drawing  (Graphics @ Drawing  Tools, Graphics @ Graphics  Inspector)  considered  in Section  5.1.3,  p.

126.

‡ Saving and Loading Expressions

a >> file  Save the value of a variable a into file (clearing the file if it already exists)
FilePrint["file"]  View file

a = << file  Load file and assign the content as the value of a

In  place  of >>  and <<,  we  can use Put  and Get;  remember  that  we  already discussed <<  in  Section
4.1.1 as it pertains to loading packages. As an example, we save the value of int into a file:

int >> intfile

We can check that everything is all right by viewing the file:

FilePrint@"intfile"D

E^x*(Cos[x] - x*Cos[x] + x*Sin[x])

In a new session, we can then load the file:

int = << intfile

‰
x HCos@xD - x Cos@xD + x Sin@xDL

Now int has the desired value.

Save["file", {a, b, …}]  Save definitions of variables a, b, … into file

<< file  Load file (variables a, b, … then have the saved values)

The  value  of  a  single  variable  can  be  saved  with >>.  With Save,  we  can  save  several  values  in  the
same file. Note that Save  appends the values to the file if it  already exists (remember that >>  clears an
existing file; >>> or PutAppend can also be used to append expressions to an existing file).

Another saving command is DumpSave. It saves expressions in a binary format and may be advanta-

geous for very large and complicated expressions. These files can be read with <<.

110 Mathematica Navigator



Plots can also be saved and loaded. As an example, suppose we have a plot p1. We can save it with
p1 >> plot1file.  Later,  we  can  load  the  plot  with p1 = << plot1file.  Now  we  can  add  options:
Show[p1, Frame Ø True].

4.3.2  Exporting to TeX, C, Fortran, and HTML

‡ Exporting to TeX

File @ Save As: Format: LaTeX Document  Save the present notebook as an AMS-LaTeX file
Export["file.tex", expr]  Export an expression as an AMS-LaTeX file
TeXForm[expr]  Show the AMS-LaTeX form of an expression

For exporting graphics into LaTeX, see Section 4.2.2, p. 107. Here is an example of TeXForm:

i = Integrate@a^2 ê Hx^2 + 2 x + bL, xD

a2 ArcTanB 1+x

-1+b

F

-1 + b

TeXForm@iD

\frac{a^2 \tan ^{-1}\left(\frac{x+1}{\sqrt{b-1}}\right)}{\sqrt{b-1}}

‡ Exporting to C and Fortran

CForm[expr]  Show the C form of the expression
FortranForm[expr]  Show the Fortran form of the expression

These commands help when you want to export Mathematica results into a C or Fortran program. For
example,

CForm@iD

(Power(a,2)*ArcTan((1 + x)/Sqrt(-1 + b)))/Sqrt(-1 + b)

FortranForm@iD

(a**2*ArcTan((1 + x)/Sqrt(-1 + b)))/Sqrt(-1 + b)

If you write TeX, C, or Fortran code, you may also be interested in Splice. Suppose your C program
needs the derivative of a function. In the C code, write <*D[…,…]*>, including a Mathematica  command
between <* and *>. Give the file a name ending with .mc. Then execute a Splice command, and you get
a  file  in  which  the  C  code  is  as  it  was  input,  and  the Mathematica  command  has  been  executed  and
written in a C form.

‡ Exporting to HTML

File @ Save As: Format: Web Page  Save the present notebook as an HTML file
File @ Save Selection As: Format: HTML  Save the selection as an HTML file
Export["file.html", expr]  Export an expression as an HTML file
MathMLForm[expr]  Show the MathML form of the expression

Chapter 4  •  Files 111



4.4  Managing Time and Memory

4.4.1  Managing Time Consumption

‡ Information about Time

We have various commands that relate to time:

Timing[expr]  Evaluate expr; give the CPU time in seconds the kernel has used, together with the
result obtained

AbsoluteTiming[expr]  Evaluate expr; give the absolute elapsed time, together with the result
obtained

TimeConstrained[expr, t]  Stop evaluating expr after t seconds
TimeUsed[]  Show the used CPU time in the current session
SessionTime[]  Show the elapsed time in the current session

DateList[] (Ÿ6)  Current time: {year, month, day, hour, minute, second}
DateString[] (Ÿ6)  Current time: “weekday day month year hour:minute:second“
DatePlus[date, n] (Ÿ6)  The date n days after date

DateDifference[date1, date2] (Ÿ6)  The number of days from date1 to date2

The time is measured in steps of $TimeUnit, which, in many systems, has the default value of 1/100
second.  Note  that  doing  the  same calculation again or  doing a  similar  calculation may take much less
time  because Mathematica  may  have  already  loaded  some  files  or  stored  results.  The  following  is  an
example of Timing:

FactorInteger@2^137 - 1D êê Timing

86.47204, 8832 032 215 596 496 435 569, 1<, 85 439 042 183 600 204 290 159, 1<<<

If we only want to see the time~not the result~we can use the semicolon. In place of the result, we then
have Null:

Hran = Table@RandomReal@D, 810^6<D;L êê Timing

80.450717, Null<

The execution time can be  seen in the lower left-hand corner of  the window by choosing Format @

Option  Inspector…,  setting Scope  to  be Selected  Notebook,  going  to Notebook  Options @ Evaluation
Options,  and  then  selecting ShowTiming  as  the  value  of EvaluationCompletionAction.  This  time  is
somewhat  longer  than  the  time given by Timing  because  it  includes  the  time to  format  and show the
result.

‡ Time-Saving Tips

• It  is  good  to  have  plenty  of  random  access  memory  (RAM).  To  some  extent,  the  more  memory
Mathematica  has  available,  the  speedier  it  is.  Also,  remember  that  virtual  memory  on  the  hard  disk  is
much slower than actual physical RAM.

• If you work with a heavy and time-consuming problem in several sessions, you perhaps need not
start from scratch each time. Instead, try to continue the work from where you left off (see Section 4.3.1,

p. 109).

112 Mathematica Navigator



• Avoid using so-called “arbitrary-precision” numbers. Calculations with these numbers are done by
software in Mathematica  and are much slower than calculations done with the hardware-implemented,

machine-precision numbers. This point is explained in more detail in Sections 12.2.2, p. 404, and 12.3.1,

p. 409.  The  precision used in  calculations  can  often  be  set  with  the WorkingPrecision  option.  Resist

changing the default value MachinePrecision of this option. Of course, if the problem is ill-conditioned
and round-off  errors  have an effect,  the option mentioned should be  used by giving it  a  large enough
value, such as 20. In this way, the problem may be solved without difficulties.

• In  numerical  routines  such  as NIntegrate, FindRoot, FindMinimum,  and NDSolve,  the  default
precision may sometimes be more than you actually need (e.g., if the result is used in plotting). Lower-

ing  the  precision  requirements PrecisionGoal  and AccuracyGoal  reduces  the  calculation  time  (for

these options, see Section 12.3.1, p. 409).

• When plotting  largely  varying functions,  you can sometimes get  better  results  if  you increase  the
value  of  the PlotPoints  option.  However,  after  a  certain  value  you  cannot  see  any  difference  in  the
plot,  and  you  merely  waste  time  because  the  larger  the  value  of PlotPoints,  the  longer  it  takes  to
produce the plot.

• The  execution  time  of  a  program  may  significantly  depend  on  the  design  of  the  program;  see
Wagner (1996) for detailed experiments and recommendations. Some points are as follows. Use built-in
commands if possible. If the result of the program consists of decimal numbers, use decimal numbers as
early as possible (i.e., avoid calculating with exact numbers). Use the functional programming style (see

Section 18.3, p. 568). Avoid using Append, AppendTo, Prepend, and PrependTo. Compile your functions

(see Section 17.2.3, p. 528).

• While awaiting the result of a time-consuming command, you can edit the notebook by adding, for
example,  text  to  explain  what  you  have  done  and  what  the  results  mean.  You  can  also  write  new
commands  so  that  they  are  ready  to  be  executed  when  the  time-consuming  command  has  printed  its
result.

• You  can  calculate  with Mathematica  while  waiting  for  the  result  of  a  time-consuming  command.
This can be done by using a subsession. Once you have entered a subsession, the execution of the time-
consuming  command is  interrupted,  and you can do  some shorter  calculations  during the  subsession.
After  you  exit  the  subsession,  the  execution  of  the  time-consuming  command  continues.  To  enter  a
subsession,  choose Evaluation @ Interrupt  Evaluation.  A  dialog  appears  where  you  can  ask  to  get  a
subsession;  wait  for  the  cell  bracket  to  change  to  a  special  bracket.  Now  you  can  do  some  shorter
calculations. To exit the subsession and continue the long calculation, execute Return[].

• A good way to save time may be to use a remote kernel. If your machine is not powerful enough,
you can save time by using the greater power of a remote machine. If your machine is powerful enough,
you can still consider using a remote kernel or even several remote kernels to do parts of your calcula-

tions.  In this way, you can do several calculations at the same time. To define a remote kernel,  choose
Evaluation @ Kernel Configuration Options.

4.4.2  Managing Memory Consumption

‡ Information about Memory

In  the  following  box,  we  list  commands  that  relate  to  the  consumption  of  memory.  The  kernel  needs
memory  to  store  both  the  code  of Mathematica  and  the  results  of  computations.  The  latter  material  is
called “data.”

Chapter 4  •  Files 113



ByteCount[expr]  Bytes used by expr if sharing (see Memory-Saving Tips) is not used
MemoryConstrained[expr, b]  Stop evaluating expr if more than b bytes are needed for the

evaluation
MemoryInUse[]  Memory in bytes currently being used to store data in the kernel
MemoryInUse[$FrontEnd] (Ÿ6)  Memory in bytes currently being used in the front end
MaxMemoryUsed[]  Maximum memory in bytes used to store data thus far

Note  that  the  kernel  of Mathematica  keeps  in  RAM  all  the  results  of  the  current  session,  and  this
means that the memory consumption of the kernel steadily grows as your session continues. However,
Mathematica  uses  kernel  memory  sparingly  and  deletes  all  intermediate  results  that  are  no  longer
needed.

It  may  be  wise  to  divide  long  sessions  into  shorter  ones  by  occasionally  quitting Mathematica  and
starting  a  new  session  with  a  clean  sheet,  maximum  memory,  and  maximum  speed.  In  notebook
environments, we can also quit the kernel only by choosing Evaluation @ Quit Kernel.

‡ Memory-Saving Tips

• Ending  a  command  with  the  semicolon  (;)  prevents  the  result  from  being  displayed.  This  saves
memory,  especially  for  large  expressions.  It  also  saves  your  screen  area  by  not  cluttering  it  with
uninteresting formulas or graphics and thus helps you to manage the flow of computation.

• You  can  delete  all  output  cells  by  choosing Cell @ Delete  All  Output.  This  releases  front-end
memory and makes the notebook smaller. The memory saving may be very substantial if the notebook
contains many plots. You can recalculate the commands later if needed.

• When you have finished a plot and no longer want to change or print it, you can greatly save front-
end memory and the size of the notebook by converting the plot to bitmap form. Select the plot with the
mouse and choose Cell @ Convert To @ Bitmap. The plot does not change in any way on the screen, but
the PostScript code behind the plot is discarded.

• Use Compress to compress large expressions. They can be uncompressed with Uncompress.

•  Execute Share[]  to  reduce  the  amount  of  kernel  memory.  This  command  shares  the  storage  of
common subexpressions between different parts of an expression or between different expressions. The
output of the command is the memory saved.

• One method of saving memory is to run only the front end on your machine and to run the kernel
in  another  machine.  Then  only  the  front  end  takes  memory  from  your  machine,  and  you  can  take
advantage of the possibly larger RAM and speedier processor of the remote kernel. To define a remote
kernel, choose Evaluation @ Kernel Configuration Options.

114 Mathematica Navigator



5
Graphics for Functions

Introduction 115

5.1  Basic Plots for 2D Functions 116

5.1.1  Plotting One Curve 116 Plot, AspectRatio, PlotRange, Ticks, Play

5.1.2  Plotting Several Curves 121 Plot, Show, Tooltip, GraphicsRow, GraphicsGrid, etc.

5.1.3  Interactive Drawing 126

5.2  Other Plots for 2D Functions 132

5.2.1  Parametric Plots 132 ParametricPlot, PolarPlot

5.2.2  Logarithmic Plots 133 LogPlot, LogLinearPlot, LogLogPlot

5.2.3  Implicit Plots 134 ContourPlot

5.2.4  Filled Plots 135 Filling, FillingStyle

5.2.5  Region Plots 136 RegionPlot, ParametricPlot

5.2.6  Complex Plots 137 Re, Im, Abs, RegionPlot, ContourPlot, ParametricPlot

5.3  Plots for 3D Functions 139

5.3.1  Basic Plots 139 Plot3D, ContourPlot, DensityPlot

5.3.2  Special Plots 142 ParametricPlot3D, RegionPlot3D, GradientFieldPlot, etc.

5.3.3  Stereograms 145 SIS

5.4  Plots for 4D Functions 147

5.4.1  Simple Methods 147 VectorFieldPlot3D, GradientFieldPlot3D

5.4.2  Surfaces of Constant Value 149 ContourPlot3D

Introduction

Straight line~the shortest way between two points.~Euclid
Cycloid~the fastest way between two points.~Johann Bernoulli

Curve~the loveliest way between two points.~Mae West

The plotting capabilities of Mathematica  are impressive. There are many ready-to-use commands such as
Plot, Plot3D, ParametricPlot, ParametricPlot3D, ListPlot, ListPlot3D,  and ContourPlot,  which
often give good results. In case we want to modify the plots, we have many options at our disposal that
may help us to obtain just the result we want. If there is not a suitable plotting command, we can build
the plot from so-called graphics primitives, or we can write a program.

This  chapter  explains  graphics  for  functions.  Graphics  primitives  and  directives  are  addressed  in
Chapter  6  and  options  for  graphics  in  Chapter  7.  In  Chapter  8,  we  consider  graphics  for  data,  and in
Chapter  9,  we  discuss  built-in  data  of Mathematica.  Exporting  and  importing  figures  is  explained  in

Section 4.2.2, p. 105.



Mathematica  6  contains  an  impressive  new  feature  called dynamics.  It  enables  us  to  create  dynamic
interfaces where we can adjust some parameters and look at how the result changes. This is very useful
especially in studying how a plot depends on some parameters. A special case of dynamic interfaces is
also animating. We consider dynamic interfaces and animations in Chapters 10 and 11.

Graphics  is one of the central parts of Mathematica  and contains a wealth of material.  You may first
want  to  read  only  the  topics  you  are  interested  in  now  and  go  on  to  other  topics  later.  More  about
Mathematica  graphics  can  be  found  in Smith  &  Blachman  (1995), Wickham-Jones  (1994),  and Trott
(2004a).

The  graphics  functionality  has  significantly  changed  and  been  enhanced  in Mathematica  6.  If  you
would  like  to  use  version  5  graphics  instead,  execute <<Version5`Graphics`.  To  restore  version  6
graphics capabilities, execute <<Version6`Graphics`.

5.1  Basic Plots for 2D Functions

5.1.1  Plotting One Curve

‡ The Basic Plotting Command

Plot[f, {x, a, b}]  Plot f when x takes on values from a to b

The f  can  be  an  explicit  expression,  the  name  of  an  expression,  or  the  name  of  a  function  (for

functions,  see Section  2.2.3,  p. 39).  Therefore,  to  plot  the  density  function  of  the  standard  normal

distribution, we can write the following:

Plot@Exp@-x^2 ê 2D ê Sqrt@2 pD, 8x, -4, 4<D

or

f = Exp@-x^2 ê 2D ê Sqrt@2 pD
Plot@f, 8x, -4, 4<D

or

g@x_D := Exp@-x^2 ê 2D ê Sqrt@2 pD
Plot@g@xD, 8x, -4, 4<D

The second method is often handy because from the output of f = …  we can first check that the expres-

sion is correct and because the plotting command then becomes simpler and shorter. We try the second
method:

f = Exp@-x^2 ê 2D ê Sqrt@2 pD

‰
-

x2

2

2 p

p1 = Plot@f, 8x, -4, 4<D

-4 -2 2 4

0.1

0.2

0.3

0.4

116 Mathematica Navigator



Plot  works by first  sampling the function to be  plotted at  51 (almost)  equally spaced points.  If  the
function  changes  rapidly  somewhere  in  the  interval,  then  more  points  are  automatically  sampled  in
such  regions. Plot  is  in  this  sense  adaptive.  The  sampled points  are  then  joined by  straight  lines.  For

more about the algorithm behind Plot, see Section 7.4.6, p. 207.

‡ Other Examples

The expression to be plotted can consist of several definitions:

mu = 1; sigma = 0.7; c = 1 ê Hsigma Sqrt@2 pDL;
g = Exp@-0.5 HHx - muL ê sigmaL^2D;

p2 = Plot@c g, 8x, -4, 4<D

-4 -2 2 4

0.1

0.2

0.3

0.4

0.5

Next we try a function:

h@x_, mu_, sigma_D := 1 ê Hsigma Sqrt@2 pDL Exp@-1 ê 2 HHx - muL ê sigmaL^2D
p3 = Plot@h@x, 0, 1.5D, 8x, -4.1, 4.1<D

-4 -2 2 4

0.05

0.10

0.15

0.20

0.25

We can plot almost any kind of expression. Next we plot a function defined with an integral:

Plot@NIntegrate@Exp@-t^2D, 8t, 0, x<D, 8x, 0, 2<D

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

‡ Discontinuous Functions

Plot[f, {x, a0, a1, …, ak}]  Plot f when x takes on values from a0 to ak, potentially breaking the
curve at each of the ai

Plot[f, {x, a, b}, Exclusions Ø list]  Plot f when x takes on values from a to b, excluding
values of x given either explicitly or implicitly (in the form of equations) in the list list

Plot[f, {x, a, b}, Exclusions Ø None]  Do not exclude any values of x

Chapter 5  •  Graphics for Functions 117



Here is a discontinuous function:

Plot@Tan@xD, 8x, 0, 2 p<, Ticks Ø 88p ê 2, 3 p ê 2<, Automatic<D

p

2

3 p

2

-6

-4

-2

2

4

6

Strictly speaking, the vertical lines do not belong to the graph of the function. To get rid of the vertical
lines, define intermediate points at the singularities. We can also use the Exclusions  option to tell the
points to be avoided either explicitly as a list or implicitly by an equation:

8Plot@Tan@xD, 8x, 0, p ê 2, 3 p ê 2, 2 p<D,
Plot@Tan@xD, 8x, 0, 2 p<, Exclusions Ø 8p ê 2, 3 p ê 2<D,
Plot@Tan@xD, 8x, 0, 2 p<, Exclusions Ø 8Cos@xD == 0<D<

:
1 2 3 4 5 6

-6

-4

-2

2

4

6

,
1 2 3 4 5 6

-6

-4

-2

2

4

6

,
1 2 3 4 5 6

-6

-4

-2

2

4

6

>

Next, we plot another discontinuous function. Now Mathematica  automatically excludes the point of
discontinuity~that is, we do not have a vertical line at the discontinuity. If you want a vertical line, use
the Exclusions option with value None:

8Plot@Piecewise@88Sin@xD, x < 3 p ê 4<, 8Cos@xD, x ¥ 3 p ê 4<<D, 8x, 0, p<D,
Plot@Piecewise@88Sin@xD, x < 3 p ê 4<, 8Cos@xD, x ¥ 3 p ê 4<<D,
8x, 0, p<, Exclusions Ø NoneD<

:
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

>

‡ Using Options

Mathematica  often  draws  very  nice  plots.  Occasionally,  however,  we  may  want  to  make
some adjustments.  When  this  is  the  case,  many  options  are  available.  Each  option  has  a  default  value
that is used if another value is not given. One of the options is AspectRatio (the ratio of height to width
of the plot).  The default value of this option is 1/GoldenRatio  = 0.618.  With the default value,  we get
the following plot:

p4 = Plot@Sin@xD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

118 Mathematica Navigator



If we want to plot in such a way that one unit on the x axis has the same length as one unit on the y axis,

then we can give AspectRatio the value Automatic:

Plot@Sin@xD, 8x, 0, 2 p<, AspectRatio Ø AutomaticD

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

We could also use Show and define the option there:

Show@p4, AspectRatio Ø AutomaticD

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

The  standard  way  when  plotting  is  to  first  use  the  default  values  for  the  options  (i.e.,  writing  no
options  in  the  plotting  command).  If  the  result  is  not  satisfactory,  change  the  value  of  some  of  the
options.  To  make  changes,  we  have  two  approaches.  First,  we  can  write  the  options  into  the  original
plotting command and then execute the command anew. Second, we can write the options into a Show

command. Note that Show does not redo the computations; only the way the figure is shown is changed.
This means that computer time is saved, at least for complex figures.

‡ Important Options

We consider in detail all the options of Plot  in Chapter 7. However, here are some of the most impor-

tant options. For each option, we mention several examples of values. Throughout this book, we use the
convention that the default value of each option is always mentioned first.

AspectRatio  Ratio of height to width of the plot; examples of values: 1/GoldenRatio (= 0.618),
Automatic (one unit on both axes has the same length), 0.4

PlotRange  Range of coordinates in the plot; examples of values: {Full, Automatic}, All, {-1, 1}

Ticks  Ticks on the axes; examples of values: Automatic, {{ p, 2 p, 3 p}, Automatic}, {{1, 2, 3},

{-2, -1, 1, 2}}

Sometimes Plot  cuts off low or high parts of the function in order to plot the remaining parts more
accurately. If you want to see the whole function in the given interval, give PlotRange the value All. If
the ticks of a plot do not satisfy you, define them with Ticks. You can specify the ticks on the x or y axis

and let Plot choose the ticks on the other axis, or you can specify the ticks on both axes. Options can be
written in  any order,  but  they must  be  the  last  entries  in  the  command~that  is,  they must  be  written
after the expression and the plotting interval. For example,

Plot@Sin@xD, 8x, 0, 2 p<, AspectRatio Ø Automatic,
PlotLabel Ø Sin@xD, Ticks Ø 88p, 2 p<, 8-1, 1<<D

p 2 p

-1

1
sinHx L

Chapter 5  •  Graphics for Functions 119



‡ Mouse Manipulations

In notebook environments, we can change a plot in several ways using the mouse. First, click on the plot
with the mouse; a selection rectangle appears.

• To resize  the  plot,  drag  with  the  mouse  by  any  of  the handles  of  the  selection  rectangle.  When
dragging, the width and height of the plot can be read from the bottom left-hand corner of the window
(the size is expressed in printer’s points; one printer’s point is 1/72 of an inch). Note that the size of all
text remains unchanged when resizing the plot. Also, the form of the plot remains the same. To change
the form of the plot, hold down the ˜ key and then drag (or use the AspectRatio option). Changing
the default size of figures is considered soon.

• To move the plot on the screen (and thus adjust the margins around the plot), drag with the mouse
by one of the edges of the selection rectangle (but not by any of its handles). The plot moves and a second
selection  rectangle  appears  outside  the  original  seclection  rectangle.  The  outer  selection  rectangle
changes  its  size  as  you  move  the  plot.  The  size  of  the  outer  selection  rectangle  can  be  changed  by
dragging  by  one  of  its  handles.  While  dragging,  the  width  and height  of  the  outer  selection  rectangle
can be read from the bottom left-hand corner of the window. By moving the plot on the screen, we can
set the margins around the plot. To get equal margins on the top and bottom and on the left and right of
the  figure,  shift-drag by  one of  the  handles  of  the  outer  selection rectangle.  To  get  rid  of  the margins,
shift-drag by one of the handles of the outer section rectangle to the top left corner.

• To crop the plot, hold down the ‚ key in Windows or the Ì key on Macintosh, and drag by one of
the handles of the (inner) selection rectangle. The size of the plot can be read from the bottom left-hand
corner  of  the  window.  By  cropping,  you  can  either  make  more  room around the  plot  or  cut  off  some
parts of the plot (croppings are not permanent).

• To go back to the standard size and position, click on the plot and choose Graphics @ Rendering @

Make Standard Size (this does not affect a possible cropping).

• To align  several plots according to the first plot, select the plots by dragging over the cell brackets
so  that  all  plots  to  be  aligned  become  selected  (do  not  worry  if  some  nongraphics  cells  also  become
selected), and then choose Graphics @ Rendering @ Align Selected Graphics. Plots can be aligned with
respect to any side of the first plot. Plots can also be made the same size as the first plot.

• To  make  a  copied  graphic evaluatable,  select  the  graphic  and  choose Cell @ ConvertTo @

StandardForm.

To  change  the  default  size  of  all  future  plots  in  the  current  notebook  or  in  all  current  and  future
notebooks, choose Format @ Option Inspector, select Scope to be Selected Notebook (if you want to change
the  size  in  the  current  notebook only)  or Global  Preferences  (if  you  want  to  change  the  size  in  all  note-

books),  go  to Graphics  Options @ Image Bounding Box,  and change  the  width  and height  values  for
ImageSize. The default value is 350 printer’s points. Divide the value by 72 to get the width of figures in
inches. For example, with the default value, the width of the figure is approximately 4.86 inches. Once
you  have  typed  a  new  value,  remember  to  press Á.  Note  that  the  sizes  of  old  plots  do  not  change
according to the new standard size unless you replot them.

Another way to change the default size of all future plots in the current session is to use SetOptions,
as in the following example:

SetOptions@Plot, ImageSize Ø 150, BaseStyle Ø 8FontSize Ø 7<D;

Here, we also changed the size of the font in plots.

120 Mathematica Navigator



‡ Sound

With the Play  command,  we can hear  sound.  For  example,  the following command plays a  pure tone
with a frequency of 400 hertz for 2 seconds:

Play@Sin@2 p 400 tD, 8t, 0, 2<D

Note that we also have the Audio` and Music` packages.

5.1.2  Plotting Several Curves

‡ Suppressing the Display of a Plot

Before  discussing  plots  of  several  curves,  we  recall  from  Section  2.1.1  the  use  of  the  semicolon  (;)  to
suppress the display of a plot:

Plot[f, {x, a, b}];  Plot f but do not show the plot

Often when we prepare a  plot,  we,  naturally,  would like to see the plot.  However, when preparing
several plots that will later be combined with commands such as Show or GraphicsGrid, we may want
to  suppress  the  display  of  the  separate  plots  to  make the  presentation  clearer  and shorter  both on the
screen and on the paper. Suppressing the display is easy: Simply end the command with the semicolon
; (in earlier versions of Mathematica we had to use the DisplayFunction option).

‡ Showing Several Curves in the Same Plot

Plot[{f1, f2, … }, {x, a, b}]  Plot several expressions in the same figure
Show[p1, p2, … ]  Combine several plots in the same figure

To  get  several  curves  in  the  same plot,  we  have  two methods.  First,  we  can  plot  the  curves  in  one
command, giving the expressions as a list:

Plot@8Sin@xD, Cos@xD<, 8x, -p, p<D

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Note  that  the  curves  automatically  have  different  colors.  We  can  also  plot  each  curve  separately  and
then combine the plots with Show:

p1 = Plot@Sin@xD, 8x, -p, p<D;
p2 = Plot@Cos@xD, 8x, -p, p<D;

Chapter 5  •  Graphics for Functions 121



Show@p1, p2D

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Now the curves have the same color. We can also write complete plotting commands inside Show:

Show@Plot@Sin@xD, 8x, -p, p<D, Plot@Cos@xD, 8x, -p, p<DD

-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

Here  is  another  example.  It  illustrates  the  use  of  a  precomputed  list  of  expressions  and  the  use  of
Table inside Plot:

t = 8Sin@xD, Sin@2 xD, Sin@3 xD<;

8Plot@8Sin@xD, Sin@2 xD, Sin@3 xD<, 8x, 0, Pi<D,
Plot@t, 8x, 0, Pi<D,
Plot@Table@Sin@n xD, 8n, 1, 3<D, 8x, 0, Pi<D<

:
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

>

We can see that, with the exception of the last plot, the curves are given different colors. In the last plot,
we get different colors if we add //Evaluate after the Table command.

‡ Tooltips

Tooltip[f] (Ÿ6)  Show expression f as a tooltip when the mouse pointer is moved over the area
where f is plotted

Tooltip[f, label]  Show label label as a tooltip

With Tooltip  we  can  see  the  expression  plotted  or  another  label  when  moving  the  mouse  pointer
over the plot:

122 Mathematica Navigator



8Plot@Table@Tooltip@Sin@n xDD, 8n, 3<D êê Evaluate, 8x, 0, p<D,
Plot@Table@Tooltip@Sin@n xD, nD, 8n, 3<D êê Evaluate, 8x, 0, p<D,
Plot@Table@Tooltip@Sin@n xD, Row@8"n = ", n<DD, 8n, 3<D êê Evaluate, 8x, 0, p<D<

:
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

>

In the first  plot,  the tooltip is the expression plotted; in the second plot,  it  is the value of n;  and in the
third, it is a label such as n = 2. The label can also be a plot:

Table@Tooltip@Sin@n xD, Plot@Sin@n xD, 8x, 0, p<DD, 8n, 3<D
8Sin@xD, Sin@2 xD, Sin@3 xD<

When we move the mouse pointer over the result, we can see the plots of the expressions.

‡ Showing Several Curves Separately

{p1, p2, … }  Show a list of plots (with braces and commas)
Row[{p1, p2, … }]  Show a row of separate plots
GraphicsRow[{p1, p2, … }]  Show the plots in a row as a single graphic

We can show a list of plots:

t = Table@Plot@Sin@n xD, 8x, 0, Pi<, ImageSize Ø 95D, 8n, 4<D

:

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

>

The list contains the braces at the ends and commas in between. We can also use Row, Column, or Grid to
get arrays of plots:

Row@t, " "D

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

This is a row of four separate plots (Row, Column, and Grid are considered in Chapter 17). We also have
GraphicsRow, GraphicsColumn,  and GraphicsGrid.  With  these  commands,  we get  as  a  result  a  single
graphic:

Chapter 5  •  Graphics for Functions 123



GraphicsRow@tD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

Here are the special commands to arrange plots.

GraphicsRow[{p1, p2, … }] (Ÿ6)  Show plots side by side
GraphicsColumn[{p1, p2, … }] (Ÿ6)  Show plots one below the other
GraphicsGrid[{{p11, p12, … }, {p21, p22, … }, … }] (Ÿ6)  Show plots as a 2D grid

GraphicsGrid@Partition@t, 2DD

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

‡ Options

GraphicsRow, GraphicsColumn,  and GraphicsGrid  have  many  options;  execute,  for  example,
Options[GraphicsGrid] to get a list of all of them. Here are some of the options.

Some options of GraphicsRow, GraphicsColumn, and GraphicsGrid:

Spacings  Horizontal and vertical space between plots; examples of values: Scaled[0.1],
{Scaled[0.2], Scaled[0.1]}

ImageSize  Size of the whole grid; examples of values: Automatic, 300

ImageMargins  Margins around the whole grid; examples of values: 0., 5

AspectRatio  Ratio of height to width for the whole grid; examples of values: Automatic, 0.5

Background  Background color; examples of values: None, LightGray

Frame  Where to draw frames; examples of values: None, True (frame around the whole grid), All

(all items become boxed), {None, All} (frame around each row)
FrameStyle  Style of frames; examples of values: Automatic, Thick

Dividers  Where to draw lines; examples of values: None, All (all items become boxed), Center (all
interior dividers), {None, All} (no column lines, all row lines)

Many  of  the  options  have  more  advanced  forms  of  values;  see Section  15.2,  p. 470,  in  which  we

consider the options of Grid. To give an example of GraphicsGrid, prepare four plots:

124 Mathematica Navigator



p1 = Plot@Sin@xD, 8x, 0, 2 p<, PlotLabel Ø Sin@xDD;
p2 = Plot@Cos@xD, 8x, 0, 2 p<, PlotLabel Ø Cos@xDD;
p3 = Plot@Tan@xD, 8x, 0, 2 p<, PlotLabel Ø Tan@xD, PlotRange Ø 8-11, 11<D;
p4 = Plot@Cot@xD, 8x, 0, 2 p<, PlotLabel Ø Cot@xD, PlotRange Ø 8-11, 11<D;

With the PlotLabel option we get the label above the grid:

GraphicsGrid@88p1, p2<, 8p3, p4<<, Spacings Ø Scaled@0.2D,
Frame Ø All, FrameStyle Ø Blue, Background Ø LightYellow, ImageSize Ø 260,
PlotLabel Ø Style@"Trigonometric functions", 10, Bold, FontFamily Ø "Times"DD

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
sinHx L

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
cosHx L

1 2 3 4 5 6

-10

-5

5

10

tanHx L

1 2 3 4 5 6

-10

-5

5

10

cotHx L

Trigonometric functions

With the Labeled command we get the label below the grid:

Labeled@GraphicsGrid@88p1, p2<, 8p3, p4<<, Spacings Ø Scaled@0.2D,
Frame Ø All, FrameStyle Ø Blue, Background Ø LightYellow, ImageSize Ø 260D,

Style@"Trigonometric functions", 10, Bold, FontFamily Ø "Times"DD

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
sinHx L

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
cosHx L

1 2 3 4 5 6

-10

-5

5

10

tanHx L

1 2 3 4 5 6

-10

-5

5

10

cotHx L

Trigonometric functions

‡ How Show Handles Conflicting Settings

When Show  is used to combine plots, Mathematica  has to decide what to do if the plots have conflicting
settings.  Indeed,  the  plotting  intervals  may  be  different,  and  the  values  of  some  options  may  be
different. Mathematica uses the following rules:

• use the plotting interval of the first plot;
• use the values of the options of the first plot; and
• options given in Show override those of the first plot.

Chapter 5  •  Graphics for Functions 125



The second rule, as inevitable it is for Mathematica, may cause trouble for us. It means that all option
settings  other  than those  in  the  first  plot  are  simply discarded!  We have  perhaps carefully  set  various
options in all  plots,  but when the plots are combined, only the options from the first plot are used. To
correct the situation, in Show, we can give some of the options we have used in the plots. If you know in
advance that you do not need the separate plots as such but will combine the plots into one figure, then
fine-tune only the combined plot by giving suitable options in Show; do not fine-tune each plot.

As an example, consider the following plots:

p1 = Plot@Sin@xD, 8x, -p, p<D;
p2 = Plot@Cos@xD, 8x, 0, 2 p<D;
p3 = Plot@Sin@xD, 8x, 0, 2 p<, PlotRange Ø 80, 1<D;
p4 = Plot@Cos@xD, 8x, 0, 2 p<, PlotRange Ø 8-1, 0<D;
p5 = Plot@Cos@xD, 8x, -p, p<, Ticks Ø 88 -p, p<, 81<<D;

Try to combine some plots:

8Show@p1, p2D, Show@p3, p4D<

:
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

,

0 1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

>

Plots p1 and p2 have different plotting intervals, so the combined plot uses the interval of the first plot.
Plots p3 and p4 have conflicting plot ranges, so the plot range of the first plot is used.

8Show@p1, p5D,
Show@p1, p5, PlotRange Ø 80, 1<, Ticks Ø 88-p, p<, 81<<D<

:
-3 -2 -1 1 2 3

-1.0

-0.5

0.5

1.0

,

-p p

1

>

Plots p1 and p5 have conflicting ticks (the first plot uses the default ticks), so the ticks of the first plot are
used. The last plot shows that we can adjust the options in Show.

5.1.3  Interactive Drawing

‡ Graphics Inspector and Drawing Tools

In Mathematica, graphics are normally generated by commands such as Plot or ListPlot. The style of a
plot can be changed in many ways with options such as PlotStyle;  options are considered in Chapter
7. Sometimes we want to add into a plot some elements or primitives, as they are called in Mathematica,
such as points, lines, or text. This can be done with the Prolog and Epilog options (see Section 7.3.6, p.

201). Sometimes we want to build up a graphic from scratch by using graphical primitives. This can be

done with the Graphics (or Graphics3D) command (see Section 6.1.1, p. 152).

126 Mathematica Navigator



In addition to the use of the PlotStyle, Prolog, and Epilog options and the Graphics command, in
Mathematica  we can also draw interactively with the mouse. By choosing Graphics @ Graphics Inspec-
tor and Graphics @ Drawing Tools, we get the following windows:

• With the 2D Graphics Inspector window we can change the styles of components of a plot.
• With the 2D Drawing window we can add primitives to a plot or build up a graphic from scratch.

The 2D Graphics Inspector window can also be shown by clicking on the upper right button on the
2D Drawing window.

‡ Changing the Style of Plots

To change the style of a curve or point set,

• double-click  on  the  curve  or  one  of  the  points  with  the  selection  tool of  the 2D  Drawing

window; and
• choose, from the 2D Graphics Inspector, the styles you want to apply for the curve.

In general,

• for a curve, we can change the color, thickness, and dashing; and
• for a set of points, we can change the color and point size.

As an example, here we have three plots:

8Plot@Sin@xD, 8x, 0, 2 p<D,
ListPlot@Table@8x, Sin@xD<, 8x, 0, 2 p, p ê 10<DD,
ListLinePlot@Table@8x, Sin@xD<, 8x, 0, 2 p, p ê 10<D, Mesh Ø AllD<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

We have changed the plots as follows:

Chapter 5  •  Graphics for Functions 127



:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

To get  the  first  plot,  we selected the curve by double-clicking on it.  Be careful:  The double-clicking
has  to  be  done on  the  curve,  not  on  the  white  parts  of  the  plot.  Then  we  set,  from  the 2D  Graphics
Inspector, the color to dark red, thickness to approximately 2, and dashing to Dashed.

To get the second plot, we first selected the point set by double-clicking on one of the points. We set
the color to red and point size to approximately 4.

To  get  the  third  plot,  we  first  selected  the  curve  by  double-clicking  on  it.  We  set  the  color  to  dark
blue, thickness to approximately 2, and point size to approximately 4. To change the color of the points,
we have to select the points by double-clicking one of them. Then we set the color to dark red.

With the 2D Graphics Inspector, we can also select the opacity of a color.

By double-clicking the color panel on the inspector, we get a more advanced color selector (the same
we get from Insert @ Color).

‡ Using the 2D Drawing Tools

The 2D drawing tools can be used in two ways:

• Add some primitives to an existing plot
• Draw a graphic from scratch

To  start  the  second  method,  simply  click  on  the New  Graphic  button  on  the 2D  Drawing

window  or  choose Graphics @ New  Graphic.  We  get  an  empty  graphic.  Then  add  some  suitable
primitives.

With the 2D drawing tools, we can draw

• point ;

• line , arrow , line segments , and freehand line ;

• text  and traditional form text ; and

• filled or unfilled disk/circle , rectangle/square , and polygon .

In addition, with the coordinate-picking tool  we can read and copy coordinates.

‡ Selecting a Drawing Tool

On the 2D Drawing window, we can select a drawing tool in two ways:

• To  draw a  single  primitive, click  one  time  on  the  corresponding  tool  on  the 2D Drawing  window.
Then click or drag on the plot.

• To draw several primitives of the same kind, double-click on the corresponding tool (to go back to the
normal arrow mouse pointer, click on this tool on the 2D Drawing window).

To select a drawing tool to draw a single primitive, we can also type a special key:

128 Mathematica Navigator



• point, p
• line, l; arrow, a; line segments, s; freehand line, f
• text, t; traditional form text, m
• disk/circle, c; rectangle, q; polygon, g
• mouse pointer, o

Thus, to draw, for example, an arrow, type a to get the arrow tool and then draw.

‡ Drawing Points, Lines, Arrows, and Text

Points, lines, arrows, and text can be drawn as follows, after selecting the suitable tool:

• To draw a point, click on the plot at a suitable location.
• To draw a line, click on the starting point, keep the mouse button down, and drag to the end point.
• To draw an arrow, proceed as with a line.
• To draw line segments, click on the starting point, release the mouse button, move the mouse to the

next  point,  click with the mouse,  release  the mouse button,  …,  move the mouse to  the last  point,
and double click.

• To draw a freehand line,  click on the starting point, keep the mouse button down, move the mouse
as  you  want,  and  at  the  end  point  release  the  mouse  button.  The  resulting  curve  consists  of  line
segments  with  breaking  points.  The  quality  of  the  line  depends  on  the  speed  of  the  mouse:  The
slower you move the mouse, the more line segments and breaking points the resulting curve will
have.

• To add a text, click on the starting point of the text and type the text.
• To add a traditional form text  such as a formula, click on the starting point of the formula and type

the formula or build the formula with the aid of palettes.

In the following plot, we have added a point, an arrow, a text, and a formula.

Plot@Sin@xD, 8x, 0, 2 p<D

point of inflection

sinHx L

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

Note that once we have changed the style of a plot or added a primitive, the higher-level cell bracket
at  the  right,  grouping  the  command  and  the  plot,  disappears.  This  is  a  useful  feature  because  if  we
execute the plotting command again, the modified plot remains on the notebook.

‡ Drawing Filled Primitives

Filled ellipses, rectangles, and polygons can be drawn as follows:

• To draw an elliptical disk or filled ellipse, click on the center point, keep the mouse button down, and
drag until the disk has a suitable size and form.

• To draw a filled rectangle, click on one of the vertices, keep the mouse button down, and drag to the
opposite vertex.

• To draw a  filled  polygon,  click on the starting point,  release the mouse button, move the mouse to
the  next  point,  click  with  the  mouse,  release  the  mouse  button,  …,  move  the  mouse  to  the  last
point, and double click.

Chapter 5  •  Graphics for Functions 129



‡  Coloring Filled Primitives

A filled disk, rectangle, or polygon can be colored in two ways: Either the whole primitive has the same
color,  or  the  inside  and  the  edge  of  the  primitive  have  different  colors.  To  set  the  colors  of  filled
primitives, we need the color settings on the top left part of the 2D Graphics Inspector. There, we have
two squares:

• The upper left square shows the color of the inside (or face) of the filled primitive.
• The lower right square shows the color of the edge of the filled primitive.

To change the color of the inside or edge of a filled primitive, select the primitive, set (by clicking if
necessary) one of the squares in the 2D Graphics Inspector to be the topmost square, and choose a color
from the panel in the inspector. Then set the other square to be the topmost square and choose a color.

‡ Drawing Unfilled Primitives

To get an unfilled primitive, we can set the primitive to have nothing as the inside and black (or another
color) as the edge. Indeed, by clicking repetitively on one of the two squares on the inspector window,
the corresponding color setting toggles between a color and nothing. In this way, we can draw unfilled
primitives:

• To get  an unfilled  ellipse,  rectangle,  or  polygon,  set,  by clicking on the two squares on the inspector,
the  inside  color  to  nothing  and  the  edge  color  as  black  (the  edge  color  can  then  be  changed  to
another color). Then draw a disk, rectangle, or polygon.

‡ Constraining Primitives

A primitive (other than a point or a text) can be constrained as follows, by shift-dragging:

• A line and arrow can be constrained to horizontal or vertical direction.
• A line segment can be constrained to have horizontal or vertical segments.
• A disk can be constrained to a circle form.
• A rectangle can be constrained to a square.
• A polygon can be constrained to have horizontal or vertical edges.

In the following plot, we started from an empty graphics, drew a disk (by constraining it to the form
of a circle), selected it, copied it, and pasted it two times. Two of the copies were moved to other places.
Suitable colors were given to the disks, and a suitable opacity was defined.

‡ Selecting Primitives and Their Components

The  primitives  can  be  modified  in  various  ways.  In  modifying,  the  depth  at  which  the  primitive  is
selected with the selection tool is  essential.  The depth of  selection is  controlled by clicking various

times.

130 Mathematica Navigator



• At the lowest level, the selection rectangle appears around the primitive. At this level, the primitive
as a whole can be modified. We say simply that the primitive is selected.

• At the next level (by continuing the clicking), the components of the primitive become visible; for
example, for a line we can see the line and its end points. We say that the components of the primitive
are selected.

‡ Moving and Resizing Primitives

To change a primitive as a whole, first select the primitive. Then do the following:

• To move a primitive, drag either on an edge of the selection rectangle or on the primitive.
• To change the size of a primitive, drag on one of the handles of the selection rectangle. To change the

size  in  such a  way that  the form of  the primitive remains the same,  hold down the shift  key and
then drag on a handle.

• To change the color, point size, thickness, or dashing, use the 2D Graphics Inspector.

‡ Modifying the Components of Primitives

To  change  the  components  of  a  primitive,  first  select  the  components  of  the  primitive.  Then  do  the
following:

• Changing a line:  To move the line,  drag on the line. To change the starting or ending point of the
line, drag on the corresponding point.

• Changing an arrow: Do as with a line. To change the form, size, or position of an arrowhead, either
select  the  arrow  or  select  the  end  point  of  the  arrow.  Then  change  the  arrowhead  from  the 2D
Graphics Inspector.

• Changing a set of line segments: To move a line segment, drag on that segment. To move a breaking
point, drag on that point.

• Changing a freehand line: Drag either on a line segment or on a breaking point.
• Changing a text or traditional form text: Set the cursor at a suitable location and modify or type.
• Changing a disk: To change the center point, drag on it. To change the size or form of the disk, drag

on the point of one of the vertices around the disk.
• Changing a rectangle: To change the size or form, drag on one of the two points on opposite vertices.
• Changing a polygon: Drag either on a line segment or on a breaking point.

‡ Grouping Primitives and Moving Them Front and Back

Primitives  can be  grouped together.  A group can then be  treated as  one object,  enabling,  for  example,
the moving of the primitives at the same time. Primitives can also be moved to front or back; this may
have an effect if the primitives are on top of each other.

• To  group  a  set  of  primitives,  select  the  first  primitive  and  then  shift-click  to  select  the  other
primitives. Then select Graphics @ Operations @ Group.

• To  move  a  primitive  to  the  front,  select  the  primitive  and  then  choose Graphics @ Operations @

Move To Front.

‡ Picking Coordinates

With the coordinate-picking tool  we can read and copy coordinates.

• To  read  coordinates,  move  the  coordinate-picking  tool  on  the  plot  (without  pressing  the  mouse
button).

Chapter 5  •  Graphics for Functions 131



• To mark a point, click, with the coordinate-picking tool, on the point. To mark several points on a
path, drag with the coordinate-picking tool. To delete a marker, ‚-click (Ì-click on a Macintosh)
on the marker.

• To copy the coordinates  of  a  point,  mark the point  and do standard copying;  the coordinates can
then be pasted.

• To mark a rectangle, ‡-drag (ı-drag on a Macintosh). To copy the coordinates of two opposite
corners  of  the  marked  rectangle,  do  standard  copying;  the  coordinates  can  then  be  pasted.  If
marked points are inside the rectangle, their coordinates are also copied and pasted.

5.2  Other Plots for 2D Functions

5.2.1  Parametric Plots

ParametricPlot[{fx, fy}, {t, a, b}]  Make a parametric plot
ParametricPlot[{{fx, fy}, {gx, gy}, … }, {t, a, b}]  Make several parametric plots

We can define a function parametrically by giving a list of two expressions {fx, fy}. The expressions
define the x and y coordinates of the function and are functions of a parameter, often denoted by t. The

usual plotting command Plot[expr, {x, a, b}]  can be seen as the special  case ParametricPlot[{x,

expr}, {x, a, b}] of the parametric plotting command.

ParametricPlot has almost the same options and default values as Plot (the options are considered
in detail in Chapter 7). One notable exception is the option AspectRatio. For Plot, the default value of
this  option  is 1/GoldenRatio,  whereas  for ParametricPlot  the  default  value  is Automatic.  For
parametric  plots,  this  default  value  is  useful  because,  for  example,  a  circle  looks  like  a  circle  (see p1

below) and not like an ellipse. Here are some examples:

SetOptions@ParametricPlot, Ticks Ø NoneD;
p1 = ParametricPlot@8Cos@tD, Sin@tD<, 8t, 0, 2 p<D;
p2 = ParametricPlot@82 Cos@tD, Sin@tD<, 8t, 0, 2 p<D;
p3 = ParametricPlot@8H2 Cos@tD - 1L Cos@tD, H2 Cos@tD - 1L Sin@tD<, 8t, 0, 2 p<D;
p4 = ParametricPlot@8t Cos@tD, t Sin@tD<, 8t, 0, 12 p<D;
p5 = ParametricPlot@8t Cos@tD Sin@tD, t Sin@tD^2<, 8t, 0, 8 p<D;
p6 = ParametricPlot@8Sin@2 tD + Sin@5 tD, Cos@2 tD + Cos@5 tD<, 8t, 0, 2 p<D;
p7 = ParametricPlot@8Sin@2 tD Sin@5 tD, Cos@2 tD Sin@5 tD<, 8t, 0, 2 p<D;
p8 = ParametricPlot@8Cos@tD + 1 ê 2 Cos@7 tD + 1 ê 3 Cos@-17 t + p ê 2D,

Sin@tD + 1 ê 2 Sin@7 tD + 1 ê 3 Sin@-17 t + p ê 2D<, 8t, 0, 2 p<D;

GraphicsGrid@88p1, p2, p3, p4<, 8p5, p6, p7, p8<<, ImageSize Ø 340D

132 Mathematica Navigator



With a rotation transform we can plot, for example, a rotated ellipse:

t =.; ParametricPlot@RotationTransform@Pi ê 4D@82 Cos@tD, Sin@tD<D êê Evaluate,
8t, 0, 2 p<, Ticks Ø 88-1, 1<, 8-1, 1<<, ImageSize Ø 70D

-1 1

-1

1

‡ Polar Plots

PolarPlot[r, {q, a, b}] (Ÿ6)  Make a polar plot

 In a polar plot, the radius r is a function of angle q. A polar plotting command PolarPlot[r, {q, a,

b}]  is  the special case ParametricPlot[{r Cos[q], r Sin[q]}, {q, a, b}]  of the parametric plotting
command. Examples:

SetOptions@PolarPlot, Ticks Ø NoneD;

p1 = PolarPlot@1, 8q, 0, 2 p<D;
p2 = PolarPlot@q, 8q, 0, 30<D;
p3 = PolarPlot@q^H-1 ê 2L, 8q, 0.2, 50<, PlotRange Ø AllD;
p4 = PolarPlot@Sin@6 qD, 8q, 0, 2 p<D;

GraphicsRow@8p1, p2, p3, p4<, ImageSize Ø 340D

5.2.2  Logarithmic Plots

LogPlot[f, {x, a, b}] (Ÿ6)  A plot of Log[f] as a function of x

LogLinearPlot[f, {x, a, b}] (Ÿ6)  A plot of f as a function of Log[x]

LogLogPlot[f, {x, a, b}] (Ÿ6)  A plot of Log[f] as a function of Log[x]

With LogPlot,  exponential  functions  become  straight  lines.  With LogLinearPlot,  logarithmic
functions become straight lines. With LogLogPlot,  power functions become straight lines. Logarithmic
plots have the same options as Plot.

8LogPlot@Exp@xD, 8x, 0, 4<, GridLines Ø AutomaticD,
LogLinearPlot@Log@xD, 8x, 1, 100<, GridLines Ø AutomaticD,
LogLogPlot@x^H1 ê 2L, 8x, 1, 100<, GridLines Ø AutomaticD<

:

1 2 3 4

2

5

10

20

50

,

2 5 10 20 50 100

1

2

3

4

,

2 5 10 20 50 100

10.0

5.0

2.0

3.0

1.5

7.0

>

Chapter 5  •  Graphics for Functions 133



5.2.3  Implicit Plots

‡ Plotting an Implicit Function

An  implicit  function  is  defined  by  an  equation expr1 ã expr2  (note  the  two  equals  signs  needed  in
equations) in which the expressions are functions of two variables, often denoted by x and y. From the
equation  we  can,  at  least  in  principle,  solve y  for  each x,  and  so  we  get  a  function y  of x.  With
ContourPlot, we can plot implicit functions (ContourPlot is considered in more detail in Sections 5.3.1,

p. 139, and 7.6.1, p. 226).

ContourPlot[expr1 ã expr2, {x, a, b}, {y, c, d}] (Ÿ6)  Plot an implicit function defined by an
equation

The default  is  that  a  contour  plot  has  a  frame,  but  we can ask  not  to  draw a  frame but,  rather,  the
axes. Also, the default aspect ratio is 1 for a contour plot.

ContourPlot@x^3 - 2 x y + y^3 ã 0, 8x, -1.2, 1.1<, 8y, -1, 1.1<,
PlotPoints Ø 40, Frame Ø False, Axes Ø True, AspectRatio Ø AutomaticD

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Note that if you give a name for the equation, you need Evaluate in the plotting command:

eqn = x^3 - 2 x y + y^3 ã 0;

ContourPlot@eqn êê Evaluate, 8x, -1.2, 1.1<, 8y, -1, 1.1<D

Whereas ContourPlot  plots  the points satisfying an equality, RegionPlot  (see Section 5.2.5,  p. 136)

plots regions where one or more inequalities are satisfied.

‡ Plotting a Function of an Implicit Function

We may have the situation in which y  is  defined implicitly as a  function of x  by an equation expr1 ã

expr2  but  we want  to  plot,  by  using x  as  the  independent  variable,  not  the  plain y  but  an  expression
expr3 containing y (and possibly also x). In this way, expr3 is a function of the implicit function y.

As  an  example,  consider  the  salmon  model  of Mesterton-Gibbons  (1989,  p.  62).  In  studying  the
stability of a period-2 equilibrium cycle, we have the following equation:

eqn = y Exp@r H1 - yLD ã 2 - y;

This implicitly defines y for each r, and we want to plot the following expression as a function of r:

delta = Abs@H1 - r yL H1 - 2 r + r yLD;

First, we plot the implicit function defined by eqn:

134 Mathematica Navigator



ContourPlot@eqn êê Evaluate, 8r, 1.9, 2.8<, 8y, 0, 2<, Frame Ø False, Axes Ø True,
AxesOrigin Ø 81.9, 0<, PlotPoints Ø 40, AspectRatio Ø 1 ê GoldenRatioD

2.0 2.2 2.4 2.6 2.8

0.5

1.0

1.5

2.0

Thus, y as a function of r has multiple values. When plotting delta for r in H2, 2.8L, we are interested in
the smallest y value. Plot delta as follows (we also plot the line 1 with the Epilog option):

ListLinePlot@Table@8r, y = y ê. FindRoot@y Exp@r H1 - yLD ã 2 - y, 8y, 0.1<D; delta<,
8r, 2, 2.8, 0.005<D êê Quiet, Epilog Ø Line@880, 1<, 82.8, 1<<DD

y =.

2.2 2.4 2.6 2.8

0.5

1.0

1.5

2.0

In FindRoot, we used the starting value 0.1, for which we get the smallest y value (as can be verified).

The stability of the cycle requires that delta be smaller than 1. From the previous plot, we see that r

should be at most approximately 2.5. To get a more accurate value, we solve a system of two equations:

FindRoot@8delta ã 1, eqn<, 8r, 2<, 8y, 0.1<D
8r Ø 2.52647, y Ø 0.277704<

5.2.4  Filled Plots

‡ Plotting One Curve with a Fill

Filling (Ÿ6)  Type of filling to use; examples of values: None, Axis, Bottom, Top, 0.3

FillingStyle (Ÿ6)  Style of filling; examples of values: Automatic, Red, {Blue, Red} (different
style for negative and positive values), {{Opacity[0.3], Blue}}

GraphicsRow@
Plot@Cos@xD, 8x, 0, 2 p<, Filling Ø ÒD & êü 8Axis, Bottom, Top, -0.5<, ImageSize Ø 420D

Next, we define custom styles:

Chapter 5  •  Graphics for Functions 135



GraphicsRow@Plot@Cos@xD, 8x, 0, 2 p<, Filling Ø Axis, FillingStyle Ø ÒD & êü
8Red, 8Blue, Red<, 88Opacity@0.3D, Blue<<<, ImageSize Ø 310D

‡ Plotting Two Curves with Fills

Filling (Ÿ6)  Type of filling to use; examples of values: Axis (fills from the curves to the x axis),
True (a fill between the curves), {1 Ø Axis} (a fill between the first curve and x axis), {2 Ø {1}} (a
fill between the curves), {1 Ø {{2}, Red}} (define also the filling style), {1 Ø {{2},

Directive[Opacity[0.3], Red]}} (define style with several directives)
FillingStyle (Ÿ6)  Style of filling; examples of values: Red, {Blue, Red} (different styles depend-

ing on which curve is the topmost), {{Opacity[0.3], Blue}}

In filling, several directives have to be collected together with Directive. Examples:

GraphicsRow@8Plot@8Cos@xD, Sin@xD<, 8x, 0, 2 p<, Filling Ø TrueD,
Plot@8Cos@xD, Sin@xD<, 8x, 0, 2 p<, Filling Ø AxisD,
Plot@8Sin@xD, If@p ê 4 < x < 3 p ê 4, 0D<, 8x, 0, p<, Filling Ø 81 Ø 82<<D,
Plot@8Cos@xD, Sin@xD<, 8x, 0, 2 p<, Filling Ø

81 Ø 8Axis, Red<, 2 Ø 881<, Directive@Opacity@0.3D, BlueD<<D<, ImageSize Ø 420D

5.2.5  Region Plots

RegionPlot[ineqs, {x, a, b}, {y, c, d}] (Ÿ6)  Show by a filled plot the region where the given
logical combination of inequalities are satisfied (i.e., gives True)

RegionPlot has much the same options as ContourPlot. The style of the boundary of the region can
be controlled with BoundaryStyle and the style of the fill with PlotStyle.

Inequalities  can  be  combined  with  logical  operations  such  as &&  (AND), ||  (OR), !  (NOT),  or Xor

(exclusive OR); these are explained in Section 13.3.5, p. 431. For example,

SetOptions@RegionPlot, Frame Ø False, Axes Ø True, AspectRatio Ø AutomaticD;

p1 = RegionPlot@x^2 < y < Sqrt@xD, 8x, 0, 1<, 8y, 0, 1<D;
p2 = RegionPlot@1 < x^2 - 1.5 x y + y^2 < 2, 8x, -2.2, 2.2<, 8y, -2.2, 2.2<D;
p3 = RegionPlot@x^3 - 2 x y + y^3 < 0, 8x, -1.2, 1.1<, 8y, -1, 1.1<D;
p4 = RegionPlot@

Xor@Hx + 1L^2 + y^2 < 2, Hx - 1L^2 + y^2 < 3D, 8x, -2.5, 2.8<, 8y, -1.8, 1.8<D;

136 Mathematica Navigator



GraphicsRow@8p1, p2, p3, p4<, ImageSize Ø 420D

‡ Parametric Region Plots

ParametricPlot[{fx, fy}, {t, a, b}, {u, c, d}] (Ÿ6)  Plot a parametrically defined region

8ParametricPlot@8r Cos@qD, r Sin@qD<, 8r, 1, 2<, 8q, 0, 2 p<D,
ParametricPlot@8r Cos@qD, Sin@qD<,
8r, 1, 2<, 8q, 0, 2 p<, Mesh Ø False, Frame Ø FalseD,

ParametricPlot@RotationTransform@qD@82 Cos@tD, Sin@tD<D êê Evaluate,
8t, 0, 2 p<, 8q, 0, p ê 4<, Ticks Ø 88-1, 1<, 8-1, 1<<D<

: , , >

5.2.6  Complex Plots

‡ Using Re, Im, and Abs

If the function to be plotted has complex values for some values of the argument, nothing is plotted for
these values of argument:

Plot@Sqrt@Cos@xDD - 0.5, 8x, 0, 2 p<D

1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

One possibility to plot functions that have complex values is to use Re, Im, or Abs to plot only the real
or imaginary part or the absolute value:

Chapter 5  •  Graphics for Functions 137



8Plot@Re@Sqrt@Cos@xDD - 0.5D, 8x, 0, 2 p<D,
Plot@Im@Sqrt@Cos@xDD - 0.5D, 8x, 0, 2 p<D,
Plot@Abs@Sqrt@Cos@xDD - 0.5D, 8x, 0, 2 p<D<

:
1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

,

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

,

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

>

‡ Complex Powers

 Consider the function x1ê3. For a given x such as -2.0, it takes on three values, which can be obtained by
solving the equation y3 = -2.0:

Solve@y^3 ã -2.0D
88y Ø -1.25992<, 8y Ø 0.629961 - 1.09112 Â<, 8y Ø 0.629961 + 1.09112 Â<<

Let us look at what value Mathematica gives us for H-2L1ê3:

H-2.L^H1 ê 3L
0.629961 + 1.09112 Â

We have  a  complex  value  rather  than the  real  value -1.25992.  In  general, Mathematica  gives  the  value
with  the  smallest  positive  argument.  To  plot  a  function  such  as x1ê3,  one  possibility  is  to  plot  the
implicitly defined function y3 = x:

ContourPlot@y^3 == x, 8x, -2, 2<, 8y, -1.2, 1.2<,
Frame Ø False, Axes Ø True, AspectRatio Ø 1 ê GoldenRatioD

-2 -1 1 2

-1.0

-0.5

0.5

1.0

‡ Region Plots

RegionPlot[ineqs, {x, a, b}, {y, c, d}] (Ÿ6)  Show by a filled plot the region where the given
logical combination of inequalities is satisfied (i.e., gives True)

RegionPlot can also be used for inequalities with complex variables:

SetOptions@RegionPlot, Frame Ø False, Axes Ø TrueD;

p1 = RegionPlot@Abs@x + I yD § 1, 8x, -1, 1<, 8y, -1, 1<D;
p2 = RegionPlot@Abs@1 - Hx + I yL^3D § 1, 8x, -1, 1.3<, 8y, -1.2, 1.2<D; p3 = RegionPlot@

Abs@1 - Hx + I yL^2D < Abs@1 - Hx + I yL + Hx + I yL^2D, 8x, -1.5, 2.1<, 8y, -1, 1<D;
p4 = RegionPlot@Sqrt@x^3 - yD œ Reals, 8x, -1.5, 1.5<, 8y, -1, 1<D;

138 Mathematica Navigator



GraphicsRow@8p1, p2, p3, p4<, ImageSize Ø 420D

The last plot shows the region where the function x3 - y  is real.

‡ Contour and Parametric Plots

ContourPlot[Abs[f], {x, a, b}, {y, c, d}]

ParametricPlot[{Re[f], Im[f]}, {x, a, b}, {y, c, d}] (Ÿ6)

f = 1 ê Hx + I yL; 8ContourPlot@Abs@fD, 8x, -1, 1<, 8y, -1, 1<D,
ParametricPlot@8Re@fD, Im@fD<, 8x, -0.1, 0.1<, 8y, -0.1, 0.1<D<

: , >

The package VectorFieldPlots` defines PolyaFieldPlot.

5.3  Plots for 3D Functions

5.3.1  Basic Plots

‡ Surface, Contour, and Density Plots

Plot3D[f, {x, a, b}, {y, c, d}]  Plot f as a surface plot
ContourPlot[f, {x, a, b}, {y, c, d}]  Plot f as a contour plot
DensityPlot[f, {x, a, b}, {y, c, d}]  Plot f as a density plot

Surface,  contour,  and  density  plots  are  the  three  main  plot  types  to  illustrate  3D  functions.  For
example,

f = Cos@x yD Cos@xD;

Chapter 5  •  Graphics for Functions 139



8Plot3D@f, 8x, 0, 3<, 8y, 0, 4<, AxesLabel Ø 8x, y, None<D,
ContourPlot@f, 8x, 0, 3<, 8y, 0, 4<, FrameLabel Ø 8x, y<, RotateLabel Ø FalseD,
DensityPlot@f, 8x, 0, 3<, 8y, 0, 4<, FrameLabel Ø 8x, y<, RotateLabel Ø FalseD<

: , , >

Plot3D shows a 3D surface. ContourPlot produces curves that are contours of constant value~that is,
along  each  of  the  curves  the  value  of  the  function is  a  certain  constant.  By  moving the  mouse  pointer
over a contour plot (without pressing the mouse button), we can see the constants corresponding to the
contours. DensityPlot shows the highest parts of the function as light and the lowest parts as dark. All
of these commands are adaptive (Ÿ6): They sample the function at more and more points until the plot
is smooth enough. Note that only a surface plots is a true 3D plot; a contour or density plot is actually a
2D plot suitable to illustrate a 3D function.

We  can  show  a  surface  with  contours  of  constant  value.  We  can  also  show  several  surfaces  at  the
same time:

8Plot3D@f, 8x, 0, 3<, 8y, 0, 4<, MeshFunctions Ø 8Ò3 &<D,
Plot3D@8Sin@x yD, Cos@x yD<, 8x, 0, p<, 8y, 0, p ê 2<D<

: , >

In Section 5.2.3, p. 134, we considered the use of ContourPlot to plot implicitly defined functions.

‡ Mouse Manipulations

For 3D plots, we can perform similar manipulations with the mouse as we did for 2D plots (see Section

5.1.1, p. 120). First, click on the plot so that the selection rectangle appears. Then do the following:

• To resize, drag by a handle of the selection rectangle; ˜ drag to change the aspect ratio.
• To move, drag by an edge of the selection rectangle.
• To crop, hold down the ‚ (Windows) or Ì (Macintosh) key and drag by a handle.
• To go back to the standard position and size, choose Graphics @ Rendering @ Make Standard Size.

In addition, we can rotate, zoom, and pan a plot produced by Plot3D:

• To rotate,  move  the  pointer  over  the  plot.  The  pointer  changes  to  the  rotate  pointer .  Drag to

rotate.

140 Mathematica Navigator



• To rotate about the axis perpendicular to the screen,  move the pointer to a corner area of the plot. The

pointer changes to the vertical rotate pointer . Drag clockwise or counterclockwise to rotate.

• To zoom,  hold  down  the ‚  (Windows)  or Ì  (Macintosh)  key  and  drag  with  the  zoom  pointer

upwards (to zoom in) or downwards (to zoom out).

• To pan  the  3D object~that  is,  to  move it  inside the selection rectangle~shift-drag  the object  with

the pan pointer .

Note that interactive drawing (Graphics @ Drawing Tools, Graphics @ Graphics Inspector) does not
work with plots produced by Plot3D or by other surface plotting commands.

Here is the Klein bottle:

a = 6 Cos@uD H1 + Sin@uDL; b = 16 Sin@uD; c = 4 H1 - Cos@uD ê 2L;
fx = If@p < u § 2 p, a + c Cos@v + pD, a + c Cos@uD Cos@vDD;
fy = If@p < u § 2 p, b, b + c Sin@uD Cos@vDD;
fz = c Sin@vD;

ParametricPlot3D@8fx, fy, fz<, 8u, 0, 2 p<, 8v, 0, 2 p<, Boxed Ø False, Axes Ø FalseD

As an example of manipulating with the mouse, resize this plot larger and then rotate it to look inside
the bottle. Try also zooming.

‡  Some Options

We consider all of the options of the main 3D graphics commands in Chapter 9. Here, we only mention
two options:

An option for Plot3D:
BoxRatios  Ratios of side lengths of the bounding box; examples of values: {1, 1, 0.4}, Automatic

An option for ContourPlot and DensityPlot:
AspectRatio  Ratio of height to width of the plotting rectangle; examples of values: 1, Automatic

The default value {1, 1, 0.4}  of BoxRatios  for Plot3D  means that the x  and y  axes have the same

length and that the length of the z  axis is 0.4 times the length of the other axes. If we set BoxRatios Ø

Automatic, then one unit on each of the x, y, and z axes has the same length in the surface plot.

The default value 1 of AspectRatio for ContourPlot and DensityPlot gives a plot of a square form.
If we set AspectRatio Ø Automatic,  then one unit on both the x  and y  axes has the same length. Note

that  contour  and  density  plots  have  a frame  (and  no  axes),  and  so  ticks  on  the  frame  can  be  set  with
FrameTicks.

Chapter 5  •  Graphics for Functions 141



5.3.2  Special Plots

‡ Parametric Plots

ParametricPlot3D[{fx, fy, fz}, {u, a, b}]  Plot a parametric curve
ParametricPlot3D[{fx, fy, fz}, {u, a, b}, {v, c, d}]  Plot a parametric surface

The expressions fx, fy, and fz give the x, y, and z coordinates of the curve or surface.

SetOptions@ParametricPlot3D, Axes Ø False, Boxed Ø FalseD;

p1 = ParametricPlot3D@8u, Cos@9 uD, Sin@9 uD<, 8u, 0, p<, PlotStyle Ø BlackD;
p2 = ParametricPlot3D@8v Cos@uD, v Sin@uD, 2 v<, 8u, 0, 2 Pi<, 8v, 0, 1<D;
p3 = ParametricPlot3D@8Cos@uD, Sin@uD, 2 v<, 8u, 0, 2 Pi<, 8v, 0, 1<D;
p4 = ParametricPlot3D@

8Sin@uD Cos@vD, Sin@uD Sin@vD, 1 + Cos@uD<, 8u, 0, p<, 8v, 0, 2 p<D;
p5 = ParametricPlot3D@2 8Sin@uD Cos@vD, Sin@uD Sin@vD, Cos@uD<,

8u, p ê 2, p<, 8v, -p, p<D;

GraphicsRow@8p1, p2, p3, p4, p5<, Spacings Ø -80, ImageSize Ø 420D

p6 = Show@8p4, p5<, PlotRange Ø AllD;
p7 = ParametricPlot3D@

8Cos@uD H3 + Cos@vDL, Sin@vD, Sin@uD H3 + Cos@vDL<, 8u, 0, 2 p<, 8v, 0, 2 p<D;
p8 = ParametricPlot3D@88Cos@uD H3 + Cos@vDL, Sin@vD, Sin@uD H3 + Cos@vDL<,

83 + Sin@uD H3 + Cos@vDL, Cos@uD H3 + Cos@vDL, Sin@vD<<, 8u, 0, 2 p<, 8v, 0, 2 p<D;
p9 = ParametricPlot3D@8u Cos@vD Sin@uD, u Cos@uD Cos@vD, -u Sin@vD<,

8u, 0, 2 p<, 8v, 0, p<D;
p10 = ParametricPlot3D@1.2^v 8Sin@uD^2 Sin@vD, Sin@uD^2 Cos@vD, Sin@uD Cos@uD<,

8u, 0, p<, 8v, -p ê 4, 5 p ê 2<, PlotRange Ø AllD;

GraphicsRow@8p6, p7, p8, p9, p10<, Spacings Ø -80, ImageSize Ø 420D

Like  other  plotting  commands, ParametricPlot3D  is  adaptive.  The  default  value  of BoxRatios  is
Automatic (compared with {1, 1, 0.4} for Plot3D). This means that a parametric plot is shown in the
natural scaling, where one unit on the x, y, and z axes has the same length.

142 Mathematica Navigator



‡ Spherical Plots

SphericalPlot3D[r, {q, a, b}, {f, c, d}] (Ÿ6)

SphericalPlot3D  uses ParametricPlot3D  with  argument r {Sin[q] Cos[f], Sin[q] Sin[f],

Cos[q]}.

SetOptions@SphericalPlot3D, Axes Ø False, Boxed Ø FalseD;

8SphericalPlot3D@1, 8q, 0, p<, 8f, 0, 2 p<D,
SphericalPlot3D@81, 2<, 8q, 0, p<, 8f, 0, 3 p ê 2<D,
SphericalPlot3D@q - 1, 8q, 0, p<, 8f, 0, p<D<

: , , >

‡ Surfaces of Revolution

RevolutionPlot3D[fz, {t, a, b}] (Ÿ6)  Rotate around z axis the curve fz in the Ht, zL plane
RevolutionPlot3D[{fx, fz}, {t, a, b}]  Rotate around z axis the parametrically defined curve
RevolutionPlot3D[{fx, fy, fz}, {t, a, b}]  Rotate around z axis the parametrically defined

space curve

We can add a  third argument {q, c, d}  to  these  commands so  that  the  curve  is  rotated only from
angle c to angle d.

SetOptions@RevolutionPlot3D, Axes Ø False, Boxed Ø FalseD;

8RevolutionPlot3D@Cos@tD, 8t, 0, 2 p<D,
RevolutionPlot3D@8t Cos@tD, t Sin@tD<, 8t, 0, p<, ViewPoint Ø 8.7, -3.2, -.5<D,
RevolutionPlot3D@8t, Cos@2 tD, Sin@2 tD<, 8t, 0, p ê 4<D<

: , , >

‡ Region Plots

RegionPlot3D[ineqs, {x, a, b}, {y, c, d}, {z, e, f}] (Ÿ6)  Show the region that satisfies the
given logical combination of inequalities

Chapter 5  •  Graphics for Functions 143



8RegionPlot3D@ x^2 + y^2 + z^2 § 1, 8x, -1, 1<,
8y, -1, 1<, 8z, -1, 1<, Mesh Ø None, PlotPoints Ø 30D,

RegionPlot3D@ x^2 + y^2 + z^2 § 1 && -x + y + z ¥ 0.05, 8x, -1, 1<,
8y, -1, 1<, 8z, -1, 1<, Mesh Ø None, PlotPoints Ø 60D,

RegionPlot3D@Cos@x^2 + y^2 + z^2D ¥ 0, 8x, -1.5, 1.5<, 8y, -1.5, 0<,
8z, -1.5, 1.5<, Mesh Ø None, BoxRatios Ø AutomaticD<

: , , >

The default value of BoxRatios for RegionPlot3D is {1, 1, 1}.

Note that with ContourPlot3D we can plot surfaces of constant value (see Section 5.4.2, p. 149).

‡ Gradient Fields

In the VectorFieldPlots` package:

VectorFieldPlot[{fx, fy}, {x, a, b}, {y, c, d}] (Ÿ6)  Plot the vector field of the vector-valued
function {fx, fy}

GradientFieldPlot[f, {x, a, b}, {y, c, d}] (Ÿ6)  Plot the gradient vector field of the scalar-

valued function f; that is, plot the vector field of I x f , y f M

HamiltonianFieldPlot[f, {x, a, b}, {y, c, d}] (Ÿ6)  Plot the Hamiltonian vector field of the

scalar-valued function f; that is, plot the vector field of I y f , - x f M

Special options (in addition to the options of Graphics):
PlotPoints  Number of evaluation points; examples of values: 15, {10, 15}

ColorFunction  Function to define the style of the vectors; examples of values: None, (Hue[0] &),
(RGBColor[#, 0, 1 - #] &)

ScaleFunction  Function to use for rescaling the magnitude of the vectors; examples of values:
None, (0.2 # &)

MaxArrowLength  Eliminates vectors that are longer than the specified value (applied after
ScaleFunction); default value: None (no vectors are removed)

ScaleFactor  Lengths of vectors are linearly scaled so that the length of the longest vector is equal
to the specified value (applied after MaxArrowLength); examples of values: Automatic (fits the
vectors in the mesh), None (no rescaling is used; use this value with ScaleFunction)

Plotting  a  gradient  field  is  a  way to  describe  a  3D function.  The  gradient  points  to  the  direction of
maximum increase of the function.

<< VectorFieldPlots`

f = Cos@x yD Cos@xD;

144 Mathematica Navigator



8Plot3D@f, 8x, 0, 3 p ê 4<, 8y, 0, p ê 2<, ImageSize Ø 190D,
GradientFieldPlot@f, 8x, 0, 3 p ê 4<, 8y, 0, p ê 2<, PlotPoints Ø 10, ImageSize Ø 210D<

: , >

Plots of vector fields are handy in describing differential equations (see Sections 26.1.1, p. 832, 26.1.3,

p. 839, and 26.3.2, p. 854) and difference equations (see Sections 28.1.1, p. 926, 28.1.2, p. 930, and 28.2.1,

p. 937).

f =.

5.3.3  Stereograms

‡ Two-Image Stereograms

An excellent 3D impression can be obtained by making two plots with slightly different viewpoints and
placing the plots on top of each other using the eyes. Many of you are probably able to do this. For most
people, it is easiest to try to focus beyond the paper surface. First, you get four plots, and the goal is to
relax the eyes so much that  two of the four plots  are superimposed.  The result  is  three plots,  with the
one in the middle giving the stereo view of the plot. For example,

p1 = ParametricPlot3D@8s Cos@tD Sin@sD, s Cos@sD Cos@tD, -s Sin@tD<,
8s, 0, 2 p<, 8t, 0, p<, Axes Ø False, Boxed Ø FalseD;

p2 = Show@p1, ViewPoint Ø 81.4, -2.3, 2.0<D;

GraphicsRow@8p1, p2<, Spacings Ø -140,
ImageSize Ø 8400, 180<, PlotRegion Ø 88-0.08, 0.92<, 8-0.4, 1.1<<D

Chapter 5  •  Graphics for Functions 145



Here  the  first  plot  has  the  default  viewpoint {1.3, -2.4, 2.0}.  The  other  viewpoint {1.4, -2.3,

2.0} is at the same height (2.0) but the x and y coordinates are somewhat different. We showed the two

figures very near to each other. For the stereographic method to be possible to the eyes, the distance of
two corresponding points in the two plots should be at most approximately 4 or 5 cm.

The  pair  of  figures  we  have  considered  gives  the  correct  result  if  you  focus  your  eyes  beyond  the
paper. For some people, it  is easier to focus on the front of the paper surface. In this case, the order of
the figures has to be changed to get the correct result.

For  surfaces,  the  improvement  in  the  illusion  of  three  dimensions  is  clear  with two-image  stereo-

grams but not so remarkable as for curves, dots, and arrows in space. For these latter graphics objects, if
plotted in the usual way, the eye has too few guides to obtain an adequate impression of the positions of
the objects, but the stereo view makes a major improvement. For examples of arrows and space curves,

see Sections 5.4.1, p. 149 (gradient field of a 4D function), and 26.3.3, p. 864 (solution of a system of three

differential equations).

‡ Single-Image Stereograms

Single-image (or random-dot) stereograms are explained in Maeder (1995a). The package of this article
can  be  downloaded  from  the  website www.mathematica-journal.com/backissues .  From  there,  click

“Vol. 5 (1)” and download the electronic supplement of this issue. See Section 4.1.3, p. 99, to learn about

the correct place to put the SIS.m package. The SIS-EX.MA notebook contains some examples.

In the SIS.m package:

SIS[expr, {x, a, b}, {y, c, d}]  Produce a single-image stereogram from the given function by
looking from the positive z axis

Options:
PlotRange  Expected range of the function; default value: {0, 1}

PlotPoints  Number of random initial points; default value: 100

PlaneDistance  Distance from the back plane to the viewing plane; default value: 2

EyeDistance  Distance from the viewing plane to the eyes; default value: 2

Guides  Whether guide dots at the top of the plot are drawn; possible values: True, False

EyeSeparation  Separation of the guide dots measured as a fraction of half of the horizontal width
of the plot; default value: 1/4

Object  Objects used in the plot; default value: Point

PlotStyle  Style of the objects; default value: {PointSize[0.01]}

As an example, we produce a single-image stereogram of the following function:

Plot3D@Cos@Sqrt@x^2 + y^2DD, 8x, -7, 7<, 8y, -7, 7<D

<< SIS.m

146 Mathematica Navigator



SIS@Cos@Sqrt@x^2 + y^2DD, 8x, -7, 7<, 8y, -7, 7<,
PlotPoints Ø 150, PlotRange Ø 8-1, 1<, ImageSize Ø 200D

The top of the plot contains two dots as guides for the eyes. You get the stereographic view if you can
get from the two dots~by focusing beyond the paper surface~first four dots and then three dots (two
of the four dots are then superimposed). We have presented the plot in a small size; enlarge the plot to
have a more impressive experience.

5.4  Plots for 4D Functions

5.4.1  Simple Methods

2D, 3D, and 4D functions are of the forms y = f HxL, z = f Ix, yM, and v = f Ix, y, zM, respectively. For 2D and

3D functions, we can use 2D and 3D graphics; for example, use Plot or Plot3D. Graphical illustration of
4D functions involves difficulties, but something can be done with 3D and even 2D graphics.

‡ Plotting Values on Curves and Surfaces

Consider the following function:

f@x_, y_, z_D := Cos@x^2 + y^2 + z^2D

With  2D  graphics,  we  can  show  the  values  of  the  function  along  parametrically  defined  curves.  For
example, along the curves x = t, y = z = 0; x = y = t, z = 0; x = y = z = t; and x = cosHtL, y = sinHtL, z = 0, the

value of the function is as follows:

p1 = Plot@f@t, 0, 0D, 8t, -1.5, 1.5<, PlotRange Ø 1, BaseStyle Ø 6D;
p2 = Plot@f@t, t, 0D, 8t, -1.5, 1.5<, PlotRange Ø 1, BaseStyle Ø 6D;
p3 = Plot@f@t, t, tD, 8t, -1.5, 1.5<, PlotRange Ø 1, BaseStyle Ø 6D;
p4 = Plot@f@Cos@tD, Sin@tD, 0D, 8t, -1.5, 1.5<, PlotRange Ø 1, BaseStyle Ø 6D;

Chapter 5  •  Graphics for Functions 147



GraphicsRow@8p1, p2, p3, p4<, ImageSize Ø 420, BaseStyle Ø 5D

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

-1.5 -1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

With  3D  graphics,  we  can  show  the  values  of  the  function  on  parametrically  defined  surfaces.  For

example, on the surface x = u, y = v, z = 0 [i.e., on the Ix, yM plane], the value of the function is as follows:

Plot3D@f@u, v, 0D, 8u, -1.5, 1.5<, 8v, -1.5, 1.5<D

The properties of  the first,  second, and fourth 2D plots can also be seen (or at least guessed) from this
single plot.

‡ Gradient Fields

In the VectorFieldPlots` package:

VectorFieldPlot3D[{gx, gy, gz}, {x, a, b}, {y, c, d}, {z, e, f}] (Ÿ6)  Plot the vector field of
the vector-valued function {gx, gy, gz}

GradientFieldPlot3D[g, {x, a, b}, {y, c, d}, {z, e, f}] (Ÿ6)  Plot the gradient vector field of

the scalar-valued function g; that is, plot the vector field of I x g, y g, z gM

Special options (in addition to the options of Graphics3D):
PlotPoints, ColorFunction, ScaleFunction, MaxArrowLength, ScaleFactor, VectorHeads

These commands have the same five options as the corresponding 2D commands (see Section 5.3.2,

p. 144)  plus  the  option VectorHeads.  This  new  option  can  be  used to  tell  whether  the  vectors  should

have a head (True) or not (False, the default). PlotPoints now has the default value 7; the value must
be a single number.

One  method  for  illustrating  a  4D  function  is  to  plot  the  gradient  field. The  gradient  points  in  the
direction  of  maximum  increase  of  the  function.  The  longer  the  arrow,  the  stronger  the  growth.  The
heads  of  the  arrows  show  the  direction  of  growth.  As  an  example,  consider  the  same  function  as  we
studied previously and generate a two-image stereogram:

<< VectorFieldPlots`

p1 = GradientFieldPlot3D@Cos@x^2 + y^2 + z^2D, 8x, -1.5, 1.5<,
8y, -1.5, 1.5<, 8z, -1.5, 1.5<, PlotPoints Ø 5, VectorHeads Ø TrueD;

p2 = Show@p1, ViewPoint Ø 81.4, -2.3, 2.0<D;

148 Mathematica Navigator



GraphicsRow@8p1, p2<, Spacings Ø -20, ImageSize Ø 320D

Near  the  boundary  of  the  box,  the  function  grows  toward  the  outside;  in  the  middle  of  the  box,  it
grows toward the inside. This means that where the directions of the arrows change, the function has a
surface of local minimum points.

5.4.2  Surfaces of Constant Value

With ContourPlot,  we  can  plot curves  of  constant  value  for  a  3D  function z = gIx, yM.  With

ContourPlot3D, we can plot surfaces of constant value for a 4D function v = gIx, y, zM.

ContourPlot3D[g, {x, a, b}, {y, c, d}, {z, e, f}]  Plot some surfaces of constant value of g

ContourPlot3D[g ã h, {x, a, b}, {y, c, d}, {z, e, f}]  Plot the surfaces where g ã h

Special options (in addition to the options of Plot3D):
Contours  How many or what surfaces are drawn; examples of values: Automatic, 3, {0, 1, 2}

ContourStyle  Style of the surfaces; examples of values: GrayLevel[1], Opacity[0.8], {Red,
Green}

The  command  has  mostly  the  same  options  as Plot3D.  Two  new  options  are Contours  and
ContourStyle  (PlotStyle  does  not  exist). BoundaryStyle  can  be  used  to  define  the  style  of  the
boundaries of the surfaces. BoxRatios has the default value 81, 1, 1<.

By default, the command automatically chooses some constants for which the corresponding surfaces
are  plotted.  The  option Contours  can  be  given  either  a  constant  value,  telling  how many surfaces  are
plotted, or a list of constants, telling the constants for which surfaces are plotted. Because the surfaces of
constant value tend to give somewhat complex plots, it  may be useful to plot separate figures for each
value of the constant.

Plotting surfaces of constant value is a demanding task, so the computation time may be somewhat
large.  When  experimenting  with  the  command  (so  that  the  quality  of  the  plot  need  not  be  high),  the
MaxRecursion  option  can  be  given  a  small  enough  value  such  as  0  to  reduce  the  computation  time.
Also, PlotPoints  can be given a small value such as 10. However, this may cause some surfaces to be
missed. When producing the final plot,  these options can be given higher values or the options can be
dropped  altogether  to  get  a  high-quality  plot. ContourStyle  can  be  useful  to  identify  the  surfaces  if
several are plotted at the same time; opacity may be useful to see surfaces behind other surfaces.

Chapter 5  •  Graphics for Functions 149



As  an  example,  we  consider  the  same  function  as  in Section  5.4.1,  p. 147.  We  ask  for  the  surfaces

where the function has the value -0.5, 0, and 0.5:

ContourPlot3D@Cos@x^2 + y^2 + z^2D ã Ò, 8x, -1.5, 1.5<,
8y, 0, 1.5<, 8z, -1.5, 1.5<, ContourStyle Ø Opacity@0.8D, Mesh Ø None,
BoxRatios Ø Automatic, MaxRecursion Ø 0D & êü 8-0.5, 0, 0.5<

: , , >

The  function  seems  to  grow  when  the  argument  approaches  the  origin  but  also  when  the  argument
moves  near  the  corners  of  the  bounding  box.  For  another  example  of  surfaces  of  constant  value,  see

Section 27.2.6, p. 909, in which we plot the solution of a 3D elliptic partial differential equation.

Remember that with RegionPlot3D, we can plot 3D regions:

RegionPlot3D@Cos@x^2 + y^2 + z^2D ¥ 0, 8x, -1.5, 1.5<,
8y, 0, 1.5<, 8z, -1.5, 1.5<, Mesh Ø None, BoxRatios Ø AutomaticD

150 Mathematica Navigator



6
Graphics Primitives

Introduction 151

6.1  Introduction to Graphics Primitives 152

6.1.1  Introduction 152 Graphics, FullGraphics

6.1.2  Summary 154 Point, Line, Thickness, Directive, etc.

6.2  Primitives and Directives 155

6.2.1  Point 155 Point, PointSize, AbsolutePointSize

6.2.2  Line 156 Line, Thickness, AbsoluteThickness, Dashing, AbsoluteDashing

6.2.3  Circle and Ellipse 159 Circle

6.2.4  Transformations 160 Rotate, GeometricTransformation, RotationTransform, etc.

6.2.5  Arrow and Spline 161 Arrow, Arrowheads, Spline

6.2.6  Text and Coordinates 163 Text, Style, FontFamily, FontColor, Scaled, Offset, etc.

6.2.7  Rectangle, Polygon, and Disk 166 Rectangle, Polygon, Disk, EdgeForm, FaceForm

6.2.8  Colors and Raster 168 GrayLevel, Hue, RGBColor, Opacity, Blend, Raster, etc.

6.2.9  GraphicsComplex 173 GraphicsComplex

6.2.10  Inset 175 Inset, GraphicsGroup

6.2.11  3D Primitives and Directives 176 Graphics3D, Cuboid, Sphere, Cylinder, Specularity, etc.

Introduction

In the fourth century B.C., Alexander the Great asked his teacher, Menaechmus,
for a shortcut to geometry and received the reply “Oh, King, for travelling over the
country, there are royal roads for kings, but in geometry there is one road for all.”

For producing graphics, commands such as Plot or ListPlot are the ones we use most often. However,
these  commands  do  not  cover  all  graphics.  For  example,  for  various  geometric  figures  we  need  other
techniques in which we can gather the plot from basic components such as points, lines, circles, and arcs.

Graphics  is  a  command  designed  to  build  plots  from  so-called graphics  primitives.  We  have  such
primitives  as Point, Line, Circle, Arrow, Text,  and Rectangle.  The  styles  of  the  primitives  can  be
adjusted with so-called graphics directives.  We have such directives as PointSize, Thickness, Dashing,
GrayLevel, RGBColor,  and Opacity.  Building  plots  from  scratch  with Graphics  is  one  use  of  the
primitives  and directives.  This  may  also  be  called graphics  programming.  We  consider  programming in
Chapter 18, but graphics programming is covered in this chapter.

Another use of the directives is in enhancing usual plots with options such as PlotStyle: In defining
a  style,  we  use  directives.  Also,  with  the Prolog  and Epilog  options  we  can  add  primitives  to  usual
plots.  The  importance  of  the  primitives  and  directives  is  even  more  clear  considering  the  fact  that  all
plots in Mathematica are made up of these components (although we usually do not see them).



6.1  Introduction to Graphics Primitives

6.1.1  Introduction

‡ Importance of Primitives and Directives

All plots in Mathematica  are made up of a few basic components called graphics primitives. We have such
primitives as Point, Line, Circle, Rectangle, and Text. The style of these primitives is controlled with
graphics directives such as PointSize, Thickness, Dashing, GrayLevel, or RGBColor. The importance of
the primitives and directives derives from three facts:

• Mathematica uses the primitives and directives in the construction of all plots.
• We  can  construct  a  plot  directly  from  the  primitives  and  directives  (this  can  be  called graphics

programming).
• The primitives and directives can be used to modify plots with options.

In practice, the third fact is the most important. Indeed, all plotting commands have several options,
such  as PlotStyle,  to  modify  the  plot  with  directives  (e.g., PlotStyle Ø Thickness[0.02]).  In
addition,  with  the Prolog  and Epilog  options,  we  can  add  primitives  to  plots  (e.g., Epilog Ø

{Thickness[0.02], Line[{{0, 1}, {2, 1}}]}). Options are considered in Chapter 7. Examples 1 and 2
illustrate the first and second facts.

‡ Example 1

Here is a very simple plot:

p = Plot@1, 8x, 0, 4<, Ticks Ø 884<, None<, PlotPoints Ø 3, MaxRecursion Ø 0D

4

With InputForm, we can see how Mathematica made the plot:

Short@InputForm@pD, 3.5D

Graphics@888<, 8<, 8Hue@0.67, 0.6, 0.6D, Line@882.*^-6,
1.<, 81.9236087977499787, 1.<, 83.999998, 1.<<D<<<, 8<<7>><D

(We showed only the basic part of p;  seven options are not shown.) We see that the line is drawn with
the Line  primitive.  It  goes  through  three  points.  The  color  of  the  line  is  set  with  a Hue  directive.
Graphics  then  creates  a graphics  object  from  the  directive  and  primitive.  The  front  end  automatically
displays a graphics object as graphics.

With FullGraphics,  we  can see  all  the  graphics  primitives  of  a  plot,  including the primitives used
for axes and ticks, among other things:

152 Mathematica Navigator



Style@InputForm@FullGraphics@pDD, 8D

Graphics@8888<, 8<, 8Hue@0.67, 0.6, 0.6D,

Line@882.*^-6, 1.<, 81.9236087977499787, 1.<, 83.999998, 1.<<D<<<,
88GrayLevel@0.D, AbsoluteThickness@0.25D, Line@884., 0.<, 84., 0.02022542485937369<<D<,

Text@4, 84., -0.04045084971874738<, 80., 1.<D,
8GrayLevel@0.D, AbsoluteThickness@0.25D, Line@880., 0.<, 84., 0.<<D<,

8GrayLevel@0.D, AbsoluteThickness@0.25D, Line@880., 0.<, 80., 2.<<D<<<D

Here we first see the line. Then we have the tick mark and the tick label 4 on the x  axis, and lastly we
can see the two lines forming the axes.

‡ Example 2

Usually,  it  is  most  practical  to  use commands such as Plot,  but  if  we so choose,  we can collect  a  plot
from  graphics  primitives.  As  an  example,  we  make  the  same plot  as  we  made  previously,  with  slight
simplification:

Graphics@8Line@880, 1<, 84, 1<<D, Line@884, 0<, 84, 0.02<<D,
Text@4, 84, -0.04<, 80, 1<D, Line@88-0.1, 0<, 84.1, 0<<D,
Line@880, -0.05<, 80, 2.05<<D<, AspectRatio Ø 1 ê GoldenRatioD

4

This is a small example of graphics programming: the building of graphics from primitives.

‡ Building Plots from Primitives and Directives

The examples show that we get a graphics object from the primitives with Graphics.

Graphics[{directives and primitives}, options]  Create and show a graphics object from directives
and primitives, using some options

All  primitives  have  their  default  styles.  If  these  are used,  we need not  define directives;  we simply
write a list of primitives (as in Example 2). We can modify each primitive with one or more directives.
They are written before the corresponding primitive and thus work like adjectives. However, note that a
directive  affects  all  primitives  after  the  directive.  Thus,  if  you  want  to  apply  a  directive  or  several
directives  only  to  the  next  primitive,  enclose  the  directives  and  the  primitive  in  curly  braces  ({ }),  as
seen in the following example:

Graphics[{{dir11, dir12, …, prim1}, {dir21, dir22, …, prim2}, … }]

Graphics  has  many  of  the  options  of Plot  and  most  default  values  are  the  same  for  these  com-

mands. Some exceptions are as follows. For Graphics we have

AspectRatio Ø Automatic, Axes Ø False, PlotRange Ø All, and PlotRangeClipping Ø False,

whereas for Plot we have

AspectRatio Ø 1/GoldenRatio, Axes Ø True, PlotRange Ø {Full, Automatic},  and
PlotRangeClipping Ø True.

Chapter 6  •  Graphics Primitives 153



Graphics does not have certain options that Plot does, which control the sampling algorithm.

With  the Prolog  and Epilog  options,  we  can  add  graphics  primitives  to  plots  produced  by  usual

plotting commands such as Plot (see Section 7.3.6, p. 201):

Plot[f, {x, a, b}, Epilog Ø {directives and primitives}]  Add graphics primitives

6.1.2  Summary

‡ Graphics Primitives

The following are all the built-in 2D graphics primitives and one primitive from a package. With p, p1,
p2, and pn we denote a point, made up of the x and y coordinates, such as {1, 4}. For a mathematician,

the primitives Point, Line, Circle, Arrow, and Text may be the most important.

Point[p]  Point at p

Line[{p1, …, pn}]  Line through points p1, ..., pn

Circle[p, r]  Circle with center p and radius r (also ellipse)
Arrow[{p1, p2}] (Ÿ6)  Arrow from p1 to p2

Spline[{p1, …, pn}, type, opts]  Spline through points p1, ..., pn

Text[expr, p, opts]  Text expr centered at p

Rectangle[p1, p2]  Filled rectangle with two opposite corners at p1 and p2

Polygon[{p1, …, pn}]  Filled polygon with vertices p1, ..., pn

Disk[p, r]  Filled disk with center p and radius r (also filled ellipse)

Raster[colors]  Raster image

Spline  is defined in the  Splines`  package. Note that GraphicsComplex, Inset,  and GraphicsGroup,
considered  in  Sections  6.2.9  and  6.2.10,  can  also  be  used  like  primitives.  In  addition,  in  Section  10  we
encounter Locator, a graphics primitive useful in dynamic graphics.

In Section 6.2, we consider all the 2D primitives. 3D primitives are addressed in Section 6.2.11, p. 176.

In Section 7.3.6,  p. 201,  and in numerous other sections,  we present other examples of using graphics

primitives.

‡ Graphics Directives

Here are the most important graphics directives:

PointSize[d], AbsolutePointSize[d]

Thickness[d], AbsoluteThickness[d]

Dashing[{d1, d2, … }], AbsoluteDashing[{d1, d2 ,… }]

Arrowheads[s]

EdgeForm[dirs], FaceForm[dirs]

GrayLevel[g]  Gray g

Hue[h]  Hue h

RGBColor[r, g, b]  Red r, green g, and blue b

CMYKColor[c, m, y, k]  Cyan c, magenta m, yellow y, and black k

Opacity[o]  Opacity o

154 Mathematica Navigator



Each primitive can be modified with certain directives.  A summary is  provided here.  With Raster,
we  can  use  no  directives.  The  opacity  and  color  of  all  other  graphics  primitives  can  be  defined  with
Opacity  and with one of GrayLevel, Hue, RGBColor,  and CMYKColor,  or with special colors (e.g., Red);

colors are considered in Section 6.2.8, p. 168. Color and opacity are the only directives that can be used

with Text. In addition to opacity and color, the style of Rectangle, Polygon, and Disk can be controlled
with EdgeForm  and FaceForm.  In  addition  to  opacity  and  color,  the  style  of  a  point  can  be  controlled
with PointSize or AbsolutePointSize and the style of a line, circle, arrow, and spline with Thickness

or AbsoluteThickness  and Dashing  or AbsoluteDashing  or  with  special  thickness  or  dashing
specifications (e.g., Thick or Dashed). Arrow also has the special directive Arrowheads, and Spline and
Text have some special options.

With Directive,  we  can  collect  together  several  directives  and  use  the  collection  like  a  single
directive:

Directive[dir1, dir2, … ] (Ÿ6)  Represents a single graphics directive composed of the given
directives

In  various  options  for  styles  such  as PlotStyle, AxesStyle, FrameStyle, MeshStyle,  or
FillingStyle, the use of Directive may be helpful in simplifying the use of braces.

6.2  Primitives and Directives

6.2.1  Point

Point[p]  A point at p

Point[{p1, …, pn}] (Ÿ6)  Points at p1, …, pn

With Point, we can easily get the same result as with ListPlot:

t = Table@8x, Sin@xD<, 8x, 0, 2 p, p ê 5<D;

8ListPlot@tD,
Graphics@Point@tD, Axes Ø True, AspectRatio Ø 1 ê GoldenRatioD<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

Using Graphics is, indeed, a noteworthy method to use to plot data, particularly in some more complex
situations, and we will use it again in Chapter 8.

‡ PointSize

PointSize[d]  The diameter of a point is a fraction d of the width of the graph
AbsolutePointSize[d]  The diameter of a point is a multiple d of 1/72 inch
Tiny, Small, Medium, Large (Ÿ6)  Special values of d (they correspond approximately to absolute

point sizes 0, 2, 4.5, and 7)

Chapter 6  •  Graphics Primitives 155



The diameter of a point can be defined in two ways: either as a fraction of the width of the graph or
as a multiple of the printer’s point, which is approximately 1/72 inch. For those of us more familiar with
millimeters,  we  note  that  3  printer  points  is  approximately  1  millimeter.  The  default  point  size  is
AbsolutePointSize[3].  In addition, we can use such point sizes as PointSize[Small]  (it is approxi-
mately the same as AbsolutePointSize[2]). Note that when a notebook is printed, the size of graphics
is reduced to 80% so that the absolute sizes do not exactly hold on paper.

The  size  of  a  point  defined  by PointSize  depends  on  the  size  of  the  plot:  The  larger  the  plot,  the
larger the points (however, this does not hold for point sizes defined by Tiny, etc.). On the other hand,
the  size  of  a  point  defined  with AbsolutePointSize  does  not  depend  on  the  size  of  the  plot.  In  the
following points, the absolute diameter varies from 1 to 7:

Graphics@Table@8AbsolutePointSize@iD, Point@8i, 0<D<, 8i, 7<D, AspectRatio Ø 0.2D

6.2.2  Line

Line[{p1, p2}]  A straight line between points p1 and p2

Line[{p1, …, pn}]  A broken line through points p1, …, pn

Line[{{p11, …, p1n}, {p21, …, p2n}, … }] (Ÿ6)  Several broken lines

With Line, we can easily mimic ListLinePlot:

t = Table@8x, Sin@xD<, 8x, 0, 2 p, p ê 5<D;

8ListLinePlot@tD,
Graphics@Line@tD, Axes Ø True, AspectRatio Ø 1 ê GoldenRatioD<

:
1 2 3 4 5 6

-0.5

0.5

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

With Point and Line, we can easily show both the points and the connecting lines between them:

8ListLinePlot@t, Mesh Ø AllD,
Graphics@8Point@tD, Line@tD<, Axes Ø True, AspectRatio Ø 1 ê GoldenRatioD<

:
1 2 3 4 5 6

-0.5

0.5

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

156 Mathematica Navigator



‡ Thickness

Thickness[d]  The thickness of a line is a fraction d of the width of the graph
AbsoluteThickness[d]  The thickness of a line is a multiple d of 1/72 inch
Tiny, Small, Medium, Large (Ÿ6)  Special values of d (they correspond approximately to absolute

thickness 0.2, 0.5, 1.1, and 1.9)
Thin, Thick (Ÿ6)  Special thickness specifications (they correspond approximately to absolute

thickness 0.2 and 1.9)

The default thickness is AbsoluteThickness[0.5]. Thickness defined by Thickness depends on the
size of the plot: The larger the plot, the thicker the curves. Thickness defined with AbsoluteThickness

does not depend on the size of the plot. In the following plot, the absolute thickness varies from 0 to 3 in
steps of 0.5:

Graphics@8Table@8AbsoluteThickness@dD, Line@880, d<, 81, d<<D<, 8d, 0, 3, 0.5<D,
Line@880, 0<, 80, 3<<D, Line@881, 0<, 81, 3<<D<, AspectRatio Ø 0.5D

As can be seen, the ends of a line float somewhat outside of the intended interval and do so more as
the line becomes thicker.

‡ Dashing

Dashing[{d1, d2, … }]  The length of a segment is a fraction di of the width of the graph
AbsoluteDashing[{d1, d2, … }]  The length of a segment is a multiple di of 1/72 inch
Tiny, Small, Medium, Large (Ÿ6)  Special arguments of Dashing and AbsoluteDashing (they

correspond approximately to absolute dashing {1, 3}, {2.5, 4.5}, {5, 7}, and {10, 13})
Dotted, Dashed, DotDashed (Ÿ6)  Special dashing specifications (they correspond approximately to

absolute dashing {1, 4}, {4, 4}, and {1, 4, 4, 4})

In the dashing style,  a  line consists of  small  segments,  and they alternate between black and white.
The  lengths  of  the  segments  are  defined with  the  dashing directive.  Usually,  only  a  few segments  are
defined, and they are used cyclically. For example,

Dashing[{}]  No dashing is used; lines are solid (this is the default)
Dashing[{d, d}]  or Dashing[{d}]  or Dashing[d]  Black and white segments, each of length d,

alternate
Dashing[{d1, d2}]  Black and white segments of lengths d1 and d2, respectively, alternate

Dashing defined with Dashing depends on the size of the figure: The larger the figure, the longer the
segments. Dashing defined with AbsoluteDashing  does not depend on the size of the figure. Next, we
show absolute dashings between 2 and 4 in steps of 0.5:

Chapter 6  •  Graphics Primitives 157



Graphics@Table@8AbsoluteDashing@dD, Line@880, d<, 81, d<<D<, 8d, 2, 4, 0.5<D,
AspectRatio Ø 0.5D

Note that the dashing is not exactly what we would expect: The white segments are smaller than they
should be.  The thicker  the dashed curve,  the smaller  the white segments.  This is  a  consequence of  the
fact that the ends of lines float outside of the desired interval, as we saw previously when we considered
thickness.  By the way,  this  problem with dashing may actually  be  a  useful  feature:  The dashing looks
better when the white parts are shorter than the black ones.

If the length of a segment is 0, such a segment is drawn as a dot whose diameter is the thickness of
the line:

Graphics@8AbsoluteDashing@84, 2, 0, 2<D, Line@880, 1.5<, 81, 1.5<<D<,
AspectRatio Ø 0.15D

‡ Regular Polygons

With Line, we can easily create regular polygons. Here is a function for doing this:

regularPolygon@n_, x0_, y0_, r_, q_, opts___D :=
Graphics@Line@8r Cos@ÒD + x0, r Sin@ÒD + y0< & êü Range@q, q + 2 p, 2 p ê nDD, optsD

The arguments of this function are the order n of the polygon, the center point (x0, y0), the radius r

(from  the  center  point  to  a  vertex),  an  angle q  (one  of  the  vertices  is  at  this  angle),  and  zero  or  more
options.  To  show,  for  example,  a  triangle,  type regularPolygon[3, 0, 0, 1, p/2].  Here  are  some
examples:

g1 = regularPolygon@3, 0, 0, 1, p ê 2D; g2 = regularPolygon@3, 0, 0, 1, -p ê 2D;
g3 = regularPolygon@3, 0, 0, 1, -pD; g4 = regularPolygon@3, 0, 0, 1, 0D;
g5 = regularPolygon@4, 0, 0, 1, p ê 4D; g6 = regularPolygon@4, 0, 0, 1, 0D;

GraphicsRow@8g1, g2, g3, g4, g5, g6<, ImageSize Ø 240D

With  the Polytopes`  package,  we  can  get  information  about  regular  polygons,  from Digon  to
Dodecagon.

158 Mathematica Navigator



6.2.3  Circle and Ellipse

Circle[p]  Circle with center p and radius 1 (Circle[] means Circle[{0,0}])
Circle[p, r]  Circle with center p and radius r

Circle[p, Offset[{r, r}]]  Circle with center p and radius r/72 inch
Circle[p, r, {q1, q2}]  Circular arc

Circle[p, {rx, ry}]  Ellipse with center p and semi-axes of lengths rx and ry, oriented parallel to
the coordinate axes

Circle[p, {rx, ry}, {q1, q2}]  Elliptical arc

Consider the following circles:

c1 = Graphics@Circle@DD;
c2 = Graphics@Circle@D, AspectRatio Ø 0.5D;
c3 = Graphics@Circle@80, 0<, Offset@818, 18<DD, AspectRatio Ø 0.5D;

GraphicsRow@8c1, c2, c3<, ImageSize Ø 200D

In the first plot, the aspect ratio has the default value Automatic;  the circle looks like a circle. In the
second  plot,  the  aspect  ratio  is  0.5;  the  circle  looks  like  an  ellipse.  In  the  third  plot,  the  aspect  ratio  is
again 0.5, but now the radius is defined with Offset; the circle again looks like a circle.

Thus, to get true circles, either use AspectRatio Ø Automatic or define the radius with Offset. The
difference between these methods is  that  if  we change the size of a plot containing a circle,  the size of
the circle also changes in the first method but remains fixed in the second method.

Circles can be used in plotting data:

data = Table@8i, RandomReal@D<, 8i, 0, 40<D;

Graphics@8Line@dataD, Circle@Ò, Offset@81.5, 1.5<DD & êü data<,
Axes Ø True, AspectRatio Ø 0.25, ImageSize Ø 300D

10 20 30 40

0.2

0.4

0.6

0.8

1.0

Later, we will use Disk in the same way. The use of Disk has the advantage that it enables us to hide the
lines inside the circles.

Circular arcs can be used to denote angles:

Chapter 6  •  Graphics Primitives 159



p =.; Graphics@8PointSize@MediumD, Point@83, 1<D,
Line@880, 0<, 83, 1<<D, Circle@80, 0<, 0.8, 80, ArcTan@1 ê 3D<D, Dashed,
Line@880, 1<, 83, 1<, 83, 0<<D, Text@p, 83.15, 1<D, Text@a, 80.67, 0.1<D<,

Axes Ø True, Ticks Ø None, ImageSize Ø 150D

p

a

6.2.4  Transformations

Rotate[prim, q] (Ÿ6)  Rotate the primitive counterclockwise by q radians about the center point
Rotate[prim, q, p]  Rotate about the given point
GeometricTransformation[prim, transf] (Ÿ6)  Apply the given transformation function
GeometricTransformation[prim, mat]  Multiply by the given matrix

In addition to Rotate,  we also have Translate  and Scale.  Graphics primitives can be transformed
in many ways. We have such transformation functions as Affine|, LinearFractional|, Reflection|,
Rescaling|, Rotation|, Scaling|, Shearing|, and TranslationTransform. Examples:

8Graphics@Circle@80, 0<, 84, 1<D, Axes Ø TrueD,
Graphics@Rotate@Circle@80, 0<, 84, 1<D, p ê 6D, Axes Ø TrueD,
Graphics@GeometricTransformation@Circle@80, 0<, 84, 1<D,

RotationTransform@p ê 6, 80, 0<DD, Axes Ø TrueD<

:
-4 -2 2 4

-1.0
-0.5

0.5
1.0

,
-3 -2 -1 1 2 3

-2

-1

1

2

,
-3 -2 -1 1 2 3

-2

-1

1

2

>

The next example shows how we can manipulate a circle by two vectors (Manipulate  is considered
in Chapter 10):

ManipulateA

GraphicsA9PointSize@MediumD, Point@80, 0<D, Circle@D, Blue, Line@880, 0<, v1<D,

Line@880, 0<, v2<D, Red, GeometricTransformationACircle@D, 8v1, v2<¨E=,

PlotRange Ø 5, ImageSize Ø 130E, 88v1, 83, 4<<, Locator<, 88v2, 8-3, -1<<, Locator<E

In the RegressionCommon` package, we also have the primitive Ellipsoid.

160 Mathematica Navigator



6.2.5  Arrow and Spline

‡ Arrow

Arrow[{p1, p2}] (Ÿ6)  Arrow from point p1 to point p2

Arrow[{p1, p2}, d]  The ends of the arrow are set back from p1 and p2 by a distance d

Arrow[{p1, p2}, {d1, d2}]  Sets back by d1 from p1 and by d2 from p2

A directive:
Arrowheads[s] (Ÿ6)  Length of the arrowhead is a fraction s of the width of the whole plot
Arrowheads[{{s, pos}}]  Arrowhead is of size s at position pos

Arrowheads[{{s, pos, g}}]  Arrowhead is graphic g

Arrowheads[{{s, pos, {g, d}}]  Shorten the shaft by d at the arrowhead end

Arrowheads[{-s, s}]  Double-headed arrow with heads of size s

Arrowheads[{{-s1, pos1}, {s2, pos2}}]  Double-headed arrow with custom sizes and positions

Note  that  by  choosing Graphics @ Graphics  Inspector,  we  get  a  window  for  specifying  various
styles. To give an arrow a suitable form, select the arrow on your plot and choose a suitable arrowhead
from the 2D graphics inspector.

The default length of the arrowhead (the default value of s) is 0.04. The head size s can also be Tiny,
Small, Medium, or Large. The position of the vertex of the arrowhead runs from 0 to 1.

Graphics@8Arrow@880, 0<, 80, 1<<D,
8Arrowheads@0.1D, Arrow@881, 0<, 81, 1<<D<,
8Arrowheads@880.1, 0.8<<D, Arrow@882, 0<, 82, 1<<D<,
8Arrowheads@8-0.1, 0.1<D, Arrow@883, 0<, 83, 1<<D<<,

AspectRatio Ø 0.3, ImageSize Ø 200, PlotRange Ø 88-0.5, 6.5<, Automatic<D

The first arrow is in the default form, the second has a modified head size, and the third has a modified
head size and position. The fourth arrow is double-headed.

Now we create some custom arrowheads:

GraphicsRow@8h1 = Graphics@Line@88-1, 1 ê 3<, 80, 0<, 8-1, -1 ê 3<<DD,
h2 = Graphics@Polygon@88-1, 1 ê 3<, 80, 0<, 8-1, -1 ê 3<, 8-0.4, 0<<DD,
h3 = Graphics@Line@88-1, 1 ê 3<, 80, 0<, 8-1, -1 ê 3<, 8-0.4, 0<, 8-1, 1 ê 3<<DD<D

A custom arrowhead is placed so that the origin {0, 0} of its coordinates lies at the given position pos.

Chapter 6  •  Graphics Primitives 161



Graphics@88Arrowheads@880.1, 1, h1<<D, Arrow@880, 0<, 80, 1<<D<,
8Arrowheads@880.1, 1, h2<<D, Arrow@881, 0<, 81, 1<<D<,
8Arrowheads@880.1, 1, 8h3, 1 ê 3<<<D, Arrow@882, 0<, 82, 1<<D<<,

AspectRatio Ø 0.3, ImageSize Ø 200, PlotRange Ø 88-0.5, 6.5<, Automatic<D

If  we connect circles with arrows,  it  may be helpful  to set  back the ends of the arrow by a distance
that is the radius of the circle:

8Graphics@8Circle@80, 0<, 1D, Circle@84, 0<, 1D, Arrow@880, 0<, 84, 0<<D<D,
Graphics@8Circle@80, 0<, 1D, Circle@84, 0<, 1D, Arrow@880, 0<, 84, 0<<, 1D<D<

: , >

An arrow may sometimes be useful in pointing out some properties of a plot:

Plot@Sin@xD, 8x, 0, 2 p<, Ticks Ø 88p, 2 p<, 8-1, 1<<, PlotRange Ø 8Full, All<,
ImageSize Ø 140, Epilog Ø 8Text@"point of inflection", 83.7, 0.45<, 8-1, -1<D,

Arrow@883.6, 0.4<, 8p + 0.05, 0.05<<D<D

p 2 p

-1

1

point of inflection

With the following program, we can easily define labeled arrows.

labeledArrow@8p1_, p2_<, label_, d_: 0, s_: 0.04D :=
With@8h = Graphics@Text@Style@label, SmallD, 80, 0<, 80, -1.5<DD<,
8Arrowheads@88-s, 0<, 8s, .5, h<, 8s, 1<<D, Arrow@8p1, p2<, dD<D

Note that here we defined that in the middle of the arrow we have a custom “arrowhead,” the label.
The arguments d and s have the default values 0 and 0.04; if these values are suitable, the arguments d

and s need not be written.

Graphics@8Circle@80, 0<, 1D, Circle@88, 3<, 1D,
labeledArrow@880, 0<, 88, 3<<, "label", 1, 0.07D<D

label

162 Mathematica Navigator



‡ Spline

In the Splines` package:

Spline[{p1, p2, … }, type]  Spline of type through (or controlled by) p1, p2, …

An option:
SplineDots  The style used for the given points; examples of values: None (points are not plotted),

Automatic (points are red and of size 0.03)

For the Splines` package, look at SplinesêguideêSplinesPackage` in the Documentation Center.

Splines are considered in detail  in Section 24.3,  p. 803.  Here,  we only note that a spline is a smooth

curve through all or some of the points and that three types of splines can be used: Cubic (goes through
all  points), Bezier  (goes  through  the  end  points),  and CompositeBezier  (goes  through  every  other
point). The default is that the given points are not shown. The splines are drawn by an adaptive method,
which  can  be  controlled  with  the  additional  options SplinePoints, MaxBend,  and SplineDivision.
Splines may be useful, for example, for drawing some arcs:

<< Splines`

Graphics@8Circle@80, 0<, 1D, Circle@83, 0<, 1D,
Circle@86, 0<, 1D, Text@1, 80, 0<D, Text@2, 83, 0<D, Text@3, 86, 0<D,
Spline@880, 1<, 80.7, 1.7<, 82.3, 1.7<, 83, 1<<, CubicD,
Spline@883, 1<, 83.7, 1.7<, 85.3, 1.7<, 86, 1<<, CubicD,
Spline@880, -1<, 80.7, -1.7<, 82.3, -1.7<, 83, -1<<, CubicD,
Spline@883, -1<, 83.7, -1.7<, 85.3, -1.7<, 86, -1<<, CubicD<,

BaseStyle Ø 8FontSize Ø 11<D

1 2 3

6.2.6  Text and Coordinates

‡ Text

Text[expr, {x, y}]  The center of the text expr is at the point {x, y}

Text[expr, {x, y}, {u, v}]  The point {u, v}, expressed in text coordinates, of the text is at the
point {x, y}

The  expression  to  be  printed  can  be  a  mathematical  expression  such  as Sin[x]  or  a  string  such  as
"Here is text". The expression in printed, by default, in TraditionalForm. The default is that the text
is centered at the given point. However, a text element has its own coordinate system ranging from -1
to 1  in both the x  and y  directions.  For  example,  the point {-1, -1}  in  text  coordinates  represents the

bottom left-hand corner of the text element and {1, 1}  the top right-hand corner. With the help of the
text coordinates, we can place the text element in other ways. For example,

Text@expr, 83, 4<, 8-1, 0<D

Here, the vertical middle of the left-hand end of expr is at the point {3, 4}; that is, the text starts from
{3, 4}. The following table explains the most frequently used text coordinates:

Chapter 6  •  Graphics Primitives 163



Text@t,8x,y<,8-1,1<D Text@t,8x,y<,80,1<D Text@t,8x,y<,81,1<D

The top left corner t is centered below 8x,y< The top right corner
of t is at 8x,y< of t is at 8x,y<

Text@t,8x,y<,8-1,0<D Text@t,8x,y<,80,0<D Text@t,8x,y<,81,0<D
t starts from 8x,y< t is centered at 8x,y< t ends at 8x,y<

Text@t,8x,y<,8-1,-1<D Text@t,8x,y<,80,-1<D Text@t,8x,y<,81,-1<D

The bottom left corner t is centered above 8x,y< The bottom right corner
of t is at 8x,y< of t is at 8x,y<

An example:

Plot@Sin@xD, 8x, 0, 2 p<, PlotRange Ø 8-1.2, 1.2<,
Ticks Ø 88p, 2 p<, 8-1, 1<<, Epilog Ø 8Point@8p ê 2, 1<D, Point@83 p ê 2, -1<D,

Text@"maximum", 8p ê 2, 1<, 8-1, -1<D, Text@"minimum", 83 p ê 2, -1<, 8-1, 1<D<D

p 2 p

-1

1 maximum

minimum

Note that if a part of a text goes outside the ordinary plot region, that part is not shown in the plot.
Without  the  explicit  value  of  the PlotRange  option,  this  would  be  the  case  in  our  example  (even
PlotRange Ø All  does  not  help).  Enlarging  the  figure  with  the  mouse  may  also  help  to  see  all Text

primitives.

Text[expr, {x, y}, {u, v}, {r, s}]  Text is rotated to have slope s/r

The following plot shows some slope definitions {r, s}:

Graphics@8Text@"bottom to top: 80,1<", 8-1, 0<, 80, 0<, 80, 1<D,
Text@"left to right: 81,0<", 80, .6<, 80, 0<, 81, 0<D,
Text@"top to bottom: 80,-1<", 81, 0<, 80, 0<, 80, -1<D,
Text@"right to left: 8-1,0<", 80, -0.7<, 80, 0<, 8-1, 0<D,
Text@"ascending: 82,1<", 8-.4, .1<, 80, 0<, 82, 1<D,
Text@"descending: 82,-1<", 8.3, -.2<, 80, 0<, 82, -1<D<D

bo
tto

m
to

to
p:

80
,1
<

left to right: 81,0<

top
to

bottom
:
80,-

1
<

righttoleft:8-1,0<

ascending: 82
,1<

descending: 82,-1<

‡ Style of Text

We can adjust the style of text items with Style. It accepts both font directives and font options.

Text[Style[expr, dirsAndOpts], {x, y}]  Text has the given directives and options

164 Mathematica Navigator



Font directives:
n, Tiny, Small, Medium, Large, Smaller, Larger

Bold, Italic, Underlined, Plain

Red, LightBlue, GrayLevel[0.3], etc.

Font options:
FontFamily; examples of values: "Times", "Helvetica", "Courier"

FontColor; examples of values: Red, Gray

FontTracking; examples of values: "Narrow", "Condensed", "SemiCondensed", "Extended", "Wide"

Background; examples of values: LightGray, LightBlue

The default size of text in graphics is 10. The size can be any number such as 9; or Tiny (means size
6), Small  (9), Medium  (12),  or Large  (24);  or Smaller  (8) or Larger  (10).  This kind of absolute font size
does not change if the size of the plot is changed with the mouse. If the size is defined with, for example,
Scaled[0.05], then the size of the font is 0.05 times the width of the plot.

In addition to the options we have shown previously for Style, we can use many other options, such
as LineSpacing, TextAlignment, and Magnification.

Plot@Sin@xD, 8x, 0, 2 p<, PlotRange Ø 8-1.2, 1.4<, Epilog Ø 8Point@8p ê 2, 1<D,
Text@Style@"maximum", Small, Blue, Bold, Italic, Underlined,

FontFamily Ø "Arial", Background Ø YellowD, 8p ê 2, 1<, 8-1, -1<D<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0 maximum

‡ Coordinates

{x, y}  A point in the original coordinates of the plot
Scaled[{sx, sy}]  A point in the scaled coordinates

Thus far,  we have defined the positions of graphics primitives with the normal coordinates used in
the plot. Another way is to use scaled coordinates that run from 0 to 1 in both directions. An example:

PlotASin@xD, 8x, 0, 2 p<, Epilog Ø 9Point@8p ê 2, 1<D, Point@83 p ê 2, -1<D,

TextAStyleA"A function with\na minimum and\na maximum", TextAlignment Ø RightE,

Scaled@81, 1<D, 81, 1<E=, ImageSize Ø 150E

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0 A function with
a minimum and

a maximum

Here, we told Mathematica that the top right corner of the text is at the point Scaled[{1, 1}], which is at
the top right corner of the plot (note that in the text string, \n defines a new line). Using scaled coordi-
nates for primitives may be useful, for example, when the original coordinates vary from figure to figure
but we want a primitive at the same position in each figure.

Chapter 6  •  Graphics Primitives 165



Scaled[{sdx, sdy}, {x, y}]  Scaled offset {sdx, sdy} from {x, y}

Offset[{adx, ady}, {x, y}]  Absolute offset {adx, ady} from {x, y}

Offset[{adx, ady}, Scaled[{sx, sy}]]  Absolute offset from Scaled[{sx, sy}]

The position of a primitive can also be expressed as an offset from a given point. In this way, we can
define  a  position  relative  to  another  position.  The  offset  can  be  set  either  in  scaled  coordinates  or  in
absolute units. The absolute unit is one printer’s point (1/72 inch). We already used Offset in a special
way  when  we  considered  circles:  For  this  primitive,  we  can  give  the  radius  in  absolute  units  with
Offset[{adx, ady}].

6.2.7  Rectangle, Polygon, and Disk

‡ Filled Primitives

Mathematica has three filled primitives: Rectangle, Polygon, and Disk.

Rectangle[p]  Filled unit square with two opposite corners at p and p + 1 (Rectangle[] means
Rectangle[{0,0}])

Rectangle[p1, p2]  Filled rectangle with two opposite corners at p1 and p2

Polygon[{p1, …, pn}]  Filled polygon with vertices p1, ..., pn

Disk[p]  Filled disk with center p and radius 1 (Disk[] means Disk[{0,0}])
Disk[p, r]  Filled disk with center p and radius r

Disk[p, Offset[{r, r}]]  Filled disk with center p and radius r/72 inch

Two directives:
EdgeForm[styles] (Ÿ6)  The styles (color, opacity, thickness, dashing) used for the edges
FaceForm[styles] (Ÿ6)  The styles (color, opacity) used for the faces (or insides)

EdgeForm[] means no edges (this is also the default). FaceForm[] means no face (meaning an empty
inside).

Disk is used in the same way as Circle. Note that although we have a primitive corresponding to an
unfilled  disk,  namely Circle,  we  do  not  have  a  primitive  corresponding  to  an  unfilled  rectangle  or
unfilled  polygon.  However,  as  we  will  see,  the EdgeForm  and FaceForm  directives  enable  us  to  create
unfilled primitives. Unfilled rectangles and polygons can also be easily generated with Line:

Line[{p1, p2, p3, p4, p1}]  Rectangle with vertices p1, ..., p4

Line[{p1, …, pn, p1}]  Polygon with vertices p1, ..., pn

Here are simple examples:

Graphics@8Rectangle@80, 0<, 82.5, 1<D, Rotate@Rectangle@83, 0<, 85.5, 1<D, p ê 6D,
Polygon@886, 0<, 87, 0.5<, 88, 0<, 87, 1.5<<D, Disk@89, 0.5<, 0.7D,
Disk@810, 0<, 1.5, 80, Pi ê 4<D<, ImageSize Ø 200D

Next, we use various directives. The style of the edge is defined with EdgeForm.  The style of the inside
can  be  defined  directly,  but FaceForm  can  also  be  used. FaceForm[]  is  needed  if  we  want  an  empty
inside:

166 Mathematica Navigator



Graphics@88Red, Disk@80, 0<, 0.8D<,
8Yellow, EdgeForm@BlackD, Disk@82, 0<, 0.8D<,
8LightGreen, EdgeForm@8Blue, Thick, Dashed<D, Disk@84, 0<, 0.8D<,
8White, EdgeForm@BlackD, Disk@86, 0<, 0.8D, Disk@86.5, 0<, 0.8D<,
8FaceForm@D, EdgeForm@BlackD, Disk@88.5, 0<, 0.8D, Disk@89, 0<, 0.8D<<,

ImageSize Ø 300D

In the fourth figure,  there  are two white  disks  partly on top of  each other.  In the last  figure,  there are
two empty disks or,  which is the same, two circles. The last figure shows how to get a simple unfilled
primitive: Use FaceForm[] and EdgeForm[Black].

Next, we use a yellow filled rectangle with a black edge and a white text on a red background:

Graphics@8Yellow, EdgeForm@8Black, Thick<D, Rectangle@80, 0<, 82, 0.7<D,
White, Text@Style@"STOP", 40, Bold, Background Ø RedD, 81, 0.31<D<D

STOP
‡ Histograms and Pie Charts

Toss a dice 20 times and plot the frequencies as a histogram:

SeedRandom@1D; data = RandomInteger@81, 6<, 20D

85, 3, 5, 1, 2, 1, 1, 3, 1, 1, 4, 6, 3, 1, 4, 5, 5, 2, 4, 4<
fr = Tally@dataD êê Sort

881, 6<, 82, 2<, 83, 3<, 84, 4<, 85, 4<, 86, 1<<
Graphics@8Red, Rectangle@8ÒP1T - .4, 0<, 8ÒP1T + .4, ÒP2T<D & êü fr<,

AspectRatio Ø 1 ê GoldenRatio, Frame Ø TrueD

1 2 3 4 5 6
0

1

2

3

4

5

6

Plot the frequencies as a pie chart:

fr2 = frPAll, 2T

86, 2, 3, 4, 4, 1<

Chapter 6  •  Graphics Primitives 167



Module@8t = 0, n = Length@fr2D, a = 2 p fr2 ê Total@fr2D<,
Graphics@Table@8Hue@i ê nD, EdgeForm@BlackD, Disk@80, 0<, 1, 8t, t = t + aPiT<D<,

8i, n<D, ImageSize Ø 110DD

‡ Plotting Data

A useful application of Disk is to plot data. Whereas ListPlot uses black points or disks, with Disk we
can get disks with white inside:

data = Table@8i, RandomReal@D<, 8i, 0, 40<D;

Graphics@8Line@dataD, White,
EdgeForm@BlackD, Disk@Ò, Offset@81, 1<DD & êü data<,

Axes Ø True, AspectRatio Ø 0.25, ImageSize Ø 300D

10 20 30 40

0.2

0.4

0.6

0.8

1.0

Here, we first plotted a line connecting the points. Then we plotted white disks with black edges. These

disks hide the lines inside the disks. In Section 6.2.3, p. 159, we used circles and the result was not very

good because the lines can be seen inside the circles.

6.2.8  Colors and Raster

‡ Color Schemes

Here are the four basic color schemes:

GrayLevel[g]  Gray level g between 0 (black) and 1 (white)
Hue[h]  Color with hue h between 0 and 1 (with maximum saturation and brightness)
Hue[h, s, b]  Color with hue h, saturation s, and brightness b, each between 0 and 1
RGBColor[r, g, b]  Color with specified red r, green g, and blue b components, each between 0 and

1
CMYKColor[c, m, y, k]  Color with specified cyan c, magenta m, yellow y, and black k components,

each between 0 and 1 (used in four-color printing)

Later, we will study a palette that gives us many additional color schemes.

Colors can be modified in the following ways:

168 Mathematica Navigator



Opacity[o] (Ÿ6)  Opacity o (0 means complete transparency, 1 complete opacity)
Blend[{col1, col2}, x] (Ÿ6)  Blend a fraction 1 | x of col1 and x of col2

Lighter[col]  or Lighter[Red, f] (Ÿ6)  A lighter color (lightened by a fraction f)
Darker[col]  or Darker[Red, f] (Ÿ6)  A darker color (darkened by a fraction f)

Opacity can be defined with Opacity, but opacity specification can also be added as a last argument
to  each  of  the  color  systems GrayLevel, Hue, RGBColor,  and CMYKColor.  The  default  lightening  or
darkening is 1 ê 3 (Lighter[col, 0]  and Darker[col, 0]  give col, Lighter[col, 1]  gives white,  and
Darker[col, 1] gives black).

For some basic colors, we also have ready-to-use names.

Grays: Black, Gray, White

Hues: Red, Yellow, Green, Cyan, Blue, Magenta

Special colors: Pink, Orange, Purple, Brown

Each color, except Black and White, can be preceded by Light (LightRed, etc.)

All primitives except Raster can be modified with a color. Here are some disks:

8Graphics@8RGBColor@0, 1, 0D, Disk@80, 0<D,
8Opacity@0.5D, Red, Disk@81, 0<D<, LightRed, Disk@83, 0<D<D,

Graphics@Table@8Blend@8Red, Green<, xD, Disk@84 x, 0<D<, 8x, 0, 1, 1 ê 4<DD<

: , >

Later, we will mention a palette that helps in choosing a suitable color.

‡ Raster

With Raster we can form raster images.

Raster[{{g11, … }, … }]  An array of gray cells
Raster[{{h11, … }, … }, ColorFunction Ø Hue]  An array of hue cells
Raster[{{{r11, g11, b11}, … }, … }] (Ÿ6)  An array of RGB cells

With  a  second  argument  of Raster  we  can  inform  the  rectangle  that  the  raster  image  will  occupy.
Next, we demonstrate the color systems by using Raster.

‡ Gray Level

Gray level 0 corresponds to black and 1 to white (contrary perhaps to what you might expect). Here is a
sequence of grays from 0 to 1 in steps of 0.1 (the last rectangle, which is white, is not visible):

Graphics@Raster@8Table@g, 8g, 0, 1, 1 ê 10<D<, 88-0.05, 0<, 81.05, 0.1<<D,
ImageSize Ø 400, Axes Ø 8True, False<, Ticks Ø 8Range@0, 1, 0.1D, None<D

0. 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.

Chapter 6  •  Graphics Primitives 169



‡  Hue

When the argument in the hue specification ranges from 0 to  1/6,  2/6,  3/6,  4/6,  5/6,  and 1,  the color
changes  from  red  to  yellow,  green,  cyan,  blue,  magenta,  and  back  to  red.  In  the  following,  we  have
several hues:

Graphics@Raster@8Table@g, 8g, 0, 1, 1 ê 12<D<,
88-1 ê 24, 0<, 825 ê 24, 0.1<<, ColorFunction Ø HueD, ImageSize Ø 400,

Axes Ø 8True, False<, Ticks Ø 8Range@0, 1, 1 ê 12D, None<D

0 1

12

1

6

1

4

1

3

5

12

1

2

7

12

2

3

3

4

5

6

11

12
1

Next, we show a color wheel showing how the hue changes (the wheel is implemented by plotting 300
narrow sectors of a disk):

d = p ê 150;
Graphics@8Hue@Ò ê H2 p - dLD, Disk@80, 0<, 1, 8Ò, Ò + d<D< & êü Range@0, 2 p - d, dD,

ImageSize Ø 120D

‡ RGB Color

In the RGB system, we specify the intensity of red, green, and blue. For example, RGBColor[1, 0, 0] is
red, RGBColor[0, 1, 0]  is green, and RGBColor[0, 0, 1]  is blue. This color system corresponds to the
one  used  in  color  monitors.  In  the  following  three  tables,  we  have  various  RGB colors  when  the  blue
component has the value 0, 0.5, and 1.

Graphics@Raster@Table@8r, g, Ò<, 8g, 0, 1, .5<, 8r, 0, 1, .5<D,
88-1 ê 4, -1 ê 4<, 85 ê 4, 5 ê 4<<D, ImageSize Ø 120, Axes Ø True,

AxesLabel Ø 8r, g<, AxesOrigin Ø 8-1 ê 4, -1 ê 4<, PlotLabel Ø Row@8"b = ", Ò<D,
Ticks Ø 880, .5, 1<, 80, .5, 1<<D & êü 80, .5, 1<

:

0 0.5 1
r

0

0.5

1

g
b = 0

,

0 0.5 1
r

0

0.5

1

g
b = 0.5

,

0 0.5 1
r

0

0.5

1

g
b = 1

>

170 Mathematica Navigator



‡ Summary

Here is a summary of how the basic colors can be obtained with the four color schemes:

GrayLevel Hue RGBColor CMYKColor

Black ‡ 0 0, 0, 0 0, 0, 0 0, 0, 0, 1

Gray ‡ .5 0, 0, .5 .5, .5, .5 0, 0, 0, .5

White ‡ 1 0, 0, 1 1, 1, 1 0, 0, 0, 0

Red ‡ 0 1, 0, 0 0, 1, 1, 0

Yellow ‡ 1 ê 6 1, 1, 0 0, 0, 1, 0

Green ‡ 2 ê 6 0, 1, 0 1, 0, 1, 0

Cyan ‡ 3 ê 6 0, 1, 1 1, 0, 0, 0

Blue ‡ 4 ê 6 0, 0, 1 1, 1, 0, 0

Magenta ‡ 5 ê 6 1, 0, 1 0, 1, 0, 0

‡ Interactive Choice of Colors

For help choosing a color, there is a Color item in the Insert menu. This item gives you various ways to
select colors interactively. On a Macintosh, some of the ways are as follows:

Choose  a  color  from  a  window  by  clicking  with  the  mouse  and  then  clicking OK.  The  chosen  color
definition appears at the location of the cursor as an RGB color definition. For example, type:

Plot@Sin@xD, 8x, 0, 2 p<, PlotStyle ØD

Place the cursor after Ø, then select a color by the color selector.

With ColorSlider,  we get a panel in which we can click on a color. The selected color is shown on
the square on the left and shown as an RGB color on the right:

8ColorSlider@Dynamic@clDD, Dynamic@clD<

: , RGBColor@0., 0., 0.D>

Chapter 6  •  Graphics Primitives 171



‡ Interactive Choice of Color Schemes

The basic color schemes are GrayLevel, Hue, RGBColor, and CMYKColor. Many additional color schemes
can be used with the ColorSchemes palette from the Palette menu.

The schemes are classified to gradients and to physical, named, and indexed color schemes. One use
of the gradients  and physical  color schemes is as values of the ColorFunction  option.  In the first plot
below,  we  have  selected,  from  the  palette,  the  gradient  with  the  name Rainbow.  The  gradient  then
appears  in  our  notebook,  at  the  cursor  position,  in  the  form ColorData["Rainbow"].  Similarly,  in  the
second  plot,  we  use  the TemperatureMap  gradient.  In  the  third  plot,  we  use  the  physical  color  scheme
VisibleSpectrum.

8Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
ColorFunction Ø HColorData@"Rainbow"D@Ò3D &L, Mesh Ø FalseD,

ContourPlot@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
ColorFunction Ø ColorData@"TemperatureMap"DD,

DensityPlot@x, 8x, 380, 750<, 8y, 0, 50<,
ColorFunction Ø ColorData@"VisibleSpectrum"D,
ColorFunctionScaling Ø False, AspectRatio Ø Automatic,
PlotRangePadding Ø 5, FrameTicks Ø 88None, None<, 8Automatic, None<<D<

: , , >

Indexed and named color schemes may be useful as values of PlotStyle in commands such as Plot

or ListPlot or as color directives in Graphics:

data = Table@H2 - n ê 6L x + 0.4 RandomReal@D, 8n, 1, 6<, 8x, 0, 5, 0.1<D;

8Plot@Evaluate@Table@Sin@n xD, 8n, 1, 3<DD,
8x, 0, 2 p<, PlotStyle Ø ColorData@16, "ColorList"DD,

ListLinePlot@data, PlotStyle Ø ColorData@22, "ColorList"D, InterpolationOrder Ø 2D,
Graphics@8ColorData@"HTML"D@"Maroon"D, Disk@D,

ColorData@"HTML"D@"OliveDrab"D, Disk@81, 0<D<D<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,

10 20 30 40 50

2

4

6

8

, >

In the first plot, the palette only gives ColorData[16];  we have to add "ColorList"  after the index of
the color scheme to get a list of colors. In the second plot, we have done similarly. The color definitions
in the third plot are directly from the palette.

The color schemes of the palette can also be studied and used directly with the ColorData command;

see Section 9.3.3, p. 304.

172 Mathematica Navigator



6.2.9  GraphicsComplex

‡ Building Plots from Primitives

Often in building a plot from primitives, we have a set of points and then we draw various primitives,
many of them depending on the same points. Of course, we can use the points as such in the primitives,
as in the following:

p = Table@8x, Sin@xD<, 8x, 0., 2 p, p ê 10<D;

Graphics@8Point@pD, Line@pD<, Axes Ø TrueD

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

However, we have a special command to help build a plot from primitives.

GraphicsComplex[{p1, p2, … }, data] (Ÿ6)  In the nested list data of directives and primitives,
refer to point pi by i

Here,  we first  give the list  of points.  Then we can refer to the points simply by their ordinal numbers:
Point pi  can be  referred to by i.  This  means  that  the set  of  all  points  can be  referred to by Range[n],
where n is the number of points. Let us now redraw the previous plot:

With@8rp = Range@Length@pDD<,
Graphics@GraphicsComplex@p, 8Point@rpD, Line@rpD<D, Axes Ø TrueDD

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

GraphicsComplex is treated like a single primitive in Graphics. The advantage of GraphicsComplex

is not very clear from this simple example, but in more complex plots the advantage may become more
prominent.

Next, using GraphicsComplex, we redraw a plot we considered in Section 6.2.3, p. 159:

Graphics@GraphicsComplex@p = 880, 0<, 83, 0<, 83, 1<, 80, 1<<,
8PointSize@MediumD, Point@3D, Line@81, 3<D, Circle@1, 0.8, 80, ArcTan@1 ê 3D<D,

Dashed, Line@82, 3, 4<D, Text@"p", 83.15, 1<D, Text@a, 80.67, 0.1<D<D,
Axes Ø True, Ticks Ø None, ImageSize Ø 150D

p

a

With Normal we get the usual graphics primitives:

GraphicsComplex@p = 880, 0<, 83, 0<, 83, 1<, 80, 1<<,
8Point@3D, Line@81, 3<D<D êê Normal

88Point@83, 1<D<, Line@880, 0<, 83, 1<<D<

Most surface and region plots produce GraphicsComplex:

Chapter 6  •  Graphics Primitives 173



Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<D êê InputForm êê Shallow

Graphics3D@GraphicsComplex@<< 3 >>D, 8<< 7 >><D

‡ Network Plot

Let us write a program that draws circles with labels and connects some of the circles with arrows. Let
the data be as follows:

nodes = 880, 2<, 82, 4<, 82, 3<, 82, 2<, 82, 1<, 82, 0<, 84, 3<, 84, 1<<;
labels = CharacterRange@"a", "h"D;
arcs = 881, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 7<,

82, 8<, 83, 7<, 83, 8<, 84, 7<, 84, 8<, 85, 7<, 85, 8<, 86, 7<, 86, 8<<;

We want  to  draw circles  of  radius r  at nodes,  and labels  are  written inside  the  circles.  The list arcs

gives the pairs of node numbers between which arrows are drawn; node numbers are 1, 2, and so on in
the order they are given in nodes. First, define that rn contains the ordinal numbers of the nodes. Then
generate the circles, labels, and arrows:

rn = Range@Length@nodesDD

81, 2, 3, 4, 5, 6, 7, 8<
Circle@Ò, rD & êü rn êê Short

8Circle@1, rD, á6à, Circle@8, rD<
MapThread@Text, 8labels, rn<D êê Short

8Text@a, 1D, Text@b, 2D, á5à, Text@h, 8D<
Arrow@Ò, rD & êü arcs êê Short

8Arrow@81, 2<, rD, á13à, Arrow@86, 8<, rD<

Thus, a program could be as follows:

networkPlot@nodes_, labels_, arcs_, r_, opts___D :=
With@8rn = Range@Length@nodesDD<, Graphics@GraphicsComplex@nodes,

8Circle@Ò, rD & êü rn, MapThread@Text, 8labels, rn<D,
Arrowheads@880.04, 0.8<<D, Arrow@Ò, rD & êü arcs<D, optsDD

networkPlot@nodes, labels, arcs, 0.3D

a

b

c

d

e

f

g

h

We also have the built-in command GraphPlot that we consider in Section 8.5, p. 267:

arcs2 = 81 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6, 2 Ø 7,
2 Ø 8, 3 Ø 7, 3 Ø 8, 4 Ø 7, 4 Ø 8, 5 Ø 7, 5 Ø 8, 6 Ø 7, 6 Ø 8<;

174 Mathematica Navigator



GraphPlot@arcs2, VertexCoordinateRules Ø nodes,
VertexLabeling Ø True, DirectedEdges Ø TrueD

1

2

3

4

5

6

7

8

6.2.10  Inset

Previously,  we have considered primitives such as Point, Line,  and Text.  With Inset,  we can create,
from an arbitrary graphics, an object that can be used like a primitive.

Inset[gr] (Ÿ6)  Inset graphics gr at the center of the enclosing graphics
Inset[gr, pos]  Put the center of gr at pos of the enclosing graphics
Inset[gr, pos, opos]  Put point opos of gr at pos of the enclosing graphics
Inset[gr, pos, opos, size]  Define the size of gr in units of the enclosing graphics
Inset[gr, pos, opos, size, dir]  Define the direction of gr

Although here we use Inset for a graphics gr, we can inset any expression. In the positions, we can
also  use x-positions Automatic, Left, Center, Right,  and Axis  and y-positions Automatic, Bottom,

Center, Top, Axes,  or Baseline.  With  the Alignment  option  (Left, Center,  or Right)  we  can  define
how to align the contents of the inset.

In the following figures, we use the plot of sinHxL as a primitive:

p = Plot@Sin@xD, 8x, 0, 2 p<D;

p1 = Graphics@8Circle@81, 0<, 1D, Inset@pD<, ImageSize Ø 90D;
p2 = Graphics@8Circle@81, 0<, 1D, Inset@p, 81, 0.5<D<, ImageSize Ø 890, 90<D;
p3 = Graphics@8Circle@81, 0<, 1D, Inset@p, 81, 0<, 80, -1<, 1.2D<, ImageSize Ø 90D;
p4 = Graphics@

8Circle@81, 0<, 1D, Inset@p, 81, 0<, 80, -1<, 1.2, 82, 1<D<, ImageSize Ø 90D;

Row@8p1, p2, p3, p4<, " "D

1 2 3 4 5 1 2 3 4 5
123456-1.0

-0.5
0.0
0.5
1.0

123
456

-1.0-0.50.00.51.0

Chapter 6  •  Graphics Primitives 175



• In the first plot, the center of the plot of sinHxL is at the center of the enclosing graphics.
• In the second plot, the center of the plot of sinHxL is at the point H1, 0.5L of the enclosing graphics.
• In the third plot, the point H0, -1L of the plot of sinHxL is at the point H1, 0L of the enclosing graphics

and the size of the plot of sinHxL is 1.2 units in the enclosing graphics.
• In the fourth plot, the slope of the x axis of the plot of sinHxL is 1 ê 2.

Next, we use Inset in an Epilog option:

9Plot@Sin@xD, 8x, 0, 2 p<,

Epilog Ø Inset@Plot@Cos@xD, 8x, 0, 2 p<D, 82 p, 1<, 8Right, Top<, 3.5DD,
Plot@Sin@xD, 8x, 0, 2 p<, Epilog Ø Inset@Framed@"The graph of the sine function"D,

82 p, 1<, 8Right, Top<, 3.5, Alignment Ø RightDD,

PlotASin@xD, 8x, 0, 2 p<, Epilog Ø TextAFramedAStyleA

"The graph of\nthe sine function", TextAlignment Ø RightEE, 82 p, 1<, 81, 1<EE=

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6
-1.0
-0.5

0.5
1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The
graph of the
sine function

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The graph of
the sine function

>

• In  the  first  plot,  we  inset  the  plot  of cosHxL  with  size  3.5  so  that  its  right  top point  is  at  the  point
H2 p, 1L of the enclosing graphics.

• In the second plot, we inset a text with right alignment.
•  In  the  third  plot,  we  use,  instead  of Inset,  the Text  primitive.  Now  we  have  to  define  the  line

breaks with \n and use Style to define the alignment.

GraphicsGroup[{gr1, gr2, … }] (Ÿ6)  Represents a collection of graphics objects grouped together

Grouping of graphics objects may be useful in interactive selection of objects.  Grouping can also be

done by using the menu command Graphics @ Operations @ Group; see Section 5.1.3, p. 131.

6.2.11  3D Primitives and Directives

‡ The Structure of 3D Graphics

Thus far,  we have considered 2D graphics  primitives and directives.  Similarly,  we have 3D primitives
and  directives.  As  for  2D  graphics,  the  importance  of  the  3D  primitives  and  directives  derives  from
three facts:

• Mathematica uses the primitives and directives in the construction of all plots.
• We can construct a plot directly from the primitives and directives.
• The directives can be used to modify plots with options.

The construction of 3D graphics from primitives is done with Graphics3D:

Graphics3D[{directives and primitives}, options]  Create and show a graphics object from
directives and primitives, using some options

176 Mathematica Navigator



Graphics3D has mostly the same options as Plot3D, but the default values of Axes and BoxRatios are
False and Automatic, whereas the default values for Plot3D are True and {1, 1, 0.4}.

Here are two examples.  The second example shows that  we can use GraphicsComplex  (see Section

6.2.9, p. 173) in the same way as for 2D graphics:

8Graphics3D@8Cuboid@80, 0, 0<, 81, 1, 1<D, Thick, Line@880, 0, 1<, 81, 1, 1<<D,
AbsolutePointSize@5D, Point@880, 0, 1<, 81, 1, 1<<D<, ImageSize Ø 100D,

Graphics3D@GraphicsComplex@880, 0, 0<, 80, 0, 1<, 81, 1, 1<<, 8Cuboid@1, 3D,
Thick, Line@82, 3<D, AbsolutePointSize@5D, Point@82, 3<D<D, ImageSize Ø 100D<

: , >

‡ 3D Graphics Primitives

The following are all the 3D graphics primitives. With p, p1, p2, and pn, we denote a point that consists
of the x, y, and z coordinates; an example is {1, 4, 3}.

Point[p]  Point at p

Point[{p1, …, pn}]  Points at p1, …, pn

Line[{p1, …, pn}]  Line through points p1, …, pn

Text[expr, p]  Text expr centered at p

Text[expr, p, {u, v}]  Text expr placed so that the point {u, v}, expressed in text coordinates, of
expr is at the point p

Cuboid[p]  Cube with opposite corners p and p + 1 (Cuboid[] means Cuboid[{0, 0, 0}])
Cuboid[p1, p2]  Rectangular parallelepiped with opposite corners p1 and p2

Polygon[{p1, …, pn}]  Polygon with vertices p1, …, pn

Sphere[p] (Ÿ6)  Sphere of radius 1 centered at p (Sphere[] means Sphere[{0, 0, 0}])
Sphere[p, r]  Sphere of radius r centered at p

Cylinder[{p1, p2}] (Ÿ6)  Filled cylinder of radius 1 around the line from p1 to p2 (Cylinder[]

means Cylinder[{{0, 0, -1}, {0, 0, 1}}])
Cylinder[{p1, p2}, r]  Filled cylinder of radius r around the line from p1 to p2

For Text, note that the point p at which the text is placed is a 3D point, but the text coordinates {u,

v}  are  2D. The  faces  of  a Cuboid  are  parallel  to  the  axes.  To  get  other  cuboids,  use Rotate.  To  get
ellipsoids, apply Scale to a Sphere.

With Graphics3D,  we can use GraphicsComplex, GraphicsGroup,  and Inset  as with Graphics  (see

Sections 6.2.9, p. 173, and 6.2.10, p. 175).

Note that the 3D primitives cannot be used in the Prolog  and Epilog  options. In these options, we
can only use 2D primitives.

Chapter 6  •  Graphics Primitives 177



‡ 3D Graphics Directives

For 3D primitives, we have all of the directives of point size, thickness, dashing, and color as we do for
2D primitives:

PointSize[d], AbsolutePointSize[d]

Thickness[d], AbsoluteThickness[d]

Dashing[{d1, d2, … }], AbsoluteDashing[{d1, d2 ,… }]

GrayLevel[g], Hue[h], RGBColor[r, g, b], CMYKColor[c, m, y, k]

In addition, the style of 3D polygons can be adjusted with the following directives:

EdgeForm[styles]  Styles of the edges (EdgeForm[] means no edges)
FaceForm[styles]  Styles of both front and back faces (FaceForm[] means no faces)
FaceForm[front styles, back styles]  Styles of front and back faces

Opacity[o] (Ÿ6)  The opacity
Specularity[col, n] (Ÿ6)  The specularity (a color and a specular exponent)
Glow[col] (Ÿ6)  The glow

In FaceForm, the front face of a polygon is defined to be the one for which the corners, as you specify
them,  are  in  counterclockwise  order.  Here  are  some  examples  of  how  the  style  of  polygons  can  be
adjusted:

SetOptions@Graphics3D, ImageSize Ø 90D;

8Graphics3D@Cuboid@DD,
Graphics3D@8Opacity@0.4D, Cuboid@D<D,
Graphics3D@8EdgeForm@8Gray, AbsoluteThickness@4D<D, Cuboid@D<D,
Graphics3D@8Opacity@0.5D, FaceForm@Green, RedD, Cuboid@D<D<

: , , , >

‡ Polyhedrons

With PolyhedronData,  we can get information about many polyhedrons. This command is considered

in Section 9.3.1, p. 300. Here are images of some well-known polyhedrons:

Show@PolyhedronData@Ò, "Image"D, Boxed Ø False, ImageSize Ø 70D & êü
8"Tetrahedron", "Cube", "Octahedron", "Dodecahedron", "Icosahedron"<

: , , , , >

178 Mathematica Navigator



7
Graphics Options

Introduction 180

7.1  Introduction to Options 180

7.1.1  Using Options 180 Show, SetOptions, Options, AbsoluteOptions

7.1.2  Summary 184 Directive

7.2  Options for Form, Ranges, and Fonts 189

7.2.1  Form and Size 189 AspectRatio, ImageSize

7.2.2  Plot Range 190 PlotRange, PlotRangeClipping

7.2.3  Margins and Background 191 PlotRegion, ImageMargins, Background, ImagePadding, etc.

7.2.4  Fonts 192 BaseStyle, FontFamily, FontColor, LabelStyle, Style, FormatType, etc.

7.2.5  Miscellaneous Options 195 BaselinePosition, AlignmentPoint, ContentSelectable, etc.

7.3  Options for Axes, Frames, and Primitives 195

7.3.1  Plot Label 195 PlotLabel

7.3.2  Axes and Ticks 196 Axes, AxesOrigin, AxesLabel, AxesStyle, Ticks, TicksStyle

7.3.3  Frame and Frame Ticks 198 Frame, FrameLabel, RotateLabel, FrameStyle, FrameTicks, etc.

7.3.4  Grid Lines 199 GridLines, GridLinesStyle

7.3.5  Hierarchy of Styles 200 BaseStyle, LabelStyle, AxesStyle, FrameStyle, TicksStyle, etc.

7.3.6  Primitives 201 Prolog, Epilog, Graphics

7.4  Options for the Curve 203

7.4.1  Plot Style 203 PlotStyle, ClippingStyle

7.4.2  Color Function 204 ColorFunction, ColorFunctionScaling

7.4.3  Filling 204 Filling, FillingStyle

7.4.4  Mesh Points 205 Mesh, MeshFunctions, MeshStyle, MeshShading

7.4.5  Exclusions and Region Function 206 Exclusions, ExclusionsStyle, RegionFunction

7.4.6  Plotting Algorithm 207 PlotPoints, MaxRecursion, WorkingPrecision, Evaluated, etc.

7.4.7  Legends 208 PlotLegend, LegendPosition, LegendSize, LegendShadow, ShowLegend, etc.

7.5  Options for Surface Plots 210

7.5.1  Summary 210

7.5.2  Global Options 215 BoxRatios, PlotRange, SphericalRegion, ViewPoint, Lighting, etc.

7.5.3  Local Options 219 Axes, AxesEdge, AxesLabel, Ticks, Boxed, FaceGrids, Epilog, etc.

7.5.4  Options for the Surface 222 ColorFunction, Filling, Mesh, Exclusions, RegionFunction, etc.

7.6  Options for Contour and Density Plots 226

7.6.1  Special Options 226 Contours, ContourLines, ContourLabels, ContourShading, etc.



Introduction

Isaac Newton, it seems, was one of the original absentminded mathematicians.
 He once cut a hole in the bottom of the door of an outhouse to allow his favorite cat

 easy access. When the cat had kittens, he added a small hole next to the big one.

We shall now explore in detail all the options of the main 2D plotting commands Plot, ParametricÖ

Plot,  and Graphics  and  of  the  main  3D  commands Plot3D, ParametricPlot3D , Graphics3D,
ContourPlot, and DensityPlot.

In Sections 7.1.2 and 7.5.1, we present summaries of the options. The options are classified into global
options, which modify the plot as a whole, local options, which modify separate components of the figure,
and options for the curve or surface. The varying importance of the options is also shown.

Many  options  relating  to  styles  such  as PlotStyle, BaseStyle,  and FrameStyle  use graphics
directives, and the options Prolog and Epilog also use graphics primitives. You may want to study them
in Chapter 6.

7.1  Introduction to Options

7.1.1  Using Options

‡ Four Ways to Adjust Options

In Section 5.1.1,  p. 118,  we  explained how options  can be  used to modify a  plot.  Here,  we summarize

four methods of using options. We use Plot as an example of a plotting command.

(a) Setting options in Plot:
Plot[expr, {x, a, b}, opt1 Ø val1, opt2 Ø val2, …]

(b) Setting options in Show:
p = Plot[expr, {x, a, b}]

Show[p, opt1 Ø val1, opt2 Ø val2, …]

(c) Giving a name to the options:
opts = Sequence[opt1 Ø val1, opt2 Ø val2, …]

Plot[expr, {x, a, b}, Evaluate[opts]]

(d) Setting options with SetOptions:
SetOptions[Plot, opt1 Ø val1, opt2 Ø val2, …]

Plot[expr, {x, a, b}]

(a) The first method may be the most convenient in a notebook environment (as in Windows and on
a Macintosh). You can first plot the function without any options. If the result is not satisfactory, add an
option  or  several  options  to  the  original  plotting  command  and  then  execute  the  command  anew.
Continue adding and modifying the options and executing the plotting command until you are satisfied
with the result.

(b) The second method has a certain advantage. Indeed, Show does not execute the plotting command
anew; only the appearance of the figure is changed. Thus, if the plotting command is time-consuming, it
is better to use Show to avoid executing the plotting command anew every time.

180 Mathematica Navigator



(c) The  third  method may be  useful  if  you use  the  same options  (opts)  for  several  plots:  Write  the
options once and use the name of the set of options in the subsequent plots.

(d) The  fourth  method  is  useful  if,  during  a  session,  you  continuously  use  certain  values  for  some
options. Before using this method, it may be useful to look at the default values with Options[Plot] for
the  case  in  which  you  want  to  return  to  the  default  values.  The  default  values  can  then  be  set  with
another SetOptions command.

‡ Notes about Show

If you combine two or more figures with Show,  you should be aware of the fact that if the figures have
different values for the same option, then Show takes the value given in the first figure; the values given

in later figures for this option are disregarded (see Section 5.1.2, p. 125).

Also, with Show we can adjust most of the options but not all of them. Indeed, with Show we can only
adjust  the  options  of Graphics.  For  example, Plot  has  the  following  options  that Graphics  does  not
have:

ClippingStyle, ColorFunction, ColorFunctionScaling, EvaluationMonitor, Exclusions,
ExclusionsStyle, Filling, FillingStyle, MaxRecursion, Mesh, MeshFunctions, MeshShading,
MeshStyle, PerformanceGoal, PlotPoints, PlotStyle, RegionFunction, WorkingPrecision.

These  options  control  the sampling algorithm and the style  of  the curve.  Thus,  the options mentioned
cannot be adjusted with Show. Note especially that PlotStyle cannot be used with Show.

‡ Information about Options

Options[comm]  Give the options and their default values of a command comm

Options[comm, opt]  Give the default value of an option opt of a command comm

AbsoluteOptions[p]  Give the detailed values of the options used in a plot p, even if a value is
Automatic or All

AbsoluteOptions[p, opt]  Give the detailed value of an option opt used in a plot p

Note that for a plot produced by Plot, the values of the special options mentioned previously cannot
be asked.

Here are all the 55 options and their default values for Plot:

Style@Options@PlotD, 7D

:AlignmentPoint Ø Center, AspectRatio Ø

1

GoldenRatio
, Axes Ø True, AxesLabel Ø None,

AxesOrigin Ø Automatic, AxesStyle Ø 8<, Background Ø None, BaselinePosition Ø Automatic,

BaseStyle Ø 8<, ClippingStyle Ø None, ColorFunction Ø Automatic, ColorFunctionScaling Ø True,

ColorOutput Ø Automatic, ContentSelectable Ø Automatic, DisplayFunction ß $DisplayFunction, Epilog Ø 8<,

Evaluated Ø Automatic, EvaluationMonitor Ø None, Exclusions Ø Automatic, ExclusionsStyle Ø None,

Filling Ø None, FillingStyle Ø Automatic, FormatType ß TraditionalForm, Frame Ø False,

FrameLabel Ø None, FrameStyle Ø 8<, FrameTicks Ø Automatic, FrameTicksStyle Ø 8<, GridLines Ø None,

GridLinesStyle Ø 8<, ImageMargins Ø 0., ImagePadding Ø All, ImageSize Ø Automatic, LabelStyle Ø 8<,

MaxRecursion Ø Automatic, Mesh Ø None, MeshFunctions Ø 8Ò1 &<, MeshShading Ø None, MeshStyle Ø Automatic,

Method Ø Automatic, PerformanceGoal ß $PerformanceGoal, PlotLabel Ø None, PlotPoints Ø Automatic,
PlotRange Ø 8Full, Automatic<, PlotRangeClipping Ø True, PlotRangePadding Ø Automatic, PlotRegion Ø Automatic,

PlotStyle Ø Automatic, PreserveImageOptions Ø Automatic, Prolog Ø 8<, RegionFunction Ø HTrue &L,

RotateLabel Ø True, Ticks Ø Automatic, TicksStyle Ø 8<, WorkingPrecision Ø MachinePrecision>

The default value of a certain option or a list of options can also be displayed:

Options@Plot, PlotRangeD

8PlotRange Ø 8Full, Automatic<<

Chapter 7  •  Graphics Options 181



Remember also that we can ask for information about an option by typing, for example, ?PlotRange

or using the Documentation Center (see Sections 1.4.2, p. 17, and 1.4.3, p. 20).

Some  common  values  of  options  are  as  follows.  Most  default  values  of  the  options  of Plot  are
Automatic.  This  value  means  that  there  is  a  special  value  chosen  by Plot  according  to  certain  rules.
Some  options,  such  as AxesLabel,  have  the  value None,  meaning  that  the  plot  does  not  have  the
corresponding  components.  Some  options,  such  as Frame,  have  the  value True  or False,  which  tells
whether or not something is present. PlotRange can have the value All, meaning that the whole plot is
shown.

We can also ask for the options of a given plot:

p = Plot@Sin@xD, 8x, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

AbsoluteOptions@p, AxesStyleD

8AxesStyle Ø 88GrayLevel@0.D, AbsoluteThickness@0.25D<,
8GrayLevel@0.D, AbsoluteThickness@0.25D<<<

‡ Comparing Options

We can easily compare the options of various plotting commands. For example, LogPlot has exactly the
same options and default values as LogLinearPlot:

Options@LogPlotD ã Options@LogLinearPlotD

True

The options of Plot and Graphics have some differences:

c = Options@PlotD; g = Options@GraphicsD;

Style@Intersection@c, gD, 7D

8AlignmentPoint Ø Center, AxesLabel Ø None, AxesOrigin Ø Automatic, AxesStyle Ø 8<, Background Ø None,

BaselinePosition Ø Automatic, BaseStyle Ø 8<, ColorOutput Ø Automatic, ContentSelectable Ø Automatic,

Epilog Ø 8<, Frame Ø False, FrameLabel Ø None, FrameStyle Ø 8<, FrameTicks Ø Automatic,

FrameTicksStyle Ø 8<, GridLines Ø None, GridLinesStyle Ø 8<, ImageMargins Ø 0., ImagePadding Ø All,

ImageSize Ø Automatic, LabelStyle Ø 8<, Method Ø Automatic, PlotLabel Ø None, PlotRangePadding Ø Automatic,

PlotRegion Ø Automatic, PreserveImageOptions Ø Automatic, Prolog Ø 8<, RotateLabel Ø True,

Ticks Ø Automatic, TicksStyle Ø 8<, DisplayFunction ß $DisplayFunction, FormatType ß TraditionalForm<
Style@Complement@c, gD, 7D

:AspectRatio Ø

1

GoldenRatio
, Axes Ø True, ClippingStyle Ø None, ColorFunction Ø Automatic,

ColorFunctionScaling Ø True, Evaluated Ø Automatic, EvaluationMonitor Ø None, Exclusions Ø Automatic,

ExclusionsStyle Ø None, Filling Ø None, FillingStyle Ø Automatic, MaxRecursion Ø Automatic,

Mesh Ø None, MeshFunctions Ø 8Ò1 &<, MeshShading Ø None, MeshStyle Ø Automatic, PlotPoints Ø Automatic,

PlotRange Ø 8Full, Automatic<, PlotRangeClipping Ø True, PlotStyle Ø Automatic,

RegionFunction Ø HTrue &L, WorkingPrecision Ø MachinePrecision, PerformanceGoal ß $PerformanceGoal>

Style@Complement@g, cD, 7D

8AspectRatio Ø Automatic, Axes Ø False, PlotRange Ø All, PlotRangeClipping Ø False<

Complement[c, g]  gives  the elements  of c  that  are not  in g.  Thus,  the default  values  of AspectRatio,
Axes, PlotRange, and PlotRangeClipping are different for the two plotting commands, and Graphics

does not have the special options of Plot we mentioned previously.

182 Mathematica Navigator



The options of Plot and ParametricPlot also have some differences:

c = Options@PlotD; p = Options@ParametricPlotD;

Complement@c, pD

:AspectRatio Ø
1

GoldenRatio
, ClippingStyle Ø None,

Filling Ø None, FillingStyle Ø Automatic, Frame Ø False,

Mesh Ø None, MeshFunctions Ø 8Ò1 &<, PlotRange Ø 8Full, Automatic<>
Complement@p, cD

8AspectRatio Ø Automatic, BoundaryStyle Ø Automatic, Frame Ø Automatic,
Mesh Ø Automatic, MeshFunctions Ø Automatic, PlotRange Ø Automatic<

Thus,  the  default  values  of AspectRatio, Frame, Mesh, MeshFunctions,  and PlotRange  are  different,
and ParametricPlot does not have the options ClippingStyle, Filling, and FillingStyle.

‡ Example

With the help of options we can get interesting results, such as the following. This plot is overdone, but
our aim is simply to show what can be done with options.

Plot@Sin@xD, 8x, 0, 2 p<, PlotRange Ø 88-0.7, 2 p + 0.7<, 8-1.6, 1.6<<,
PlotRegion Ø 88-0.05, 1<, 80.04, 0.94<<, ImageSize Ø 8280, 190<,
Background Ø Black, BaseStyle Ø 89, White, FontFamily Ø "Helvetica"<,
PlotStyle Ø Directive@White, ThickD,
PlotLabel Ø Style@"An interesting wave", Bold, 12D, Frame Ø True,
FrameLabel Ø 8Style@x, WhiteD, Style@Sin@xD, WhiteD<,
RotateLabel Ø False, FrameStyle Ø Directive@Gray, Thick, BoldD,
FrameTicks Ø 880, 8p ê 2, "pê2"<, p, 83 p ê 2, "3pê2"<, 2 p<, 8-1, 0, 1<, None, None<,
FrameTicksStyle Ø Directive@White, ThinD, Epilog Ø 8

Text@Style@"Maximum point", Bold, 7D, 8p ê 2, 1<, 8-1, -1.3<D,
Text@Style@"Minimum point", Bold, 7D, 83 p ê 2, -1<, 81, 2<D,
Text@Style@"Point of inflection", Bold, 7D, 83.5, 0.4<, 8-1, -1<D,
Arrowheads@0.03D, Arrow@883.55, 0.4<, 8p + 0.1, 0.1<<D,
PointSize@MediumD, Gray, Point@88p ê 2, 1<, 8p, 0<, 83 p ê 2, -1<<D<D

0 pê2 p 3pê2 2 p

-1

0

1

x

sinHx L

An interesting wave

Maximum point

Minimum point

Point of inflection

Chapter 7  •  Graphics Options 183



7.1.2  Summary

‡ Introduction

Here, we list all the options of Plot (see Section 5.1.1, p. 116), ParametricPlot (see Section 5.2.1, p. 132),

and Graphics (see Section 6.1.1, p. 153), with short descriptions and some common values. The default

value of an option is mentioned first, and after that we mention either all other possible values or some
examples of other values (the examples are simple; more advanced forms may exist).

The options are divided into three groups:

• Global options: These are options to modify global aspects of the plot~that is, to adjust how the plot
looks in general. This means, for example, adjusting the form, size, plot range, various margins, or
fonts.

• Local options: These are options to modify local components of a plot such as plot label, axes, ticks,
frame, grid lines, or add-ons.

• Options for the curve: These are options to modify the curve produced by Plot or ParametricPlot.
This means, for example, adjusting the style, filling, mesh, or exclusions or controlling the plotting
algorithm.

All  of  the  options  in  the  first  two  groups  are  common  to  all  three  plotting  commands  mentioned.
However,  options  in  the  third  group  are  applicable  only  with Plot  or ParametricPlot.  Options  and
their  default  values  applicable  only to  certain commands are expressed in the lists  in this section by a
superscript after the option name or value:

c: applicable to Plot (shorthand for curve)
p: applicable to ParametricPlot (shorthand for parametric)
g: applicable to Graphics (shorthand for graphics)

For example, PlotStyle c p  means  that  this  option applies  to Plot  and ParametricPlot  but  not  to
Graphics,  and False g  means  that  the  default  value  of  the  option  in  question  (Axes)  is False  for
Graphics.

Three  options  assumed to  be  the  most  important  are  marked with  two asterisks  (**).  Nine  options
assumed to  be  less  important  are  marked with  one asterisk (*).  A single  parenthesis  indicates  options
that most of us will seldom need. The remaining options, without any special markings, may sometimes
be useful. Of course, the given classification of the options according to importance reflects my personal
impression. You may well have a different classification.

184 Mathematica Navigator



‡ Global Options

The following options can be used to adjust some global aspects of a plot.

Options for form and size:
** AspectRatio  Ratio of height to width of the plotting rectangle; examples of values:

1/GoldenRatio c, Automatic g p, Full, 0.4
ImageSize  The absolute size (in printer’s points) of the plot; examples of values: Automatic, Full,

All, width, {width, height}, {maxsize}, {{maxwidth}, {maxheight}}

Options for plot range:
** PlotRange  Ranges for x and y in the plot; examples of values:

 Automatic p {ymin, Automatic} {Full, Automatic} c

 All g {ymin, All} {{xmin, xmax}, Automatic}

 Full {All, ymax} {Full, {ymin, Automatic}}

 5 {ymin, ymax} {{xmin, xmax}, {ymin, ymax}}

(PlotRangeClipping (Ÿ6)  Whether graphics objects should be clipped at the edge of the region
defined by PlotRange or should be allowed to extend to the selection rectangle; possible values:
True c p, False g)

Options for margins:
PlotRegion  Specifies margins around the plot inside the selection rectangle; examples of values:

Automatic (means {{0, 1}, {0, 1}}), {{xmin, xmax}, {ymin, ymax}}
(ImageMargins Specifies margins (in printer’s points) outside the selection rectangle; examples of

values: 0, Automatic, 15, {{left, right}, {bottom, top}})
Background  Color of the background; examples of values: None, LightGray
(ImagePadding (Ÿ6)  Extra space (in printer’s points) for objects such as thick lines and tick and axes

labels; examples of values: All, None, 15, {{left, right}, {bottom, top}})
(PlotRangePadding (Ÿ6)  How much farther axes etc. should extend beyond the range of coordi-

nates specified by PlotRange; examples of values: Automatic, None, {0.2, 0.5})

Options for fonts and formatting:
* BaseStyle (Ÿ6) Style of all texts; examples of values: {}, {9, "Bold", FontFamily Ø "Arial"}

LabelStyle (Ÿ6) Style of all labels; examples of values: {}, {9, "Bold", FontFamily Ø "Arial"}

(FormatType  Format type of text used in a plot; examples of values: TraditionalForm,
StandardForm, InputForm, OutputForm)

Miscellaneous options:
(BaselinePosition (Ÿ6)  Where the baseline of a plot should be if the plot is combined with other

plots or text; examples of values: Automatic, Axis, Bottom, Top, Center, Baseline)
(AlignmentPoint (Ÿ6)  How objects should by default be aligned when they appear in Inset;

default value: Center)
(ContentSelectable (Ÿ6)  Whether and how content of a plot should be selectable; possible values:

Automatic (double-click allows content selection), True (single clicks immediately select content
objects), False (content objects cannot be selected))

(PreserveImageOptions (Ÿ6)  Whether the size and margins of a plot should remain the same if the
plotting command is executed anew; examples of values: Automatic (the properties should remain
the same if not explicitly otherwise stated), True (the properties should remain the same), False
(the previous properties are ignored))

(DisplayFunction  Function to apply to a graphic; default value: $DisplayFunction)

Chapter 7  •  Graphics Options 185



‡  Local Options

The following options can be used to adjust some local components of a plot.

An option for plot label:
PlotLabel  Label of the plot; examples of values: None, Sin[x/2], "Function g(x)"

Options for axes and ticks:
* Axes  Whether to draw the axes; examples of values: True c p, False g, {True, False}

* AxesOrigin  Point where the axes cross; examples of values: Automatic, {0, 0}

AxesLabel  Labels for the axes; examples of values: None, y, {x, None}, {x, y}

(AxesStyle  Style of the axes, axes labels, tick marks, and tick labels; examples of values: {}, Thick,
Blue, Arrowheads[0.07], Directive[Thick, Blue, 12, Italic]

** Ticks  Tick on the axes; simple examples of values: Automatic, None, {{p, 2p}, Automatic},
{Automatic, {-1, 0, 1}}, {{p, 2p}, {-1, 0, 1}}

TicksStyle (Ÿ6)  Style of tick marks and tick labels; examples of values: {}, Blue,
Directive[Thick, Blue, 12]

Options for frame and frame ticks:
* Frame  Whether to draw a frame; examples of values: False, True, {True, True, False, False}

* FrameLabel  Labels for the frame; examples of values: None, {x, y}, {"bottom", "left", "top",
"right"}

* RotateLabel  Whether to rotate the labels for the vertical edges; possible values: True, False

FrameStyle  Style of the frame, frame labels, frame tick marks, and frame tick labels; examples of
values: Automatic, Blue, Directive[Thick, Red, 12, Italic]

* FrameTicks  Frame tick marks on the frame; simple examples of values: Automatic, None, All (on
all edges), {{0, p, 2p}, {-1, 1}, None, None}

FrameTicksStyle (Ÿ6)  Style of frame tick marks and frame tick labels; examples of values: {}, Red,
Directive[Thick, Red, 12, Bold]

Options for grid lines:
GridLines  How the grid lines are drawn; simple examples of values: None, Automatic, {None,

Automatic}, {None, {-1,0,1}}, {{0,1,2}, {-1,0,1}}

(GridLinesStyle (Ÿ6)  Style of the grid lines; examples of values: {}, Dashed,
Directive[LightGray, Dashed])

Options for primitives:
(Prolog  Graphics primitives to be plotted before the main plot; examples of values: {}, {Red,

PointSize[Medium], Point[{3, 2}]})
* Epilog  Graphics primitives to be plotted after the main plot; examples of values: {}, {Red,

PointSize[Medium], Point[{3, 2}]}

186 Mathematica Navigator



‡ Options for the Curve

With Plot and ParametricPlot, the following options can be used to adjust the curve to be plotted.

Options for plot style:
* PlotStyle c p  Style(s) of the curve(s); examples of values: Automatic, Thickness[Medium],

Directive[Thick, Red, Dashed]

(ClippingStyle c (Ÿ6)  How to indicate clipped parts that fall outside of the plot range; examples
of values: None, Automatic, Red, {Blue, Red})

Options for color function:
(ColorFunction c p (Ÿ6)  Function that determines the color of the curve; examples of values:

Automatic, (Hue[#2] &), (RGBColor[#2, 0, 1 - #2] &), "Rainbow")
(ColorFunctionScaling c p (Ÿ6)  Whether arguments to a color function should be scaled to lie

between 0 and 1; examples of values: True, False)

Options for filling:
Filling c (Ÿ6)  Type of filling to use; examples of values: None, Axis, Bottom, Top, 0.3, True
(FillingStyle c (Ÿ6)  Style of filling; examples of values: Automatic, Red, {Blue, Red} (different

style for negative and positive values), Directive[Opacity[0.3], Blue])

Options for mesh:
Mesh c p  How many mesh points should be drawn; examples of values: None c, Automatic p, 10,

Full, All, {{0}}
MeshFunctions c p (Ÿ6)  How to determine the placement of the mesh points; examples of values:

{#1 &} c, Automatic p, {#2 &}
MeshStyle c p  The style of mesh points; examples of values: Automatic, PointSize[Small],

Directive[Red, PointSize[Medium]]

(MeshShading c p (Ÿ6)  How to shade regions between mesh points; examples of values: None, {Red,
Blue})

Options for exclusions:
Exclusions c p (Ÿ6)  The x points that are excluded in plotting; examples of values: Automatic,

None, {p/2, 3 p/2}, {Cos[x] ã 0}

ExclusionsStyle c p (Ÿ6)  What to draw at excluded points; examples of values: None,
Directive[Blue, Dashed], {None, Directive[Red, PointSize[Medium]]}

(RegionFunction c p (Ÿ6)  Specifies the region to include in the plot drawn; examples of values:
(True &), (Abs[#2] > 0.7&))

Options for plotting algorithm:
PlotPoints c p  Number of initial sampling points; examples of values: Automatic, 100
MaxRecursion c p (Ÿ6)  The maximum number of recursive subdivisions allowed; examples of

values: Automatic, 8
WorkingPrecision c p (Ÿ6)  The precision used in computations; examples of values:

MachinePrecision, 20
(Evaluated c p (Ÿ6)  Whether the expression to be plotted is evaluated before the expression is

sampled; possible values: Automatic, True, False)
(PerformanceGoal c p (Ÿ6)  What aspect of performance to try to optimize; examples of values:

$PerformanceGoal, "Quality", "Speed")
(EvaluationMonitor c p (Ÿ6)  Expression to evaluate at every function evaluation; examples of

values: None, Sow[{x, Sin[x]}])

Chapter 7  •  Graphics Options 187



In various style options we can use graphics primitives such as Point, Line, and Text and graphics
directives such as AbsolutePointSize, Thick, Dashed, Gray, or Red. These are explained in Chapter 6.

All  of  the  options  are  explained  in  detail  in  the  remaining  sections  of  this  chapter,  after  we  have
considered the combination of various styles. Note that in the PlotLegends`  package we have options for
legends.

‡ Combining Styles

The  styles  of  various  components  of  a  plot  can  be  defined  with  several  options: PlotStyle,
ClippingStyle, FillingStyle, MeshStyle, ExclusionsStyle, LabelStyle, AxesStyle, TicksStyle,
FrameStyle, FrameTicksStyle, and GridLinesStyle. As an example, consider PlotStyle:

GraphicsRow@8Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotStyle Ø ThickD,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotStyle Ø 8Thick, Blue<D,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotStyle Ø 88Thick, Blue<<D,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<,
PlotStyle Ø 88Thick, Blue<, 8Thick, Red<<D<, ImageSize Ø 420D

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

In  these  four  plots,  examine  the  use  of  braces  in  the  value  of PlotStyle.  In  the  first  plot,  we  have
only one directive, Thick,  and it is applied for both curves. In the second plot, we have two directives
inside single braces, and now the first directive, Thick, defines the style of the first curve and the second
directive, Blue,  the style of  the second curve. If  we want both curves to be blue and thick, we have to
use double braces, as is done in the third plot. If we want unique styles for both curves, we use a nested
list for the directives, as can be seen in the fourth plot.

It may be difficult to remember when to use single braces and when to use double braces. The use of
Directive may then be helpful.

Directive[dir1, dir2, … ] (Ÿ6)  Represents a single graphics directive composed of the given
directives

Thus,  with Directive  we can collect  together  several  directives  and use the collection like  a  single
directive. The third and fourth plots can now be written as follows:

8Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotStyle Ø Directive@Blue, ThickDD,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<,
PlotStyle Ø 8Directive@Blue, ThickD, Directive@Red, ThickD<D<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

As can be seen, with Directive  we need single braces only if we define different styles for each of
several curves, and double braces are not needed at all. As another example, consider defining the style
of a frame:

188 Mathematica Navigator



8Plot@Sin@xD, 8x, 0, 2 p<, Frame Ø True,
FrameStyle Ø 88Thick, Blue<, 8Thick, Blue<, 8Thick, Blue<, 8Thick, Blue<<D,
Plot@Sin@xD, 8x, 0, 2 p<, Frame Ø True, FrameStyle Ø Directive@Thick, BlueDD<

:

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

,

0 1 2 3 4 5 6
-1.0

-0.5

0.0

0.5

1.0

>

In  the  first  plot,  we  had  to  separately  define  the  style  of  each  edge  of  the  frame,  whereas  in  the
second plot the use of Directive enables us to define the style only once.

We will use Directive  in this book to collect several directives together, but if you are comfortable
with the braces, they can often also be used.

7.2  Options for Form, Ranges, and Fonts

7.2.1  Form and Size

** AspectRatio  Ratio of height to width of the plotting rectangle; examples of values:
1/GoldenRatio c, Automatic g p, Full, 0.4

The  default  value 1/GoldenRatio  =  0.618  of AspectRatio  for Plot  gives  an  aesthetically  pleasing
form. The default value Automatic of AspectRatio for Graphics and ParametricPlot sets one unit on
the x  axis  to  have  the  same length  as  one  unit  on  the y  axis.  The  aspect  ratio  can  be  any positive  real

number. The value Full means that the graphic should be stretched so as to fill out its enclosing region
in Grid  or  related  construct.  Next,  we  plot  a  circle  with  each  of  the  three  commands.  The  curve  pro-

duced by Plot looks like an ellipse because of the aspect ratio 0.618:

GraphicsRow@8Plot@8Sqrt@1 - x^2D, -Sqrt@1 - x^2D<, 8x, -1, 1<D,
ParametricPlot@8Cos@tD, Sin@tD<, 8t, 0, 2 p<D,
Graphics@Circle@D, Axes Ø TrueD<, ImageSize Ø 330D

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

ImageSize  The absolute size (in printer’s points) of the plot; examples of values: Automatic, Full,
All, width, {width, height}, {maxsize}, {{maxwidth}, {maxheight}}

The size of the plot is easy to change with the mouse, but we can also use the ImageSize  option. It
determines the absolute size of the plot in units of printer’s points (1 ê 72 inch). One number as the value
of  the  option  defines  the  width,  and a  list  of  two numbers  determines  both the  width  and the  height.
Note that if both the width and the height are specified, the plot fills this area only if the aspect ratio is
exactly height/width. The default size can be changed with the Option Inspector.

Chapter 7  •  Graphics Options 189



The  value Full  for ImageSize  means  that  on  the  screen,  the  size  of  the  graphic  is  automatically
adjusted to fit the window and, when printed, the graphic has the full width of the content area of the
page.  The aspect  ratio  of  a  plot  is  kept fixed when resizing,  unless AspectRatio  is Full.  The value of
ImageSize can also be Tiny, Small, Medium, or Large.

7.2.2  Plot Range

** PlotRange  Ranges for x and y in the plot; examples of values:

 Automatic p {ymin, Automatic} {Full, Automatic} c

 All g {ymin, All} {{xmin, xmax}, All}

 Full {All, ymax} {Full, {ymin, Automatic}}

 5 {ymin, ymax} {{xmin, xmax}, {ymin, ymax}}

When showing a plot, Mathematica  normally displays all values of the function in the given interval.
However, if the function takes on very small or very large values on a small interval, Mathematica  may
decide  to  cut  such  values  away  from  the  plot  so  that  the  remaining  parts  of  the  function  can  be  seen
more clearly; this may happen if the value Automatic is used for PlotRange.

To  see  the  whole  function,  use  the  value All.  The  value Full  also  causes  the  whole  function to  be
plotted but, in addition, the whole plotting range on x axis is included in the plot. A constant value such
as 5 means, for Plot, the plot range {Full, {-5, 5}} and, for Graphics and ParametricPlot, the plot
range {{-5, 5}, {-5, 5}}.

GraphicsRow@8Plot@Exp@xD, 8x, -1, 10<D,
Plot@Exp@xD, 8x, -1, 10<, PlotRange Ø AllD, Plot@Sqrt@xD, 8x, -1, 1<D,
Plot@Sqrt@xD, 8x, -1, 1<, PlotRange Ø AllD<, ImageSize Ø 420D

0 2 4 6 8 10

2000

4000

6000

8000

2 4 6 8 10

5000

10000

15000

20000

-1.0 -0.5 0.0 0.5 1.0

0.2
0.4
0.6
0.8
1.0

0.2 0.4 0.6 0.8 1.0

0.2
0.4
0.6
0.8
1.0

In  the  first  plot,  we  use  the  default  value {Full, Automatic}  of PlotRange  for Plot.  The y  range

definition Automatic  has,  in  this  example,  caused the function to be  shown only up to approximately
x = 9. The x range definition Full means that the whole x range H0, 10L is shown. In the second example,
the value All is used to show the whole function up to x = 10.

In  the  third  plot,  we  again  use  the  default  value {Full, Automatic}.  Thus,  the  whole x  plotting
range is  included, although the function is  not  defined on @-1, 0L.  In  the fourth plot,  we use the value
All, and then all the points where the function is defined (and only these points) are shown.

The ClippingStyle  option can be used to define the style for how the clipped parts are displayed;

see Section 7.4.1, p. 203.

(PlotRangeClipping (Ÿ6)  Whether graphics objects should be clipped at the edge of the region
defined by PlotRange or should be allowed to extend to the selection rectangle; possible values:
True c p, False g)

190 Mathematica Navigator



7.2.3  Margins and Background

PlotRegion  Specifies margins around the plot inside the selection rectangle; examples of values:
Automatic (means {{0, 1}, {0, 1}}), {{xmin, xmax}, {ymin, ymax}}

(ImageMargins Specifies margins (in printer’s points) outside the selection rectangle; examples of
values: 0, Automatic, 15, {{left, right}, {bottom, top}})

Background  Color of the background; examples of values: None, LightGray

Each plot has a display area that can be seen by clicking the plot: A rectangle around the plot appears.
The  curve  normally  fills  this  area,  but  with PlotRegion  we  can define  other  ways  for  the  curve  to  be
placed  in  the  display  area.  The  plot  region  is  given  in  scaled  coordinates  ranging  from 0  to  1  in  each
direction.  The default  setting Automatic  is  the same as {{0, 1}, {0, 1}},  which is  the whole display
area.  By specifying other values (values less  than 0 and greater than 1 are allowed),  we can adjust  the
margins  around  the  curve  in  the  display  area.  For  example,  plots  with  gray  or  colored  backgrounds
often  look  better  with  a  somewhat  reduced  plot  region  (i.e.,  with  larger  margins).  The  second  plot
shown  here  has  a  wider  margin  around  the  plot  than  the  first  plot.  In  the  third  plot,  the  margin  is
outside the selection rectangle.

GraphicsRow@
8Plot@Sin@xD, 8x, 0, 2 p<, Background Ø LightGray, PlotRegion Ø AutomaticD,
Plot@Sin@xD, 8x, 0, 2 p<, Background Ø LightGray,
PlotRegion Ø 880.1, 0.9<, 80.1, 0.9<<D, Plot@Sin@xD, 8x, 0, 2 p<,
Background Ø LightGray, ImageMargins Ø 10D<, ImageSize Ø 420D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

(ImagePadding (Ÿ6)  Extra space (in printer’s points) for objects such as thick lines and tick and axes
labels; examples of values: All, None, 15, {{left, right}, {bottom, top}})

(PlotRangePadding (Ÿ6)  How much further axes etc. should extend beyond the range of coordi-
nates specified by PlotRange; examples of values: Automatic, None, {0.2, 0.5})

The first plot below shows that usually the axes are a little extended (2% in each direction) from the
given x range and the range of y values. In the second plot, we use no padding, and in the third plot we

use unusually wide padding. No padding is used if an explicit plot range is used.

Plot@Sin@xD, 8x, 0, 2 p<, PlotRangePadding Ø ÒD & êü 8Automatic, None, 80.5, 0.2<<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.0

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

Chapter 7  •  Graphics Options 191



7.2.4  Fonts

All text in a plot is, by default, written with the Times font of size 10. We can change the font properties
at various levels: for all plots during a session, for all texts in a single plot, for all labels in a single plot,
and for a text item inside a plot. Here is a summary:

Setting font properties at various levels:

For all plots in a session: SetOptions[Plot, BaseStyle Ø {font directives and options}]
For all texts in a plot: BaseStyle Ø {font directives and options}
For all labels in a plot: LabelStyle Ø {font directives and options}
For a text item: Style[expr, {font directives and options}]

Note  that  the  more  specific  style  options AxesStyle, TicksStyle, FrameStyle,  and
FrameTicksStyle  can  be  used  to  adjust  fonts  in  axes  labels,  tick  labels,  frame  labels,  and  frame  tick

labels.  See Section  7.3.5,  p. 200,  for  a  discussion  of  the  hierarchy  of  styles  on  plots.  Next,  we  consider

BaseStyle, LabelStyle, SetOptions, and Style in detail.

‡ Setting Font Properties for All Texts or Labels in a Plot

* BaseStyle Ø {font directives and options} (Ÿ6)

The font styles given in BaseStyle apply for all texts in a plot: for plot label, axes labels, tick labels,
frame  labels,  frame  tick  labels,  and Text  primitives.  In  defining  the  style  of  font,  we  can  use  font
directives such as 7 (font size), Bold, and Italic and font options such as FontFamily and FontColor.
Examples:

BaseStyle Ø 7
BaseStyle Ø 87, Bold, Italic<
BaseStyle Ø 87, Bold, FontFamily Ø "Helvetica"<

In the next example, we use bold Helvetica in size 7:

Plot@Sin@xD, 8x, 0, 2 p<, AxesLabel Ø 8x, Sin@xD<,
BaseStyle Ø 87, Bold, FontFamily Ø "Helvetica"<D

1 2 3 4 5 6
x

-1.0

-0.5

0.5

1.0

sinHxL

The next boxes give font directives and font options.

Font directives:
n, Tiny, Small, Medium, Large, Smaller, Larger
Bold, Italic, Underlined, Plain
Red, LightBlue, GrayLevel[0.3], etc.

192 Mathematica Navigator



Font options:
FontFamily; examples of values: "Times", "Helvetica", "Courier"
FontColor; examples of values: Red, Gray
FontTracking; examples of values: "Narrow", "Condensed", "SemiCondensed", "Extended", "Wide"
Background; examples of values: LightGray, LightBlue

Instead of the directives, we can use the options FontSize, FontWeight, FontSlant, and FontColor.
If we want to define a color for all text with BaseStyle, a definition such as BaseStyle Ø Red causes the
axes  and  labels  to  also  be  colored.  Thus,  font  color  should  be  defined  by  using FontColor,  as  in
BaseStyle Ø {FontColor Ø Red}.

If you export Mathematica  figures in, for example, EPS form into another application such as TEX and
encounter  problems  with  special  characters  appearing  in  the  plots,  one  solution  may  be  to  render  the
document in the front end (and not in the printer). To do this, choose Format @ Option Inspector…, set
Show option  values  for  to  be notebook,  then go to Notebook Options @ Printing Options @ PrintingOp-
tions  and change the value of GraphicsPrintingFormat  from Automatic  to RenderInFrontEnd.  Now
when you print a document, it is rendered in the front end.

LabelStyle Ø {font directives and options} (Ÿ6)

LabelStyle  applies  for  all  labels  in  a  plot  (i.e.,  for  plot  labels,  axes  labels,  tick  labels,  frame labels,
and frame tick labels) but not for Text primitives.

‡ Setting Font Properties for a Session

Usually,  the same style of  text is  used for all  plots  in a document or in a session. The style definitions
need not be done for each plot separately because we can set, with SetOptions, the value of BaseStyle
so that the given value is used during the rest of the current session.

SetOptions[Plot, BaseStyle Ø {font directives and options}]

For example, to use the Helvetica font of size 8 during a session, simply execute, at the beginning of
the session, the following command:

SetOptions@Plot, BaseStyle Ø 88, FontFamily Ø "Helvetica"<D

If you want to use the same text style for several plotting commands, write, for example,

SetOptions@8Plot, ListPlot, ListLinePlot<,
BaseStyle Ø 88, FontFamily Ø "Helvetica"<D

The font properties can also be defined in the init.m file; the definitions then hold automatically for all

sessions, unless you change the definitions (see Section 4.1.1, p. 96).

‡ Setting Font Properties for a Text Item

Sometimes we want to use varying font properties for  several  text items in a  plot.  We can then define
the font used most often with the BaseStyle and use Style in places where we want to use special font
properties.

Style[expr, {font directives and options}] (Ÿ6)

Chapter 7  •  Graphics Options 193



The font directives and options need not even be given as a list; they can simply be written separated
by commas.  For colors,  we need not use the FontColor  option;  just  write the color specification.  Here
are some examples:

f = Exp@xD ArcTan@xD ê Sqrt@xD;

8Plot@f, 8x, 0, 5<, PlotLabel Ø Framed@Style@f, 8, BlueDD, ImageSize Ø 110D,
Plot@f, 8x, 0, 5<, AxesLabel Ø HStyle@Ò, 8, RedD & êü 8x, f<LD,
Plot@f, 8x, 0, 5<, Epilog Ø Text@Style@f, 8, Background Ø LightGrayD, 82.7, 73<DD<

:

0 1 2 3 4 5

20

40

60

80

‰
x tan-1Hx L

x

,

0 1 2 3 4 5
x

20

40

60

80

‰
x tan-1Hx L

x

,

1 2 3 4 5

20

40

60

80 ‰
x tan-1Hx L

x

>

‡ Setting Font Properties in a Style Sheet

The font style in graphics can also be defined in a style sheet. In Section 3.2.2, p. 63, we showed how to

change styles. Using this technique, we can change the style of Graphics cells.

• Choose Edit Stylesheet… from the Format menu. A notebook appears with the title Private Style
Definitions for ….

• In the Enter a style name input field, write Graphics; the corresponding style definition cell appears
in the document. Edit this cell with the Format menu by defining, for example, a font.

• Thus far, the new Graphics style holds for the current notebook. You can also save the style sheet so
that you can use it for any notebook (see Section 3.2.2).

‡ Formatting

(FormatType  Format type of text used in a plot; examples of values: TraditionalForm,
StandardForm, InputForm, OutputForm)

These  types  of  formatting  are  considered  in Section  3.3.1,  p. 70.  The  default  is  to  use  traditional

formatting~that  is,  the  type  of  formatting  used  in  traditional  mathematical  typesetting:  The  font  is
Times,  all  variables  are  in  italic,  and  all  formulas  are  typeset  according  to  traditional  mathematical
notation. These properties can be seen in the first plot:

Plot@f, 8x, 0, 5<, AxesLabel Ø 8x, y<, PlotLabel Ø f,
FormatType Ø Ò, ImageSize Ø 110D & êü 8TraditionalForm, StandardForm<

:

1 2 3 4 5
x

20
40
60
80

y

‰x tan-1HxL

x

,

1 2 3 4 5
x

20
40
60
80

y

‰x ArcTan@xD

x

>

194 Mathematica Navigator



7.2.5  Miscellaneous Options

(BaselinePosition (Ÿ6)  Where the baseline of a plot should be if the plot is combined with other
plots or text; examples of values: Automatic, Axis, Bottom, Top, Center, Baseline)

(AlignmentPoint (Ÿ6)  How objects should by default be aligned when they appear in Inset;
default value: Center)

(ContentSelectable (Ÿ6)  Whether and how content of a plot should be selectable; possible values:
Automatic (double-click allows content selection), True (single clicks immediately select content
objects), False (content objects cannot be selected))

(PreserveImageOptions (Ÿ6)  Whether the size and margins of a plot should remain the same if the
plotting command is executed anew; examples of values: Automatic (the properties should remain
the same if not explicitly otherwise stated), True (the properties should remain the same), False
(the previous properties are ignored))

(DisplayFunction  Function to apply to a graphic; default value: $DisplayFunction

With BaselinePosition we can ask to align several plots according to the x axis:

Row@8Plot@Sin@xD, 8x, 0, 2 p<, BaselinePosition Ø Axis, ImageSize Ø 120D,
Plot@Exp@xD, 8x, 0, 3<, BaselinePosition Ø Axis, ImageSize Ø 120D,
Plot@Log@xD, 8x, 0, 3<, BaselinePosition Ø Axis, ImageSize Ø 120D<, " "D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

0.5 1.0 1.5 2.0 2.5 3.0

5

10

15

20

0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

1

7.3  Options for Axes, Frames, and Primitives

7.3.1  Plot Label

PlotLabel  Label of the plot; examples of values: None, Sin[x/2], "Function g(x)"

With Style we can modify the style of the plot label:

8Plot@Sin@x ê 2D, 8x, 0, 4 p<, PlotLabel Ø Sin@x ê 2DD, Plot@Sin@x ê 2D,
8x, 0, 4 p<, PlotLabel Ø Style@Sin@x ê 2D, 9, Red, FontFamily Ø "Helvetica"DD<

:

2 4 6 8 10 12

-1.0

-0.5

0.5

1.0

sin
x

2

,

2 4 6 8 10 12

-1.0

-0.5

0.5

1.0

sin
x

2

>

Chapter 7  •  Graphics Options 195



Sometimes we want to vary a parameter in the label:

Table@Plot@Sin@n xD, 8x, 0, 2 p<,
PlotLabel Ø Row@8"The graph of ", Sin@n xD<DD, 8n, 3<D

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The graph of sinHx L

,

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The graph of sinH2 x L

,

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

The graph of sinH3 x L

>

Next, we give a plot a more complete caption:

8Plot@Sin@x ê 2D, 8x, 0, 4 p<, ImageSize Ø 160, PlotLabel Ø

Style@Row@8Style@"Figure 1.1 ", BoldD, "The graph of ", Sin@x ê 2D<D, 9DD,
Labeled@Plot@Sin@x ê 2D, 8x, 0, 4 p<, ImageSize Ø 160D,
Style@Row@8Style@"Figure 1.1 ", BoldD, "The graph of ",

Sin@x ê 2D êê TraditionalForm<D, 10, FontFamily Ø "Times"DD<

:

2 4 6 8 10 12

-1.0

-0.5

0.5

1.0

Figure 1.1 The graph of sin
x

2

,
2 4 6 8 10 12

-1.0

-0.5

0.5

1.0

Figure 1.1 The graph of sinI x

2
M

>

The PlotLabel  option  puts  the  caption  on  top  of  the  plot.  However,  the  traditional  position  of  a
figure caption is on the bottom of the plot; this can be done with the Labeled command, as can be seen

from the second plot. For more about Labeled, see Section 3.3.1, p. 72.

7.3.2  Axes and Ticks

‡ Axes

* Axes  Whether to draw the axes; examples of values: True c p, False g, {True, False}
* AxesOrigin  Point where the axes cross; examples of values: Automatic, {0, 0}
AxesLabel  Labels for the axes; examples of values: None, y, {x, None}, {x, y}
(AxesStyle  Style of the axes, axes labels, tick marks, and tick labels; examples of values: {}, Thick,

Blue, Arrowheads[0.07], Directive[Thick, Blue, 12, Italic]

The point where the axes cross is AxesOrigin.  Its  default value is determined by an algorithm; this
method usually chooses the point {0, 0} if it is within or close to the region defined by PlotRange.

Axes  labels  are placed at  the ends of  the axes (frame labels,  instead,  are in the middle of  the frame

edges). If the axes labels are long, consider using a frame instead of axes (see Section 7.3.3, p. 198).

The  default  thickness  of  axes  and  the  major  tick  marks  is AbsoluteThickness[0.25],  and  that  for
the  minor  tick  marks  is AbsoluteThickness[0.125].  With Arrowheads,  we  can  draw  arrows  at  the
ends of the axes.

196 Mathematica Navigator



8Plot@2 + Sin@xD, 8x, 1, 6<, AxesLabel Ø 8x, y<D,
Plot@2 + Sin@xD, 8x, 1, 6<, AxesOrigin Ø 80, 0<D,
Plot@2 + Sin@xD, 8x, 1, 6<, AxesStyle Ø Arrowheads@0.07DD<

:

2 3 4 5 6
x

1.5

2.0

2.5

3.0

y

,

1 2 3 4 5 6

0.5

1.0

1.5

2.0

2.5

3.0

,

2 3 4 5

1.5

2.0

2.5

>

‡ Defining Positions of Ticks

** Ticks  Tick on the axes; simple examples of values: Automatic, None, {{p, 2p}, Automatic},
{Automatic, {-1, 0, 1}}, {{p, 2p}, {-1, 0, 1}}

TicksStyle (Ÿ6)  Style of tick marks and tick labels; examples of values: {}, Blue,
Directive[Thick, Blue, 12]

The general form of the value of Ticks is {xticks, yticks}. We can define ticks on both axes or let
Mathematica  choose  the  ticks  on  one  of  the  axes.  The  automatic  algorithm often  uses  appropriate  ticks
but  frequently  also  too  many  ticks,  especially  if  the  plots  are  scaled  to  be  small  (as  in  this  book).  In
particular,  the  minor  tick  marks  (without  labels)  between  the  major  tick  marks  (with  labels)  are  often
unnecessary. A few carefully selected tick marks often suffice. Indeed, Ticks is perhaps the option I use
most often. For example,

8Plot@Sin@xD, 8x, 0, 2 p<D,
Plot@Sin@xD, 8x, 0, 2 p<, Ticks Ø 880, p, 2 p<, 8-1, 0, 1<<D<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
p 2 p

-1

1

>

In the second plot, we asked for only six ticks. Note, however, that we got only four tick labels: The
labels on the x and y axis at 0 were not drawn. Indeed, tick labels on the axes origin are not displayed.

‡ Defining Labels, Lengths, and Styles of Ticks

Ticks has more advanced forms, where we can define~in addition to the positions of the tick marks~
the tick labels and the length and style of the tick marks. In the next box, we give forms of a single  tick
and examples in which each form is used to define two ticks on the x axis (on the y axis, the default ticks
are used).

position

Example: {{p, 2p}, Automatic}

{position, label}

Example: {{{p, a}, {2p, b}}, Automatic}

{position, label, {poslength, neglength}}

Example: {{{p, a, {0.05, 0}}, {2p, b, {0.05, 0}}}, Automatic}

Chapter 7  •  Graphics Options 197



{position, label, {poslength, neglength}, style}

Example: {{{p , a, {0.05, 0}, Red}, {2p, b, {0.05, 0}, Red}}, Automatic}

Often,  when plotting  mathematical  figures,  we do not  want  numerical  tick  labels  but,  rather,  a  few
symbolic  labels.  Then  we  can  define,  with Ticks,  the  positions  of  the  labels  and  the  labels.  The  next
figure is an example:

aa = 80.2, 0<; bb = 80.8, 0<; cc = 80, Exp@0.2D<;
dd = 80, Exp@0.8D<; ee = 80.2, Exp@0.2D<; ff = 80.8, Exp@0.8D<;

Plot@Exp@xD, 8x, 0, 1<, AxesOrigin Ø 80, 0<,
Ticks Ø 8880.2 , a<, 80.8, b<<, 88Exp@0.2D, c<, 8Exp@0.8D, d<<<,
Epilog Ø 8Line@8cc, ee, aa<D, Line@8dd, ff, bb<D, Point@8ee, ff<D<D

a b

c

d

Tick  labels  are,  by  default,  written  in  traditional  format.  This  may  sometimes  make  the  labels
somewhat large relative to the figure. Defining the labels as strings may be a solution:

8Plot@Sin@xD, 8x, 0, 2 p<, Ticks Ø 88p ê 2, p, 3 p ê 2, 2 p<, 8-1, 1<<D,
Plot@Sin@xD, 8x, 0, 2 p<, Ticks Ø 888p ê 2, "pê2"<, p, 83 p ê 2, "3pê2"<, 2 p<, 8-1, 1<<D<

:
p

2
p

3 p

2
2 p

-1

1

,
pê2 p 3pê2 2 p

-1

1

>

7.3.3  Frame and Frame Ticks

* Frame  Whether to draw a frame; examples of values: False, True, {True, True, False, False}
* FrameLabel  Labels for the frame; examples of values: None, {x, y}, {"bottom", "left", "top",

"right"}

* RotateLabel  Whether to rotate the labels for the vertical edges; possible values: True, False
FrameStyle  Style of the frame, frame labels, frame tick marks, and frame tick labels; examples of

values: Automatic, Blue, Directive[Thick, Red, 12, Italic]

* FrameTicks  Frame tick marks on the frame; simple examples of values: Automatic, None, All (on
all edges), {{0, p, 2p}, {-1, 1}, None, None}

FrameTicksStyle (Ÿ6)  Style of frame tick marks and frame tick labels; examples of values: {}, Red,
Directive[Thick, Red, 12, Bold]

For most frame options (not for RotateLabel), we can define the properties separately on each of the
four  edges  of  the  frame.  In  the  previous  box,  the  properties  were  given in  the  form {bottom,  left,  top,
right}. The properties can also be given in the form {{left, right}, {bottom, top}}.

Here are some examples:

198 Mathematica Navigator



8Plot@Sin@xD, 8x, -p ê 2, 5 p ê 2<, PlotRange Ø 8-1.3, 1.3<,
Frame Ø True, FrameLabel Ø 8x, y<, RotateLabel Ø FalseD,
Plot@Sin@xD, 8x, -p ê 2, 5 p ê 2<, AxesLabel Ø 8x, y<, PlotRange Ø 8-1.3, 1.3<,
Frame Ø True, FrameTicks Ø 880, p, 2 p<, 8-1, 0, 1<, None, None<D,
Plot@Sin@xD, 8x, -p ê 2, 5 p ê 2<, AxesLabel Ø 8x, y<,

Ticks Ø 88p, 2 p<, 8-1, 0, 1<<, ImageSize Ø 110D êê Framed<

:

0 2 4 6 8

-1.0

-0.5

0.0

0.5

1.0

x

y

,

0 p 2 p

-1

0

1

x

y

,

p 2 p
x

-1

1

y

>

As the first  plot  shows,  frame labels  are placed midway on the edges (axes  labels  are placed at  the
ends of the axes). The default value of RotateLabel  is True,  which means that the frame labels on the
vertical parts of the frame are rotated so that they read from bottom to top. A short label such as y looks

better  and is  easier  to  read when not  rotated.  If  we  want  a  frame,  then the figure  often looks better  if
there is somewhat more space around the curve. This can be done with PlotRange.

In  the  second  plot,  we  have  defined  our  own  ticks.  The  default  is  that  there  are  tick  marks  on  all
edges but tick labels only on the bottom and left edges. If we define our own x and y ticks, they are used

on all four edges, but with None we can remove the ticks from the edges on which we do not want them.

Frame ticks are defined in the same way as axes ticks (see Section 7.3.2, p. 196).

In the third plot, we used the Framed command instead of the Frame option; for Framed, see Section

3.3.1, p. 72.

7.3.4  Grid Lines

GridLines  How the grid lines are drawn; simple examples of values: None, Automatic, {None,
Automatic}, {None, {-1,0,1}}, {{0,1,2}, {-1,0,1}}

(GridLinesStyle (Ÿ6)  Style of the grid lines; examples of values: {}, Dashed,
Directive[LightGray, Dashed])

Ticks often suffice  to  give  information about  the values  of  the coordinates.  However,  if  we want to
read  approximate  coordinates  from  a  figure,  then  grid  lines  may  help  us.  The  value Automatic  of
GridLines draws lines on the major ticks and colors them gray. For example,

Plot@Sin@xD, 8x, 0, 2 p<, Ticks Ø 88p, 2 p<, 8-1, 1<<, GridLines Ø ÒD & êü 8
Automatic,
8None, Automatic<,
88p ê 2, p, 3 p ê 2, 2 p<, 8-1, -0.5, 0.5, 1<<<

:
p 2 p

-1

1

,
p 2 p

-1

1

,
p 2 p

-1

1

>

Chapter 7  •  Graphics Options 199



7.3.5  Hierarchy of Styles

For all of the components of a plot, we have options to give the components the styles we like most. We
have  very  general  options such as BaseStyle  that  affect  most  components  of  a  plot.  We have options
such  as AxesStyle  that  affect  many  components.  We  have  special  options  such  as FrameTicksStyle

that  affect  only  a  few  components.  Finally,  with  either  the Style  command  or  special  inputs  we  can
control the style of single components. Let us look at the various components of a plot and how they can
be styled with options. First, the curve in a plot can be styled with PlotStyle (ColorFunction can also
be used); the BaseStyle option has no effect on the curve.

‡ Plot Label

BaseStyle  affects  the  style  of  a  plot  label.  However,  if LabelStyle  is  used,  it  overrides  possible
BaseStyle  and  so  has  a  higher  priority.  Finally,  if  we  use  the Style  command,  it  overrides  possible
other options. The following examples illustrate this hierarchy of the options:

8Plot@Sin@xD, 8x, 0, 2 p<, PlotLabel Ø Sin@xD, BaseStyle Ø BlueD,
Plot@Sin@xD, 8x, 0, 2 p<,
PlotLabel Ø Sin@xD, BaseStyle Ø Blue, LabelStyle Ø GreenD,
Plot@Sin@xD, 8x, 0, 2 p<, BaseStyle Ø Blue, LabelStyle Ø Green,
PlotLabel Ø Style@Sin@xD, RedDD<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
sinHxL

,

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
sinHxL

,

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0
sinHxL

>

‡ Axes

Next, we consider options and commands that can be used to adjust the styles of components related to
axes. We prepare a table:

Grid@8Join@8Style@"Component", BoldD<, Style@Ò, "Input", FontFamily Ø "Courier"D & êü
8BaseStyle, LabelStyle, AxesStyle, TicksStyle, Style<D,

8"Axes", "μ", "", "μ", "", ""<, 8"Axes labels", "μ", "μ", "μ", "", "μ"<,
8"Axes tick marks", "μ", "", "μ", "μ", ""<,
8"Axes tick labels", "μ", "μ", "μ", "μ", "μ"<<,
Dividers Ø 88False, True<, 88True<<<, Alignment Ø 88Left, Center<<D êê Text

Component BaseStyle LabelStyle AxesStyle TicksStyle Style

Axes μ μ

Axes labels μ μ μ μ

Axes tick marks μ μ μ

Axes tick labels μ μ μ μ μ

With  we  have  denoted  the  components  that  each  option  or  command  can  control. BaseStyle,
LabelStyle, AxesStyle, and TicksStyle are options, and Style is a command.

200 Mathematica Navigator



The options and commands are mentioned in the table in the order of increasing priority. BaseStyle
affects all the components mentioned in the table. However, if LabelStyle is used, it has higher priority
for  the  labels.  If AxesStyle  is  used,  it  has  still  higher  priority  over BaseStyle  and LabelStyle.
TicksStyle  has the highest priority for  axes tick marks and tick labels.  However, if  we use the Style

command for axes or tick labels, it overrides possible options.

7.3.6  Primitives

‡ Adding Primitives with Prolog and Epilog

Occasionally, we may want to add some components to a plot. We may want to have clarifying text, an
important  point,  an  arrow,  or  a  line.  Such  small  additions  may  considerably  improve  the  quality  of  a
plot: They guide the eyes of the reader to important aspects of the plot. The options Prolog and Epilog

are the tools for making such additions.

(Prolog  Graphics primitives to be plotted before the main plot; examples of values: {}, {Red,
PointSize[Medium], Point[{3, 2}]})

** Epilog  Graphics primitives to be plotted after the main plot; examples of values: {}, {Red,
PointSize[Medium], Point[{3, 2}]}

The  values  of Prolog  and Epilog  are  lists  of  graphics  directives  and  primitives.  Directives  and
primitives were explained in Chapter 6. For easy reference, we list here the four primitives that are most
useful when using Prolog and Epilog.

Point[p]  Point at p
Line[{p1, …, pn}]  Line through points p1, ..., pn
Text[expr, p, q]  The point q, expressed in text coordinates, of expr is at the point p
Arrow[{p1, p2}]  Arrow from p1 to p2

‡ Example

We have already used some primitives with the Epilog option in a few examples; see Sections 6.2.6, p.

163 (Point, Text), 6.2.10, p. 175 (Inset), and 7.1.1, p. 183 (Point, Text, Arrow). Many more examples are

in the forthcoming chapters. In the next example, we use the primitives Point, Line, Text, and Arrow:

Plot@8Log@xD + 1, Sqrt@xD<, 8x, 0, 1.5<, PlotRange Ø 880, 1.9<, 80, 1.55<<,
ImageSize Ø 220, Ticks Ø 880.5, 1, 1.5<, 80.5, 1, 1.5<<, Epilog Ø

8Text@Log@xD + 1, 81.55, 1.42<, 8-1, 0<D, Text@Sqrt@xD, 81.55, 1.22<, 8-1, 0<D,
Text@Log@xD + 1 ã Sqrt@xD, 81.2, 0.85<, 8-1, 1<D, Blue, Arrowheads@0.03D, Arrow@
881.19, 0.82<, 81.05, 0.95<<D, Green, Dashed, Line@880, 1<, 81, 1<, 81, 0<<D,
Red, PointSize@MediumD, Point@81, 1<D<D

0.5 1 1.5

0.5

1

1.5
logHx L+ 1

x

logHx L+ 1 x

Chapter 7  •  Graphics Options 201



Here,  we  defined  a  large  enough PlotRange  to  include  all  the  primitives  in  the  plot.  Indeed,  the
default value of PlotRange does not take into account possible added primitives.

‡ Disappearing Primitives

We may also have the problem of disappearing primitives. Remember what we said in Section 5.1.2, p.

125, about options with Show: If plots to be combined with Show have different values for some options,

the values of the first plot are applied. Thus, if we combine two or more plots with Show~each having
an Epilog option~then Show takes on the value of Epilog given in the first figure. This means that all
of  the  graphics  primitives  in  the  other  figures  are  left  out.  You  may  think  the  problem  is  solved  by
writing an Epilog in Show  to add the lacking primitives. In reality, the primitives of the first figure are
now lacking.

Thus, if you intend to combine several figures with Show,  prepare to use Epilog  also in Show: Write
in  the Epilog  option all  the  primitives  of  the  component  figures.  If  you  do  not  need  the  intermediate
figures  as  such,  do  not  add  primitives  into  them but  only  into  the  final  combined figure.  However,  if
you plot the primitives with Graphics, then the problem does not occur; this method is considered next.

‡ Adding Primitives with Graphics

Prolog  and Epilog  are  not  the  only  ways  to  add  graphics  primitives;  we  can  also  use Graphics  (see

Section 6.1.1,  p. 152).  In  fact,  we  can  separately  plot  the  main  figure  with Plot  (or  with  another  com-

mand) and the primitives with Graphics and combine the two plots with Show. For example,

8p1 = Plot@8Log@xD + 1, Sqrt@xD<, 8x, 0, 1.5<,
PlotRange Ø 880, 1.9<, 80, 1.55<<, Ticks Ø 880.5, 1, 1.5<, 80.5, 1, 1.5<<D,

p2 = Graphics@8Text@Log@xD + 1, 81.55, 1.42<, 8-1, 0<D, Text@Sqrt@xD,
81.55, 1.22<, 8-1, 0<D, Text@Log@xD + 1 ã Sqrt@xD, 81.2, 0.85<, 8-1, 1<D,

Blue, Arrowheads@0.03D, Arrow@881.19, 0.82<, 81.05, 0.95<<D,
Green, Dashed, Line@880, 1<, 81, 1<, 81, 0<<D,
Red, PointSize@MediumD, Point@81, 1<D<D<

:

0.5 1 1.5

0.5

1

1.5

,

logHx L+ 1

x

logHx L+ 1 x >

Show@p1, p2, ImageSize Ø 220D

logHx L+ 1

x

logHx L+ 1 x

0.5 1 1.5

0.5

1

1.5

202 Mathematica Navigator



7.4  Options for the Curve

7.4.1  Plot Style

* PlotStyle c p  Style(s) of the curve(s); examples of values: Automatic, Thickness[Medium],
Directive[Thick, Red, Dashed]

When  plotting  2D  curves, PlotStyle  defines  the  thickness,  dashing,  and  color  of  the  curves.  The
default value Automatic means a thin, nondashed curve whose color is Hue[0.67, 0.6, 0.6]. The style
can  be  defined  with graphics  directives.  Thickness  can  be  defined,  among  others,  with Thickness  and
AbsoluteThickness,  dashing  with Dashing  and AbsoluteDashing,  and  color  with,  for  example, Red.

For thickness and dashing, see Section 6.2.2, p. 156, and for colors, see Section 6.2.8, p. 168.

PlotStyle  is  handy  for  distinguishing  different  curves  in  the  same  plot.  Note  that  a  good  way  to

identify the curves is with the use of Tooltip (see Section 5.1.2, p. 122). We can also add a legend telling

which style belongs to which curve (see Section 7.4.7, p. 208).

With Directive  (see Section  6.1.2,  p. 155),  the PlotStyle  option  can  be  written  in  the  following

forms:

Style definitions for one curve:

PlotStyle Ø Directive[s1, s2, … ]

Style definitions for several curves:

PlotStyle Ø Directive[s1, s2, … ]  Same style for each curve
PlotStyle Ø {Directive[s11, s12, … ], Directive[s21, s22, … ], … }  Different styles for the

curves

Here,  each si  or sij  is  a  graphics  directive  such  as Red, Thick,  or Dashed.  The  default  style  is
denoted  by  the  empty  list {}.  If  a  style  is  defined  only  with  a  single  directive,  then Directive  is  not
needed. Some examples:

GraphicsRow@8Plot@Sin@xD, 8x, 0, 2 p<, PlotStyle Ø RedD,
Plot@Sin@xD, 8x, 0, 2 p<, PlotStyle Ø Directive@Red, ThickDD,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotStyle Ø Directive@Red, ThickDD,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<,
PlotStyle Ø 8Directive@Red, ThickD, Directive@Blue, ThickD<D<, ImageSize Ø 420D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

(ClippingStyle c (Ÿ6)  How to indicate clipped parts that fall outside of the plot range; examples
of values: None, Automatic, Red, {Blue, Red})

Parts  of  a  plot  may  be  clipped as  discussed  previously.  The ClippingStyle  option  can  be  used to
define the way that clipped parts of the plot are shown:

Chapter 7  •  Graphics Options 203



GraphicsRow@Plot@Sin@xD, 8x, 0, 2 p<, PlotRange Ø 0.5, ClippingStyle Ø ÒD & êü
8None, Automatic, Red, 8Blue, Red<<, ImageSize Ø 420D

1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

1 2 3 4 5 6

-0.4

-0.2

0.2

0.4

The  first  plot  shows  the  default  way  that  clipped  parts  are  indicated:  Nothing  is  plotted.  With  the
value Automatic,  we  get  a  dashed  line.  We  can  give  the  line  some  directives  such  as  a  color  or  two
colors: The first color is used at the bottom and the second at the top.

7.4.2  Color Function

(ColorFunction c p (Ÿ6)  Function that determines the color of the curve; examples of values:
Automatic, (Hue[#2] &), (RGBColor[#2, 0, 1 - #2] &), "Rainbow")

(ColorFunctionScaling c p (Ÿ6)  Whether arguments to a color function should be scaled to lie
between 0 and 1; examples of values: True, False)

With ColorFunction,  we  can  get  colors  that  vary  according  to  the  values  of x  and y.  The  color
function is a pure function whose arguments are #1  (corresponds to x) and #2  (y); in ParametricPlot,
an argument can also be #3 (the parameter). Many gradients (e.g., "Rainbow") useful as a color function
can be found from the ColorSchemes  palette. Usually, it is useful for the arguments of a color function to
be scaled to H0, 1L because the arguments of all color schemes can be in this interval.

Plot@Sin@xD, 8x, 0, 2 p<, PlotStyle Ø Thick, ColorFunction Ø ÒD & êü
8HHue@Ò2D &L, HRGBColor@Ò2, 0, 1 - Ò2D &L, "Rainbow"<

: , , >

7.4.3  Filling

Filling c (Ÿ6)  Type of filling to use; examples of values: None, Axis, Bottom, Top, 0.3, True
(FillingStyle c (Ÿ6)  Style of filling; examples of values: Automatic, Red, {Blue, Red} (different

style for negative and positive values), Directive[Opacity[0.3], Blue])

Filling was considered in Section 5.2.4, p. 135.

204 Mathematica Navigator



8Plot@BesselJ@1, xD, 8x, 0, 20<, Filling Ø AxisD,
Plot@8Sqrt@xD, Log@x + 1D<, 8x, 0, 100<, Filling Ø TrueD<

: , >

7.4.4  Mesh Points

Mesh c p  How many mesh points should be drawn; examples of values: None c, Automatic p, 10,
Full, All, {{0}}

MeshFunctions c p (Ÿ6)  How to determine the placement of the mesh points; examples of values:
{#1 &} c, Automatic p, {#2 &},

MeshStyle c p  The style of mesh points; examples of values: Automatic, PointSize[Small],
Directive[Red, PointSize[Medium]]

(MeshShading c p (Ÿ6)  How to shade regions between mesh points; examples of values: None, {Red,
Blue})

By a mesh for a curve, we mean points on the curve. With Mesh, we can ask a given number of points
that  correspond  to  equally  spaced x  points.  The  value Full  means  that  the  initial  sample  points  are

drawn. With the value All, we get the final sample points (for sampling, see Section 7.4.6, p. 207):

Plot@Sin@xD, 8x, 0, 2 p<, Mesh Ø Ò,
MeshStyle Ø Directive@Red, PointSize@SmallDDD & êü 815, Full, All<

:
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

,
1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

>

With Mesh,  we  can  show  points  at  which  a  function  or  a  difference  of  two  functions  has  a  given
value, for example, 0. Another way is to use Epilog:

f = x^5 - 7 x^3 + 9 x; g = 2 x;
8Plot@f, 8x, -2.5, 2.5<, Mesh Ø 880<<,

MeshFunctions Ø 8Ò2 &<, MeshStyle Ø PointSize@MediumDD,
Plot@8f, g<, 8x, -2.5, 2.5<, Mesh Ø 880<<, MeshFunctions Ø 8Hf - gL ê. x Ø Ò1 &<D,
Plot@8f, g<, 8x, -2.5, 2.5<,
Epilog Ø 8Point@8Ò, f ê. x Ø Ò<D & êü Hx ê. NSolve@f ã g, xDL<D<

:
-2 -1 1 2

-10

-5

5

10

,
-2 -1 1 2

-10

-5

5

10

,
-2 -1 1 2

-10

-5

5

10

>

Chapter 7  •  Graphics Options 205



7.4.5  Exclusions and Region Function

Exclusions c p (Ÿ6)  The x points that are excluded in plotting; examples of values: Automatic,
None, {p/2, 3 p/2}, {Cos[x] ã 0}

ExclusionsStyle c p (Ÿ6)  What to draw at excluded points; examples of values: None, Directive[
Blue, Dashed], {None, Directive[Red, PointSize[Medium]]}

Possible steps in functions are automatically plotted discontinuously, but by giving the Exclusions

style the value None, we can also get a vertical line:

Plot@Piecewise@88-1, x < 1<, 81, x ¥ 1<<D, 8x, 0, 2<, Exclusions Ø ÒD & êü
8Automatic, None<

:
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

>

We can give the vertical line a suitable style and we can also get points at the ends of the step:

Plot@Piecewise@88-1, x < 1<, 81, x ¥ 1<<D, 8x, 0, 2<,
PlotRangePadding Ø 8Automatic, 0.1<, ExclusionsStyle Ø ÒD & êü 8
Directive@Blue, DashedD,
8None, Directive@Red, PointSize@MediumDD<,
8Directive@Blue, DashedD, Directive@Red, PointSize@MediumDD< <

:
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

,
0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

>

Sometimes we want to indicate the value of the function at a point of discontinuity. One way to do
this is to use disks and circles:

Plot@Piecewise@88-1, x < 1<, 81, x ¥ 1<<D, 8x, 0, 2<,
PlotRangePadding Ø 8Automatic, 0.1<, Epilog Ø 8Disk@81, 1<, Offset@82.2, 2.2<DD,

White, EdgeForm@BlackD, Disk@81, -1<, Offset@82, 2<DD<D

0.5 1.0 1.5 2.0

-1.0

-0.5

0.5

1.0

For  infinite  jumps,  a  vertical  line  is  automatically  drawn.  To  get  rid  of  the  line,  define,  with
Exclusions, points to avoid either explicitly as a list or implicitly by an equation:

206 Mathematica Navigator



8Plot@Tan@xD, 8x, 0, 2 p<D, Plot@Tan@xD, 8x, 0, 2 p<, Exclusions Ø 8p ê 2, 3 p ê 2<D,
Plot@Tan@xD, 8x, 0, 2 p<, Exclusions Ø Cos@xD ã 0,
ExclusionsStyle Ø Directive@Blue, DashedDD<

:
1 2 3 4 5 6

-6

-4

-2

2

4

6

,
1 2 3 4 5 6

-6

-4

-2

2

4

6

,
1 2 3 4 5 6

-6

-4

-2

2

4

6

>

(RegionFunction c p (Ÿ6)  Specifies the region to include in the plot drawn; examples of values:
(True &), (Abs[#2] > 0.7&))

The basic way to control the x values is to give a suitable interval in the plotting command. The basic
way to control the y values is to use PlotRange. More complex rules that determine the values of x and

y for which the curve is plotted can be given with RegionFunction. A point is included in the plot if the

region function at  that  point  gives True. The arguments of the pure function are #1  (corresponds to x)
and #2 (y); in ParametricPlot, an argument can also be #3 (the parameter).

Plot@Sin@xD, 8x, 0, 2 p<, RegionFunction Ø HAbs@Ò2D < 0.6 »» Abs@Ò2D > 0.8 &LD

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

7.4.6  Plotting Algorithm

Mostly,  the  default  values  of  the  following options  give  very  good results.  In  special  cases,  the  use  of
some of these options may improve the quality of the plot.

PlotPoints c p  Number of initial sampling points; examples of values: Automatic, 100
MaxRecursion c p (Ÿ6)  The maximum number of recursive subdivisions allowed; examples of

values: Automatic, 8
WorkingPrecision c p (Ÿ6)  The precision used in computations; examples of values:

MachinePrecision, 20
(Evaluated c p (Ÿ6)  Whether the expression to be plotted is evaluated before the expression is

sampled; possible values: Automatic, True, False)
(PerformanceGoal c p (Ÿ6)  What aspect of performance to try to optimize; examples of values:

$PerformanceGoal, "Quality", "Speed")
(EvaluationMonitor c p (Ÿ6)  Expression to evaluate at every function evaluation; examples of

values: None, Sow[{x, Sin[x]}])

Plot works by first sampling the function at some equally spaced points specified by PlotPoints. If
the function changes rapidly between two points, the interval is divided into two smaller intervals. This
subdivision  is  continued  until  the  curve  resulting  by  joining  the  sample  points  with  lines  is  smooth
enough.  However,  subdivisions  are  done  at  most MaxRecursion  times.  In  this  way, Plot  is  adaptive,
and, accordingly, the resulting plot is usually sufficiently smooth and accurate.

Chapter 7  •  Graphics Options 207



As an example, we plot a function and collect all the points where the function is evaluated:

a = Reap@Plot@Sin@xD, 8x, 0, 2 p<, EvaluationMonitor ß Sow@8x, Sin@xD<DDD;

(Note the delayed rule ß that is written as :>; for Sow and Reap, see Section 18.2.3, p. 564.) The next plot

shows all the points (more than 400) where the function was evaluated to get the curve:

ListPlot@aP2, 1T, PlotStyle Ø PointSize@SmallD,
Filling Ø Axis, AspectRatio Ø 0.2, ImageSize Ø 420D

We  see  that  where  the  function  changes  rapidly,  more  points  are  calculated  than  where  the  function
behaves almost linearly.

Next, we plot a function that behaves wildly near the origin:

8Plot@Sin@1 ê xD, 8x, 0, 0.1<, PerformanceGoal Ø "Speed", AspectRatio Ø 0.4D,
Plot@Sin@1 ê xD, 8x, 0, 0.1<, AspectRatio Ø 0.4D,
Plot@Sin@1 ê xD, 8x, 0, 0.1<, MaxRecursion Ø 8, AspectRatio Ø 0.4D<

:
0.02 0.04 0.06 0.08 0.10

-1.0

-0.5

0.5

1.0

,
0.02 0.04 0.06 0.08 0.10

-1.0

-0.5

0.5

1.0

,
0.02 0.04 0.06 0.08 0.10

-1.0

-0.5

0.5

1.0

>

The numbers of sampled points are as follows:

Length@%PÒTP1, 1, 3, 2, 1TD & êü 81, 2, 3<

8182, 1669, 4105<

In the first  figure,  we rejected the goal  of  quality and, instead,  asked to get a plot rapidly; only 182
sample  points  were  calculated.  In  the  second  plot, Plot  gradually  increased  the  number  of  sampled
points up to 1669 (MaxRecursion was 6), but by comparing the two figures, we see that even this is not
sufficient. In the third figure, we allowed 8 recursive subdivisions and ended with 4105 points, and now
the result is good.

The WorkingPrecision option can be useful if the computation of the values of the function involves

round-off errors. See an example in Section 12.2.3, p. 407.

When Plot  samples  the  expression  to  be  plotted,  the  expression  is  held  in  an  unevaluated  form.
However,  sometimes  it  is  necessary  for  the  expression  to  be  evaluated  before  sampling.  This  can  be
achieved  with  the  option Evaluated Ø True;  this  is  equivalent  to  enclosing  the  expression  with  the
Evaluate command.

7.4.7  Legends

‡ Legends with Primitives

If we have several curves in the same plot, it is useful to identify the curves in some way. On the screen,

a good way is to use Tooltip; see Section 5.1.2, p. 122.

208 Mathematica Navigator



Another  good way is  to  place  a  suitable Text  primitive  near  each curve;  see an example in Section

7.3.6,  p 201.  This  method  has  several  advantages.  It  is  simple  to  implement,  we  need  not  look  at  a

separate legend, and we can use the same style for  each curve (as was done in the example in Section
7.3.6).

Still another way to identify the curves is the use of a legend. This can easily be done with graphics
primitives in an Epilog option, but we also have a package for legends. Here is an example of the use of
Epilog:

Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, AspectRatio Ø 0.4, PlotRange Ø 88-0.1, 9.3<, All<,
Ticks Ø 88p, 2 p<, 8-1, 1<<, PlotStyle Ø 8Black, 8Black, AbsoluteDashing@81.3<D<<,
AxesStyle Ø 8White, Black<, TicksStyle Ø Black,
Epilog Ø 8Line@88-0.1, 0<, 82 p + 0.1, 0<<D, Line@887.0, 0.8<, 87.8, 0.8<<D,

AbsoluteDashing@81.3<D, Line@887.0, 0.4<, 87.8, 0.4<<D, Text@Sin@xD,
88.1, 0.8<, 8-1, 0<D, Text@Cos@xD, 88.1, 0.4<, 8-1, 0<D<, ImageSize Ø 160D

p 2 p

-1

1
sinHx L

cosHx L

If  the legend is  placed outside the x  range of the curves as above,  then PlotRange  must  be used to
extend the x range so that the legend is within it. In the previous example, the extended x range causes
the x axis to continue from 2p to 9.6. To stop the x axis at 2p, we have defined white as the style of the x
axis and drawn the x axis ourselves with the Line primitive.

‡ Legends with a Package

The PlotLegends`  package  (see PlotLegendsêguideêPlotLegendsPackage`)  adds  some new options  for Plot

enabling the use of legends. Note that this holds only for Plot and not for any other plotting command.
For other commands, the package defines the ShowLegend command.

Before  listing  the  legend options,  we  present  two examples.  In the first  example,  we have used the
default style of the legend.

<< PlotLegends`

8Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotStyle Ø 88<, AbsoluteDashing@81.3<D<,
PlotLegend Ø 8Sin@xD, Cos@xD<, ImageSize Ø 150D,
Plot@8Sin@xD, Cos@xD<, 8x, 0, 2 p<, PlotLegend Ø 8Sin@xD, Cos@xD<,
LegendPosition Ø 81, -0.15<, LegendSize Ø 80.4, 0.8<, LegendShadow Ø None,
LegendBorder Ø None, LegendTextOffset Ø 8-1.1, 0<, ImageSize Ø 200D<

: 1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

cosHx L

sinHx L
,

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

cosHx L

sinHx L

>

Chapter 7  •  Graphics Options 209



Options for the legend and its position, size, and orientation:
** PlotLegend  The texts in a legend (mandatory legend option with Plot); an example of value:

{Sin[x], Cos[x]}

** LegendPosition  Position of the lower left corner of the legend box (in a coordinate system in
which the center of the figure is {0, 0} and the longest side of the plot runs from -1 to 1); default
value: {-1.2, -0.82}

** LegendSize  Size of the legend box (in the same units as LegendPosition); examples of values:
Automatic, 0.6, {width, height}

LegendOrientation  Direction of the legend; possible values: Vertical, Horizontal

Options for the style of the legend box and its shadow:
LegendBorder  Style of the border line; default value: Automatic
LegendBorderSpace  Space between the border and its content; default value: Automatic
LegendBackground  Color of the background; default value: Automatic
** LegendShadow  Offset of the shadow from the legend box (in the same units as LegendPosition);

examples of values: Automatic, None (no border and no shadow), {0, 0} (no shadow), {xoffset,
yoffset}

ShadowBackground  Color of the shadow; default value: GrayLevel[0]

Options for the key boxes, texts, and legend label:
LegendSpacing  Space around each key box; default value: Automatic
LegendTextSpace  The width of the space of each text; default value: Automatic
LegendTextOffset  Offset of a text from a key box; default value: Automatic
LegendTextDirection  Direction of text; default value: Automatic
LegendLabel  Label of the legend box; default value: None
LegendLabelSpace  Space above and below the label; default value: Automatic

ShowLegend[graphic, {{{key1, text1}, {key2, text2}, … }, opts}]  Show graphic with a
legend containing the key graphics or key colors key1, key2, … and texts text1, text2, …; modify
the legend with the legend options opts

7.5  Options for Surface Plots

7.5.1  Summary

‡ Introduction

In  this  section,  we  list  all  the  options  of Plot3D, ParametricPlot3D,  and Graphics3D,  with  short

descriptions and with some common values (Graphics3D  was  explained in Section 6.2.11,  p. 176).  The

default  value  of  an  option  is  mentioned  first,  and  then  we  mention  either  all  other  possible  values  or
some examples of other values (the examples are simple; more advanced forms may exist).

The options are divided into three groups:

• Global options: These are options to modify global aspects of the plot~that is, to adjust how the plot
looks  in  general.  This  means,  for  example,  adjusting  the  form,  size,  plot  range,  various  margins,
fonts, or viewpoint.

210 Mathematica Navigator



• Local options: These are options to modify local components of a plot such as plot label, axes, ticks,
bounding box, face grids, or add-ons.

• Options  for  the  surface:  These  are  options  to  modify  the  curve  produced  by Plot3D  or
ParametricPlot3D.  This  means,  for  example,  adjusting  the  style,  filling,  mesh,  or  exclusions  or
controlling the plotting algorithm.

All  of  the  options  in  the  first  two  groups  are  common  to  all  three  plotting  commands  mentioned.
However, options in the third group are applicable only to Plot3D or ParametricPlot3D. Options and
their  default  values  applicable  only  to  certain  commands  are  expressed  in  the  following  lists  by  a
superscript after the option name or value:

s: applicable to Plot3D (shorthand for surface)
p: applicable to ParametricPlot3D (shorthand for parametric)
g: applicable to Graphics3D (shorthand for graphics)

For example, PlotStyle s p  means that this option applies to Plot3D and ParametricPlot3D but not
to Graphics3D,  and False g  means that the default value of the option in question (Axes) is False  for
Graphics3D.

Ten options assumed to be somewhat important are marked with an asterisk (*). A single parenthesis
indicates several options that most of us will seldom need. The remaining options, without any special
markings,  may  sometimes  be  useful.  Of  course,  the  given  classification  of  the  options  according  to
importance reflects my personal impression. You may well have a different classification.

‡ Global Options

With Plot3D, ParametricPlot3D,  and Graphics3D,  the  following  options  can  be  used  to  adjust  some
global aspects of a plot.

Options for form and size:
* BoxRatios  Ratios of side lengths of the bounding box; default values: {1, 1, 0.4} s,

Automatic p g

(AspectRatio  Ratio of height to width of the plotting rectangle; default value: Automatic)
ImageSize  The absolute size (in printer’s points) of the plot; examples of values: Automatic, Full,

All, width, {width, height}, {maxsize}, {{maxwidth}, {maxheight}}

An option for plot range:
* PlotRange  Ranges for x, y, and z in the plot; examples of values:

 Automatic p, {zmin,Automatic}, {Full, Full, Automatic} s,
 All g, {zmin,All}, {Full, Full, All},
 Full, {All,zmax}, {{xmin, xmax}, {ymin, ymax}, All},
 5, {zmin,zmax}, {{xmin, xmax}, {ymin, ymax}, {zmin, zmax}}

Options for margins and background:
PlotRegion  Specifies margins around the plot inside the selection rectangle; examples of values:

Automatic (means {{0, 1}, {0, 1}}), {{xmin, xmax}, {ymin, ymax}}
SphericalRegion  Whether to leave room in the plotting rectangle for a sphere enclosing the

bounding box; possible values: False, True
(ImageMargins Specifies margins (in printer’s points) outside the selection rectangle; examples of

values: 0, Automatic, 15, {{left, right}, {bottom, top}})
(ImagePadding (Ÿ6)  Extra space (in printer’s points) for objects such as thick lines and tick and axes

labels; examples of values: All, None, 15, {{left, right}, {bottom, top}})

Chapter 7  •  Graphics Options 211



p
(PlotRangePadding (Ÿ6)  How much farther axes etc. should extend beyond the range of coordi-

nates specified by PlotRange; examples of values: Automatic, None, {0.2, 0.5})
Background  Color of the background; examples of values: None, LightGray

Options for fonts and formatting:
* BaseStyle (Ÿ6)  Style of texts; examples of values: {}, {9, Bold, FontFamily Ø "Helvetica"}

LabelStyle (Ÿ6)  Style of all labels; examples of values: {}, {9, Bold, FontFamily Ø "Helvetica"}

(FormatType  Format type of text used in a plot; examples of values: TraditionalForm,
StandardForm, InputForm, OutputForm)

Options for viewpoint and lighting:
* ViewPoint  Point (in a scaled coordinate system) from which the surface is viewed; default value:

{1.3, -2.4, 2}

RotationAction (Ÿ6)  How to render the plot if rotated with the mouse; examples of values: "Fit"
(after rotation, the plot is rescaled to fit into the image region), "Clip" (after rotation, the plot is
not rescaled and so may be clipped)

(ViewAngle (Ÿ6)  Angle of the field of view; default value: Automatic)
(ViewCenter  Point (in scaled coordinates) to display at the center; default value: {1/2, 1/2, 1/2})
(ViewMatrix (Ÿ6)  Explicit transformation matrix; default value: Automatic)
(ViewRange (Ÿ6)  Range of viewing distances to include; default value: All)
(ViewVector (Ÿ6)  Position and direction of a simulated camera; default value: Automatic)
(ViewVertical  Direction to make vertical; default value: {0, 0, 1})
Lighting  What simulated lighting to use; simple examples of values: Automatic, "Neutral", None

Miscellaneous options:
(BaselinePosition (Ÿ6)  Where the baseline of a plot should be if the plot is combined with other

plots or text; examples of values: Automatic, Axis, Bottom, Top, Center, Baseline)
(AlignmentPoint (Ÿ6)  How objects should by default be aligned when they appear in Inset;

default value: Center)
(ContentSelectable (Ÿ6)  Whether and how content of a plot should be selectable; possible values:

Automatic (double-click allows content selection), True (single clicks immediately select content
objects), False (content objects cannot be selected))

(PreserveImageOptions (Ÿ6)  Whether the size and margins of a plot should remain the same if the
plotting command is executed anew; examples of values: Automatic (the properties should remain
the same if not explicitly otherwise stated), True (the properties should remain the same), False
(the previous properties are ignored))

(DisplayFunction  Function to apply to a graphic before returning it; default value:
$DisplayFunction (is normally Identity))

The  main  difference  between  the  options  for  the  three  commands  is  in  the  default  value  of
BoxRatios:  It is {1, 1, 0.4}  for Plot3D  and Automatic  for ParametricPlot3D  and Graphics3D.  Note
that  in  the  previous  box,  we  do  not  mention  the ControllerLinking, ControllerMethod,  and
ControllerPath options.

‡ Local Options

With Plot3D, ParametricPlot3D,  and Graphics3D,  the  following  options  can  be  used  to  adjust  some
local components of a plot:

212 Mathematica Navigator



An option for plot label:
PlotLabel  Label of the plot; examples of values: None, Sin[x y], "A surface plot"

Options for axes and ticks:
* Axes  Whether to draw the axes; examples of values: True s p, False g, {True, True, False}
AxesEdge  Where to draw the axes; examples of values: Automatic, {{1,1}, {-1,1}, {1,1}}, {

Automatic, {-1,1}, {1,1}}, {{1,1}, {-1,1}, None}
* AxesLabel  Labels for the axes; examples of values: None, z, {x, y}, {x, y, z}
AxesStyle  Style of the axes; examples of values: {}, Directive[Thick, Gray]
* Ticks  Ticks on the axes; simple examples of values: Automatic, None, {{0,1,2}, {0,1},

Automatic}, {{0,1,2}, {0,1}, {-1,0,1}}
TicksStyle (Ÿ6)  Style of tick marks and tick labels; examples of values: {}, Blue,

Directive[Thick, Blue, 12]

Options for bounding box:
* Boxed  Whether to draw a bounding box around the surface; possible values: True, False
* BoxRatios  Ratios of side lengths of the bounding box; default values: {1, 1, 0.4} s,

Automatic p g

(BoxStyle  Style of the bounding box; examples of values: {}, Directive[Thick, Gray])

Options for face grids:
FaceGrids  Grid lines drawn on the faces of the bounding box; examples of values: None, All,

{{-1,0,0}, {0,1,0}, {0,0,-1}}, {{{-1,0,0}, {ygrid, zgrid}}, {{0,1,0}, {xgrid,
zgrid}}, {{0,0,-1}, {xgrid, ygrid}}}

(FaceGridsStyle  Style of the grid lines; examples of values: {}, Directive[Thick, Gray])

Options for primitives:
(Prolog  2D graphics primitives to be plotted before the main plot; examples of values: {},

{PointSize[Medium], Red, Point[{0.4, 0.7}]})
Epilog  2D graphics primitives to be plotted after the main plot; examples of values: {},

{PointSize[Medium], Red, Point[{0.4, 0.7}]}

The main difference between the options for the three commands is in the default value of Axes: It is
True for Plot3D and ParametricPlot3D and False for Graphics3D.

‡ Options for the Surface

With Plot3D  and ParametricPlot3D,  the  following  options  can  be  used  to  adjust  the  surface  to  be
plotted:

Options for plot style:
PlotStyle s p (Ÿ6)  Style(s) of the surface(s); examples of values: Automatic, Yellow,

Directive[Yellow, Specularity[Red, 5]], Opacity[0.3], None
(BoundaryStyle s p (Ÿ6)  How to draw boundary lines for surfaces; examples of values:

Automatic s, None p, Thick)
(ClippingStyle s (Ÿ6)  How to draw clipped parts of the surface; examples of values: Automatic,

None, Red, {Green, Red})
(NormalsFunction s p (Ÿ6)  How to determine effective surface normals; default value: Automatic)

Options for color function:
ColorFunction s p  What colors are used to color the surface, if simulated illumination is not used;

Chapter 7  •  Graphics Options 213



examples of values: Automatic, GrayLevel, "Rainbow", (Hue[1 - #3] &), (RGBColor[#3, 1 - #3,
0] &)

(ColorFunctionScaling s p  Whether values provided for a color function are scaled to lie between
0 and 1 (True) or left as such (False))

Options for filling:
(Filling s (Ÿ6)  Type of filling to use; examples of values: None, Axis, Bottom, Top, 0.3, True)
(FillingStyle s (Ÿ6)  Style of filling; examples of values: Opacity[0.5], Red)

Options for mesh lines:
* Mesh s p  How many mesh lines should be drawn; examples of values: Automatic, 10, {5, 10},

Full, All, {{0, 1, 2}, {1, 2}}, None
MeshFunctions s p (Ÿ6)  How to determine the placement of the mesh lines; examples of values: {#1

&, #2 &} s, Automatic p, {#3 &},
MeshStyle s p  Style of mesh lines; examples of values: Automatic, Directive[Red, Thick]
(MeshShading s p (Ÿ6)  How to shade regions between mesh lines; examples of values: None,

{{Red,Green}, {Green, Red}})

Options for exclusions and region function:

Exclusions s p (Ÿ6)  The curves on the Ix, yM surface that are excluded in plotting; examples of

values: Automatic, None, {x + y ã 0}

(ExclusionsStyle s p (Ÿ6)  What to draw at excluded curves; examples of values: None,
Opacity[0.5], {Opacity[0.5], Directive[Red, Thick]})

RegionFunction s p (Ÿ6)  Specifies the region to include in the plot drawn; examples of values:
(True &), (#1^2 + #2^2 < 1 &)

Options for plotting algorithm:
PlotPoints s p  Number of initial sampling points; examples of values: Automatic, 30, {30, 50}
MaxRecursion s p (Ÿ6)  The maximum number of recursive subdivisions allowed; examples of

values: Automatic, 3
WorkingPrecision s p (Ÿ6)  The precision used in computations; examples of values:

MachinePrecision, 20
(PerformanceGoal s p (Ÿ6)  What aspect of performance to try to optimize; examples of values:

$PerformanceGoal, "Quality", "Speed")
(EvaluationMonitor s p (Ÿ6)  Expression to evaluate at every function evaluation; examples of

values: None, Sow[{x, y, Sin[x y]}])

‡ Example

First, we define the grid lines for x, y, and z:

xg = 8p ê 4, p ê 2, 3 p ê 4<; yg = 8p ê 4, p ê 2, 3 p ê 4<; zg = 80<;

In  the  plot,  we  color  the  surface  with  the ColorFunction  option  according  to  the  height  (to  see  the
colors, look at the plot in the Help Browser if you have installed the CD-ROM of this book):

214 Mathematica Navigator



Plot3D@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, BoxRatios Ø Automatic,
Background Ø Black, PlotRegion Ø 880.05, 0.95<, 80.03, 0.95<<,
ColorFunction Ø HHue@1 - Ò3D &L, PlotPoints Ø 50,
BaseStyle Ø 8FontFamily Ø "Helvetica"<, MeshStyle Ø Gray, MeshFunctions Ø HÒ3 &L,
AxesLabel Ø 8x, y<, AxesStyle Ø Directive@White, 9, BoldD, BoxStyle Ø White,
Ticks Ø 880, 8p ê 2, "pê2"<, p<, 80, 8p ê 2, "pê2"<, p<, 8-1, 0, 1<<,
FaceGrids Ø 888-1, 0, 0<, 8yg, zg<<, 880, 1, 0<, 8xg, zg<<, 880, 0, -1<, 8xg, yg<<<,
PlotLabel Ø Style@Cos@x yD Cos@xD, "Bold", 11, WhiteD, ImageSize Ø 250D êê Framed

7.5.2  Global Options

‡ Form and Size

* BoxRatios  Ratios of side lengths of the bounding box; default values: {1, 1, 0.4} s,
Automatic p g

(AspectRatio  Ratio of height to width of the plotting rectangle; default value: Automatic)
ImageSize  The absolute size (in printer’s points) of the plot; examples of values: Automatic, Full,

All, width, {width, height}, {maxsize}, {{maxwidth}, {maxheight}}

(Remember that options and values denoted by s, p, and g apply for Plot3D, ParametricPlot3D, and
Graphics3D, respectively.)

BoxRatios  determines the form of the 3D bounding box. The default value {1, 1, 0.4}  for Plot3D
means that the x and y axes have the same length and that the z axis is 0.4 times this length. The default

value Automatic for ParametricPlot3D and Graphics3D  tells us that one unit in all three axes has the
same  length.  Thus,  the  setting BoxRatios Ø Automatic  for  3D  graphics  corresponds  to  the  setting
AspectRatio Ø Automatic for 2D graphics.

Chapter 7  •  Graphics Options 215



Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, BoxRatios Ø ÒD & êü
881, 1, 0.4<, Automatic, 81, 1, 1<<

: , , >

For surfaces produced by Plot3D, it may be worth setting the BoxRatios such that one unit on the x

and y axes has the same length to get the correct impression of the form of the Ix, yM region and setting

the third component such that we get a good impression of the form of the surface.

AspectRatio  defines  the  2D  form  of  the  plot.  The  default  value Automatic  leaves  unchanged  the
form of the graphics determined by the BoxRatios option. AspectRatio is seldom used for 3D graphics.
Instead, BoxRatios is the option for defining the 3D form of the surface.

For ImageSize, see Section 7.2.1, p. 189.

‡ Plot Range

* PlotRange  Ranges for x, y, and z in the plot; examples of values:

 Automatic p, {zmin,Automatic}, {Full, Full, Automatic} s,
 All g, {zmin,All}, {Full, Full, All},
 Full, {All,zmax}, {{xmin, xmax}, {ymin, ymax}, All},
 5, {zmin,zmax}, {{xmin, xmax}, {ymin, ymax}, {zmin, zmax}}

The values in the first two columns specify the range for z only. The values in the third column also
specify the ranges for x and y. The value Automatic determines the z range with an algorithm that may

clip  some  high  or  low  parts  of  the  surface.  Giving  the  value All  ensures  that  the  surface  is  wholly
plotted without clipping. The value Full  also causes the whole function to be plotted but, in addition,
the whole plotting range on x and y  axes is included in the plot. A constant value such as 5 means, for

Plot3D,  the  plot  range {Full, Full, {-5, 5}}  and,  for Graphics3D  and ParametricPlot3D,  the  plot
range {{-5, 5}, {-5, 5}, {-5, 5}}.  In  the first  plot shown next,  high values near the point H3, 3L  are
clipped:

8Plot3D@Exp@x yD, 8x, 0, 3<, 8y, 0, 3<D,
Plot3D@Exp@x yD, 8x, 0, 3<, 8y, 0, 3<, PlotRange Ø AllD<

: , >

216 Mathematica Navigator



(ClippingStyle s (Ÿ6)  How to draw clipped parts of the surface; examples of values: Automatic,
None, Red, {Green, Red})

‡ Margins and Background

PlotRegion  Specifies margins around the plot inside the selection rectangle; examples of values:
Automatic (means {{0, 1}, {0, 1}}), {{xmin, xmax}, {ymin, ymax}}

SphericalRegion  Whether to leave room in the plotting rectangle for a sphere enclosing the
bounding box; possible values: False, True

(ImageMargins Specifies margins (in printer’s points) outside the selection rectangle; examples of
values: 0, Automatic, 15, {{left, right}, {bottom, top}})

(ImagePadding (Ÿ6)  Extra space (in printer’s points) for objects such as thick lines and tick and axes
labels; examples of values: All, None, 15, {{left, right}, {bottom, top}})

(PlotRangePadding (Ÿ6)  How much farther axes etc. should extend beyond the range of coordi-
nates specified by PlotRange; examples of values: Automatic, None, {0.2, 0.5})

Background  Color of the background; examples of values: None, LightGray

PlotRegion determines the 2D margins around the plot in the usual way, as it does for 2D graphics

(see Section 7.2.3, p. 191). The default value Automatic means {{0, 1}, {0, 1}}: The plot fills the entire

display area. A value such as {{0.05, 0.95}, {0.05, 0.95}} leaves wider margins; this may be useful

when using a colored background (see the example of Section 7.5.1, p. 214).

SphericalRegion determines whether to leave room in the plotting rectangle for a sphere enclosing
the bounding box. The value True is useful when rotating a graphic with animation because the graphic
has the same size from all viewpoints (this is important in animation).

‡ Fonts and Formatting

* BaseStyle (Ÿ6)  Style of texts; examples of values: {}, {9, Bold, FontFamily Ø "Helvetica"}

LabelStyle (Ÿ6)  Style of all labels; examples of values: {}, {9, Bold, FontFamily Ø "Helvetica"}

(FormatType  Format type of text used in a plot; examples of values: TraditionalForm,
StandardForm, InputForm, OutputForm)

For fonts and formatting, see Section 7.2.4, p. 192.

‡ Viewpoint and Lighting

* ViewPoint  Point (in a scaled coordinate system) from which the surface is viewed; default value:
{1.3, -2.4, 2}

RotationAction (Ÿ6)  How to render the plot if rotated with the mouse; examples of values: "Fit"
(after rotation, the plot is rescaled to fit into the image region), "Clip" (after rotation, the plot is
not rescaled and so may be clipped)

(ViewAngle (Ÿ6)  Angle of the field of view; default value: Automatic)
(ViewCenter  Point (in scaled coordinates) to display at the center; default value: {1/2, 1/2, 1/2})
(ViewMatrix (Ÿ6)  Explicit transformation matrix; default value: Automatic)
(ViewRange (Ÿ6)  Range of viewing distances to include; default value: All)
(ViewVector (Ÿ6)  Position and direction of a simulated camera; default value: Automatic)
(ViewVertical  Direction to make vertical; default value: {0, 0, 1})

Chapter 7  •  Graphics Options 217



We plot the same surface from three different viewpoints:

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, ViewPoint Ø ÒD & êü
881.3, -2.4, 2<, 81.3, -2.4, 0<, 81.3, -2.4, -1<<

: , , >

The viewpoint  coordinates  are not  coordinates  of  the surface;  the viewpoint has its  own coordinate
system. The origin of  this  system is  at  the center of  the bounding box,  and the longest  side of  the box
runs from -0.5  to  0.5.  The other  sides  then run so that  the lengths of  the sides  satisfy  the proportions
expressed in BoxRatios. Thus, if we have BoxRatios Ø {1, 1, 0.4}, then the viewpoint coordinates of
the box run from -0.5 to 0.5 for x  and y  and from -0.2 to 0.2 for z.  The value of the ViewPoint  option

can also be one of Above, Below, Front, Back, Left, or Right. One of the coordinates can also be infinite,
such as in {0, 0, ¶}.

Recall from Section 5.3.1, p. 139, that we can rotate a 3D plot by dragging with the mouse so that we

can easily  see  the  surface  from various  viewpoints.  A 3D plot  can  also  be  zoomed with the mouse by
holding  down  the ‚  (Windows)  or Ì  (Macintosh)  key  and dragging  upward (to  zoom in)  or  down-

ward (to zoom out).

After rotating with the mouse, the plot is rescaled to fit into the image region. This causes a “jump”
when the mouse is released. Give the RotationAction option the value "Clip" if you do not want the
plot rescaled; now the plot may partly fall  out of the image region and thus be clipped, or extra space
may appear around the plot.

The current viewpoint of a rotated plot can be seen by pasting the figure as the argument to Options:

ViewPoint ê. OptionsB F

8-0.972355, 3.08212, 1.00253<

Lighting  What simulated lighting to use; simple examples of values: Automatic, "Neutral", None

The  automatic  lighting  uses  ambient  light  together  with  four  light  sources.  Neutral  lighting  uses
white light sources. If we use no lighting, the result is a black surface. For more about lighting, see the
Documentation Center.

218 Mathematica Navigator



Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, Lighting Ø ÒD & êü
8Automatic, "Neutral", None<

: , , >

‡ Miscellaneous Options

(BaselinePosition (Ÿ6)  Where the baseline of a plot should be if the plot is combined with other
plots or text; examples of values: Automatic, Axis, Bottom, Top, Center, Baseline)

(AlignmentPoint (Ÿ6)  How objects should by default be aligned when they appear in Inset;
default value: Center)

(ContentSelectable (Ÿ6)  Whether and how content of a plot should be selectable; possible values:
Automatic (double-click allows content selection), True (single clicks immediately select content
objects), False (content objects cannot be selected))

(PreserveImageOptions (Ÿ6)  Whether the size and margins of a plot should remain the same if the
plotting command is executed anew; examples of values: Automatic (the properties should remain
the same if not explicitly otherwise stated), True (the properties should remain the same), False
(the previous properties are ignored))

(DisplayFunction  Function to apply to a graphic before returning it; default value:
$DisplayFunction (is normally Identity))

7.5.3  Local Options

‡ Plot Label

PlotLabel  Label of the plot; examples of values: None, Sin[x y], "A surface plot"

PlotLabel was considered in Section 7.3.1, p. 195; there is also an example in Section 7.5.1, p. 214.

‡ Axes and Ticks

* Axes  Whether to draw the axes; examples of values: True s p, False g, {True, True, False}
AxesEdge  Where to draw the axes; examples of values: Automatic, {{1,1}, {-1,1}, {1,1}}, {

Automatic, {-1,1}, {1,1}}, {{1,1}, {-1,1}, None}
* AxesLabel  Labels for the axes; examples of values: None, z, {x, y}, {x, y, z}
AxesStyle  Style of the axes; examples of values: {}, Directive[Thick, Gray]

The default value of Axes  is True  for Plot3D  and ParametricPlot3D  and False  for Graphics3D.  If
the plot has the bounding box, some edges of the box are selected as the axes. Note, however, that axes
and the box can be drawn independently: You can have axes without the box, the box without the axes,
or neither the axes nor the box; see forthcoming examples.

Chapter 7  •  Graphics Options 219



The edges of the box that are used as axes are, by default, determined automatically. However, each
axis can be drawn on any of four edges with AxesEdge.  In the next example, the first {-1, -1} defines
the  position  of  the x  axis  as  the  edge  where y  and z  have  the  minimum  values. {1, -1}  defines  the

position of the y  axis as the edge where x  has the maximum value and z  the minimum value. The last

{-1, -1} defines the position of the z axis as the edge where x and y have the minimum values. (By the

way,  these  definitions  are  unnecessary  in  this  example  because  they  are  the  default  definitions.)  Any
definition can also be Automatic (that axis is chosen automatically) or None (that axis is not drawn).

* Ticks  Ticks on the axes; simple examples of values: Automatic, None, {{0,1,2}, {0,1},
Automatic}, {{0,1,2}, {0,1}, {-1,0,1}}

TicksStyle (Ÿ6)  Style of tick marks and tick labels; examples of values: {}, Blue,
Directive[Thick, Blue, 12]

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
AxesLabel Ø 8x, y, z<, AxesEdge Ø 88-1, -1<, 81, -1<, 8-1, -1<<,
AxesStyle Ø AbsoluteThickness@1D, Ticks Ø 880, p<, 80, p<, 8-1, 1<<D

AxesLabel, AxesStyle, Ticks, and TicksStyle are used as they are with 2D plots (see Section 7.3.2,

p. 196). We have marked AxesLabel with an asterisk because in 3D plots, the labels are useful: It is not

obvious which one of the two horizontal axes is the x axis and which is the y axis.

‡ Bounding Box

* Boxed  Whether to draw a bounding box around the surface; possible values: True, False
* BoxRatios  Ratios of side lengths of the bounding box; default values: {1, 1, 0.4} s,

Automatic p g

(BoxStyle  Style of the bounding box; examples of values: {}, Directive[Thick, Gray])

BoxRatios was considered in Section 7.5.2, p. 215. For example,

p1 = Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø 880, p<, 80, p<, 8-1, 1<<D;
8Show@p1, Boxed Ø FalseD,
Show@p1, Axes Ø False, BoxStyle Ø Directive@Thick, GrayDD,
Show@p1, Axes Ø False, Boxed Ø FalseD<

: , , >

220 Mathematica Navigator



‡  Face Grids

FaceGrids  Grid lines drawn on the faces of the bounding box; examples of values: None, All,
{{-1,0,0}, {0,1,0}, {0,0,-1}}, {{{-1,0,0}, {ygrid, zgrid}}, {{0,1,0}, {xgrid, zgrid}},
{{0,0,-1}, {xgrid, ygrid}}}

(FaceGridsStyle  Style of the grid lines; examples of values: {}, Directive[Thick, Gray])

The  value All  draws  grids  on  all  six  faces.  We  can  define  the  faces  where  we  want  the  grids.  For
example, {-1,0,0} is the face where x has the smallest value, {0,1,0} is the face where y has the largest

value,  and {0,0,-1}  is  the  face  where z  has  the  smallest  value.  The  example  in Section  7.5.1,  p. 214,

contains grid lines.

‡ Primitives

(Prolog  2D graphics primitives to be plotted before the main plot; examples of values: {},
{PointSize[Medium], Red, Point[{0.4, 0.7}]})

Epilog  2D graphics primitives to be plotted after the main plot; examples of values: {},
{PointSize[Medium], Red, Point[{0.4, 0.7}]}

For Prolog  and Epilog,  we  refer  to Section  7.3.6,  p. 201.  These  options  can  be  used  to  add  2D

graphics primitives to the plot. Note that the primitives cannot be 3D. In addition, the coordinates used
in the primitives have to be given with scaled coordinates, which run from 0 to 1 in both horizontal and
vertical directions.

If you want to add 3D primitives (see Section 6.2.11, p. 176), plot the primitives with Graphics3D and

then use Show to combine the main plot and the primitives. For example,

p1 = ParametricPlot3D@8Cos@sD H3 + Cos@tDL, Sin@tD, Sin@sD H3 + Cos@tDL<,
8s, 0, 2 p<, 8t, 0, 2 p<, Boxed Ø False, Axes Ø FalseD;

p2 = Graphics3D@8Thick, Line@88-5, 0, 0<, 85, 0, 0<<D, Line@880, -5, 0<, 80, 6, 0<<D,
Line@880, 0, -5.5<, 80, 0, 5<<D, PointSize@LargeD, Red, Point@80, 0, 0<D<D;

Show@p1, p2, PlotRange Ø All, PlotRegion Ø 88-0.2, 1.2<, 8-0.2, 1.2<<D

Chapter 7  •  Graphics Options 221



7.5.4  Options for the Surface

‡ Plot Style

PlotStyle s p (Ÿ6)  Style(s) of the surface(s); examples of values: Automatic, Yellow,
Directive[Yellow, Specularity[Red, 5]], Opacity[0.3], None

(BoundaryStyle s p (Ÿ6)  How to draw boundary lines for surfaces; examples of values:
Automatic s, None p, Thick)

(ClippingStyle s (Ÿ6)  How to draw clipped parts of the surface; examples of values: Automatic,
None, Red, {Green, Red})

(NormalsFunction s p (Ÿ6)  How to determine effective surface normals; default value: Automatic)

With PlotStyle, we can change the colors of a surface:

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, ImageSize Ø 90, PlotStyle Ø ÒD & êü
8Automatic, Yellow, Opacity@0.3D, None<

: , , , >

The  default  value Automatic  for ClippingStyle  produces  plateaus  at  the  top  and  bottom  of  the
surface.  The  plateaus  have  no  mesh  lines;  see  the  first  plot  shown  next.  The  value None  leaves  the
clipped  parts  empty,  and  this  reveals  the  clipped  parts  very  clearly;  see  the  second  plot.  The  clipped
parts can also be shown with colors; see the third and fourth plots.

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, PlotRange Ø 8-0.7, 0.85<,
ImageSize Ø 90, ClippingStyle Ø ÒD & êü 8Automatic, None, Red, 8Green, Red<<

: , , , >

‡ Color Function

ColorFunction s p  What colors are used to color the surface, if simulated illumination is not used;
examples of values: Automatic, GrayLevel, "Rainbow", (Hue[1 - #3] &), (RGBColor[#3, 1 - #3,
0] &)

(ColorFunctionScaling s p  Whether values provided for a color function are scaled to lie between
0 and 1 (True) or left as such (False))

Instead  of  simulated  illumination,  we  can  use  a  color  function  to  color  the  surface.  The  function  is

expressed as a pure function (for pure functions, see Section 2.2.2, p. 38). In the function, we can use #1,

#2, and #3 to denote the x, y, and z coordinates, respectively. In a parametric surface, we can also use #4

and #5  to  denote  the  parameters u  and v,  respectively.  A  useful  coloring  is  obtained  by  coloring
according to the value of z:

222 Mathematica Navigator



Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, ColorFunction Ø ÒD & êü
8Automatic, GrayLevel, "Rainbow"<

: , , >

8Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, ColorFunction Ø HHue@1 - Ò3D &LD,
Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
Ticks Ø None, ColorFunction Ø HRGBColor@Ò3, 1 - Ò3, 0D &LD,
ParametricPlot3D@8s Cos@tD Sin@sD, s Cos@sD Cos@tD, -s Sin@tD<, 8s, 0, 2 p<,
8t, 0, p<, Mesh Ø False, ColorFunction Ø HHue@Ò4 Ò5D &L, Boxed Ø False, Axes Ø FalseD<

: , , >

Here,  we  used  the  special  color  function "Rainbow".  To  see  a  list  of  other  color  functions,  execute

ColorData["Gradients"]. For ColorData, see Section 9.3.3, p. 304.

‡ Filling

(Filling s (Ÿ6)  Type of filling to use; examples of values: None, Axis, Bottom, Top, 0.3, True)
(FillingStyle s (Ÿ6)  Style of filling; examples of values: Opacity[0.5], Red)

Filling  may  be  useful  in  connection  with RegionFunction  to  make  an  unusual  plotting  region
clearer:

8Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, Filling Ø BottomD,
Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, Filling Ø Bottom,
RegionFunction Ø HHÒ1 - p ê 2L^2 + HÒ2 - p ê 2L^2 § Hp ê 2L^2 &LD<

: , >

Chapter 7  •  Graphics Options 223



‡ Mesh Lines

* Mesh s p  How many mesh lines should be drawn; examples of values: Automatic, 10, {5, 10},
Full, All, {{0, 1, 2}, {1, 2}}, None

MeshFunctions s p (Ÿ6)  How to determine the placement of the mesh lines; examples of values: {#1
&, #2 &} s, Automatic p, {#3 &}

MeshStyle s p  Style of mesh lines; examples of values: Automatic, Directive[Red, Thick]
(MeshShading s p (Ÿ6)  How to shade regions between mesh lines; examples of values: None,

{{Red,Green}, {Green, Red}})

If  the  value  of Mesh  is Full,  we  get  the  initial  sampling  mesh.  Value All  gives  the  final  sampling
mesh.

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None, Mesh Ø ÒD & êü 8Full, All, None<

: , , >

By defining the mesh function to be the z value, we can draw a combined surface and contour plot, as
is shown in the first plot below.

8Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None,
MeshFunctions Ø 8Ò3 &<, Mesh Ø 8Range@-0.9, 0.9, 0.2D<D,

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None,
MeshShading Ø 88Red, Green<, 8Green, Red<<D,

ParametricPlot3D@8Sin@sD Cos@tD, Sin@sD Sin@tD, 1 + Cos@sD<, 8s, 0, p<, 8t, 0, 2 p<,
Axes Ø False, Boxed Ø False, MeshStyle Ø Directive@Thickness@SmallD, WhiteDD<

: , , >

Next, we see three norm functions. Each plot contains a mesh curve where the norm gets the value 1:

224 Mathematica Navigator



Plot3D@Norm@8x, y<, ÒD, 8x, -1.5, 1.5<, 8y, -1.5, 1.5<,
PlotRange Ø 80, 3<, MeshFunctions Ø 8Ò3 &<, Mesh Ø 881<<,
BoxRatios Ø Automatic, ViewPoint Ø 81.1, -2.3, 2.4<D & êü 81, 2, ¶<

: , , >

‡ Exclusions and Region Function

Exclusions s p (Ÿ6)  The curves on the Ix, yM surface that are excluded in plotting; examples of

values: Automatic, None, {x + y ã 0}

(ExclusionsStyle s p (Ÿ6)  What to draw at excluded curves; examples of values: None,
Opacity[0.5], {Opacity[0.5], Directive[Red, Thick]})

The default is that nothing is drawn at excluded curves, as can be seen from the first plot shown next.
In the second plot, we ask not to exclude anything. In the third plot, we use a custom style to indicate
the exclusions. In the fourth plot, we use a special style for the boundary of the surface at the excluded
curve.

GraphicsRow@8Plot3D@Im@Log@x + I yDD, 8x, -1, 1<, 8y, -1, 1<, Ticks Ø NoneD,
Plot3D@Im@Log@x + I yDD, 8x, -1, 1<, 8y, -1, 1<, Ticks Ø None, Exclusions Ø NoneD,
Plot3D@Im@Log@x + I yDD, 8x, -1, 1<,
8y, -1, 1<, Ticks Ø None, ExclusionsStyle Ø Opacity@0.5DD,
Plot3D@Im@Log@x + I yDD, 8x, -1, 1<, 8y, -1, 1<, Ticks Ø None,
ExclusionsStyle Ø 8None, Directive@Red, ThickD<D<, ImageSize Ø 420D

Exclusions can be defined with equations:

Chapter 7  •  Graphics Options 225



8Plot3D@1 ê Hx + yL^3, 8x, -1, 1<, 8y, -1, 1<, Ticks Ø NoneD,
Plot3D@1 ê Hx + yL^3, 8x, -1, 1<, 8y, -1, 1<, Ticks Ø None, Exclusions Ø 8x + y ã 0<D<

: , >

RegionFunction s p (Ÿ6)  Specifies the region to include in the plot drawn; examples of values:
(True &), (#1^2 + #2^2 < 1 &)

With RegionFunction,  we  can  show  a  surface  at  a  region  defined  by  a  logical  combination  of
inequalities:

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Ticks Ø None,
RegionFunction Ø HHp ê 3L^2 < HÒ1 - p ê 2L^2 + HÒ2 - p ê 2L^2 § Hp ê 2L^2 &LD

‡ Plotting Algorithm

PlotPoints s p  Number of initial sampling points; examples of values: Automatic, 30, {30, 50}
MaxRecursion s p (Ÿ6)  The maximum number of recursive subdivisions allowed; examples of

values: Automatic, 3
WorkingPrecision s p (Ÿ6)  The precision used in computations; examples of values:

MachinePrecision, 20
(PerformanceGoal s p (Ÿ6)  What aspect of performance to try to optimize; examples of values:

$PerformanceGoal, "Quality", "Speed")
(EvaluationMonitor s p (Ÿ6)  Expression to evaluate at every function evaluation; examples of

values: None, Sow[{x, y, Sin[x y]}])

7.6  Options for Contour and Density Plots

7.6.1  Special Options

Contour and density plots  describe 3D functions,  but the plots  are like 2D plots.  Indeed, most options
and their default values of these commands are the same as those of Plot. Thus, we can mainly refer to
Sections  7.1  through  7.4  for  the  options.  Here,  it  may  suffice  to  mention  the  differences  between  the
default values of a few options and some new options of ContourPlot.

226 Mathematica Navigator



‡  Aspect Ratio

The default value of AspectRatio is 1/GoldenRatio for Plot but 1 for ContourPlot and DensityPlot.
Thus, the form of a contour or density plot is, by default, a square. If you want one unit in the x  and y
axes to have the same length, give the value Automatic for this option.

‡ Plot Range

Note  that  the  value  of PlotRange  in  a  contour  or  density  plot  is  given  as  for Plot3D.  Remember  that
high or low z values may be clipped. In a contour or density plot, the clipped parts appear as white or
dark blue regions and may easily remain unobserved. Use PlotRange Ø All to see all z values:

8ContourPlot@Exp@x yD, 8x, 0, 1.5<, 8y, 0, 1.5<D,
ContourPlot@Exp@x yD, 8x, 0, 1.5<, 8y, 0, 1.5<, PlotRange Ø AllD<

: , >

‡ Axes, Frame, and Ticks

A contour or density plot has, by default, a frame and no axes. Thus, ticks are set with FrameTicks and
not  with Ticks,  and x  and y  labels  are  set  with FrameLabel  and not  with AxesLabel.  If  the y  label  is
short,  the rotating of the label should be avoided by setting RotateLabel Ø False.  Axes can be useful
either in addition to the frame or in place of the frame:

8p1 = ContourPlot@-x^4 - 3 x^2 y - 5 y^2 - x - y, 8x, -1.6, 0.6<,
8y, -1.1, 0.6<, AspectRatio Ø Automatic, PlotRange Ø All, Contours Ø 24D,

Show@p1, Axes Ø TrueD,
Show@p1, Axes Ø True, Frame Ø FalseD<

: , , >

‡ Color Function

ColorFunction  How to color the regions between the contour lines (ContourPlot) or how to color
various values of the function (DensityPlot); examples of values: Automatic, GrayLevel,
"Rainbow", (Hue[1 - #] &), (RGBColor[#, 0, 1 - #] &)

(ColorFunctionScaling  Whether values provided for a color function are scaled to lie between 0
and 1 (True) or left as such (False))

Chapter 7  •  Graphics Options 227



ContourPlot  and DensityPlot  do  not  have  the PlotStyle  option.  Instead,  we  can  use  the
ColorFunction option:

ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, ColorFunction Ø ÒD & êü
8Automatic, GrayLevel, HRGBColor@Ò, 0, 1 - ÒD &L<

: , , >

DensityPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, ColorFunction Ø ÒD & êü
8GrayLevel, HRGBColor@Ò, 0, 1 - ÒD &L, HHue@0.85 H1 - ÒLD &L<

: , , >

From  the  last  density  plot  we  can  see  that  the  colors  are  not  smooth  enough.  A  setting  of,  for
example, PlotPoints Ø 50  would give  a  good result.  As an aside,  from the first  density plot I  get  the
strong impression of a surface seen above and lighted from northeast, but this interpretation is wrong:
The gray parts are not shadows but instead describe deep parts of the surface.

ContourPlot  and DensityPlot  have the BoundaryStyle  option (with default value None) to define
the style of the boundary of the plotted region.

‡ Special Options of ContourPlot

* Contours  Number of z values for which contour lines are to be drawn or a list of z values;
examples of values: Automatic, 10, {-2, -1, 0, 1, 2}

* ContourLines  Whether to draw the contour lines; possible values: True, False
ContourStyle  Style of the contour lines; examples of values: Automatic, Black
ContourLabels (Ÿ6)  How to label contour lines; examples of values: None, Automatic
* ContourShading  How to shade regions between the contour lines; examples of values: Automatic,

True, False

In the first plot that follows, we ask for five equally paced contours, whereas in the second plot we
define the contours explicitly. In the third plot, we ask not to draw the contour lines.

228 Mathematica Navigator



8ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, Contours Ø 5D,
ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, Contours Ø Range@-1, 1, 0.25DD,
ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, ContourLines Ø FalseD<

: , ,

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

>

In the first plot that follows, we define black to be the style of the contours. In the second plot, we ask
to label the contours. In the third plot, we ask not to use shading between the contour lines.

8ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, ContourStyle Ø BlackD,
ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, ContourLabels Ø AutomaticD,
ContourPlot@Cos@x yD Cos@xD, 8x, 0, p<, 8y, 0, p<, ContourShading -> FalseD<

:

0.0 0.5 1.0 1.5 2.0 2.5 3.0
0.0

0.5

1.0

1.5

2.0

2.5

3.0

, , >

Remember  that  by  moving  the  mouse  pointer  over  a  contour  plot  (without  pressing  the  mouse
button), we can see the constants corresponding to the contours.

Using evenly spaced contours, it may sometimes be difficult to get a good description of a function,
even with a large number of  contours.  The value of  the Contours  option can also be a function of the
minimum and maximum values of the function, and with such a function we can get better contours:

8ContourPlot@Hx - 1L^2 + 100 Hy - x^2L^2, 8x, -1, 1<,
8y, -1, 1<, ContourShading Ø False, Contours Ø 30, PlotRange Ø AllD,
ContourPlot@Hx - 1L^2 + 100 Hy - x^2L^2, 8x, -1, 1<,
8y, -1, 1<, ContourShading Ø False, PlotRange Ø All,
Contours Ø Function@8min, max<, Exp@Range@0, Log@maxD, Log@maxD ê 10DDDD<

: , >

Chapter 7  •  Graphics Options 229



‡ Example

For the following plot, we use several options to enhance it.

f = -x^4 - 3 x^2 y - 5 y^2 - x - y;
p = 8x, y< ê. FindMaximum@f, 8x, 0<, 8y, 0<DP2T
8-0.886324, -0.335671<
ContourPlot@f, 8x, -1.3, 0.1<, 8y, -0.8, 0.1<, Contours Ø 19,
AspectRatio Ø Automatic, PlotRegion Ø 880.01, 0.94<, 80.04, 0.96<<,
Background Ø Black, BaseStyle Ø 810, White<, ColorFunction Ø "Rainbow",
PlotLabel Ø Style@-x^4 - 3 x^2 y - 5 y^2 - x - y, Bold, 14D,
FrameTicks Ø 88pP1T, 0<, 8pP2T, 0<, None, None<,
FrameStyle Ø Thickness@MediumD, ImageSize Ø 400,
Epilog Ø 8PointSize@MediumD, Point@pD, Text@"Maximum point", p, 8-1.1, -1.4<D<D

230 Mathematica Navigator



8
Graphics for Data

Introduction 231

8.1  Basic Plots 232

8.1.1  Built-in Plots 232 ListPlot, ListLinePlot, ListLogPlot, ErrorListPlot, DateListPlot, etc.

8.1.2  Self-Made Plots 238 Graphics

8.1.3  Plots of Several Data Sets 242 ListPlot, ListLinePlot, Graphics

8.2  Scatter Plots 249

8.2.1  Scatter Plots 249 ListPlot, PairwiseScatterPlot

8.2.2  Quantile-Quantile Plots 252 QuantilePlot

8.3  Bar Charts 253

8.3.1  Bar Charts 253 BarChart, StackedBarChart, GeneralizedBarChart, etc.

8.3.2  Histograms 258 Histogram

8.3.3  Stem-and-Leaf Plots 259 StemLeafPlot

8.4  Other Plots 260

8.4.1  Dot Plots 260 dotPlot

8.4.2  Box-and-Whisker Plots 264 BoxWhiskerPlot

8.4.3  Pie Charts 266 PieChart

8.4.4  Vector Fields 266 ListVectorFieldPlot

8.5  Graph Plots 267

8.5.1  Graph Plots 267 GraphPlot, LayeredGraphPlot

8.5.2  Tree Plots 274 TreePlot

8.6  Plots for 3D Data 275

8.6.1  Plots for 3D Data 275 ListPlot3D, BarChart3D, ListDensityPlot, ListContourPlot, etc.

Introduction

“Data! data! data!” he cried impatiently. “I can’t
make bricks without clay.”~Sherlock Holmes

In this chapter,  we present ways to illustrate data with 2D and 3D graphics.  A basic situation encoun-
tered when plotting data is one or more time series: data sets with one dependent variable and time as
the  independent  variable.  Plotting  such  data  is  considered  in  Section  8.1.  The  basic  commands  are
ListPlot and ListLinePlot, but we can also easily use Graphics.

When we want to study the relationships between two or more dependent variables, the scatter plot
methods  of  Section  8.2  are  useful.  The  basic  approach,  with ListPlot  or PairwiseScatterPlot,  is  to
plot  one  variable  against  another  variable,  thereby  yielding  a  scatter  plot  or,  more  generally,  a  scatter
plot matrix. This method of pairing observations is also used in quantile-quantile plots.



Other  plotting  commands  for  data  include BarChart, Histograms, dotPlot, BoxWhiskerPlot,  and
PieChart.  These  are  considered  in  Sections  8.3  and  8.4.  New  in Mathematica  6  are GraphPlot,
LayeredGraphPlot, and TreePlot; they are addressed in Section 8.5.

For  3D  graphics, ListPlot3D, ListContourPlot,  and ListDensityPlot  make  up  one  collection  of
commands to be  tried.  An effective plot  may be a  3D bar chart  done with BarChart3D.  Also,  a  scatter
plot made with ListPointPlot3D may sometimes be effective.

In  Chapter  9,  we  consider  the  data  sets  that  come  with Mathematica.  There,  we  use  some  of  the
plotting  methods  presented  here.  The  data  sets  also  contain  some  original  graphics  such  as  chemical
diagrams, photos of astronomical objects, shapes of countries, flags, polyhedrons, graphs, lattices, knots,
and various test images.

Chapters 10 and 11 contain some manipulations of data. For example, we show how to interactively
and graphically study interpolation and approximation.

8.1  Basic Plots

8.1.1  Built-in Plots

‡ Basic Plots

ListPlot[data]  Plot points
ListLinePlot[data] (Ÿ6)  Plot joining lines
ListLinePlot[data, Mesh Ø All]  Plot joining lines and points

ListPlot[data, Filling Ø Axis]  Plot points and vertical lines (stems)
ListLinePlot[data, Filling Ø Axis]  Plot joining lines; fill area below the curve
ListLinePlot[data, Mesh Ø All, Filling Ø Axis]  Plot joining lines and points; fill area below

the curve

Data can be given in either of the following forms:

{y1, y2, … }  Plot the points {1, y1}, {2, y2}, …

{{x1, y1}, {x2, y2}, … }  Plot the given points

Instead of ListLinePlot[data], we can apply ListPlot[data, Joined Ø True]. As an example, we
plot 30 random numbers in all six ways:

SeedRandom@1D; data = Table@8x, 0.2 x + 2 RandomReal@D<, 8x, 0, 30<D;

8ListPlot@dataD,
ListLinePlot@dataD,
ListLinePlot@data, Mesh Ø AllD<

:

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

>

232 Mathematica Navigator



8ListPlot@data, Filling Ø AxisD,
ListLinePlot@data, Filling Ø AxisD,
ListLinePlot@data, Mesh Ø All, Filling Ø AxisD<

: , , >

The first of these six plots shows clearly the points and the second plot shows the path, but the third
shows clearly both the points and the path. The plots in the second row make the data somewhat more
concrete with the vertical lines or fills. A plot with vertical lines is able to clearly reveal possible lacking
observations because the lacking lines will  be so remarkable.  A plot with a fill  makes the shape of the
curve very clear.

‡ Defining Styles

Defining styles in ListPlot:
PlotStyle  Style of points
FillingStyle (Ÿ6)  Style of vertical lines

Defining styles in ListLinePlot:
PlotStyle  Style of joining lines
MeshStyle  Style of points
FillingStyle (Ÿ6)  Style of fills

A single style such as Red can be written as such, but several styles need either braces or Directive

(see Section 7.1.2, p. 188).

The  default  size  of  points  is AbsolutePointSize[3],  and  the  default  thickness  of  lines  is
AbsoluteThickness[0.5]. The default color is Hue[0.67, 0.6, 0.6] (a modified blue); in vertical lines,
this color is modified with Opacity[0.2] (thus, the blue color is very transparent and light).

Remember that we considered the styles of points and lines in Sections 6.2.1, p. 155, and 6.2.2, p. 156.

Styles are defined with so-called style directives. The following is a summary:

• For colors, we have directives such as Hue, RGBColor, GrayLevel, and Opacity; for some colors, we
also have ready-to-use names such as Red or LightBlue.

• Point size can be defined with PointSize or AbsolutePointSize.
• Thickness  of  lines  can  be  defined  with Thickness  or AbsoluteThickness;  we  also  have  special

thickness definitions Thin and Thick.
• Dashing of lines can be defined with Dashing  or AbsoluteDashing;  we also have special dashing

definitions Dotted, Dashed, and DotDashed.
• The  argument  of  the  directives  defining  point  size,  thickness,  or  dashing  can  also  be  one  of  the

special symbols Tiny, Small, Medium, or Large.

Chapter 8  •  Graphics for Data 233



‡ Examples

Here are some examples of using styles in ListPlot and ListLinePlot:

8ListPlot@data, PlotStyle Ø Directive@Red, PointSize@SmallDDD,
ListLinePlot@data, PlotStyle Ø Directive@Red, Thickness@MediumDDD,
ListLinePlot@data, PlotStyle Ø Directive@Blue, ThinD,
Mesh Ø All, MeshStyle Ø Directive@Red, PointSize@SmallDDD<

:

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

>

8ListPlot@data, PlotStyle Ø Directive@Red, PointSize@SmallDD,
Filling Ø Axis, FillingStyle Ø Directive@Blue, Thickness@SmallDDD,
ListLinePlot@data, PlotStyle Ø Directive@Red, Thickness@MediumDD,
Filling Ø Axis, FillingStyle Ø Lighter@Blue, 0.6DD,
ListLinePlot@data, PlotStyle Ø Directive@Blue, ThinD,
Mesh Ø All, MeshStyle Ø Directive@Red, PointSize@SmallDD,
Filling Ø Axis, FillingStyle Ø Directive@Opacity@0.3D, BlueDD<

:

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

, >

If  the  data  contain  both  negative  and positive  values,  we  can  define  a  different  filling  style  for  the
negative and positive values:

ListLinePlot@Table@8x, -4 + 0.2 x + 2 RandomReal@D<, 8x, 0, 30<D,
Filling Ø Axis, FillingStyle Ø 8LightBlue, LightRed<D

5 10 15 20 25 30

-3

-2

-1

1

2

3

‡ Options

The options and their default values for ListPlot are mostly the same as for Plot. However, ListPlot
has five options that Plot does not have. On the other hand, ListPlot does not have some options (e.g.,
PlotPoints and MaxRecursion) of Plot that control the sampling of the function to be plotted.

The options of ListPlot and ListLinePlot are otherwise the same, but the default value of Joined
is False for ListPlot and True for ListLinePlot.

Thus,  we  can  mainly  refer  to  Chapter  7  for  the  options  of ListPlot  and ListLinePlot.  However,
here are the five options that Plot does not have.

234 Mathematica Navigator



DataRange  The range of x values to assume; examples of values: Automatic, {0, 1}
InterpolationOrder  The degree of the polynomials joining the points; examples of values: None, 0,

1, 2, 3
Joined (Ÿ6)  Whether to join the points; possible values: False (the default for ListPlot), True (the

default for ListLinePlot)
MaxPlotPoints  The maximum number of points plotted; examples of values: ¶, 100
PlotMarkers (Ÿ6)  Markers to use for the points; examples of values: None, Automatic

In our previous examples, we had points with both x and y coordinates. If the data do not contain the

x  coordinates,  the x  coordinates  1,  2,  …  are  used.  If  we  want  to  determine  the x  coordinates,  we  can
either  add  the  coordinates  to  the  data  or  use  the DataRange  option.  Here  are  data  without  the x
coordinates:

SeedRandom@1D; data2 = Table@0.2 x + 2 RandomReal@D, 8x, 0, 30<D;

If we plot these data as such, the x coordinates will be 1, …, 31, not 0, …, 30. However, we can add the x
coordinates:

data3 = 8Range@0, 30D, data2<¨;

(Here,  means transpose; it can be written as ÂtrÂ.) We can also use the DataRange option:

8ListPlot@data3D, ListPlot@data2, DataRange Ø 80, 30<D<

:

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

>

With the InterpolationOrder option we can get piecewise constant, linear (the default), etc. curves
between the points. With the value 3, we get third-order spline interpolation:

t = RandomInteger@81, 6<, 820<D

84, 6, 3, 2, 1, 3, 1, 6, 5, 1, 1, 6, 5, 1, 1, 4, 1, 2, 3, 4<
ListLinePlot@t, InterpolationOrder Ø Ò, Mesh Ø FullD & êü 80, 1, 3<

:

5 10 15 20

2

3

4

5

6

,

5 10 15 20

2

3

4

5

6

,

5 10 15 20

1

2

3

4

5

6

>

For large data sets, the MaxPlotPoints  option may be used to reduce the number of points plotted.
The PlotMarkers option is useful in plotting several data sets, and so it is considered in Section 8.1.3, p.

244.

Chapter 8  •  Graphics for Data 235



‡ Tooltips

Tooltip[data] (Ÿ6)  Show the coordinates of data as a tooltip when the mouse pointer is moved
over the points of data

Tooltip[{xi, yi}, label]  Show label as a tooltip for point {xi, yi}

In the following plot, we can see the coordinates of a point if we move the mouse pointer over that
point:

ListLinePlot@Tooltip@dataD, Mesh Ø AllD

In the next plot, we can see labels of the form f @kD when we move the mouse pointer over the points:

dist = BinomialDistribution@20, 1 ê 2D;
t = Table@Tooltip@8k, PDF@dist, kD<, f@kDD, 8k, 0, 20<D;
ListPlot@t, Filling Ø AxisD

‡ Example

Generate 100 random points on the unit square:

SeedRandom@2D; xy = RandomReal@1, 8100, 2<D;

The task is to visit all of the points once in such a way that the length of the tour is the minimum. With
the following command, we can try to solve this problem:

tour = FindShortestTour@xyD

87.86367, 81, 16, 39, 32, 59, 68, 6, 96, 75, 29, 80, 19, 85, 38, 78, 21, 65, 92, 97, 57,
52, 53, 84, 17, 7, 70, 83, 89, 88, 26, 11, 47, 5, 95, 86, 79, 82, 30, 93, 48,
9, 77, 94, 55, 71, 10, 12, 41, 27, 31, 2, 22, 58, 14, 99, 91, 42, 64, 36, 33,
72, 50, 28, 69, 45, 40, 87, 60, 15, 25, 63, 34, 67, 13, 61, 20, 24, 4, 43, 46,
51, 23, 54, 100, 62, 98, 90, 8, 74, 56, 18, 66, 73, 44, 81, 76, 3, 35, 37, 49<<

The length of the tour find is 7.86. The tour goes through the 1st, 16th, …, 49th point. We show both the
points and the (at least near optimal) tour:

236 Mathematica Navigator



8ListPlot@xy, AspectRatio Ø 1D,
ListLinePlot@xyPtour êê LastT, Mesh Ø All, AspectRatio Ø 1D<

:

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

,

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

>

‡ Other Plots

ListLogPlot[data] (Ÿ6)  A plot of Log[yi] as a function of xi
ListLogLinearPlot[data] (Ÿ6)  A plot of yi as a function of Log[xi]
ListLogLogPlot[data] (Ÿ6)  A plot of Log[yi] as a function of Log[xi]

The data are given in the same form as they are for ListPlot.  The option Joined  can be used. In a
logarithmic scale, exponential data are close to a line:

SeedRandom@4D;
data = Table@8x, Exp@xD + RandomReal@8-0.5, 0.5<D<, 8x, 0.1, 2, 0.1<D;

ListLogPlot@dataD

0.5 1.0 1.5 2.0

5.0

2.0

3.0

1.5

7.0

In the ErrorBarPlots` package:

ErrorListPlot[data]  Show data by points with error bars

Examples of data forms:

{{y1, yerr1}, … }

{{x1, y1, yerr1}, … }

{{{x1, y1}, ErrorBar@8negerr1, poserr1<D}, … }

In the first two data forms, the error is shown by a vertical bar centered at {xi, yi} and having a total

length of two times the given error. In the third data form, there are different errors in the negative and
positive directions. For example,

data = Table@
8x, 1.5 + Sin@xD + RandomReal@8-0.2, 0.2<D, RandomReal@80, 0.3<D<, 8x, 0, 7, 0.2<D;

<< ErrorBarPlots`

Chapter 8  •  Graphics for Data 237



ErrorListPlot@data, AspectRatio Ø 0.4,
PlotRange Ø All, AxesOrigin Ø 80, 0<, ImageSize Ø 230D

1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

DateListPlot[{{date1, y1}, … }] (Ÿ6)  Plot points with dates as x coordinates

To try this command, let us examine financial data; see Section 9.2.2, p. 299. The stock price of ADY

from January 3, 2005, on has been as follows:

FinancialData@"ADY", "Jan. 3, 2005"D êê Short

8882005, 1, 3<, 4.61<, 882005, 1, 4<, 4.59<, á937à, 882008, 9, 25<, 9.75<<

Here is a plot of the price until now:

DateListPlot@FinancialData@"ADY", "Jan. 1, 2005"D,
ImageSize Ø 160, PlotStyle Ø PointSize@SmallDD

2005 2006 2007 2008
5

10

15

20

25

Look at the Documentation Center for more information about DateListPlot.

ListPolarPlot[radii] (Ÿ6)  Plot points equally spaced in angle at radii

8.1.2  Self-Made Plots

‡ Using Graphics

We have ListPlot  and ListLinePlot  to plot data. However, it  is very easy to plot data directly with

the graphics primitives Point and Line (see Sections 6.2.1, p. 155, and 6.2.2, p. 156). With Graphics we

collect  the primitives together and show the resulting plot (see Section 6.1.1,  p. 153).  Here are ways to

prepare four kinds of plots we encountered previously plus a plot where the points are shown as circles.

Graphics[Point[data]]  Points
Graphics[Line[data]]  Joining lines
Graphics[{Line[data], Point[data]}]  Joining lines and points
Graphics[{ Line[{{#P1T, 0}, #}] & /@ data, Point[data]}]  Vertical lines and points
Graphics[{Line[data], White, EdgeForm[Black],

 Disk[#, Offset[{1.5, 1.5}]] & /@ data}]  Joining lines and circles

238 Mathematica Navigator



These  commands require  that  the data points  contain both the x  and the y  coordinate.  We can add

some directives into the commands to get suitable styles for the plots. Also, we have to add the options
Axes Ø True  and AspectRatio Ø 1/GoldenRatio  to  get  similar  plots  as  we  get  with ListPlot  and
ListLinePlot (remember that Graphics has, by default, Axes Ø False and AspectRatio Ø Automatic).
In the following, we first save the default values of the options of Graphics  and then set some options
with SetOptions:

gropts = Options@GraphicsD;
SetOptions@Graphics, Axes Ø True,

AspectRatio Ø 1 ê GoldenRatio, AxesOrigin Ø 80, 0<D;

Now we try using Graphics:

SeedRandom@1D; data = Table@8x, 0.2 x + 2 RandomReal@D<, 8x, 0, 30<D;

8Graphics@8Red, PointSize@SmallD, Point@dataD<D,
Graphics@8Blue, Thickness@MediumD, Line@dataD<D<

:

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

>

8Graphics@
8Blue, Thickness@SmallD, Line@dataD, Red, PointSize@SmallD, Point@dataD<D,

Graphics@8Blue, Thickness@SmallD, Line@88ÒP1T, 0<, Ò<D & êü data,
Red, PointSize@SmallD, Point@dataD<D<

:

5 10 15 20 25 30

1

2

3

4

5

6

7

,

5 10 15 20 25 30

1

2

3

4

5

6

7

>

Similarly, we can plot the data with circles [circles are popular in scientific publications; for example,
Cleveland (1993) mainly uses circles]. If we used Circle, then the joining lines could be seen inside the
circles, which is not beautiful. Therefore, we use Disk because it has a filled inside (see Section 6.2.7, p.

166). In the following example, we define the disks to be white with red edges:

Graphics@8Blue, Line@dataD, White, EdgeForm@8Red, Thickness@MediumD<D,
Disk@Ò, Offset@81.5, 1.5<DD & êü data<, ImageSize Ø 180D

5 10 15 20 25 30

1

2

3

4

5

6

7

Here we expressed the radius of the disks with Offset to get true circles and not ellipses.

Chapter 8  •  Graphics for Data 239



‡  An Example

In  this  example,  we  consider  the  numbers  of  hare  pelts  sold  to  the  Hudson Bay Trading Company in
Canada from 1844 to 1934. These observations are from Burghes and Borrie (1981) (reproduced with the
permission of the authors). First, we read the numbers of hare pelts from a file. I have the data in a text
file called hare in a folder called MNData:

haredata = Import@"êUsersêheikkiêDocumentsêMNDataêhare", "Table"D

881844, 30<, 81845, 25<, 81847, 25<, 81848, 15<, 81849, 30<, 81850, 55<, 81851, 80<,
81852, 80<, 81853, 90<, 81854, 70<, 81855, 80<, 81856, 95<, 81857, 75<,
81858, 30<, 81859, 15<, 81860, 20<, 81861, 40<, 81862, 5<, 81863, 155<,
81864, 140<, 81865, 105<, 81866, 45<, 81867, 20<, 81868, 5<, 81869, 5<, 81870, 10<,
81871, 10<, 81872, 60<, 81873, 50<, 81874, 50<, 81875, 105<, 81876, 85<,
81877, 60<, 81878, 15<, 81879, 10<, 81880, 15<, 81881, 10<, 81882, 10<,
81883, 40<, 81884, 50<, 81885, 135<, 81886, 135<, 81887, 90<, 81888, 30<,
81889, 20<, 81890, 50<, 81891, 55<, 81892, 60<, 81893, 55<, 81894, 80<,
81895, 95<, 81896, 50<, 81897, 15<, 81898, 5<, 81899, 5<, 81900, 15<, 81901, 5<,
81902, 10<, 81903, 50<, 81904, 70<, 81906, 20<, 81909, 25<, 81910, 50<,
81911, 55<, 81912, 75<, 81913, 70<, 81914, 55<, 81915, 30<, 81916, 20<,
81917, 15<, 81918, 15<, 81919, 20<, 81920, 35<, 81921, 60<, 81922, 80<,
81923, 85<, 81924, 60<, 81925, 30<, 81926, 20<, 81927, 10<, 81928, 5<,
81929, 5<, 81930, 10<, 81931, 30<, 81932, 80<, 81933, 100<, 81934, 80<<

The file hare  can be found on the CD-ROM that comes with this book. For Import,  see Section 4.2.1, p.

100.  The  numbers  are  in  thousands  and  are  quoted  to  the  nearest  5000.  Observations  regarding  the

number of hare pelts are lacking for the years 1846, 1905, 1907, and 1908. We take the last 31 data points:

hdata = Take@haredata, -31D

881901, 5<, 81902, 10<, 81903, 50<, 81904, 70<, 81906, 20<, 81909, 25<, 81910, 50<,
81911, 55<, 81912, 75<, 81913, 70<, 81914, 55<, 81915, 30<, 81916, 20<,
81917, 15<, 81918, 15<, 81919, 20<, 81920, 35<, 81921, 60<, 81922, 80<,
81923, 85<, 81924, 60<, 81925, 30<, 81926, 20<, 81927, 10<, 81928, 5<,
81929, 5<, 81930, 10<, 81931, 30<, 81932, 80<, 81933, 100<, 81934, 80<<

Here are the data plotted in eight ways:

SetOptions@Graphics, Axes Ø True,
AspectRatio Ø 1 ê GoldenRatio, AxesOrigin Ø 81900, 0<, Ticks Ø NoneD;

circles = 8White, EdgeForm@BlackD, Disk@Ò, Offset@81.3, 1.3<DD & êü hdata<;
verticalLines = Line@88ÒP1T, 0<, Ò<D & êü hdata;

p1 = Graphics@8<, Axes Ø FalseD;
p2 = Graphics@circlesD;
p3 = Graphics@Point@hdataDD;

p4 = Graphics@Line@hdataDD;
p5 = Graphics@8Line@hdataD, circles<D;
p6 = Graphics@8Line@hdataD, Point@hdataD<D;

p7 = Graphics@verticalLinesD;
p8 = Graphics@8verticalLines, circles<D;
p9 = Graphics@8verticalLines, Point@hdataD<D;

Next, we show the plots as a grid. Note how only the plots with vertical lines are able to clearly reveal
the missing observations:

240 Mathematica Navigator



GraphicsGrid@88p1, p2, p3<, 8p4, p5, p6<, 8p7, p8, p9<<, ImageSize Ø 420, Axes Ø FalseD

‡ A Quality Plot

To get a plot of good quality for all of the hare pelt data, we define a smaller aspect ratio and our own
ticks:

p1 = Graphics@8Line@haredataD, Point@haredataD<,
AspectRatio Ø 0.2, Axes Ø True, AxesOrigin Ø 81843, 0<,
Ticks Ø 8Range@1850, 1930, 10D, Range@20, 140, 20D<, ImageSize Ø 420D

1850 1860 1870 1880 1890 1900 1910 1920 1930

20
40
60
80

100
120
140

Using a fill shows very clearly the shape of the data:

ListLinePlot@haredata, Mesh Ø All,
Filling Ø Axis, AspectRatio Ø 0.2, AxesOrigin Ø 81843, 0<,
Ticks Ø 8Range@1850, 1930, 10D, Range@20, 140, 20D<, ImageSize Ø 420D

Chapter 8  •  Graphics for Data 241



Generally, a plot can be considered to consist of some line segments that go up or down. The slope of a
segment  indicates  the orientation  of  the  segment.  For  example,  if  the  slope  is  1,  we  say  that  the  line
segment  has  an  orientation  of 45 ±.  The  orientations  of  the  segments  have  an  effect  on  how  well  the
information  contained  in  a  plot  can  be  perceived.  Typically,  the  judgments  of  a  curve  are  optimized
when the absolute values of  the orientations of  the line segments that  make up the curve are approxi-
mately 45 ±  (see Cleveland 1993, p. 89). The orientations can be adjusted by the aspect ratio of the plot.
Choosing the aspect ratio to center the absolute orientations on 45 ± is banking to 45 ±.

Banking to 45 ± in the previous plot would require an aspect ratio of approximately 0.05, but then the
plot becomes very low. As a compromise, we have chosen the value 0.2.

We go back to the default values of the options of Graphics:

SetOptions@Graphics, groptsD;

8.1.3  Plots of Several Data Sets

‡ Basic Ways to Plot Data

ListPlot[{data1, data2, … }] (Ÿ6)  Points
ListLinePlot[{data1, data2, … }] (Ÿ6)  Joining lines
ListLinePlot[{data1, data2, … }, Mesh Ø All] (Ÿ6)  Joining lines and points

ListPlot[{data1, data2, … }, Filling Ø True] (Ÿ6)  Points and vertical lines
ListLinePlot[{data1, data2, … }, Filling Ø True] (Ÿ6)  Points and fills between the curves
ListLinePlot[{data1, data2, … }, Filling Ø Axis] (Ÿ6)  Points and fills between the curves and

x axis

Joining Ø {True, False, … } (Ÿ6)  Points for some data sets are joined, for others not

ListPlot and ListLinePlot are also suitable for plotting several data sets. By default, the data sets
are identified with different colors; otherwise, each data set is plotted in the same way. The first, second,
third,  and fourth  data  sets  are  plotted  with  colors  resembling  blue,  purple,  brown,  and green,  respec-
tively. After that, the same colors are used slightly modified. (Note that in plots having joining lines and
points,  the points  are blue for  all  data sets;  only the color of  the joining lines changes.)  Here are some
examples:

SeedRandom@3D; data1 = Table@8x, 2 + 0.2 x - 3 RandomReal@D<, 8x, 0, 30<D;
data2 = Table@8x, 2.5 + 0.4 x + 3 RandomReal@D<, 8x, 0, 30<D;

8ListPlot@8data1, data2<D,
ListLinePlot@8data1, data2<D,
ListLinePlot@8data1, data2<, Mesh Ø AllD<

:

5 10 15 20 25 30

5

10

15

,

5 10 15 20 25 30

5

10

15

,

5 10 15 20 25 30

5

10

15

>

242 Mathematica Navigator



8ListPlot@8data1, data2<, Filling Ø TrueD,
ListLinePlot@8data1, data2<, Filling Ø TrueD,
ListLinePlot@8data1, data2<, Filling Ø Axis, Mesh Ø AllD<

: , , >

‡ Defining Styles

Defining styles in ListPlot:
PlotStyle  Style of points
PlotMarkers (Ÿ6)  Markers to use for the data sets (enabling other markers besides points)
FillingStyle (Ÿ6)  Style of vertical lines

Defining styles in ListLinePlot:
PlotStyle  Style of joining lines
MeshStyle  Style of points (same style for all data sets)
PlotMarkers (Ÿ6)  Markers to use for the data sets (enabling other markers besides points and

allowing different styles for the data sets)
FillingStyle (Ÿ6)  Style of fills

First,  we  consider  defining  styles  of  points  and  lines  with PlotStyle  and MeshStyle.  Later,  we
consider the use of PlotMarkers and FillingStyle.

‡ Styles of Points and Lines

In our first example, we show how to define styles of points in ListPlot:

GraphicsRow@ListPlot@8data1, data2<, PlotStyle Ø ÒD & êü 8
Black,
8Gray, Black<,
Directive@Gray, PointSize@SmallDD,
8Directive@Gray, PointSize@SmallDD, Directive@Black, PointSize@SmallDD<

<, ImageSize Ø 400D

5 10 15 20 25 30

5

10

15

5 10 15 20 25 30

5

10

15

5 10 15 20 25 30

5

10

15

5 10 15 20 25 30

5

10

15

Similarly, we can define the style of joining lines with PlotStyle:

GraphicsRow@ListLinePlot@8data1, data2<, PlotStyle Ø ÒD & êü 8
Thick, 8Black, Thick<, Directive@Black, ThickD,
8Directive@Gray, ThickD, Directive@Black, ThickD<<, ImageSize Ø 400D

0 5 10 15 20 25 30

5

10

15

0 5 10 15 20 25 30

5

10

15

0 5 10 15 20 25 30

5

10

15

0 5 10 15 20 25 30

5

10

15

Chapter 8  •  Graphics for Data 243



To  give  styles  for  points  in  plots  containing  both  points  and  joining  lines,  we  can  use MeshStyle;
unfortunately,  however,  with  this  option  we  cannot  define  different  styles  of  points  for  each  data  set.
Indeed, the directives given apply for all data sets:

ListLinePlot@8data1, data2<, Mesh Ø All, MeshStyle Ø ÒD & êü
8Black, Directive@Black, PointSize@SmallDD<

:

5 10 15 20 25 30

5

10

15

,

5 10 15 20 25 30

5

10

15

>

To  get  different  styles  of  points  for  each  data  set,  we  need  the PlotMarkers  option.  This  option  is
explained next.

‡ Plot Markers

Normally, if we use ListPlot or if we use ListLinePlot with Mesh Ø All, each data set is plotted with
the same symbol, point; only the color of the points differs between the data sets. This is a good way to
show the data sets on the screen and when printed with a color printer. When printed with a grayscale
printer, the colors may not be easily distinguished. Then we can use different symbols for the data sets
with the PlotMarkers option.

PlotMarkers (Ÿ6)  Markers to use for the points; examples of values: None, Automatic,
{Automatic, Tiny}, {Automatic, 10}, {"Ê", "Á"}, {{"Ê", 10}, {"Á", 10}}, {{gr1, 0.08},
{gr2, 0.08}}

The default  value of PlotMarkers  is None,  meaning that  all  data sets  are plotted with points.  If  we
use the value Automatic, then the first five data sets are plotted with the following filled symbols: blue
disk, purple square, brown diamond, green upward triangle, and blue downward triangle. If more data
sets  are  plotted,  the  same  symbols  are  used  unfilled.  The  value  of  the  option  can  also  be  of  the  form
{Automatic, size},  where  the  size  of  the  symbol  refers  to  font  size;  for  the  size,  we  can also  use  the
special symbols Tiny, Small, Medium, and Large.

The value of the option can also be a list of symbols such as {"Ê", "Á"}. Such symbols can be picked
from the SpecialCharacters  palette or typed, for example, as \[FilledCircle] or \[EmptyCircle]. The size of
the symbols can be told as in {{"Ê", 10}, {"Á", 10}}.

In  addition,  a  symbol  can be  a  graphic  we have created ourselves.  Now the size of  the symbol  is  a
fraction of the width of the plot.

First, we use the automatic symbols:

SeedRandom@3D; data1 = Table@8x, 2 + 0.2 x - 3 RandomReal@D<, 8x, 0, 10<D;
data2 = Table@8x, 2.5 + 0.4 x + 3 RandomReal@D<, 8x, 0, 10<D;

244 Mathematica Navigator



ListPlot@8data1, data2<, PlotMarkers Ø ÒD & êü
8Automatic, 8Automatic, Tiny<, 8Automatic, 10<<

:

Ê

Ê
Ê

Ê Ê
Ê Ê Ê

Ê

Ê Ê

‡

‡

‡ ‡

‡

‡ ‡

‡
‡

‡
‡

2 4 6 8 10

2

4

6

8

,

Ê

Ê

Ê

Ê Ê

Ê Ê
Ê

Ê

Ê Ê

‡

‡

‡
‡

‡

‡ ‡

‡
‡

‡

‡

2 4 6 8 10

2

4

6

8

,

Ê

Ê
Ê

Ê Ê
Ê Ê Ê

Ê

Ê Ê

‡

‡

‡ ‡

‡
‡ ‡

‡ ‡

‡
‡

2 4 6 8 10

2

4

6

8

>

The size of the symbol is defined with the PlotMarkers option, but the color can be defined with the
PlotStyle option:

ListPlot@8data1, data2<, PlotMarkers Ø Automatic, PlotStyle Ø ÒD & êü
8Black, 8Red, Blue<<

:

Ê

Ê
Ê

Ê Ê
Ê Ê Ê

Ê

Ê Ê

‡

‡

‡ ‡

‡

‡ ‡

‡
‡

‡
‡

2 4 6 8 10

2

4

6

8

,

Ê

Ê
Ê

Ê Ê
Ê Ê Ê

Ê

Ê Ê

‡

‡

‡ ‡

‡

‡ ‡

‡
‡

‡
‡

2 4 6 8 10

2

4

6

8

>

Next, we use special symbols:

ListPlot@8data1, data2<, PlotMarkers Ø ÒD & êü
88"Á", "Ê"<, 88"Ï", 8<, 8"Ê", 8<<, 8"1", "2"<<

:

Á

Á

Á

Á Á

Á Á
Á

Á

Á Á

Ê

Ê

Ê Ê

Ê

Ê Ê

Ê
Ê

Ê

Ê

2 4 6 8 10

2

4

6

8

,

Ï

Ï
Ï

Ï Ï
Ï Ï Ï

Ï

Ï Ï

Ê

Ê

Ê Ê

Ê

Ê Ê

Ê
Ê

Ê
Ê

2 4 6 8 10

2

4

6

8

,

1

1
1

1 1
1 1 1

1

1 1

2

2

2 2

2
2 2

2 2

2
2

2 4 6 8 10

2

4

6

8

>

Lastly, we define two symbols with Graphics:

gr1 = Graphics@8Blue, Disk@D<D;
gr2 = Graphics@8EdgeForm@8Red, Thickness@MediumD<D, White, Disk@D<D;

8ListPlot@8data1, data2<, PlotMarkers Ø 88gr1, 0.07<, 8gr2, 0.07<<D,
ListLinePlot@8data1, data2<, PlotMarkers Ø 88gr1, 0.07<, 8gr2, 0.07<<D<

:

2 4 6 8 10

2

4

6

8

,

2 4 6 8 10

2

4

6

8

>

Chapter 8  •  Graphics for Data 245



‡ Styles of Fills

To give styles for the vertical lines or for the fill between two data sets, use FillingStyle:

8ListPlot@8data1, data2<, Filling Ø True, FillingStyle Ø BlackD,
ListPlot@8data1, data2<, Filling Ø True,
FillingStyle Ø Directive@Black, Thickness@TinyDDD,

ListLinePlot@8data1, data2<, Filling Ø True,
FillingStyle Ø Directive@Opacity@0.3D, BrownDD<

:

2 4 6 8 10

2

4

6

8

,

2 4 6 8 10

2

4

6

8

, >

If we want to define styles for more than one filling, the styles have to be defined within the Filling

option:

Filling Ø {{1 Ø {Axis, style1}, {2 Ø {{1}, style2}, … }

8ListPlot@8data1, data2<, Filling Ø 81 Ø 8Axis, Green<, 2 Ø 881<, Blue<<D,
ListLinePlot@8data1, data2<, Filling Ø 81 Ø 8Axis, Directive@Opacity@0.3D, GreenD<,

2 Ø 881<, Directive@Opacity@0.3D, BlueD<<D<

:

2 4 6 8 10

2

4

6

8

, >

Next, we plot the cumulative sums of three data sets:

data1 = RandomReal@81, 2<, 820<D;
data2 = RandomReal@81, 2<, 820<D;
data3 = RandomReal@81, 2<, 820<D;

ListLinePlot@Accumulate@8data1, data2, data3<D,
Mesh Ø All, Filling Ø Ò, AxesOrigin Ø 80, 0<D & êü

8Axis, 81 Ø 8Axis, LightBlue<, 2 Ø 881<, LightGreen<, 3 Ø 882<, LightRed<<<

: ,

5 10 15 20

1

2

3

4

5

>

‡ Example

We consider again the numbers of hare pelts sold to the Hudson Bay Trading Company in Canada from

1844 to 1934;  this example was examined in Section 8.1.2,  p. 240.  We first  use the default symbols and

line styles but somewhat reduce the size of the points:

246 Mathematica Navigator



haredata = Import@"êUsersêheikkiêDocumentsêMNDataêhare", "Table"D;
lynxdata = Import@"êUsersêheikkiêDocumentsêMNDataêlynx", "Table"D
881844, 6<, 81845, 14<, 81846, 22<, 81847, 36<, 81848, 29<, 81849, 7<,
81850, 2<, 81851, 1<, 81852, 1<, 81853, 1<, 81854, 5<, 81855, 13<, 81856, 16<,
81857, 25<, 81858, 14<, 81859, 8<, 81860, 3<, 81861, 2<, 81862, 1<, 81863, 3<,
81864, 10<, 81865, 27<, 81866, 58<, 81867, 30<, 81868, 26<, 81869, 9<,
81870, 4<, 81871, 2<, 81872, 2<, 81873, 6<, 81874, 10<, 81875, 26<, 81876, 29<,
81877, 21<, 81878, 11<, 81879, 10<, 81880, 5<, 81881, 3<, 81882, 5<,
81883, 16<, 81884, 42<, 81885, 64<, 81886, 63<, 81887, 32<, 81888, 15<,
81889, 7<, 81890, 3<, 81891, 4<, 81897, 15<, 81898, 7<, 81899, 2<, 81900, 3<,
81901, 5<, 81902, 14<, 81903, 27<, 81904, 47<, 81905, 54<, 81906, 29<,
81907, 7<, 81908, 2<, 81909, 2<, 81910, 4<, 81911, 10<, 81912, 14<,
81913, 19<, 81915, 8<, 81916, 9<, 81917, 2<, 81918, 1<, 81919, 1<, 81920, 2<,
81921, 4<, 81922, 4<, 81923, 8<, 81924, 7<, 81925, 9<, 81926, 7<, 81927, 4<,
81928, 3<, 81929, 2<, 81930, 3<, 81931, 3<, 81932, 5<, 81933, 7<, 81934, 7<<
opts = Sequence@8AspectRatio Ø 0.2, AxesOrigin Ø 81843, 0<,

Ticks Ø 8Range@1850, 1930, 10D, Range@20, 140, 20D<, ImageSize Ø 420<D;

ListLinePlot@8haredata, lynxdata<,
Mesh Ø All, MeshStyle Ø AbsolutePointSize@2.3D, optsD

1850 1860 1870 1880 1890 1900 1910 1920 1930

20

40

60

80

100

120

140

Both hare and lynx seem to have a cycle of approximately 10 years. More than 90% of the diet of the
lynx is hare. When there are few hares available, lynx starve rather than eat other species. The two data
sets  are  not  very  clearly  distinguished  in  the  previous  plot  because  the  color  and  the  symbol  of  the
points are the same for both data sets (the color of the lines is different, however). Next, we use our own
symbols:

gr1 = Graphics@8Black, Disk@D<D;
gr2 = Graphics@8EdgeForm@BlackD, White, Disk@D<D;

ListLinePlot@8haredata, lynxdata<, Mesh Ø All, opts,
PlotStyle Ø Black, PlotMarkers Ø 88gr1, 0.038<, 8gr2, 0.036<<D

1850 1860 1870 1880 1890 1900 1910 1920 1930

20

40

60

80

100

120

140

Now  the  two  data  sets  can  be  seen  more  clearly  (note  that  we  have  made  the  size  of  the  black  disks
slightly larger than the size of the circles so that both seem to be approximately the same size). A filled
plot also gives a good illustration:

Chapter 8  •  Graphics for Data 247



ListLinePlot@8haredata, lynxdata<, Mesh Ø All, opts, PlotStyle Ø Black,
Filling Ø Axis, PlotMarkers Ø 88gr1, 0.038<, 8gr2, 0.036<<D

‡ Self-Made Plotting

Plotting  several  data  sets  with Graphics,  using  the  primitives Line, Point,  and Disk  with  suitable
directives, is very straightforward:

Graphics@8Line@haredataD, Line@lynxdataD,
AbsolutePointSize@2.5D, Point@haredataD, White,
EdgeForm@BlackD, Disk@Ò, Offset@81, 1<DD & êü lynxdata, Black,
Text@"hare", 81936, 80<, 8-1, 0<D, Text@"lynx", 81936, 9<, 8-1, 0<D<,
Axes Ø True, opts, PlotRange Ø 881837, 1940<, All<D

hare

lynx

1850 1860 1870 1880 1890 1900 1910 1920 1930

20

40

60

80

100

120

140

‡ A Phase Plot

Until  now, we have plotted two data sets~Hx1, x2, …L  and Iy1, y2, …M~as  time series.  Another kind of

plot is obtained by plotting the pairs Ixi, yiM. In this way, we get a plot that is analogous to a phase plot

of the solution of a pair of differential equations (see Section 26.3.2, p. 855). For the years 1909 to 1934,

the numbers of hare and lynx pelts are as follows (the observation for the year 1914 is lacking):

harelynx = 8825, 2<, 850, 4<, 855, 10<, 875, 14<, 870, 19<, 830, 8<, 820, 9<, 815, 2<,
815, 1<, 820, 1<, 835, 2<, 860, 4<, 880, 4<, 885, 8<, 860, 7<, 830, 9<, 820, 7<,
810, 4<, 85, 3<, 85, 2<, 810, 3<, 830, 3<, 880, 5<, 8100, 7<, 880, 7<<;

We construct a phase plot:

ListLinePlot@harelynx, Mesh Ø All,
Epilog Ø 8AbsolutePointSize@5D, Hue@0D, Point@First@harelynxDD<,
AxesLabel Ø 8"hare", "lynx"<, ImageSize Ø 200D

20 40 60 80 100
hare

5

10

15

lynx

248 Mathematica Navigator



The starting point H25, 2L is red and larger than the other points. We can see a counterclockwise cycle;
this pattern is typical for a predator-prey system.

8.2  Scatter Plots

8.2.1  Scatter Plots

Thus  far,  we  have  presented  plotting  methods  for  showing  each  dependent  variable  separately,
typically as time series. Now we present some plotting methods that show two or even more dependent
variables  in  the  same  plot.  Such  plots  are  useful  when  studying  relationships  among  a  number  of
dependent variables. We study scatter plots and quantile-quantile plots.

In  a scatter  plot,  we  plot  one  variable  against  another  variable.  Such  a  plot  may  yield  valuable
information about the connections between the variables. A pairwise scatter plot, which is also called a
scatter  plot  matrix  or  a  correlation  plot,  is  a  collection  of  plots  in  which  each plot  shows one variable
against  another  variable.  A  scatter  plot  matrix  is  among  the  best  ways  to  illustrate  multidimensional
data.

‡ Example 1

As  an  example,  we  consider  the  data  file environmental,  which  contains  111  observations  of  ozone,
radiation, temperature, and wind in New York City from May to September of 1973. The data are from a
collection  of  data  sets  in http://lib.stat.cmu.edu/S/visualizing.data.  All  of  the  data  are  visualized  in
Cleveland (1993), and the data sets are also on the CD-ROM that comes with this book (the data sets are
reproduced  with  the  permission  of  the  publisher,  Hobart  Press).  We  also  consider  the  environmental

data set in Section 30.5.3, p. 1038, when presenting local regression. On my computer, the environmental

data are in a text file environmental  in a folder visdata. First, we read the data (Rest drops the first row

containing the headings of the columns; for reading data, see Section 4.2.1, p. 100):

Style@data = Rest@
Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêenvironmental", "Table"DD, 6D

881, 41, 190, 67, 7.4<, 82, 36, 118, 72, 8.<, 83, 12, 149, 74, 12.6<, 84, 18, 313, 62, 11.5<, 85, 23, 299, 65, 8.6<,
86, 19, 99, 59, 13.8<, 87, 8, 19, 61, 20.1<, 88, 16, 256, 69, 9.7<, 89, 11, 290, 66, 9.2<, 810, 14, 274, 68, 10.9<,
811, 18, 65, 58, 13.2<, 812, 14, 334, 64, 11.5<, 813, 34, 307, 66, 12.<, 814, 6, 78, 57, 18.4<, 815, 30, 322, 68, 11.5<,
816, 11, 44, 62, 9.7<, 817, 1, 8, 59, 9.7<, 818, 11, 320, 73, 16.6<, 819, 4, 25, 61, 9.7<, 820, 32, 92, 61, 12.<, 821, 23, 13, 67, 12.<,
822, 45, 252, 81, 14.9<, 823, 115, 223, 79, 5.7<, 824, 37, 279, 76, 7.4<, 825, 29, 127, 82, 9.7<, 826, 71, 291, 90, 13.8<,
827, 39, 323, 87, 11.5<, 828, 23, 148, 82, 8.<, 829, 21, 191, 77, 14.9<, 830, 37, 284, 72, 20.7<, 831, 20, 37, 65, 9.2<,
832, 12, 120, 73, 11.5<, 833, 13, 137, 76, 10.3<, 834, 135, 269, 84, 4.<, 835, 49, 248, 85, 9.2<, 836, 32, 236, 81, 9.2<,
837, 64, 175, 83, 4.6<, 838, 40, 314, 83, 10.9<, 839, 77, 276, 88, 5.1<, 840, 97, 267, 92, 6.3<, 841, 97, 272, 92, 5.7<,
842, 85, 175, 89, 7.4<, 843, 10, 264, 73, 14.3<, 844, 27, 175, 81, 14.9<, 845, 7, 48, 80, 14.3<, 846, 48, 260, 81, 6.9<,
847, 35, 274, 82, 10.3<, 848, 61, 285, 84, 6.3<, 849, 79, 187, 87, 5.1<, 850, 63, 220, 85, 11.5<, 851, 16, 7, 74, 6.9<,
852, 80, 294, 86, 8.6<, 853, 108, 223, 85, 8.<, 854, 20, 81, 82, 8.6<, 855, 52, 82, 86, 12.<, 856, 82, 213, 88, 7.4<,
857, 50, 275, 86, 7.4<, 858, 64, 253, 83, 7.4<, 859, 59, 254, 81, 9.2<, 860, 39, 83, 81, 6.9<, 861, 9, 24, 81, 13.8<,
862, 16, 77, 82, 7.4<, 863, 122, 255, 89, 4.<, 864, 89, 229, 90, 10.3<, 865, 110, 207, 90, 8.<, 866, 44, 192, 86, 11.5<,
867, 28, 273, 82, 11.5<, 868, 65, 157, 80, 9.7<, 869, 22, 71, 77, 10.3<, 870, 59, 51, 79, 6.3<, 871, 23, 115, 76, 7.4<,
872, 31, 244, 78, 10.9<, 873, 44, 190, 78, 10.3<, 874, 21, 259, 77, 15.5<, 875, 9, 36, 72, 14.3<, 876, 45, 212, 79, 9.7<,
877, 168, 238, 81, 3.4<, 878, 73, 215, 86, 8.<, 879, 76, 203, 97, 9.7<, 880, 118, 225, 94, 2.3<, 881, 84, 237, 96, 6.3<,
882, 85, 188, 94, 6.3<, 883, 96, 167, 91, 6.9<, 884, 78, 197, 92, 5.1<, 885, 73, 183, 93, 2.8<, 886, 91, 189, 93, 4.6<,
887, 47, 95, 87, 7.4<, 888, 32, 92, 84, 15.5<, 889, 20, 252, 80, 10.9<, 890, 23, 220, 78, 10.3<, 891, 21, 230, 75, 10.9<,
892, 24, 259, 73, 9.7<, 893, 44, 236, 81, 14.9<, 894, 21, 259, 76, 15.5<, 895, 28, 238, 77, 6.3<, 896, 9, 24, 71, 10.9<,
897, 13, 112, 71, 11.5<, 898, 46, 237, 78, 6.9<, 899, 18, 224, 67, 13.8<, 8100, 13, 27, 76, 10.3<, 8101, 24, 238, 68, 10.3<,
8102, 16, 201, 82, 8.<, 8103, 13, 238, 64, 12.6<, 8104, 23, 14, 71, 9.2<, 8105, 36, 139, 81, 10.3<, 8106, 7, 49, 69, 10.3<,
8107, 14, 20, 63, 16.6<, 8108, 30, 193, 70, 6.9<, 8109, 14, 191, 75, 14.3<, 8110, 18, 131, 76, 8.<, 8111, 20, 223, 68, 11.5<<

Extract the columns of the data:

8no, ozone, radiation, temperature, wind< = data¨;

We are interested in how ozone depends on the other variables. Thus, we plot ozone against radiation,
temperature, and wind:

Chapter 8  •  Graphics for Data 249



GraphicsRowA9ListPlotA8radiation, ozone<¨, PlotStyle Ø PointSize@SmallD,

Frame Ø True, FrameLabel Ø 8"radiation", "ozone"<E,

ListPlotA8temperature, ozone<¨, PlotStyle Ø PointSize@SmallD,

Frame Ø True, FrameLabel Ø 8"temperature", None<E,

ListPlotA8wind, ozone<¨, PlotStyle Ø PointSize@SmallD, Frame Ø True,

FrameLabel Ø 8"wind", None<, Axes Ø FalseE=, ImageSize Ø 420, Spacings Ø -40E

0 50 100 150 200 250 300
0

50

100

150

radiation

oz
on

e

60 70 80 90
0

50

100

150

temperature
0 5 10 15 20

0

50

100

150

wind

We can see that ozone values are high when radiation or temperature is high (a positive correlation)
or wind is low (a negative correlation); however, a high value of radiation does not necessarily mean a
high ozone value.

‡ Example 2

With CountryData  (see Section  9.2.1,  p. 293),  we  can  study  many  properties  of  countries.  Here,  we

investigate life expectancy against birth rate fraction and literacy fraction:

co = CountryData@"Countries"D;
birth = Tooltip@8CountryData@Ò, "BirthRateFraction"D,

CountryData@Ò, "LifeExpectancy"D<, ÒD & êü co;
literacy = Tooltip@8CountryData@Ò, "LiteracyFraction"D,

CountryData@Ò, "LifeExpectancy"D<, ÒD & êü co;

The corresponding scatter plots are as follows:

GraphicsRow@8ListPlot@birth, Frame Ø True, AxesOrigin Ø 80, 30<,
FrameLabel Ø 8"Birth rate fraction", "Life expectancy"<D,

ListPlot@literacy, Frame Ø True, AxesOrigin Ø 80, 30<,
FrameLabel Ø 8"Literacy fraction", None<D<, ImageSize Ø 420, Spacings Ø -10D

The  life  expectancy  is  higher  the  lower  the  birth  rate  or  the  higher  the  literacy  fraction.  By  using
Tooltip, the plots have the property that the names of the countries can be seen by moving the mouse
(without pressing a button) over the points.

250 Mathematica Navigator



‡ Example 3

In Example 2, we used Tootip to show the countries corresponding to the points. Such labels cannot be
seen in a printed document. Here, we show how we can easily produce a plot with explicit labels.

As  an  example,  we  plot  the  body  and  brain  weights  of  some  animals.  The  data  are  from the  same
visdata collection as we considered in Example 1; the collection also comes on the CD-ROM of this book.
On my computer, the animal data are in a text file modAnimal in a folder visdata. (Note that the original
file animal  contained spaces in the names of the animals, but we have now deleted the spaces.) We read
the file and take only rows 38 through 48:

data = Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêmodAnimal", "Table"D;

8no, name, body, brain< = Take@data, 838, 48<D¨
8837, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47<,
8RoeDeer, Goat, Kangaroo, GrayWolf, Sheep, GiantArmadillo,

GraySeal, Jaguar, BrazilianTapir, Donkey, Pig<, 814 830, 27 660,
35 000, 36 330, 55 500, 60 000, 85 000, 100 000, 160 000, 187 100, 192 000<,

898.2, 115., 56., 119.5, 175., 81., 325., 157., 169., 419., 180.<<
We use Graphics  to get  a  plot with labels for  the points.  As can be seen, overlapping labels may be a
problem with labeled plots:

GraphicsA9PointA8body, brain<¨E,

MapThreadAText@Ò1, Ò2, 8-1.3, 0<D &, 9name, 8body, brain<¨=E=, Frame Ø True,

FrameLabel Ø 8"Body weight", "Brain weight"<, AspectRatio Ø 1 ê GoldenRatio,
PlotRange Ø 880, 225 000<, 80, 460<<, ImageSize Ø 250E

RoeDeerGoat

Kangaroo

GrayWolf

Sheep

GiantArmadillo

GraySeal

Jaguar BrazilianTapir

Donkey

Pig

0 50000 100000 150000 200000
0

100

200

300

400

Body weight

B
ra

in
w

ei
gh

t

‡ Scatter Plot Matrix

In the StatisticalPlots` package:

PairwiseScatterPlot[data]  Plot multidimensional data as a pairwise scatter plot

Options:
DataLabels  Labels for the variables; examples of values: None, {"X", "Y", "Z"}
DataTicks  Ticks for the variables; examples of values: None, Automatic
DataSpacing  Space between the subgraphs; examples of values: 0, 0.05
DataRanges  Ranges for the data; default value: All
PlotDirection  Direction in which scatter plots are generated; examples of values: {Right, Down},

{Right, Up}

PlotStyle  Style of the points; examples of values: Automatic, PointSize[Small]

Chapter 8  •  Graphics for Data 251



As an example, we consider the data of Example 1:

<< StatisticalPlots`

PairwiseScatterPlotA
8radiation, temperature, wind, ozone<¨, PlotStyle Ø PointSize@SmallD,
DataLabels Ø 8"radiation", "temperature", "wind", "ozone"<,

PlotDirection Ø 8Right, Up<, ImageSize Ø 330E

radiation temperature wind ozone

radiation

temperature

wind

ozone

Of  these  16  plots,  we  plotted,  in  Example  1,  the  first  three  in  the  top  row.  For  more  about  the
statistical plots package, look at StatisticalPlotsêguideêStatisticalPlotsPackage.

8.2.2  Quantile-Quantile Plots

In the StatisticalPlots` package:

QuantilePlot[data1, data2]  Create a quantile-quantile plot

Options:
PlotMarkers  Markers for the points; examples of values: Automatic, {Automatic, 3}, None

ReferenceLineStyle  Style of the reference line; examples of values: Automatic, None

Joined  Whether the points are joined with lines; possible values: False, True

PlotStyle  Style of the joining line; default value: Automatic

A quantile-quantile  plot  or a q-q plot  (see Cleveland 1993,  p. 21) is a powerful method for comparing
the  distributions  of  two or  more sets  of  univariate  data.  The plot  is  a  special  scatter  plot:  It  shows the
quantiles  of  one data set  against the quantiles  of  another data set.  If  the resulting points are close to a
line  with  a  slope  of  1,  this  supports  the  hypothesis  that  the  distributions  of  the  two  data  sets  are  the
same.

252 Mathematica Navigator



QuantilePlot  first  determines  the  interpolated  quantiles  of  the  shorter  of  the  two  data  sets  at  the
equivalent positions in the longer data set. It then plots the two sets of quantiles against each other.

As  an  example,  generate  data  sets  from  a  Student t-distribution  with  parameter  10  and  from  the
standard normal distribution:

SeedRandom@2D; ran1 = RandomReal@StudentTDistribution@10D, 82000<D;
ran2 = RandomReal@NormalDistribution@0, 1D, 82000<D;

How close are the two distributions? Prepare a q-q plot:

QuantilePlot@ran1, ran2, PlotMarkers Ø 8Automatic, 2<, ImageSize Ø 200D

Ê
Ê

Ê
Ê

Ê
ÊÊ

Ê

Ê
Ê ÊÊ

Ê ÊÊÊ
ÊÊÊÊ

ÊÊÊÊ
ÊÊÊ
ÊÊ
ÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊ

ÊÊÊÊÊ
ÊÊÊÊÊ

ÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊ
ÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ

ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊÊÊ
ÊÊÊÊÊ
ÊÊÊÊÊÊÊÊÊ
ÊÊÊÊÊÊ
ÊÊÊÊÊ
ÊÊÊÊ
ÊÊÊÊÊÊÊ

ÊÊÊÊÊÊÊÊÊ
ÊÊÊÊ

Ê
ÊÊÊÊÊ

Ê ÊÊ
Ê

Ê Ê
ÊÊ
Ê
ÊÊ

Ê

Ê Ê

-4 -2 2 4

-3

-2

-1

1

2

3

We  see  that  the  points  are  not  sufficiently  close  to  the  reference  line  for  supporting  the  hypothesis
that  the  distributions  are  the  same.  Indeed,  although  we  know  that  the t-distribution  approaches  the
normal distribution as the parameter approaches infinity, the value 10 simply is not large enough. The
tails of the t-distribution are fatter than the tails of the normal distribution.

8.3  Bar Charts

8.3.1  Bar Charts

‡ Bar Charts

The BarCharts`  package  contains  several  commands  for  bar  charts. BarChart, StackedBarChart,  and
PercentileBarChart  are suitable for charts in which the bars are simply drawn side by side (without
having  specified  positions)  and  in  which  there  are  labels  (not  coordinates)  under  the  bars.
GeneralizedBarChart  is  designed  for  charts  in  which  the  bars  have  specified  positions  and  widths.

Histogram (see Section 8.3.2, p. 258) is a special command to calculate frequencies and plot them as bar

charts. We also have BarChart3D, GeneralizedBarChart3D, and Histogram3D (see Section 8.6.1, p. 275).

In the BarCharts` package:

BarChart[{y1, y2, … }]  Plot bars of heights y1, y2, … and label the bars by 1, 2, …

data = 84, 7, 6, 3, 5, 4, 8, 7<;

<< BarCharts`

Chapter 8  •  Graphics for Data 253



BarChart@dataD

‡ Options

BarChart accepts the following options and the options used with Graphics. For BarChart, the default
value of AspectRatio is 1/GoldenRatio and that of Axes is True.

Options of BarChart:

BarLabels  Labels under the bars; examples of values: Automatic, {"A", "B", "C"}
BarValues  Whether to write the values on top of the bars; possible values: False, True
BarOrientation  Orientation of the bars; possible values: Vertical, Horizontal
BarGroupSpacing  The space between each group of bars as a fraction of the width of one bar;

examples of values: Automatic (means 0.2), 0
BarSpacing  The space between the bars within a group as a fraction of the width of one bar;

examples of values: Automatic (means 0), 0.1, -0.4
BarStyle  Style inside the edges of the bars; examples of values for one data set: Automatic (means

Hue[0.67, 0.45, 0.65]), Gray; an example for two data sets: {Gray, GrayLevel[0.9]}
BarEdgeStyle  Style of the edges of the bars; examples of values for one data set: Opacity[0.5],

Black, Directive[Gray, Thickness[Medium]]; an example for two data sets:
{Thickness[Medium], Directive[Gray, Thickness[Medium]]}

BarEdges  Whether edges are drawn for the bars; possible values: True, False

BarGroupSpacing defines the space between each group of bars. Indeed, BarChart can generate bars
for multiple data sets, and then the bars are collected into groups; each group contains as many bars as
there are data sets. Thus, if we only have one data set, then BarGroupSpacing simply defines the space
between the bars. The default value Automatic means the value 0.2. If you want no space between the
bars, give the value 0.

BarSpacing  defines  the  space  between  bars  within  a  group  of  bars.  The  default  value Automatic

means  the  value 0:  There  is  no  space  between  the  bars  within  a  group.  If  you  want  a  small  space
between the bars, give a small positive value for the option, and if you want the bars to overlap, give a
small negative value.

8BarChart@data, BarLabels Ø CharacterRange@"a", "h"DD,
BarChart@data, BarValues Ø TrueD,
BarChart@data, BarOrientation Ø HorizontalD<

: , , >

254 Mathematica Navigator



9BarChart@data, BarGroupSpacing Ø 0D,
BarChart@data, BarStyle Ø Lighter@Blue, 0.4DD,
BarChartAdata, Ticks Ø 98Range@8D, CharacterRange@"a", "h"D<¨, Range@8D=E=

: , , >

The last example is about defining ticks (the symbol  means a transpose; type it as ÂtrÂ). Suppose
we want to make a bar chart like the first plot shown previously, except that we want to define new y

ticks.  A problem is  that  giving a value to Ticks  causes BarLabels  to no longer be taken into account.
Thus, if we use Ticks, we also have to redefine the labels with the aid of Ticks; this is done in the last
example.

‡ Example 1

As an example, we plot the body and brain weights of some animals. This data set was also considered

in Example 3 of Section 8.2.1, p. 251. We read the file and take only rows 38 through 48:

data0 = Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêmodAnimal", "Table"D;

8no, name, body, brain< = Take@data0, 838, 48<D¨
8837, 38, 39, 40, 41, 42, 43, 44, 45, 46, 47<,
8RoeDeer, Goat, Kangaroo, GrayWolf, Sheep, GiantArmadillo,

GraySeal, Jaguar, BrazilianTapir, Donkey, Pig<, 814 830, 27 660,
35 000, 36 330, 55 500, 60 000, 85 000, 100 000, 160 000, 187 100, 192 000<,

898.2, 115., 56., 119.5, 175., 81., 325., 157., 169., 419., 180.<<
Next, we form pairs of brain weight and animal name and sort the pairs in ascending order according to
brain weight:

data = SortA8brain, name<¨E
8856., Kangaroo<, 881., GiantArmadillo<, 898.2, RoeDeer<,
8115., Goat<, 8119.5, GrayWolf<, 8157., Jaguar<, 8169., BrazilianTapir<,
8175., Sheep<, 8180., Pig<, 8325., GraySeal<, 8419., Donkey<<

The bar chart is given as follows:

p1 = BarChart@data, AspectRatio Ø 0.25, ImageSize Ø 420D

Here, we have used a large image size to avoid the overlapping of the labels. In the next example, we
present other solutions to this problem.

Chapter 8  •  Graphics for Data 255



‡ Example 2

A solution to overlapping labels is to use horizontal bars:

BarChart@data, BarOrientation Ø Horizontal, ImageSize Ø 250D

Another  solution is  to  give  a  suitable  slope to  the  labels.  Remember  from Section 6.2.6,  p. 163,  that

Text  primitives  can  have  any  slope.  We  define  the  slope  as {4, 3};  that  is,  the  slope  is 3 ê 4.  We  also
adjust the positioning of the labels: The old position in text coordinates is {0, 1}  so that the labels are
centered below the bars, but the new position is {0.8, 0.8} so that the labels are to the left of the bars:

Show@FullGraphics@p1D ê. Text@a_String, b_, c_D Ø Text@a, b, 80.8, 0.8<, 84, 3<D,
Axes Ø False, AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 250D

‡ Several Data Sets

In the BarCharts` package:

BarChart[{data1, data2, … }]

StackedBarChart[{data1, data2, … }]

PercentileBarChart[{data1, data2, … }]

BarChart  can also be used for multiple data sets. As an example, we plot the running times of four
algorithms before and after improvements (these are not real data; we illustrate the same data sets with

a dot plot in Section 8.4.1, p. 260). The default is that the bars are side by side, but we produce a plot in

which the bars somewhat overlap:

256 Mathematica Navigator



p = BarChartA888, 9, 11, 10<, 85, 7, 6, 8<<,
BarLabels Ø 8"Alg. 1", "Alg. 2", "Alg. 3", "Alg. 4"<, BarGroupSpacing Ø 0.6,
BarSpacing Ø -0.4, BarStyle Ø 8GrayLevel@0.5D, GrayLevel@0.8D<,
PlotLabel Ø StyleA"Running times before HdarkL and\nafter HlightL improvements",

8E, ImageSize Ø 200E

‡ Bars with Positions

In the BarCharts` package:

GeneralizedBarChart[{{x1, y1, w1}, {x2, y2, w2}, … }]  Plot bars of heights y1, y2, … and widths

w1, w2, … at the positions x1, x2, …

Recall  that BarChart  produces  bars  side  by  side,  with  possible  labels.  With GeneralizedBarChart

we can define the positions of the bars.

GeneralizedBarChart  has  the  same  options  as BarChart  except  for  the  options BarLabels,
BarGroupSpacing, and BarSpacing. The options are in fact unnecessary because the labels can be given
with the Ticks option, and the spacing can be adjusted with the widths of the bars.

In  this  example,  we  toss  a  die  100  times  and calculate  and plot  the  frequencies.  Note  that  for  each
frequency, we add the width 1 of the bar as the third component:

SeedRandom@1D;
data = RandomInteger@81, 6<, 100D;

freq = 8Ò, Count@data, ÒD, 1< & êü Range@6D

881, 17, 1<, 82, 14, 1<, 83, 22, 1<, 84, 16, 1<, 85, 14, 1<, 86, 17, 1<<
GeneralizedBarChart@freq, AxesOrigin Ø 80.5, 0<, ImageSize Ø 120D

In this example, Histogram would be the correct command, but we used GeneralizedBarChart just
to illustrate this command. Histogram is considered in the next section.

Chapter 8  •  Graphics for Data 257



8.3.2  Histograms

With Histogram we can plot frequencies as a bar chart; the data can be either raw data or frequencies. In
the former case, Histogram first calculates the frequencies.

In the Histograms` package:

Histogram[{x1, x2, … }]  Plot the frequencies of the given raw data
Histogram[{f1, …, fn}, FrequencyData Ø True, HistogramCategories Ø cats]  Plot the given

frequencies

Options:
HistogramCategories  How the data is categorized~that is, for which intervals the frequencies are

calculated; possible values: Automatic (use an internal algorithm), a positive integer n (use exactly
n categories of equal width, if ApproximateIntervals Ø False, and about n categories, if
ApproximateIntervals Ø True), or a list of cutoff values {c0, c1, …, cn} (calculate the frequencies

in the intervals [c0, c1), …, [cn-1, cn))

ApproximateIntervals  Whether interval boundaries should be approximated by simple numbers;
possible values: Automatic (usually means True), True, False

HistogramScale  Whether to scale the heights of the bars; examples of values: Automatic (means
False for categories with equal widths and True for categories with unequal widths), False (no
scaling: plot frequencies as such), True (scale by dividing the heights by the widths of the bars to
get a frequency density), 1 (scale to get the sum of the areas of the bars equal to 1 so that the
histogram approximates the probability density function of the data; other constants can also be
used)

HistogramRange  Range of data to be included in the histogram; examples of values: Automatic
(means that all data are included), {0, 10}

BarOrientation, BarStyle, BarEdgeStyle, BarEdges (see Section 8.3.1, p. 254)

Histogram  also  has  the  options  of Graphics.  For Histogram,  the  default  value  of AspectRatio  is
1/GoldenRatio and that of Axes is True.

We plot the frequencies of the same data that were used in Section 8.3.1, p. 257. In the first plot that

follows, we used raw data. In the second plot, we used the frequencies we had calculated ourselves.

<< Histograms`

SeedRandom@1D;
data = RandomInteger@81, 6<, 100D;
freq = Count@data, ÒD & êü Range@6D
817, 14, 22, 16, 14, 17<
8Histogram@data, HistogramCategories Ø Range@0.5, 6.5, 1DD,
Histogram@freq, HistogramCategories Ø Range@0.5, 6.5, 1D, FrequencyData Ø TrueD<

:

1 2 3 4 5 6

5

10

15

20

,

1 2 3 4 5 6
0

5

10

15

20

>

258 Mathematica Navigator



With ParetoPlot  from  the StatisticalPlots`  package,  we  can  plot  bars  for  the  frequencies  together
with a line plot for the cumulative frequencies.

In Section 30.2, p. 1011,  we consider the calculation of frequencies and the plotting of histograms in

more detail.

8.3.3  Stem-and-Leaf Plots

In the StatisticalPlots` package:

StemLeafPlot[vector]  Create a stem-and-leaf plot for one data set
StemLeafPlot[vector1, vector2]  Create a stem-and-leaf plot for two data sets

Options:
Leaves  How leaves are represented; examples of values: "Digits", "Tallies", {"Tallies",

"TallySymbol" Ø Ê, "LeafWrapping" Ø 20}, None
IncludeStemCounts  Whether to include column(s) for counts; possible values: False, True
IncludeEmptyStems  Whether stems within the data range without leaves should be included;

possible values: False, True
ColumnLabels  Labels for the columns; examples of values: Automatic, {"Values", "Tallies"}

StemExponent  If the value is x, the stem unit is 10x; examples of values: Automatic (the exponent is
chosen based on the magnitudes of the data), 2

IncludeStemUnits  Whether a reminder of the stem units should be included; possible values: True,
False

The StemExponent  and Leaves  options  have  a  number  of  suboptions  (some  of  them  are  shown
above);  see  StatisticalPlots/tutorial/StatisticalPlots  in  the  Documentation  Center.  Options  of GridBox

(e.g., RowLines Ø True) can also be used.

A stem-and-leaf plot is like a histogram: It shows how many observations fall into some categories.
An example:

data = 83.26, 1.4, 4.33, 3.6, 1.27, 3.5<;

<< StatisticalPlots`
<< Histograms`

8StemLeafPlot@data, IncludeEmptyStems Ø TrueD, Histogram@data, ImageSize Ø 130D<

:

Stem Leaves

1 34

2

3 356

4 3

Stem units: 1

,

2 3 4 5

0.5
1.0
1.5
2.0
2.5
3.0

>

The first “plot” shows that two values have integer part 1; their first (rounded) decimals are 3 and 4. We
have  no values  that  have  integer  part  2.  Three  values  have  integer part  3;  their  first  decimals  are 3,  5,
and 6. Lastly, one value has integer part 4; its first decimal is 3.

One  advantage  of  a  stem-and-leaf  plot  over  a  histogram  is  that  we  can  also  read  the  approximate
values of the individual observations. In addition, we can easily compare two data sets. In the following,
we compare a binomial distribution with the corresponding approximate Poisson distribution:

SeedRandom@2D;
data1 = RandomInteger@BinomialDistribution@50, 0.05D, 50D;
data2 = RandomInteger@PoissonDistribution@50 μ 0.05D, 50D;

Chapter 8  •  Graphics for Data 259



StemLeafPlot@data1, data2, Leaves Ø 8"Tallies", "TallySymbol" Ø Ê<,
ColumnLabels Ø 8"Counts", "Tallies", "Values", "Tallies", "Counts"<,
IncludeStemCounts Ø True, IncludeStemUnits Ø FalseD

Counts Tallies Values Tallies Counts

4 ÊÊÊÊ 0 ÊÊ 2

8 ÊÊÊÊÊÊÊÊ 1 ÊÊÊÊÊÊÊÊÊÊÊ 11

14 ÊÊÊÊÊÊÊÊÊÊÊÊÊÊ 2 ÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊÊ 16

12 ÊÊÊÊÊÊÊÊÊÊÊÊ 3 ÊÊÊÊÊÊÊÊÊÊ 10

7 ÊÊÊÊÊÊÊ 4 ÊÊÊÊÊÊÊÊÊ 9

3 ÊÊÊ 5 0

1 Ê 6 Ê 1

1 Ê 7 Ê 1

8.4  Other Plots

8.4.1  Dot Plots

A dot plot can be drawn with the following program:

dotPlot@values_, labels_, styles_, 8xmin_, xmax_<, xticks_, grid_, opts___D :=

ModuleA8n = Length@labelsD, vlines, hlines, points<,
vlines = If@grid ã 8<, 8<,

8Gray, Line@Table@88i, 0.3<, 8i, n + 0.7<<, 8i, gridP1T, gridP2T, gridP3T<DD<D;
hlines = 8Thin, AbsoluteDashing@81, 1.5<D,

Line@88xmin, Ò<, 8xmax, Ò<< & êü Range@nDD<;
points = TableAIf@styles ã 8<,

8PointSize@MediumD, Black, Point@ÒD< &,
8stylesPi, 1T, stylesPi, 2T, Point@ÒD< &D êü

I8valuesPiT, Range@nD<¨M, 8i, Length@valuesD<E;

GraphicsA8vlines, hlines, points<, PlotRange Ø 88xmin, xmax<, 80.3, n + 0.7<<,

Frame Ø True, FrameTicks Ø 9xticks, 8Range@nD, labels<¨, None, None=, optsEE

Here, values is a list of one or more data sets, with each data set being a list of numbers; labels is a
list containing the labels for the y axis. The variable styles is a list of styles for the points: The list has as

many components  as  there  are data sets,  with each component being a list  of  two elements giving the
point size and color of the points; styles can also be an empty list {}, and then default styles are used.
The variables xmin and xmin define the x range; xticks defines the ticks on the x axis; and grid defines
a list of three numbers giving the position of the first vertical grid line, position of the last vertical line,
and the increment of the grid lines (an empty list {} can also be given). In addition, we can give options
of Graphics.

‡ Example 1

To  illustrate  dot  plots,  we  use  the  same  animal  brain  weight  data  we  considered,  with  horizontal  bar

charts, in Section 8.3.1, p. 256:

data = Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêmodAnimal", "Table"D;

8no, name, body, brain< = Take@data, 838, 48<D¨;

Sort according to the brain weights:

260 Mathematica Navigator



8values, labels< = SortA8brain, name<¨E¨
8856., 81., 98.2, 115., 119.5, 157., 169., 175., 180., 325., 419.<,
8Kangaroo, GiantArmadillo, RoeDeer, Goat, GrayWolf,

Jaguar, BrazilianTapir, Sheep, Pig, GraySeal, Donkey<<
Prepare a dot plot:

dotPlot@8values<, labels, 8<, 80, 460<, Automatic, 8100, 400, 100<,
PlotLabel Ø Style@"Brain weights for some animals", 10, BoldD,
AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 300D

0 100 200 300 400

Kangaroo

GiantArmadillo

RoeDeer

Goat

GrayWolf

Jaguar

BrazilianTapir

Sheep

Pig

GraySeal

Donkey

Brain weights for some animals

‡ Example 2

With a dot plot we can also compare two or more data sets (another way is to use a bar chart; see Section

8.3.1,  p. 256).  As  an  example,  we  plot  the  running  times  of  four  algorithms  before  and after  improve-

ments (these are not real data):

labels = 8"Algorithm 1", "Algorithm 2", "Algorithm 3", "Algorithm 4"<;
times1 = 88, 9, 11, 10<; times2 = 85, 7, 6, 8<;
style1 = 8PointSize@LargeD, Black<;
style2 = 8PointSize@LargeD, Gray<;

dotPlotA8times1, times2<, labels, 8style1, style2<,
80, 12<, Range@11D, 8<, AspectRatio Ø 1 ê GoldenRatio,
PlotLabel Ø StyleA"Running times before HblackL and\nafter HgrayL improvements",

9, BoldE, ImageSize Ø 200E

1 2 3 4 5 6 7 8 9 10 11

Algorithm 1

Algorithm 2

Algorithm 3

Algorithm 4

Running times before HblackL and
after HgrayL improvements

Chapter 8  •  Graphics for Data 261



‡ Multiway Dot Plots

An effective way to illustrate 3D data is by using a multiway dot plot (Cleveland, 1993). As an example,
we consider the data in the file modBarley.  This file  is  from Cleveland (1993)  and can be found on the
CD-ROM accompanying this book. The file contains barley yields at six sites for 10 varieties in 1931. On
my computer, the file is in a folder visdata in the folder MNata:

Hdata = Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêmodBarley", "Table"DL êê
TableForm

47.3 40.5 35. 35.1 25.7 29.7

48.9 39.9 34.4 27. 29. 33.

46.8 44.1 44.2 24.7 33.1 19.7

55.2 38.1 35.1 43.1 29.7 29.1

50.2 41.3 38.8 39.9 26.3 23.

48.6 41.6 43.2 32.8 32. 34.7

63.8 46.9 46.6 36.6 33.9 29.8

65.8 48.6 47. 36.6 28.1 24.9

58.1 45.7 43.5 43.3 33.6 32.2

58.8 49.9 47.2 39.3 31.6 34.5

This  file  is  a  slightly  modified  version  of  the  original  file barley.  In modBarley,  we  have  somewhat
rearranged the rows and columns of barley. The sites and varieties of the barley are as follows:

sites = 8"Waseca", "Crookston", "Morris", "Univ. Farm", "Duluth", "Gr. Rapids"<;
varieties = 8"Svansota", "Manchuria", "No. 475", "Glabron",

"Velvet", "Peatland", "Trebi", "No. 462", "No. 457", "Wisconsin"<;

Calculate the total mean of all 60 yields:

tmean = Mean@Flatten@dataDD

39.1183

We produce two multiway dot plots with the program dotPlot presented previously. First, we make
a multiway dot plot showing the yields of the 10 varieties at each of the six sites:

p1 = GraphicsColumnA
dotPlot@8ÒP1T<, varieties, 88AbsolutePointSize@2.5D, Black<<, 80, 72<,

Automatic, 8tmean, tmean, tmean<, BaseStyle Ø 85, FontFamily -> "Helvetica"<,
AspectRatio Ø 0.6, ImagePadding Ø 15, PlotLabel Ø Style@ÒP2T, 7DD & êü

I9data¨, sites=¨M, Spacings Ø 0E;

Then we make a multiway dot plot showing the yields at the six sites of each of the 10 varieties:

p2 = GraphicsColumnA
dotPlot@8ÒP1T<, Reverse@sitesD, 88AbsolutePointSize@2.5D, Black<<, 80, 72<,

Automatic, 8tmean, tmean, tmean<, BaseStyle Ø 85, FontFamily -> "Helvetica"<,
AspectRatio Ø 0.4, ImagePadding Ø 15, PlotLabel Ø Style@ÒP2T, FontSize Ø 7DD & êü

ReverseA8Map@Reverse, dataD, varieties<¨E, Spacings Ø 0E;

Now we show both multiway dot plots side by side:

GraphicsRow@8p1, p2<, AspectRatio Ø 3.5,
ImageSize Ø 400, Spacings Ø -20, PlotRangePadding Ø 0D

262 Mathematica Navigator



0 10 20 30 40 50 60 70

nsota

churia

o. 475

abron

Velvet

atland

Trebi

o. 462

o. 457

consin

Waseca

0 10 20 30 40 50 60 70

nsota

churia

o. 475

abron

Velvet

atland

Trebi

o. 462

o. 457

consin

Crookston

0 10 20 30 40 50 60 70

nsota

churia

o. 475

abron

Velvet

atland

Trebi

o. 462

o. 457

consin

Morris

0 10 20 30 40 50 60 70

nsota

churia

o. 475

abron

Velvet

atland

Trebi

o. 462

o. 457

consin

Univ. Farm

0 10 20 30 40 50 60 70

nsota

churia

o. 475

abron

Velvet

atland

Trebi

o. 462

o. 457

consin

Duluth

0 10 20 30 40 50 60 70

nsota

churia

o. 475

abron

Velvet

atland

Trebi

o. 462

o. 457

consin

Gr. Rapids

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Wisconsin

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

No. 457

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

No. 462

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Trebi

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Peatland

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Velvet

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Glabron

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

No. 475

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Manchuria

0 10 20 30 40 50 60 70

Rapids
Duluth
Farm

Morris
okston
aseca

Svansota

Chapter 8  •  Graphics for Data 263



The multiway dot  plot  of  the first  column can be  used to infer  how the yields  of  the varieties  vary
within each site and how the yields vary among sites in general.  The multiway dot plot of the second
column can be used to infer how the yield of each variety varies among the sites. The gray line in both
plots is the total mean. If we want to perform detailed comparisons with the data, a multiway dot plot is
among the  best  ways to  show the data.  The barley data are also considered in the next  section and in

Section 8.6.1, p. 280.

8.4.2  Box-and-Whisker Plots

In the StatisticalPlots` package:

BoxWhiskerPlot[vector]  Plot vector
BoxWhiskerPlot[matrix]  Plot the columns of matrix
BoxWhiskerPlot[vector1, vector2, … ]  Plot each vector

Options:
BoxQuantile  If set to a (0 < a < 0.5), a box shows data from H0.5 - aL-quantile to H0.5 + aL-quantile;

examples of values: 0.25, 0.4
BoxLabels  Labels for the boxes; examples of values: Automatic, {"X", "Y", "Z"}
BoxOrientation  Orientation of the graph; possible values: Vertical, Horizontal
BoxOutliers  Whether to indicate outliers; possible values: None (whiskers are drawn to cover the

entire data set), All (outliers are shown separately), Automatic (near and far outliers can be drawn
differently by using BoxOutlierMarkers)

BoxOutlierMarkers  Markers for the outliers; examples of values: Automatic, {Ê, Á},
{{Automatic, 10}}

BoxFillingStyle  Styles of the boxes; examples of values: Automatic, Hue[0], {Hue[0], Hue[1/3],
Hue[2/3]}

BoxLineStyle  Style of all lines; examples of values: Automatic, Hue[2/3]
BoxMedianStyle  Additional styles for the median line; examples of values: Automatic,

Thickness[Medium]

BoxExtraSpacing  Extra space between the boxes; examples of values: 0, 0.1

The following plots  illustrate the first two forms of data mentioned previously.  In the first case, we
have a vector of 100 observations. In the second case, we have a matrix with 20 rows and three columns.

SeedRandom@3D;
data1 = RandomReal@GammaDistribution@5, 1D, 100D;
data2 = RandomReal@GammaDistribution@8, 1D, 820, 3<D;

<< StatisticalPlots`

8BoxWhiskerPlot@data1D, BoxWhiskerPlot@data2D<

:

2

4

6

8

10

12

,

1 2 3

5

10

15

20

>

264 Mathematica Navigator



A box-and-whisker  plot  is  simply a  way to show the quartiles  and the minimum and maximum of
the data. In the first example, these statistics are as follows:

8Min@data1D, Quantile@data1, 0.25D,
Median@data1D, Quantile@data1, 0.75D, Max@data1D<

81.27455, 3.39826, 4.78942, 6.52369, 12.4698<

The  horizontal  line  inside  the  box  is  the  median  or  the  0.5  quantile.  Both  below  and  above  the
median, we have 50% of the data. The bottom and top of the box are at the 0.25 and 0.75 quantiles, so
inside the box we have 50% of the data. Both below and above the box, we have 0.25% of the data. The
bottom and top horizontal lines of the “whiskers” are at the minimum and maximum of the data. This
kind of plot gives a quick overview of the extent of a data set.

For more about the statistical plots package, look at StatisticalPlotsêguideêStatisticalPlotsPackage.

‡ Example 1

As an example, consider the same barley data we investigated, by using multiway dot plots, in Section

8.4.1, p. 262:

data = Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêmodBarley", "Table"D;

BoxWhiskerPlot@data, AspectRatio Ø 0.4,
BoxOrientation Ø Horizontal, BoxLabels Ø 8"Waseca", "Crookston",

"Morris", "Univ. Farm", "Duluth", "Gr. Rapids"<, ImageSize Ø 400D

20 30 40 50 60

Waseca

Crookston

Morris

Univ. Farm

Duluth

Gr. Rapids

‡ Example 2

A near outlier is a value beyond 1.5 times the interquantile range from the edge of the box. A far outlier is
a value beyond 3 times the interquantile range. If the value of BoxOutliers is All, then all outliers are
plotted in the same way; if the value is Automatic, then near and far outliers are plotted differently if so
determined  by  the BoxOutlierMarkers  option.  The  markers  are  defined  in  the  same  way  as  for

PlotMarkers (see Section 8.1.3, p. 244).

BoxWhiskerPlot@86, 3, 8, 5, 2, 7, 10, 4, 3, 5, 16, 24<,
BoxOutliers Ø Automatic, BoxOutlierMarkers Ø 8Ê, Á<,
BoxOrientation Ø Horizontal, AspectRatio Ø 0.2, ImageSize Ø 200D

ÊÊ ÁÁ

5 10 15 20

Chapter 8  •  Graphics for Data 265



8.4.3  Pie Charts

A pie chart illustrates how a total amount is made up from certain components. The purpose is to give
the reader an impression of the relative magnitudes of the components.

In the PieCharts` package:

PieChart[{y1, y2, … }]  Plot a pie chart from the positive numbers y1, y2, …

Options:
PieLabels  Labels in the wedges; examples of values: Automatic, {"A", "B", "C"}
PieStyle  Style(s) inside the borders of the wedges; examples of values: Automatic,

Table[GrayLevel[p], {p, 0.7, 1, 0.1}]

PieEdgeStyle  Style of the border of the wedges; examples of values: Automatic,
Thickness[Medium], Directive[Thickness[Medium], Blue]

PieExploded  Whether some wedges are exploded; examples of values: None, All, {4}, {4, 0.2},
{4, 5}, {{4, 0.2}, {5, 0.2}}

PieOrientation  Starting angle of the first wedge (the default is 0) and whether to order the wedges
counterclockwise (the default) or clockwise; examples of values: Automatic, -p/2, "Clockwise",
{p/2, "Clockwise"}

PieChart also has the options of Graphics. An exploded wedge is set off from the pie. A value such
as {4, 0.2} defines that the fourth wedge is set off by the amount 0.2.

As an example,  an algorithm was improved by four methods.  Of the total  savings in running time,
the first method contributed 12%, the second 15%, the third 38%, and the fourth 35%. The corresponding
pie chart is shown here:

<< PieCharts`

PieChartA812, 15, 38, 35<,

PieLabels Ø 9"Method 1\n12%", "Method 2\n15%", "Method 3\n38%", "Method 4\n35%"=,
PieStyle Ø Table@GrayLevel@pD, 8p, 0.65, 0.95, 0.1<D,
PlotLabel Ø Style@"Savings by four methods", 9, BoldDE

Method 1
12%

Method 2
15%

Method 3
38%

Method 4
35%

Savings by four methods

8.4.4  Vector Fields

In the VectorFieldPlots` package:

ListVectorFieldPlot[data]  Plot the given array of vectors

266 Mathematica Navigator



data = Table@8i, Sqrt@jD<, 8i, 0, 1, 0.2<, 8j, 0, 1, 0.2<D;

<< VectorFieldPlots`

ListVectorFieldPlot@data, ImageSize Ø 100D

8.5  Graph Plots

8.5.1  Graph Plots

‡ Graph Plots

GraphPlot[{v1 Ø v2, v3 Ø v4, … }] (Ÿ6)  Connect vertices v1 and v2, …
GraphPlot[{{v1 Ø v2, lb1}, {v3 Ø v4, lb2}, … }]  Edges have the given labels
GraphPlot[m]  Plot the graph represented by the adjacency matrix m

Some options:
DirectedEdges  Whether to show edges as directed arrows; possible values: False (edges are

shown as lines), True, {True, "ArrowheadsSize"Ø s}

VertexLabeling  Whether to show vertex names as labels; examples of values: Automatic (show
labels as tooltips if the graph is small), Tooltip (show labels as tooltips), True (show labels
explicitly), False (do not show labels at all), All (show labels both explicitly and as tooltips)

Graphs are useful in illustrating connections and flows between points. The points are called vertices
(or  nodes),  and the lines  or  arrows between the vertices are called edges.  In using GraphPlot,  we only
indicate,  by using some names for the vertices,  which vertices should be connected; the coordinates of
the  vertices  are  automatically  chosen  by GraphPlot  using  some  algorithms  that  try  to  obtain  a  clear
graph. However, we can also define the coordinates with an option, if the automatic coordinates do not
satisfy us. Here are simple examples of graphs:

8GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 3, 2 Ø 4, 3 Ø 4<D,
GraphPlot@881 Ø 2, c12<, 81 Ø 3, c13<, 82 Ø 3, c23<, 82 Ø 4, c24<, 83 Ø 4, c34<<D,
GraphPlot@880, 1, 1, 0<, 80, 0, 1, 1<, 80, 0, 0, 1<, 80, 0, 0, 0<<D<

: ,
c12

c13

c23

c24

c34

, >

By default,  vertices are shown as points and edges as lines. In the previous plots, the names 1, 2, 3,
and 4  of  the  vertices  can  be  seen  as  tooltips:  The  name of  a  vertex  appears  when the  mouse  cursor  is
moved (without  pressing the button)  above the vertex.  In the second plot,  we have labels of  edges.  In
the third example, we represented the graph with an adjacency matrix (the matrix can also be a sparse

array; see Section 21.2.1, p. 689). Some more examples:

Chapter 8  •  Graphics for Data 267



8GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 3, 2 Ø 4, 3 Ø 4<, DirectedEdges Ø TrueD,
GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 3, 2 Ø 4, 3 Ø 4<,
DirectedEdges Ø 8True, "ArrowheadsSize" Ø 0.06<, VertexLabeling Ø TrueD,
GraphPlot@8a Ø b, a Ø c, b Ø c, b Ø d, c Ø d<, VertexLabeling Ø TrueD<

: , 1

2

3

4 , a

b

c

d >

In the first plot, we have arrows. In the second plot, we have labels for the vertices and the size of the
arrowheads is  made larger (the  size and other  properties  of  the arrowheads can also be adjusted with
the PlotStyle option; see General Options). The third plot shows that the names of the vertices can be
any expression.

Note  that  we  also  have  the GraphData  command  with  which  we  can  plot  and  study  many  graphs

(see Section  9.3.1,  p. 301).  See  also CombinatoricaêguideêCombinatoricaPackage  in  the  Documentation

Center for information about the Combinatorica` package.

Next, we study all the special options of GraphPlot. The options are grouped into options for edges,
options for vertices, and general options. In addition to these options, we have the options of Graphics.

In addition to GraphPlot, we have LayeredGraphPlot and TreePlot. These are considered later.

‡ Options for Edges

DirectedEdges  Whether to show edges as directed arrows; possible values: False (edges are
shown as lines), True, {True, "ArrowheadsSize"Ø s}

MultiedgeStyle  How to draw multiple edges between vertices; examples of values: Automatic
(multiple edges are shown; however, if the graph is defined by an adjacency matrix, multiple
edges are not shown), 0.2 (the distance between the outermost edges is a fraction of 0.2 of the
distance of the corresponding vertices), True (show multiple edges), False (do not show multiple
edges)

SelfLoopStyle  How to draw edges linking a vertex to itself; examples of values: Automatic (self-
loops are shown; however, if the graph is defined by an adjacency matrix, self-loops are not
shown), 0.5 (the diameter of a self-loop circle is a fraction of 0.5 of the average edge length), True
(show self-loops), False (do not show self-loops)

EdgeLabeling  Whether to include the given labels of the edges; examples of values: True (show
edge labels explicitly), Automatic (show edge labels as tooltips), All (show edge labels both
explicitly and as tooltips), False (do not show edge labels)

EdgeRenderingFunction  Function to give explicit graphics for edges; examples of values:
Automatic (edges are dark red lines), None (no edges), ({Red, Arrow[#1]} &)

The DirectedEdges option was explained previously. Here are examples of MultiedgeStyle:

GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 2<, MultiedgeStyle Ø ÒD & êü 8Automatic, 0.5, False<

: , , >

With the SelfLoopStyle we can adjust the size of a circle:

268 Mathematica Navigator



GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<, SelfLoopStyle Ø ÒD & êü 8Automatic, 0.3, 1<

: , , >

Edge  labels  are  normally  drawn  explicitly,  as  is  shown  in  the  first  plot  that  follows.  If  the
EdgeLabeling  option  has  the  value Automatic,  the  edge  labels  are  only  shown as  tooltips.  The  value
All causes the labels to be shown both explicitly and as tooltips.

GraphPlot@881 Ø 2, c12<, 82 Ø 3, c23<, 83 Ø 3, c33<<, EdgeLabeling Ø ÒD & êü
8True, Automatic, All<

: c12 c23 c33 , , c12 c23 c33 >

Edges are normally lines (as can be seen from the first plot that follows) or arrows, with the arrow-
head  somewhat  back  from  the  top  of  the  arrow.  If  the EdgeRenderingFunction  option  has  the  value
None, the edges are not drawn, as can be seen from the second plot. We can give the option a value as a
pure  function,  where #1  refers  to  the  list  of  coordinates  of  the  vertices  at  the  ends  of  an  edge.  (The
function can also have arguments #2 and #3 that refer to the names of the vertices and to the label of the
edge, respectively.) In the third plot, we ask to draw red arrows between the vertices.

GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<, EdgeRenderingFunction Ø ÒD & êü
8Automatic, None, H8Red, Arrow@Ò1D< &L<

: , , >

For more about arrows, see Section 6.2.5, p. 161. Next, we adjust the arrows in various ways. In the first

plot, the ends of the arrows are set back from the end points by a small amount. In the second plot, we
use  the Arrowheads  directive  to  insert  arrowheads  at  both  ends  of  the  arrows.  In  the  third  plot,  we
define custom size and position for the arrowheads.

GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<, EdgeRenderingFunction Ø ÒD & êü
8HArrow@Ò1, 0.1D &L,
H8Arrowheads@8-0.05, 0.05<D, Arrow@Ò1, 0.1D< &L,
H8Arrowheads@880.06, 0.9<<D, Arrow@Ò1, 0.1D< &L<

: , , >

‡ Options for Vertices

VertexLabeling  Whether to show vertex names as labels; examples of values: Automatic (show
labels as tooltips if the graph is small), Tooltip (show labels as tooltips), True (show labels
explicitly), False (do not show labels at all), All (show labels both explicitly and as tooltips)

VertexCoordinateRules  Explicit vertex coordinates as a complete list of {x, y} pairs or as a
complete or incomplete list of rules for the {x, y} pairs; examples of values: Automatic,
{coordinates}, {1 Ø {0, 0}, 4 Ø {1, 0.5}}

VertexRenderingFunction  Function to give explicit graphics for vertices; examples of values:
Automatic (vertices are blue points with tooltips showing the names), None (no vertices),
({Yellow, EdgeForm[Black], Disk[#1, 0.2], Black, Text[#2, #1]} &) (yellow disks with
black edges and black labels)

Chapter 8  •  Graphics for Data 269



The first option was explained previously. If the graph given by GraphPlot does not satisfy us, even
after  trying several  different methods (see the Method  option discussed later),  we can ourselves define

the coordinates of the vertices. In the first plot that follows, we define the coordinates as a list of 9x, y=
pairs.  In  the  second  plot,  we  define  the  coordinates  as  rules.  In  the  third  plot,  we  only  define  the
coordinates of two vertices.

GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 3, 2 Ø 4, 3 Ø 4<,
VertexLabeling Ø True, VertexCoordinateRules Ø ÒD & êü

8880, 0<, 81, 0.5<, 81, -0.5<, 82, 0<<,
81 Ø 80, 0<, 2 Ø 81, 0.5<, 3 Ø 81, -0.5<, 4 Ø 82, 0<<,
81 Ø 80, 0<, 4 Ø 81, 0.5<<<

: 1

2

3

4 , 1

2

3

4 ,

1

2

3

4

>

Note  that  coordinates  of  vertices  can  only  be  defined  by  rules  if  the Method  option  has  the  default
value "SpringElectricalEmbedding".

The  value  of  the VertexRenderingFunction  option  can  be  a  pure  function  where #1  refers  to  the
coordinates and #2 to the label of a vertex. Here are examples of this option:

GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<, VertexRenderingFunction Ø ÒD & êü
8Automatic,
None,
H8Yellow, EdgeForm@BlackD, Disk@Ò1, 0.2D, Black, Text@Ò2, Ò1D< &L<

: , , 1 2 3 >

‡ General Options

Method  Method used to lay out the graph; possible values: Automatic (means
"SpringElectricalEmbedding"; however, "RadialDrawing" is used for trees),
"CircularEmbedding", "HighDimensionalEmbedding", "LinearEmbedding",
"RandomEmbedding", "SpiralEmbedding", "SpringEmbedding", "SpringElectricalEmbedding",
"LayeredDrawing", "LayeredDigraphDrawing", "RadialDrawing", {"meth", "Rotation" Ø q}

(rotate the graph q radians clockwise)
PackingMethod  Method used to lay out a graph with disconnected components; possible values:

Automatic, "ClosestPacking", "ClosestPackingCenter", "Layered", "LayeredLeft",
"LayeredTop", "NestedGrid"

PlotStyle  Overall graphics directives for vertices and edges; examples of values: Automatic, {Red,
PointSize[Medium], Thickness[Medium], Dashed, Arrowheads[0.05]}

Each value of Method has some options. The "Rotation" option is one. Consider the following three
plots:

edges = 81 Ø 2, 1 Ø 3, 1 Ø 4, 1 Ø 5, 1 Ø 6, 2 Ø 7,
2 Ø 8, 3 Ø 7, 3 Ø 8, 4 Ø 7, 4 Ø 8, 5 Ø 7, 5 Ø 8, 6 Ø 7, 6 Ø 8<;

vertices = 880, 2<, 82, 4<, 82, 3<, 82, 2<, 82, 1<, 82, 0<, 84, 3<, 84, 1<<;

270 Mathematica Navigator



8GraphPlot@edges, VertexLabeling Ø True, AspectRatio Ø 1D,
GraphPlot@edges, VertexLabeling Ø True,
Method Ø 8"LayeredDigraphDrawing", "Rotation" Ø -p ê 2<, AspectRatio Ø 1D,

GraphPlot@edges, VertexLabeling Ø True,
VertexCoordinateRules Ø vertices, AspectRatio Ø 1D<

:
1

2

3

4

5

6

7
8

, 1

2

3

4

5

6

7

8

, 1

2

3

4

5

6

7

8

>

With  the  default "SpringElectricalEmbedding"  method,  the  plot  is  not  very  clear.  With  the
"LayeredDigraphDrawing"  method,  with  a  rotation  of -p ê 2,  we  get  a  good  result.  By  defining  the
coordinates  of  the  vertices,  we  get  just  the  result  we  like  most.  (We  also  considered  this  example  in

Section 6.2.9, p. 174, by using our own plotting program.)

The  methods  used  by GraphPlot  are  explained  in  the  Documentation  Center  at
tutorialêGraphDrawingIntroduction  and tutorialêGraphDrawing .  The  default  method, "SpringElectrical-

Embedding", is described as follows: “Invoke the spring embedding method, in which a vertex is subject
to either attractive or repulsive force from another vertex, as though they are connected by a spring; the
spring  has  an ideal  length  equal  to  the  graph distance  between the  vertices;  the  total  spring energy  is
minimized.”

Note that the plot given by GraphPlot can also be adjusted manually with the mouse. Suppose that,
in the second plot shown previously, we want to move the vertex 7 somewhat downwards. Just click on
the graph and on the vertex 7 a sufficient number of times until the vertex 7 is selected. Then drag the

vertex downwards. For more about manipulating plots with the mouse, see Section 5.1.3, p. 126.

If  the  graph  contains  disconnected  parts,  the PackingMethod  option  can  be  used to  adjust  the  way
the graph is displayed:

GraphPlot@81 Ø 2, 1 Ø 3, 2 Ø 3, 2 Ø 4, 3 Ø 4, 5 Ø 6<, PackingMethod Ø ÒD & êü
8Automatic, "ClosestPackingCenter", "NestedGrid"<

: , , >

With PlotStyle,  we  can  adjust  the  size  of  the  points  representing  the  vertices,  the  thickness  and
dashing of the edges, and the size and position of the arrowheads. In addition, we can define an overall
color that is used both for the edges and for either the points representing the vertices or the text in the
vertex labels. However, edge and vertex rendering functions have higher priority than plot style.

Chapter 8  •  Graphics for Data 271



8GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<, VertexLabeling Ø True, PlotStyle Ø RedD,
GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<, DirectedEdges Ø True,

PlotStyle Ø 8Red, Arrowheads@880.05, 0.8<<D<,
VertexRenderingFunction Ø H8Blue, PointSize@MediumD, Point@Ò1D< &LD,

GraphPlot@81 Ø 2, 2 Ø 3, 3 Ø 3<,
PlotStyle Ø 8Red, PointSize@MediumD, Thickness@MediumD, Dashed<D<

: 1 2 3 , , >

‡ Applications

Here is a rate diagram for a birth-death process:

GraphPlot@880 Ø 1, l0<, 81 Ø 2, l1<, 82 Ø 3, l2<, 83 Ø 2, m3<, 82 Ø 1, m2<, 81 Ø 0, m1<<,
DirectedEdges Ø True, MultiedgeStyle Ø 0.5, VertexLabeling Ø True,
ImageSize Ø 350, Epilog Ø Text@Style@". . .", 12D, 83.25, 0.03<DD

l0 l1

m1

l2

m2 m3

0 1 2 3 . . .

Next, we draw a graph describing the process of modeling (see Giordano, Weir, and Fox, 1997, p. 33):

b1 = "Real-world data"; b2 = "Model";

b3 = "Mathematical\nconclusions"; b4 = "Predictionsê\nexplanations";

GraphPlot@88b1 Ø b2, "Formulation"<, 8b2 Ø b3, "Analysis"<,
8b3 Ø b4, "Interpretation"<, 8b4 Ø b1, "Test"<<, DirectedEdges Ø True,

VertexLabeling Ø True, VertexCoordinateRules Ø 880, 1<, 81, 1<, 81, 0<, 80, 0<<,
ImageSize Ø 200, AspectRatio Ø 0.5D

Formulation

Analysis

Interpretation

Test

Real-world data Model

Mathematical
conclusions

Predictionsê
explanations

Now we draw relationships between some probability distributions:

:ber = Ber@pD, hyp = Hyp@n, K, ND, bin = Bin@n, pD,

po = Po@lD, normal = "NHm, sL", gamma = Gamma@a, lD, sum = ‚
i=1

n

Xi>;

GraphPlotA98hyp Ø bin, Column@8p ã K ê N, N Ø ¶<, CenterD<,

8bin Ø bin, sum<, 8bin Ø ber, n ã 1<, 8ber Ø bin, sum<,
8bin Ø po, Column@8l ã n p, n Ø ¶, p Ø 0<, CenterD<,

9bin Ø normal, ColumnA9m ã n p, s2 ã n p q, n Ø ¶=, CenterE=,

8po Ø po, sum<, 9po Ø normal, ColumnA9m ã l, s2 ã l, l Ø ¶=, CenterE=,

8normal Ø normal, sum<, 8gamma Ø gamma, sum<,

9gamma Ø normal, ColumnA9m ã a ê l, s2 ã a ë l2, a Ø ¶=, CenterE==, ImageSize Ø 400,

DirectedEdges Ø 8True, "ArrowheadsSize" Ø 0.02<, MultiedgeStyle Ø 0.3,
SelfLoopStyle Ø 0.4, VertexLabeling Ø True, VertexCoordinateRules Ø

8hyp Ø 80, 1<, bin Ø 81, 1<, ber Ø 82, 1<, po Ø 80, 0<, normal Ø 81, 0<, gamma Ø 82, 0<<E

272 Mathematica Navigator



p
K

N

N Ø¶

‚
i=1

n

Xi

n 1

l n p

n Ø¶

p Ø 0

m n p

s2 n p q

n Ø¶

‚
i=1

n

Xi

‚
i=1

n

Xi

m l

s2 l

l Ø ¶

‚
i=1

n

Xi

‚
i=1

n

Xi

m
a

l

s2 a

l
2

a Ø ¶

HypIn, K , N M BinIn, pM BerIpM

PoHlL NHm, sL GHa, lL

For  example,  the  sum  of n  independent  variables  having  the BerIpM  distribution  has  the  binomial

distribution.  The  sum  of n  independent  variables  having  the PoHlL  distribution  also  has  the  Poisson

distribution  [more  exactly, PoHn lL  distribution].  The  binomial  distribution BinIn, pM  can  be  approxi-

mated, for large n, by the normal distribution NJn p, n p q N.

Next, we draw a social network of my wife:

relationships = 8"Marjatta" Ø "Heikki", "Marjatta" Ø "Hanna",
"Hanna" Ø "Kerttu", "Hanna" Ø "BO", "Marjatta" Ø "Kerttu",
"Kerttu" Ø "Raimo", "Marjatta" Ø "Eine", "Eine" Ø "Jussi", "Eine" Ø "Tuula",
"Marjatta" Ø "Marjukka", "Marjukka" Ø "Antti", "Marjatta" Ø "Ilse",
"Ilse" Ø "Hanna", "Marjatta" Ø "Seija", "Seija" Ø "Pirkko", "Seija" Ø "Eino"<;

GraphPlot@relationships, VertexLabeling Ø True, ImageSize Ø 230D

Marjatta

Heikki

Hanna

Kerttu

BO

Raimo

Eine

Jussi

Tuula

Marjukka

Antti

Ilse

Seija

Pirkko

Eino

Chapter 8  •  Graphics for Data 273



‡  Layered Graph Plots

LayeredGraphPlot[{v1 Ø v2, v3 Ø v4, … }] (Ÿ6)  Connect vertices v1 and v2, …
LayeredGraphPlot[{v1 Ø v2, v3 Ø v4, … }, pos]  Place the dominant vertices at position pos;

possible values of pos: Top, Bottom, Left, Right

This command is used in the same way as GraphPlot; edge labels can be given and the graph can be
defined by an adjacency matrix. The options are almost the same as the ones of GraphPlot; the default
value of DirectedEdges is now True, and the Method option does not exist.

A layered graph plot shows the vertices at several layers or levels:

LayeredGraphPlot@relationships, VertexLabeling Ø True, ImageSize Ø 260D

Marjatta

Heikki

Hanna

Kerttu BO

Raimo

Eine

Jussi Tuula

Marjukka

Antti

IlseSeija

Pirkko Eino

If  vertex coordinates  are not  given,  some edges may be curved.  If  vertex coordinates are given,  the
edges are straight lines.

8.5.2  Tree Plots

TreePlot[{v1 Ø v2, v3 Ø v4, … }] (Ÿ6)  Connect vertices v1 and v2, …
TreePlot[{v1 Ø v2, v3 Ø v4, … }, pos]  Place the dominant vertices at position pos; possible values

of pos: Top, Bottom, Left, Right, Center
TreePlot[{v1 Ø v2, v3 Ø v4, … }, pos, vk]  Use vk as the root node

This command, too, is used in the same way as GraphPlot;  edge labels can be given and the graph
can  be  defined  by  an  adjacency  matrix.  For TreePlot,  we  have  the  new  option LayerSizeFunction

with the default value (1 &)  (the function defines the height of the layers),  whereas the Method  option
does not exist. The next plot describes the dependencies of the chapters of a book:

TreePlot@81 Ø 3, 1 Ø 2, 2 Ø 4, 2 Ø 6, 4 Ø 5, 6 Ø 8<, Top, 1,
VertexLabeling Ø True, LayerSizeFunction Ø H0.3 &L, ImageSize Ø 100D

1

3 2

4 6

5 8

274 Mathematica Navigator



In the following plot, we show methods used in modeling (see Giordano et al., 1997, p. 34):

TreePlotA991 Ø 2, "Phenomenon\nof interest"=,

92 Ø 3, "Replication\nof behavior"=, 92 Ø 4, "Mathematical\nrepresentation"=,
83 Ø 5, "Simulation"<, 83 Ø 6, "Experimentation"<,
84 Ø 7, "Model selection"<, 84 Ø 8, "Model construction"<=, Left, 1,

VertexRenderingFunction Ø None, LayerSizeFunction Ø H8 &L, ImageSize Ø 350E

Phenomenon
of interest

Replication
of behavior

Mathematical
representation

Simulation

Experimentation

Model selection

Model construction

8.6  Plots for 3D Data

8.6.1  Plots for 3D Data

‡ Regular Data

Often, 3D data are in a form of a matrix:

z11 … z1 n

ª

zm 1 … zmn

We call such data regular: Each row has the same number of values. Also, only the z  values are given;
the x  and y values  are  not  given  at  all.  Indeed,  it  is  assumed  that  the z  values  are  given  for  equally
spaced x and y coordinates. In such a situation, we simply need to be able to tell the ranges of the x and
y coordinates, and this can be done with the DataRange option, which is explained soon. In the next box,
we have commands to plot regular 3D data. Irregular data are considered later.

ListPlot3D[data]  3D surface plot
ListPointPlot3D[data, Filling Ø Bottom] (Ÿ6)  3D points, possibly with stems
BarChart3D[data]  3D bar chart (in the BarCharts` package)

ArrayPlot[data]  Grayscale squares
MatrixPlot[data] (Ÿ6)  Color squares
ListDensityPlot[data]  A density plot
ListContourPlot[data]  A contour plot

Data are given in the matrix form:
{{z11, …, z1n}, …, {zm1, …, zmn}}  (each row corresponds to a fixed value of y)

We also have GeneralizedBarChart3D (in the BarCharts`  package), ListVectorFieldPlot3D (in the
VectorFieldPlots` package), and ReliefPlot.

Chapter 8  •  Graphics for Data 275



‡ Examples

To illustrate these commands, we define a very simple data set:

data1 = 880, 0, 1, 1, 0<, 81, 0, 1, 1, 1<, 82, 1, 2, 2, 1<, 82, 1, 2, 2, 2<<;

First we show six plots that have a true 3D nature. Here are three surface plots:

8ListPlot3D@data1, BoxRatios Ø Automatic, AxesLabel Ø 8"x", "y", ""<D,
ListPlot3D@data1, Mesh Ø Full, BoxRatios Ø AutomaticD,
ListPlot3D@data1, Mesh Ø Full, PlotStyle Ø None, BoxRatios Ø AutomaticD<

: , , >

In  the  first  plot,  the  given  points  are  connected  by  surface  pieces  and  a  mesh  is  drawn  on  the
resulting surface. The first row {0, 0, 1, 1, 0} of the data is in front (parallel to the x axis), the second row
{1, 0, 1, 1, 1} is next, and so on. In the second plot, we ask for a mesh corresponding to the data points:
The points are at the corner points of the surface pieces. In the third plot, we only have the mesh lines.

<< BarCharts`

9ListPointPlot3D@data1, BoxRatios Ø AutomaticD,
ListPointPlot3D@data1, Filling Ø Bottom, BoxRatios Ø AutomaticD,
BarChart3DAdata1¨, BoxRatios Ø Automatic,

Ticks Ø 881, 2, 3, 4, 5<, 81, 2, 3, 4<, Automatic<E=

:

1
2

3
4

5 1

2

3

4
0.0
0.5
1.0
1.5
2.0

,

1
2

3
4

5 1

2

3

4
0.0
0.5
1.0
1.5
2.0

,

1
2

3
4

5
1

2

3
40.0

0.5
1.0
1.5
2.0

>

In  the  first  plot,  we  have  3D points  (a  scatter  plot).  Without  vertical  lines,  it  is  difficult  to  infer  the

positions of the points in the space. In the second plot, we have the vertical lines to the Ix, yM plane, and

now the plot is much clearer. The third plot shows the points as a bar chart; this plot gives a very clear
view for the data. In a bar chart, we have to transpose the data to get a plot comparable with the other
plots.

Note  that  all  six  3D  plots  shown  previously  can  be  rotated  with  the  mouse.  Rotation  dramatically
improves the illusion of space.

Next, we draw other kinds of plots:

276 Mathematica Navigator



GraphicsRow@8ArrayPlot@data1, Mesh Ø True, Frame Ø True,
FrameTicks Ø 8True, True, None, None<, DataReversed Ø TrueD,
MatrixPlot@data1, Mesh Ø True, Frame Ø True,
FrameTicks Ø 8True, True, None, None<, DataReversed Ø TrueD,
ListDensityPlot@data1, AspectRatio Ø Automatic,
FrameTicks Ø 881, 2, 3, 4, 5<, 81, 2, 3, 4<, None, None<D,
ListContourPlot@data1, AspectRatio Ø Automatic,
FrameTicks Ø 881, 2, 3, 4, 5<, 81, 2, 3, 4<, None, None<D<, ImageSize Ø 420D

In the first plot, the values are plotted as grayscale squares, and in the second plot they are plotted as
color squares. The density plot shows the data values somewhat smoothed: high values as light and low
values  as  dark.  In  the  contour  plot,  there  are  10  contours  that  correspond to  10  equally  spaced values
between the minimum and maximum values. The constants that correspond to the contours can be seen
by moving the mouse over the contour plot. With the option ContourLabels Ø Automatic we get some
explicit labels in the plot.

‡ Options

The options of ListPlot3D, ListDensityPlot,  and ListContourPlot  are almost the same as the ones
of Plot3D, DensityPlot,  and ContourPlot.  Thus,  we  can  refer  to  Chapter  7  for  the  options.  Some
options, such as MaxRecursion and PlotPoints, are lacking, but we have the following new options:

Common special options of ListPlot3D, ListDensityPlot, and ListContourPlot:

DataRange  The range of x and y values to assume for data; examples of values: Automatic, {{xmin,

xmax}, {ymin, ymax}}

InterpolationOrder  The polynomial degree (in each variable) of surfaces used in joining data
points; default value: None

MaxPlotPoints  The maximum number of points to include; default value: Automatic

As stated previously, the data points contain only the z values. To plot ticks on the axes, Mathematica
assumes that the x  and y values are evenly spaced and are, in fact,  the integers 1,  2,  3,  …; you can see
this  from  the  previous  plots.  If  the  true x  and y  values  are  not  these  integers,  the  option DataRange

should be used to input the true ranges within which the points lie. For example, suppose that x values
are 0, 1, 2, 3, and 4 and y values 0, 2, 4, and 6; then the x range is {0, 4} and the y range is {0, 6}. We can
get the correct x and y coordinates as follows:

ListContourPlot@data1, DataRange Ø 880, 4<, 80, 6<<, ImageSize Ø 100D

Chapter 8  •  Graphics for Data 277



The  options  of ListPointPlot3D  are  mostly  the  same  as  the  ones  of Graphics3D. Axes  and
BoxRatios now have the default values True and {1, 1, 0.4}, respectively. The following new options
are available:

Special options of ListPointPlot3D:

DataRange  The range of x and y values to assume for data; examples of values: Automatic, {{xmin,

xmax}, {ymin, ymax}}

PlotStyle  Style of the points; default value: Automatic
ColorFunction  How to determine the colors of points; default value: Automatic
ColorFunctionScaling  Whether to scale arguments to ColorFunction; possible values: True,

False

The options of BarChart3D also are mostly the same as the ones of Graphics3D. Axes and BoxRatios

now  have  the  default  values Automatic  and {1, 1, 1},  respectively.  The  following  new  options  are
available:

Special options of BarChart3D:

BarEdges  Whether to draw the edges of the bars; possible values: True, False
BarEdgeStyle  Style of the edges; default value: GrayLevel[0]
BarSpacing  Space between the bars in the x and y directions; default value: 0

BarStyle  Style of the faces of the bars; default value: GrayLevel[1]

ArrayPlot and MatrixPlot and their options are considered in Section 21.2.1, p. 690.

‡ Coloring

We  used  the ColorFunction  option  in Sections  7.5.1,  p. 214, 7.5.4,  p. 222,  and 7.6.1,  pp. 227  and 230.

Now we use this option to color data plots according to the values of the data points. In BarChart3D, the
colors have to be attached to each data value.

data2 = Table@RandomInteger@88 i + 5 j, 10 i + 7 j<D, 8i, 10<, 8j, 15, 1, -1<D;

data3 = Partition@8Ò, Hue@1 - Ò ê Max@data2DD< & êü Flatten@data2D, 15D;

9ListPlot3D@data2, Ticks Ø None,

BoxRatios Ø 815, 10, 10<, ColorFunction Ø HHue@1 - Ò3D &LD,
ListPointPlot3D@data2, Ticks Ø None, BoxRatios Ø 815, 10, 10<,
ColorFunction Ø HHue@1 - Ò3D &LD,
BarChart3DAdata3¨, BoxRatios Ø 815, 10, 10<, Ticks Ø NoneE=

: , , >

278 Mathematica Navigator



8ArrayPlot@data2, DataReversed Ø True, ColorFunction Ø HHue@1 - ÒD &LD,
ListContourPlot@data2, AspectRatio Ø Automatic,
FrameTicks Ø None, ColorFunction Ø HHue@1 - ÒD &LD,

ListDensityPlot@data2, AspectRatio Ø Automatic,
ColorFunction Ø HHue@1 - ÒD &L, FrameTicks Ø NoneD<

: , , >

‡ Example: Galaxy

We have in a text file galaxy  various data about NGC 7531, a spiral galaxy in the Northern Hemisphere.
The data are, again, from Cleveland (1993) and can be found on the CD-ROM accompanying this book.

data6 = Rest@Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêgalaxy", "Table"DD;

(Rest drops the first row, which contains the headings of the columns.) The file contains 323 rows. The
first row is as follows:

data6P1T

83, 8.46279, -38.1732, 102.5, 39.1, 1769<

The first  item is  the observation number (ranging from 3 to  417 but  having missing observations),  the
second and third items are the coordinates of a point of the galaxy, and the sixth item is the velocity of
the galaxy at the given point. We extract the columns from the data:

8no, eastwest, southnorth, slitangle, radialposition, velocity< = data6¨;

The velocity varies between the following numbers (given in kilometers per second):

8Min@velocityD, Max@velocityD<

81409, 1775<

Then we plot the velocities. Note that the plot can be rotated with the mouse.

ListPointPlot3DA8eastwest, southnorth, velocity<¨, BoxRatios Ø 86, 10, 10<,
PlotStyle Ø PointSize@SmallD, ViewPoint Ø 8-2.9, 1, 1.2<,
ImageSize Ø 200, AxesLabel Ø 8"sn", "ew", " velocity"<E

-20

0

20

sn -50

0

50 ew

1500

1600

1700

veloci

Chapter 8  •  Graphics for Data 279



‡  Example: Barley

In Sections 8.4.1, p. 262, and 8.4.2, p. 265, we considered barley yields data. Now we illustrate the same

data with a bar chart:

data4 = Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêmodBarley", "Table"D;

sites = 8"Waseca", "Crookston", "Morris", "Univ. Farm", "Duluth", "Gr. Rapids"<;
varieties = 8"Svansota", "Manchuria", "No. 475", "Glabron",

"Velvet", "Peatland", "Trebi", "No. 462", "No. 457", "Wisconsin"<;

xticks = 8Range@6D, sites<¨;
yticks = 8Range@10D, varieties<¨;

xgrid = Range@1.5, 5.5, 1D; ygrid = Range@1.5, 9.5, 1D; zgrid = Range@10, 60, 10D;
grids = 888-1, 0, 0<, 8ygrid, zgrid<<,

880, 1, 0<, 8xgrid, zgrid<<, 880, 0, -1<, 8xgrid, ygrid<<<;

BarChart3DAdata4¨, BoxRatios Ø 86, 10, 7<,
ViewPoint Ø 81.8, -2.4, 1.6<, AxesEdge Ø 8Automatic, 81, -1<, Automatic<,
Ticks Ø 8xticks, yticks, Range@10, 60, 10D<, FaceGrids Ø grids, ImageSize Ø 280E

Waseca

Crookston
Morris

Univ. Farm
Duluth

Gr. Rapids
Svansota

Manchuria
No. 475

Glabron

Velvet

Peatland
Trebi

No. 462
No. 457

Wiscons

10

20

30

40

50

60

‡ Histograms

In the Histograms` package:

Histogram3D[data]  Plot the frequencies of the given raw data

With the option FrequencyData Ø True, we can plot given frequencies.

<< MultivariateStatistics`
<< Histograms`

SeedRandom@1D; data =
Table@RandomReal@MultinormalDistribution@80, 0<, 881, 0.6<, 80.6, 1<<DD, 82000<D;

280 Mathematica Navigator



Histogram3D@data, ImageSize Ø 260D

-4

-2

0

2

-2

0

2

4

0

50

See Section 30.2, p. 1011, for more information about frequencies and histograms.

‡ Irregular Data

If the data are irregular, we have to tell, in addition to the z values, the x and y values of the data points;

that  is,  the data is  of  the form 99x1, y1, z1=, …, 9xn, yn, zn==.  For  irregular  data,  the following commands

presented  previously  still  work: ListPlot3D, ListPointPlot3D, ListDensityPlot,  and
ListContourPlot.  However, BarChart3D, ArrayPlot,  and MatrixPlot  are  no  longer  available.  In
addition, we have the following new commands:

ListSurfacePlot3D[data] (Ÿ6)  Find a surface that approximates the given points
TriangularSurfacePlot[data]  Plot a triangular surface plot according to the Delaunay triangula-

tion (in the ComputationalGeometry` package)

To illustrate plots of irregular data, we first generate such data:

SeedRandom@2D;
data5 =
Table@8x = RandomReal@80, p<D, y = RandomReal@80, p<D, Sin@xD + Sin@yD<, 830<D;

Here are some surface plots:

<< ComputationalGeometry`

Chapter 8  •  Graphics for Data 281



GraphicsRow@8ListPlot3D@data5, BoxRatios Ø Automatic, AxesLabel Ø 8"x", "y", ""<D,
ListPlot3D@data5, Mesh Ø All, BoxRatios Ø AutomaticD,
TriangularSurfacePlot@data5D,
ListSurfacePlot3D@data5, Ticks Ø NoneD<, ImageSize Ø 420D

If we use Mesh Ø All in ListPlot3D, we see the triangularization of the surface, although the surface
is  colored  smoothly.  With TriangularSurfacePlot  we  get  a  surface  consisting  of  triangles.
ListSurfacePlot3D  finds  a  surface  that  approximates  the  points.  For  more  information  about  the
computational geometry package, see ComputationalGeometryêguideêComputationalGeometryPackage.

Next, we show two scatter plots and a density and contour plot. The second plot shows how easy it is
to plot points with Graphics3D.

GraphicsRow@
8ListPointPlot3D@data5, Filling Ø Bottom, BoxRatios Ø Automatic, Ticks Ø NoneD,
Graphics3D@8Red, AbsolutePointSize@3.5D, Point@data5D,

Black, Line@88ÒP1T, ÒP2T, 0<, Ò<D & êü data5<D,
ListDensityPlot@data5, AspectRatio Ø Automatic,
FrameTicks Ø 881, 2, 3, 4, 5<, 81, 2, 3, 4<, None, None<D,
ListContourPlot@data5, AspectRatio Ø Automatic,
FrameTicks Ø 881, 2, 3, 4, 5<, 81, 2, 3, 4<, None, None<D<, ImageSize Ø 420D

With ListContourPlot3D we can plot surfaces of constant value; see ContourPlot3D in Section 5.4.2,

p. 149.

282 Mathematica Navigator



9
Data

Introduction 283

9.1  Chemical and Physical Data 284

9.1.1  Element, Chemical, and Isotope Data 284 ElementData, ChemicalData, IsotopeData

9.1.2  Particle and Astronomical Data 291 ParticleData, AstronomicalData

9.2  Geographical and Financial Data 293

9.2.1  Country and City Data 293 CountryData, CityData

9.2.2  Financial Data 299 FinancialData

9.3  Mathematical and Other Data 300

9.3.1  Mathematical Data 300 PolyhedronData, GraphData, LatticeData, KnotData

9.3.2  Word Data 303 WordData, DictionaryLookup

9.3.3  Color Data 304 ColorData

9.3.4  Example Data 308 ExampleData

Introduction

Laplace was once asked who was the greatest mathematician in Germany.
He replied “Pfaff.” “But what about Gauss?” asked the questioner.

“Gauss,” said Laplace, “is the greatest mathematician in the world.”

New  in Mathematica  6  are  built-in  data  over  various  fields.  Here  is  a  list  of  the  data  sets  with  short
descriptions:

Chemical data:
• ElementData: bulk, atomic, chemical, etc. properties of chemical elements
• ChemicalData: structural, physical, and other properties of chemical compounds
• IsotopeData: static and decay properties of all nuclear isotopes

Physical data:
• ParticleData: properties of stable, unstable, and resonance particles
• AstronomicalData: properties of stars, planets, and other objects

Geographical data:
• CountryData: many categories of data about countries, groups, etc.
• CityData: properties of cities throughout the world

Financial data:
• FinancialData: current and historical stock, fund, index, currency, etc. data



Mathematical data:
• PolyhedronData: geometry and properties of polyhedra
• GraphData: properties of named and enumerated graphs
• LatticeData: properties of named lattices
• KnotData: properties of enumerated knots

Word data:
• WordData: properties of words and network of relations between them
• DictionaryLookup: use string patterns to look up words in the dictionary

Color data:
• ColorData: various color schemes such as gradients

Example data:
• ExampleData: many types of standard test and example data

Here, we can only give short introductions to these data sets. If you are interested in a particular data
set, please look at the corresponding document from Help @ Documentation Center.

Note that we also have the following physical packages:

• PhysicalConstants`, Units` (see Section 12.1.3, p. 402)

• StandardAtmosphere`, ResonanceAbsorptionLines`, BlackBodyRadiation`, Geodesy`

Regarding mathematics, note the following packages:

• PolyhedronOperations`, Polytopes`

• GraphUtilities`, Combinatorica`, ComputationalGeometry`

See guideêDatabaseConnectivity  and DatabaseLinkêtutorialêOverview  in  the  Documentation  Center  for
tools to work with databases.

9.1  Chemical and Physical Data

9.1.1  Element, Chemical, and Isotope Data

‡ ElementData

ElementData[] (Ÿ6)  Give a list of all standard chemical elements sorted by atomic number
ElementData[n]  Give the full name of the nth element
ElementData[patt]  Give a list of all elements matching the string pattern

ElementData["Properties"]  Give a list of all properties
ElementData["elem", "prop"]  Give the value of the property for the element
ElementData["elem", "prop", "Units"]  Give the units of the property
ElementData["elem", "prop", "ann"]  Give the specified annotation

ElementData["Classes"]  Give a list of all classes
ElementData["class"]  Give a list of elements in the given class
ElementData["elem", "class"]  Give True if elem belongs to class

An element can be specified by the full name such as "Iron", by the abbreviation such as "Fe", or by
the atomic number such as 26.

284 Mathematica Navigator



Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "LongDescription", "Interval" (uncertainty), and "Note".

Here are all the elements, properties, and classes:

Style@ElementData@D, 6D

9Hydrogen, Helium, Lithium, Beryllium, Boron, Carbon, Nitrogen, Oxygen, Fluorine, Neon, Sodium, Magnesium, Aluminum, Silicon,

Phosphorus, Sulfur, Chlorine, Argon, Potassium, Calcium, Scandium, Titanium, Vanadium, Chromium, Manganese, Iron,
Cobalt, Nickel, Copper, Zinc, Gallium, Germanium, Arsenic, Selenium, Bromine, Krypton, Rubidium, Strontium, Yttrium,
Zirconium, Niobium, Molybdenum, Technetium, Ruthenium, Rhodium, Palladium, Silver, Cadmium, Indium, Tin, Antimony,
Tellurium, Iodine, Xenon, Cesium, Barium, Lanthanum, Cerium, Praseodymium, Neodymium, Promethium, Samarium, Europium,
Gadolinium, Terbium, Dysprosium, Holmium, Erbium, Thulium, Ytterbium, Lutetium, Hafnium, Tantalum, Tungsten, Rhenium,
Osmium, Iridium, Platinum, Gold, Mercury, Thallium, Lead, Bismuth, Polonium, Astatine, Radon, Francium, Radium,
Actinium, Thorium, Protactinium, Uranium, Neptunium, Plutonium, Americium, Curium, Berkelium, Californium, Einsteinium,
Fermium, Mendelevium, Nobelium, Lawrencium, Rutherfordium, Dubnium, Seaborgium, Bohrium, Hassium, Meitnerium,

Darmstadtium, Roentgenium, Ununbium, Ununtrium, Ununquadium, Ununpentium, Ununhexium, Ununseptium, Ununoctium=

Style@ElementData@"Properties"D, 6D

9Abbreviation, AbsoluteBoilingPoint, AbsoluteMeltingPoint, AdiabaticIndex, AllotropeNames, AllotropicMultiplicities,

AlternateNames, AlternateStandardNames, AtomicNumber, AtomicRadius, AtomicWeight, Block, BoilingPoint, BrinellHardness,
BulkModulus, CASNumber, Color, CommonCompoundNames, CovalentRadius, CriticalPressure, CriticalTemperature, CrustAbundance,
CrystalStructure, CuriePoint, DecayMode, Density, DiscoveryCountries, DiscoveryYear, ElectricalConductivity, ElectricalType,
ElectronAffinity, ElectronConfiguration, ElectronConfigurationString, Electronegativity, ElectronShellConfiguration,
FusionHeat, GasAtomicMultiplicities, Group, HalfLife, HumanAbundance, IconColor, IonizationEnergies, IsotopeAbundances,
KnownIsotopes, LatticeAngles, LatticeConstants, Lifetime, LiquidDensity, MagneticType, MassMagneticSusceptibility,
MeltingPoint, Memberships, MeteoriteAbundance, MohsHardness, MolarMagneticSusceptibility, MolarVolume, Name, NeelPoint,
NeutronCrossSection, NeutronMassAbsorption, OceanAbundance, Period, Phase, PoissonRatio, QuantumNumbers, Radioactive,
RefractiveIndex, Resistivity, ShearModulus, SolarAbundance, SoundSpeed, SpaceGroupName, SpaceGroupNumber, SpecificHeat,
StableIsotopes, StandardName, SuperconductingPoint, ThermalConductivity, ThermalExpansion, UniverseAbundance,

Valence, VanDerWaalsRadius, VaporizationHeat, VickersHardness, VolumeMagneticSusceptibility, YoungModulus=

Style@ElementData@"Classes"D, 6D

9Actinide, AlkaliMetal, AlkalineEarthMetal, Antiferromagnetic, Conductor, Diamagnetic,

Ferromagnetic, Gas, Halogen, Insulator, Lanthanide, Liquid, Metal, Metalloid, Natural, NobleGas,

Nonmetal, Paramagnetic, PoorMetal, Radioactive, Semiconductor, Solid, Stable, Synthetic, TransitionMetal=

Length êü 8ElementData@D, ElementData@"Properties"D, ElementData@"Classes"D<

8118, 86, 22<

In  the  Documentation  Center,  under ElementData,  the  properties  are  classified  as  follows:  basic
properties,  material,  thermodynamic,  electromagnetic  and  optical,  abundance,  periodic  table,  basic
chemical, crystallographic, atomic, nuclear, names-related, and historical and commercial properties.

A  property  that  is  not  applicable  to  an  element  has  the  value Missing["NotApplicable"].  A
property that is not available for an element has the value Missing["NotAvailable"]. A property that
is unknown for an element has the value Missing["Unknown"].

‡ Example 1

An element can be specified by standard name, abbreviation, or atomic number:

ElementData@"Fe", "StandardName"D

Iron

ElementData@"Iron", "Abbreviation"D

Fe

ElementData@"Iron", "AtomicNumber"D

26

Any of these specifications can be used when asking for properties:

ElementData@"Iron", "Density"D

7874.

ElementData@"Fe", "Density"D

7874.

Chapter 9  •  Data 285



ElementData@26, "Density"D

7874.

An element is found in Finland:

ElementData@"Yttrium", "DiscoveryCountries"D

8Finland<
ElementData@"Yttrium", "DiscoveryYear"D

1794

Find all elements beginning with H:

ElementData@"H*"D

8Hydrogen, Helium, Holmium, Hafnium, Hassium<

Ask for some annotations:

ElementData@"Fe", "Density", "Units"D

KilogramsPerCubicMeter

ElementData@"Fe", "Density", "UnitsName"D

kilograms per cubic meter

ElementData@"Fe", "Density", "UnitsNotation"D

kgêm3

ElementData@"Fe", "Density", "LongDescription"D

density at standard temperature and pressure

Consider the class of liquids:

ElementData@"Liquid"D

8Bromine, Mercury<
ElementData@"Bromine", "Liquid"D

True

‡ Example 2

Here are all boiling points:

Style@t1 = Table@ElementData@n, "BoilingPoint"D, 8n, 118<D, 7D

9-252.87, -268.93, 1342., 2470., 4000., 4027., -195.79, -182.9, -188.12, -246.08, 883., 1090.,

2519., 2.9μ103, 280.5, 444.72, -34.04, -185.8, 759., 1484., 2830., 3287., 3407., 2671., 2061.,
2861., 2927., 2913., 2927., 907., 2204., 2820., 614., 685., 59., -153.22, 688., 1382., 3345.,
4409., 4744., 4639., 4265., 4150., 3695., 2963., 2162., 767., 2072., 2602., 1587., 988., 184.3,

-108., 671., 1870., 3464., 3360., 3290., 3.1μ103, 3.0μ103, 1803., 1527., 3250., 3230., 2567.,
2700., 2868., 1950., 1196., 3402., 4603., 5458., 5555., 5596., 5012., 4428., 3825., 2856., 356.73,
1473., 1749., 1564., 962., Missing@NotAvailableD, -61.7, Missing@NotAvailableD, 1737., 3200.,

4820., 4000., 3927., 4.0μ103, 3230., 2011., 3110., Missing@NotAvailableD, Missing@NotAvailableD,

Missing@NotAvailableD, Missing@NotAvailableD, Missing@NotAvailableD, Missing@NotAvailableD,

Missing@NotAvailableD, Missing@NotAvailableD, Missing@NotAvailableD, Missing@NotAvailableD,

Missing@NotAvailableD, Missing@NotAvailableD, Missing@NotAvailableD, Missing@UnknownD,

Missing@NotAvailableD, Missing@NotAvailableD, Missing@UnknownD, Missing@NotAvailableD,

Missing@NotAvailableD, Missing@UnknownD, Missing@NotAvailableD, Missing@NotAvailableD=

Many items are missing or unknown; nevertheless, we can plot the data:

286 Mathematica Navigator



ListLinePlot@t1, Mesh Ø All, ImageSize Ø 200D

20 40 60 80

1000

2000

3000

4000

5000

List all the melting points:

t2 = Table@ElementData@n, "MeltingPoint"D, 8n, 118<D;

Plot pairs of boiling points and melting points:

ListPlotA8t1, t2<¨, AxesLabel Ø 8"Boiling", "Melting"<, ImageSize Ø 200E

1000 2000 3000 4000 5000
Boiling

500

1000

1500

2000

2500

3000

3500

Melting

We can assign a tooltip for each point that gives the abbreviation of the element:

t1t2 =
Table@Tooltip@8ElementData@n, "BoilingPoint"D, ElementData@n, "MeltingPoint"D<,

ElementData@n, "Abbreviation"DD, 8n, 118<D;

By moving the mouse over the points in the following plot, we can see the abbreviations:

ListPlot@t1t2, ImageSize Ø 300D

Chapter 9  •  Data 287



‡ Example 3

Prepare a table of boiling and melting points of all alkaline earth metals:

t = 8Ò, ElementData@Ò, "BoilingPoint"D, ElementData@Ò, "MeltingPoint"D< & êü
ElementData@"AlkalineEarthMetal"D

98Beryllium, 2470., 1287.<, 8Magnesium, 1090., 650.<, 8Calcium, 1484., 842.<,
8Strontium, 1382., 777.<, 8Barium, 1870., 727.<, 9Radium, 1737., 7.0 μ 102==

Textü
TableForm@t, TableHeadings Ø 8None, 8"Element", "Boiling point", "Melting point"<<D

Element Boiling point Melting point

Beryllium 2470. 1287.

Magnesium 1090. 650.

Calcium 1484. 842.

Strontium 1382. 777.

Barium 1870. 727.

Radium 1737. 7.0μ102

‡ Example 4

In the following example, some data are missing:

t = 8Ò, ElementData@Ò, "BoilingPoint"D, ElementData@Ò, "MeltingPoint"D< & êü
ElementData@"NobleGas"D

88Helium, -268.93, Missing@NotApplicableD<, 8Neon, -246.08, -248.59<,
8Argon, -185.8, -189.3<, 8Krypton, -153.22, -157.36<, 8Xenon, -108., -111.8<,
8Radon, -61.7, -71.<, 8Ununoctium, Missing@NotAvailableD, Missing@NotAvailableD<<

Before tabulating the data, we can delete all missing items:

t1 = DeleteCases@t, 8_, _, _Missing<D

88Neon, -246.08, -248.59<, 8Argon, -185.8, -189.3<,
8Krypton, -153.22, -157.36<, 8Xenon, -108., -111.8<, 8Radon, -61.7, -71.<<

TextüGrid@Prepend@t1, 8"Element", "Boiling point", "Melting point"<D,
Dividers Ø 8False, 8False, True<<,
Alignment Ø 88Left, ".", "."<, Baseline, 881, 2< Ø Right, 81, 3< Ø Right<<,
ItemStyle Ø 8Automatic, 8Bold<<D

Element Boiling point Melting point

Neon -246.08 -248.59

Argon -185.8 -189.3

Krypton -153.22 -157.36

Xenon -108. -111.8

Radon -61.7 -71.

‡ ChemicalData

ChemicalData is used in the same way as ElementData:

ChemicalData[] (Ÿ6)  Give a list of all available chemicals in order of increasing molecular weight
ChemicalData["chem"]  Give a structure diagram for the chemical
ChemicalData[patt]  Give a list of all chemicals matching the string pattern

ChemicalData["Properties"]  Give a list of all properties
ChemicalData["chem", "prop"]  Give the value of the property for the chemical
ChemicalData["chem", "prop", "Units"]  Give the units of the property

288 Mathematica Navigator



p p y
ChemicalData["chem", "prop", "ann"]  Give the specified annotation

ChemicalData["Classes"]  Give a list of all classes
ChemicalData["class"]  Give a list of chemicals in the given class
ChemicalData["chem", "class"]  Give True if chem belongs to class

ChemicalData[{"elem", "Compound"}]  Give a list of available chemicals that contain the given
element

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "LongDescription", "Interval" (uncertainty), and "Note".

Here are sizes of some lists:

Length êü 8ChemicalData@D, ChemicalData@"Properties"D, ChemicalData@"Classes"D<

818 179, 68, 20<

Some properties of the aspirin are as follows:

ChemicalData@"Aspirin"D

OO

OO

H

O

O

ChemicalData@"Aspirin", "MoleculePlot"D

ChemicalData@"Aspirin", "FormulaString"D

C9H8O4

ChemicalData@"Aspirin", "AlternateStandardNames"D

82-HAcetyloxyLBenzoicAcid, AcetylsalicylicAcid,
2-AcetoxybenzoicAcid, Acenterine, Acetosal<

Ask for chemicals that contain gold:

ChemicalData@8"Gold", "Compound"<D êê Short

8Gold, á13à, BisHPropane-1, … o-CLAurateH1-LD<

Here are chemicals whose names begin with J:

Chapter 9  •  Data 289



ChemicalData@"J*"D

8Jasmone, Jacobine, Javanicin, Jervine,
Julolidine, Juglone, JunipericAcid, JanusGreenB, Josamycin<

Consider the melting points:

t = DeleteCases@ChemicalData@Ò, "MeltingPoint"D & êü ChemicalData@D, _MissingD;

8Min@tD, Max@tD<

8-259.14, 3550.<

Plot a part of the frequency distribution of the melting points:

ListPlotA8Range@-260, 500, 10D, BinCounts@t, 8-265, 505, 10<D<¨,

Filling Ø Axis, ImageSize Ø 320E

‡ IsotopeData

IsotopeData[] (Ÿ6)  Give a list of all known isotopes sorted by atomic number and mass number
IsotopeData["elem"]  Give the known isotopes of the element
IsotopeData[patt]  Give a list of all isotopes matching the string pattern

IsotopeData["Properties"]  Give a list of all properties
IsotopeData["isot", "prop"]  Give the value of the property for the isotope
IsotopeData["isot", "prop", "Units"]  Give the units of the property
IsotopeData["isot", "prop", "ann"]  Give the specified annotation

IsotopeData["Classes"]  Give a list of all classes
IsotopeData["class"]  Give a list of isotopes in the given class
IsotopeData["isot", "class"]  Give True if isot belongs to class

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "LongDescription", "Interval" (uncertainty), and "Note".

Here are sizes of some lists:

Length êü 8IsotopeData@D, IsotopeData@"Properties"D, IsotopeData@"Classes"D<

83182, 33, 47<

290 Mathematica Navigator



Isotopes of uranium are as follows:

IsotopeData@"Uranium"D êê Short

8Uranium217, á24à, Uranium242<

Isotopes can be referred to in several ways:

IsotopeData@"Uranium217", "Lifetime"D

0.038

IsotopeData@"U217", "Lifetime"D

0.038

IsotopeData@892, 217<, "Lifetime"D

0.038

9.1.2  Particle and Astronomical Data

‡ ParticleData

ParticleData[] (Ÿ6)  Give a list of all known particles sorted by mass
ParticleData[patt]  Give a list of all particles matching the string pattern

ParticleData["Properties"]  Give a list of all properties
ParticleData["part", "prop"]  Give the value of the property for the particle
ParticleData[{"part", q}, "prop"]  Give the value of the property for the particle with charge q

ParticleData["part", "prop", "Units"]  Give the units of the property
ParticleData["part", "prop", "ann"]  Give the specified annotation

ParticleData["Classes"]  Give a list of all classes
ParticleData["class"]  Give a list of isotopes in the given class
ParticleData["part", "class"]  Give True if part belongs to class

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "LongDescription", "Interval" (uncertainty), and "Note".

Here are sizes of some lists:

Length êü 8ParticleData@D, ParticleData@"Properties"D, ParticleData@"Classes"D<

81002, 35, 24<

The mass of electron is as follows:

ParticleData@"Electron", "Mass"D

0.51099892

ParticleData@"Electron", "Mass", "Units"D

MegaelectronVoltsPerSpeedOfLightSquared

‡ AstronomicalData

AstronomicalData has information about planets, stars, galaxies, etc.

AstronomicalData[] (Ÿ6)  Give a list of all available astronomical objects
AstronomicalData["tag"]  Give the standardized name or list of names of tag

AstronomicalData[patt]  Give a list of all objects matching the string pattern

Chapter 9  •  Data 291



AstronomicalData["Properties"]  Give a list of all properties
AstronomicalData["obj", "prop"]  Give the value of the property for the object
AstronomicalData["obj", "prop", "Units"]  Give the units of the property
AstronomicalData["obj", "prop", "ann"]  Give the specified annotation
AstronomicalData["obj", "Image"]  Give a picture of the object
AstronomicalData["obj", "ObjectType"]  Give the basic type of the object

AstronomicalData["Classes"]  Give a list of all classes
AstronomicalData["class"]  Give a list of objects in the given class
AstronomicalData["obj", "Classes"]  Give the classes in which obj occurs
AstronomicalData["obj", "class"]  Give True if obj belongs to class

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "LongDescription", and "Note".

Possible object types are as follows:

Union@AstronomicalData@Ò, "ObjectType"D & êü AstronomicalData@DD

8BrightHIIRegion, DwarfPlanet, Galaxy, GlobularCluster, Nebula, OpenCluster,
Planet, PlanetaryMoon, PlanetaryNebula, Star, Missing@NotAvailableD<

Here are sizes of some lists:

Length êü
8AstronomicalData@D, AstronomicalData@"Properties"D, AstronomicalData@"Classes"D<

8100 910, 71, 48<

Here are planets:

AstronomicalData@"Planet"D

8Mercury, Venus, Earth, Mars, Jupiter, Saturn, Uranus, Neptune, Pluto<

Pluto is considered to be a dwarf planet:

AstronomicalData@"Pluto", "ObjectType"D

DwarfPlanet

The classes and picture of sun are as follows:

AstronomicalData@"Sun", "Classes"D

8Star, MainSequenceStar, ClassGStar, StarNearest100,
StarBrightest100, StarNearest10, StarBrightest10<

AstronomicalData@"Sun", "Image"D

We have 162 planetary moons:

AstronomicalData@"PlanetaryMoon"D êê Length

162

292 Mathematica Navigator



Consider the density and radius of them (many of these data are missing):

t = Tooltip@8AstronomicalData@Ò, "Density"D, AstronomicalData@Ò, "Radius"D<,
AstronomicalData@Ò, "Name"DD & êü AstronomicalData@"PlanetaryMoon"D;

By moving the mouse over the points in the following plot, we can see the names of the moons:

ListPlot@t, PlotRange Ø All, ImageSize Ø 280D

9.2  Geographical and Financial Data

9.2.1  Country and City Data

‡ CountryData

CountryData[] (Ÿ6)  Give a list of all ordinary countries and dependencies
CountryData["tag"]  Give the standardized name or list of names of the tag

CountryData["Properties"]  Give a list of all properties
CountryData["tag", "prop"]  Give the value of the property for the tag
CountryData["tag", {"prop", y}]  Give the value of the property for year y

CountryData["tag", {"prop", All}]  All available years
CountryData["tag", {"prop", {y1, y2}}]  Years from y1 to y2

CountryData["tag", {{"prop", "curr"}, y}]  Give values in currency "curr"

CountryData["tag", "prop", "Units"]  Give the units of the property
CountryData["tag", "prop", "ann"]  Give the specified annotation
CountryData["tag", "Shape"]  Give the shape of the tag

CountryData["class"]  Give a list of tags in the given class; possible classes: "Countries"

(ordinary countries and dependencies), "Groups" (groups of countries), "Continents", "Oceans"

CountryData["tag", "Classes"]  Give the classes and groups in which tag appears
CountryData["tag", "class"]  Give True if tag belongs to the given class or group

Special values of the currency "curr" are as follows:

Chapter 9  •  Data 293



"USDollars": nominal value in U.S. dollars (the default)
"Local": nominal value in local currency
"Adjusted": adjusted to give a real value in current U.S. dollars
"AdjustedLocal": adjusted to give a real value in current local currency

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "Date", "DateValue", and "Note".

Here are numbers of countries and other tags:

Length êü 8CountryData@D, CountryData@"Groups"D,
CountryData@"Continents"D, CountryData@"Oceans"D, CountryData@"Properties"D<

8237, 305, 7, 5, 220<

‡ Example 1

As an example, here are some properties of Finland:

CountryData@"Finland", ÒD & êü 8"Shape", "Flag", "NativeName", "IndependenceYear"<

: , , Suomi, 1917>

Here is a link to a web satellite image for Finland:

CountryData@"Finland", "CenterLocationLink"D

http:êêmaps.google.comêmaps?q=+64+26&z=6&t=h

We plot the GDP (real value in current local currency) of Finland:

DateListPlot@
CountryData@"Finland", 88"GDP", "LocalAdjusted"<, All<D, Filling Ø BottomD

294 Mathematica Navigator



‡ Example 2

Properties of the G8 countries:

CountryData@"G8"D

8Canada, France, Germany, Italy, Japan, Russia, UnitedKingdom, UnitedStates<
CountryData@"G8", "Population"D

93.22682 μ 107, 6.23121 μ 107, 8.26892 μ 107, 5.80927 μ 107,

1.28085 μ 108, 1.43202 μ 108, 5.96678 μ 107, 2.98213 μ 108=
Find the 10 largest populations:

ReverseüTake@
SortBy@8CountryData@ÒD, CountryData@Ò, "Population"D< & êü CountryData@D, LastD,
-10D êê TableForm

China 1.29299 μ 109

India 1.10337 μ 109

UnitedStates 2.98213 μ 108

Indonesia 2.22781 μ 108

Brazil 1.86405 μ 108

Pakistan 1.57935 μ 108

Russia 1.43202 μ 108

Bangladesh 1.41822 μ 108

Nigeria 1.3153 μ 108

Japan 1.28085 μ 108

Show infant mortatility fraction against literacy fraction:

ListPlot@Tooltip@8CountryData@Ò, "LiteracyFraction"D,
CountryData@Ò, "InfantMortalityFraction"D<,

CountryData@ÒDD & êü CountryData@D, ImageSize Ø 420D

Chapter 9  •  Data 295



‡ Example 3

Plot the world:

Graphics@8Darker@Green, 0.6D,
CountryData@Ò, 8"SchematicPolygon", "Mollweide"<D & êü CountryData@D<,

Background Ø LightBlue, ImageSize Ø 420D

Show the name of each country by a tooltip:

Graphics@8Darker@Orange, 0.1D, EdgeForm@BlackD,
Tooltip@CountryData@Ò, 8"SchematicPolygon", "Mollweide"<D, ÒD & êü CountryData@D<,

Background Ø LightBlue, ImageSize Ø 420D

Note that in addition to CountryData, we also have the WorldPlot` package.

296 Mathematica Navigator



‡ CityData

CityData contains information about more than 160,000 cities:

CityData[] (Ÿ6)  Give a list of all cities in the world sorted by population
CityData["city"]  Give a list of the full specifications of cities with the given name
CityData[{"city", "country"}]  Give a list of the full specifications of cities with the given name

in the given country

CityData["Properties"]  Give a list of all properties
CityData["city", "prop"]  Give the value of the property for the given city
CityData[{"city", "region", "country"}, "prop"]  Give the value of the property for the given

city in the given region of the given country
CityData["city", "prop", "Units"]  Give the units of the property
CityData["city", "prop", "ann"]  Give the specified annotation

CityData[{All, "country"}]  Give a list of all available cities in the given country
CityData[{Large, "country"}]  Give a list of all large cities in the given country
CityData[{All, "region", "country"}]  Give a list of all available cities in the given region of the

given country
CityData[{Large, "region", "country"}]  Give a list of all large cities in the given region of the

given country

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "Date", and "Note".

Here are sizes of some lists:

Length êü 8CityData@D, CityData@"Properties"D<

8163 428, 14<

We have several cities with the name Paris:

Style@CityData@"Paris"D, 7D

88Paris, IleDeFrance, France<, 8Paris, Texas, UnitedStates<,
8Paris, Ontario, Canada<, 8Paris, Tennessee, UnitedStates<, 8Paris, Kentucky, UnitedStates<,

8Paris, Illinois, UnitedStates<, 8Paris, Maine, UnitedStates<, 8Paris, NewYork, UnitedStates<,
8Paris, Arkansas, UnitedStates<, 8Paris, Wisconsin, UnitedStates<, 8Paris, Missouri, UnitedStates<,
8ParisGrant, Wisconsin, UnitedStates<, 8Paris, Idaho, UnitedStates<<

CityData@"Paris", "Population"D

2 138 551

CityData@8"Paris", "Ontario", "Canada"<, "Population"D

10 437

The 10 cities with the largest populations:

Take@CityData@D, 10D

88Beijing, Beijing, China<, 8Shanghai, Shanghai, China<,
8Bombay, Maharashtra, India<, 8Karachi, Sind, Pakistan<,
8BuenosAires, BuenosAires, Argentina<, 8Delhi, Delhi, India<,
8Manila, Manila, Philippines<, 8Moscow, Moscow, Russia<,
8Seoul, SoulTvkpyolsi, SouthKorea<, 8SaoPaulo, SaoPaulo, Brazil<<

Chapter 9  •  Data 297



TableForm@8ÒP1T, CityData@Ò, "Population"D< & êü %D

Beijing 14 930 000

Shanghai 14 608 512

Bombay 12 691 836

Karachi 11 624 219

BuenosAires 11 574 205

Delhi 10 927 986

Manila 10 444 527

Moscow 10 381 222

Seoul 10 349 312

SaoPaulo 10 021 295

Here is a link to a map of Bombay:

CityData@"Bombay", "LocationLink"D

http:êêmaps.google.comêmaps?q=+18.96+72.82&z=12&t=h

The next plot shows the largest cities of India:

Graphics@8Darker@Green, 0.4D, CountryData@"India", "Polygon"D,
PointSize@MediumD, Lighter@OrangeD, DeleteCases@

Tooltip@Point@Reverse@CityData@Ò, "Coordinates"DDD, CityData@Ò, "Name"DD & êü
CityData@8Large, "India"<D,

Tooltip@Point@8_Missing, _Missing<D, _DD<, ImageSize Ø 380D

298 Mathematica Navigator



9.2.2  Financial Data

FinancialData[] (Ÿ6)  Give a list of all financial instruments sorted by ticker symbols
FinancialData[patt]  Give a list of entities matching the string pattern

FinancialData["name"]  Give the last known price or value of the financial entity
FinancialData["name", {start}]  Give a list of dates and daily closing values from start

FinancialData["name", {start, end}]  Give a list of dates and daily closing values from start to
end

FinancialData["name", {start, end, period}]  Give a list of dates and prices for the specified
periods ("Day", "Week", "Month", "Year") lying between start and end

FinancialData["Properties"]  Give a list of all properties
FinancialData["name", "prop"]  Give the value of the property for the entity
FinancialData["name", "prop", {start, end, … }]  Give a list of dates and values of the property

for a sequence of dates or periods
FinancialData["name", "prop", …, "Value"]  Give the value
FinancialData["name", "prop", …, "DateValue"]  Give a list of date and value
FinancialData["name", "prop", …, "Units"]  Give the units of the property
FinancialData["name", "prop", …, "ann"]  Give the specified annotation

FinancialData["Classes"]  Give a list of all available classes
FinancialData["class"]  Give a list of entities in the given class

Typical  annotations  include "Units", "UnitsName", "UnitsStandardName", "UnitsNotation",
"Description", "LongDescription", and "Currency".

Here are sizes of some lists:

Length êü 8FinancialData@D, FinancialData@"Properties"D, FinancialData@"Classes"D<

8186 127, 71, 8<

Here are the various classes of financial entities:

FinancialData@"Classes"D

8Currencies, Exchanges, ExchangeTradedFunds,
Futures, Indices, MutualFunds, Sectors, Stocks<

Next, we show financial entities beginning with NASDAQ:AA:

FinancialData@"NASDAQ:AA*"D

8NASDAQ:AACC, NASDAQ:AAME, NASDAQ:AANB, NASDAQ:AAON,
NASDAQ:AAPL, NASDAQ:AATI, NASDAQ:AATK, NASDAQ:AAUK, NASDAQ:AAWW<

Here, NASDAQ : AAPL is the Apple company:

FinancialData@"NASDAQ:AAPL", "Name"D

Apple Inc

Ask the current value:

FinancialData@"NASDAQ:AAPL"D

169.26

Plot the value from 2004 on:

Chapter 9  •  Data 299



DateListPlot@FinancialData@"NASDAQ:AAPL", 82004<DD

2004 2005 2006 2007
0

50

100

150

Find the current exchange rate between euros and U.S. dollars:

FinancialData@"EURêUSD"D

1.4205

9.3  Mathematical and Other Data

9.3.1  Mathematical Data

‡ PolyhedronData

PolyhedronData[] (Ÿ6)  Give a list of all available polyhedra
PolyhedronData[n]  Give a list of all polyhedra with n faces
PolyhedronData[patt]  Give a list of all polyhedra matching the string pattern
PolyhedronData["poly"]  Give an image of the given polyhedron

PolyhedronData["Properties"]  Give a list of all properties available
PolyhedronData["poly", "prop"]  Give the value of the property for the polyhedron
PolyhedronData["prop", "ann"]  Give an annotation of the property

PolyhedronData["Classes"]  Give a list of all classes available
PolyhedronData["class"]  Give a list of the polyhedra in the given class
PolyhedronData["poly","Classes"]  Give the classes in which poly occurs
PolyhedronData["poly","class"]  Give True if poly belongs to class

Typical annotations include "Description", "LongDescription", and "Note".

Here are sizes of some lists:

Length êü
8PolyhedronData@D, PolyhedronData@"Properties"D, PolyhedronData@"Classes"D<

8147, 85, 27<

All Platonic polyhedra are as follows:

PolyhedronData@"Platonic"D

8Cube, Dodecahedron, Icosahedron, Octahedron, Tetrahedron<

300 Mathematica Navigator



Ask for some properties of a dodecahedron:

8Show@PolyhedronData@"Dodecahedron"D, ImageSize Ø 70D,
PolyhedronData@"Dodecahedron", "NetImage"D,
PolyhedronData@"Dodecahedron", "Volume"D<

: , ,
1

4
15 + 7 5 >

PolyhedronData@"Volume", "LongDescription"D

enclosed volume assuming unit smallest edge length

‡ GraphData

GraphData[] (Ÿ6)  Give a list of all standard named graphs
GraphData[All]  Give a list of all available graphs
GraphData[n]  Give a list of all named graphs with n vertices
GraphData[patt]  Give a list of all graphs matching the string pattern
GraphData["graph"]  Give an image of the graph

GraphData["Properties"]  Give a list of all properties available
GraphData["graph", "prop"]  Give the value of the property for the graph
GraphData[{n, i}, … ]  Give data for ith simple graph with n vertices
GraphData[{"type", id}, … ]  Give data for the graph of type with identifier id

GraphData["prop", "ann"]  Give an annotation of the property

GraphData["Classes"]  Give a list of all classes available
GraphData["class"]  Give a list of the graphs in the given class
GraphData["class", n]  Give a list of graphs with n vertices in the given class
GraphData["graph", "Classes"]  Give the classes in which graph occurs
GraphData["graph", "class"]  Give True if graph belongs to class

Typical  annotations  include "Description", "LongDescription",  and "Note".  Here  are  sizes  of
some lists:

Length êü
8GraphData@D, GraphData@AllD, GraphData@"Properties"D, GraphData@"Classes"D<

8735, 1939, 121, 71<

Ask for some properties of the cuboctahedral graph:

8Show@GraphData@"CuboctahedralGraph"D, ImageSize Ø 80D,
GraphData@"CuboctahedralGraph", "VertexCount"D,
GraphData@"CuboctahedralGraph", "EdgeCount"D<

: , 12, 24>

Chapter 9  •  Data 301



For  graphs,  look  also  at CombinatoricaêtutorialêCombinatorica  in  the  Documentation  Center.  Also

remember that we have GraphPlot (see Section 8.5, p. 267).

‡ LatticeData

LatticeData[] (Ÿ6)  Give a list of classical named lattices
LatticeData[n]  Give a list of named lattices of dimension n

LatticeData[patt]  Give a list of all lattices matching the string pattern

LatticeData["Properties"]  Give a list of all properties available
LatticeData["lattice", "prop"]  Give the value of the property for the lattice
LatticeData[{"type", id}, … ]  Give data for the lattice of type with identifier id

LatticeData["Classes"]  Give a list of all classes available
LatticeData["class"]  Give a list of the graphs in the given class
LatticeData["lattice", "Classes"]  Give the classes in which lattice occurs
LatticeData["lattice", "class"]  Give True if lattice belongs to class

Here are sizes of some lists:

Length êü 8LatticeData@D, LatticeData@"Properties"D, LatticeData@"Classes"D<

821, 37, 8<

As an example, here is the body-centered cubic lattice:

Show@LatticeData@"BodyCenteredCubic", "Image"D, ImageSize Ø 140D

‡ KnotData

KnotData[] (Ÿ6)  Give a list of classical named knots
KnotData[All]  Give a list of knots that have Alexander-Briggs notations
KnotData["knot"]  Give an image of the knot

KnotData["Properties"]  Give a list of all properties available
KnotData["knot", "prop"]  Give the value of the property for the knot
KnotData[{"type", id}, … ]  Give data for the knot of type with identifier id

KnotData["Classes"]  Give a list of all classes available
KnotData["class"]  Give a list of the knots in the given class
KnotData["knot", "Classes"]  Give the classes in which knot occurs
KnotData["knot", "class"]  Give True if knot belongs to class

302 Mathematica Navigator



Here are sizes of some lists:

Length êü 8KnotData@D, KnotData@AllD, KnotData@"Properties"D, KnotData@"Classes"D<

86, 250, 63, 14<

Classical knots are as follows:

KnotData@D

8Unknot, Trefoil, FigureEight, SolomonSeal, Stevedore, PerkoPair<

Here are their images (we do not have an image for PerkoPair):

Show@KnotData@ÒD, ImageSize Ø 70D & êü MostüKnotData@D

: , , , , >

9.3.2  Word Data

‡ WordData

WordData[] (Ÿ6)  Give a list of all words and phrases
WordData["word"]  Give a list of full word specifications representing possible uses and senses of

the given word
WordData[patt, "Lookup"]  Give a list of all words matching the string pattern

WordData["Properties"]  Give a list of all properties
WordData[wordspec, "prop"]  Give the value of the property for the given word specification
WordData[wordspec, "prop", "form"]  Give the value in the given form; possible forms: "List",

"Rules", "ShortRules"

WordData[All,"PartOfSpeech"]  Give a list of parts of speech
WordData[All,"part"]  Give a list of words of a given part of speech
WordData[All,"Stopwords"]  Give a list of words typically ignored in text comparisons

WordData contains approximately 150,000 words and phrases, and we have 37 properties:

Length êü 8WordData@D, WordData@"Properties"D<

8149 191, 37<

Parts of speech are as follows:

WordData@All, "PartsOfSpeech"D

8Noun, Verb, Adjective, Adverb, Preposition,
Conjunction, Pronoun, Determiner, Interjection<

Most of the words are nouns:

WordData@All, "Noun"D êê Length

119 034

Let us look at what WordData knows about words or phrases beginning with matrix:

Chapter 9  •  Data 303



WordData@"matrix*", "Lookup"D

8matrix, matrix addition, matrix algebra, matrix inversion,
matrix multiplication, matrix operation, matrix printer, matrix transposition<

Here is what WordData knows about matrix:

WordData@"matrix"D

88matrix, Noun, Mold<, 8matrix, Noun, AnimalTissue<, 8matrix, Noun, BodySubstance<,
8matrix, Noun, Array<, 8matrix, Noun, Enclosure<, 8matrix, Noun, Stone<<

The definition of the fourth meaning is as follows:

WordData@"matrix", "Definitions"DP4T

8matrix, Noun, Array< Ø

HmathematicsL a rectangular array of quantities or expressions set out by rows
and columns; treated as a single element and manipulated according to rules

‡ DictionaryLookup

DictionaryLookup[] (Ÿ6)  Give a list of all words in an English dictionary
DictionaryLookup[patt]  Find all words that match the string pattern patt

DictionaryLookup[patt, n]  Give only the first n words found
DictionaryLookup[patt, IgnoreCase Ø True]  Do not take the case of words into account

We consider this command in Section 16.2.1, p. 505. However, the following is an example:

DictionaryLookup@"math" ~~ ___D

8math, mathematical, mathematically, mathematician, mathematicians, mathematics<

9.3.3  Color Data

‡ ColorData

ColorData[] (Ÿ6)  Give a list of named collections of color schemes
ColorData["collection"]  Give a list of color schemes in the given collection
ColorData["scheme"]  Give a function that generates colors in the given color scheme
ColorData["scheme"][par]  Give the RGB color that corresponds to the parameter value
ColorData["scheme", par]  Give the RGB color that corresponds to the parameter value

ColorData["Properties"]  Give a list of all properties
ColorData["scheme", "prop"]  Give the value of the property for the color scheme

We have four collections of color schemes:

ColorData@D

8Gradients, Indexed, Named, Physical<

Properties are as follows:

ColorData@"Properties"D

8ColorFunction, ColorList, ColorRules, Image, Name, Panel, ParameterCount, Range<

Note  that  the  color  schemes  can  be  used  more  easily  with  the ColorSchemes  palette  (see Section

6.2.8, p. 172).

304 Mathematica Navigator



‡ Gradients

We have 51 gradients:

ColorData@"Gradients"D êê Short

8DarkRainbow, Rainbow, á48à, DarkBands<

Here is the color function of the rainbow color scheme:

ColorData@"Rainbow"D

ColorDataFunctionB80, 1<, F

A value of this function is

ColorData@"Rainbow"D@0.5D

RGBColor@0.513417, 0.72992, 0.440682D

In  the  next  plot,  we  color  the  surface  by  using  the  rainbow color  scheme to  give  the  surface  different
colors according to the height of the surface:

Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
ColorFunction Ø HColorData@"Rainbow"D@Ò3D &L, Mesh Ø FalseD

In density plots, we do not use arguments for the color function:

ContourPlot@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
ColorFunction Ø ColorData@"TemperatureMap"DD

‡ Physical Color Schemes

We have three physical color schemes:

ColorData@"Physical"D

8BlackBodySpectrum, HypsometricTints, VisibleSpectrum<

Here is the color function of the visible spectrum  color scheme:

Chapter 9  •  Data 305



ColorData@"VisibleSpectrum"D

ColorDataFunctionB8380, 750<, F

One of these colors is as follows:

ColorData@"VisibleSpectrum"D@400D

RGBColor@0.263347, 0, 0.632745D

In the following plot, we use this color scheme:

DensityPlot@x, 8x, 380, 750<, 8y, 0, 100<,
ColorFunction Ø ColorData@"VisibleSpectrum"D,
ColorFunctionScaling Ø False, AspectRatio Ø Automatic, ImageSize Ø 180,
PlotRangePadding Ø 5, FrameTicks Ø 88None, None<, 8Automatic, None<<D

‡ Indexed Color Schemes

We have 43 indexed color schemes:

ColorData@"Indexed"D êê Short

81, 2, 3, 4, 5, 6, 7, 8, 9, á25à, 35, 36, 37, 38, 39, 40, 41, 42, 43<

Here is the color function of the 16th indexed color scheme:

ColorData@16D

ColorDataFunctionB81, 9, 1<, F

By clicking on a color in the following panel, we get the corresponding RGB color:

ColorData@16, "Panel"D

The nine colors of this color scheme are as follows:

Short@ColorData@16, "ColorList"D, 4D

8RGBColor@0.454902, 0.0509804, 0.0235294D,
á7à, RGBColor@0.941176, 0., 0.00784314D<

The ninth color is

ColorData@16D@9D

RGBColor@0.941176, 0., 0.00784314D

The following plot uses the first three colors of the color scheme:

306 Mathematica Navigator



Plot@Evaluate@Table@Sin@n xD, 8n, 3<DD,
8x, 0, 2 p<, PlotStyle Ø ColorData@16, "ColorList"DD

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

‡ Named Color Schemes

We have five named color schemes:

ColorData@"Named"D

8Atoms, GeologicAges, HTML, Legacy, WebSafe<

Here is the color function of the HTML color scheme:

ColorData@"HTML"D

ColorDataFunctionB8AliceBlue, á146à<, F

By moving the mouse over the following panel, we can see the name of the color as a tooltip. By clicking
on a color, we get the corresponding RGB color:

ColorData@"HTML", "Panel"D

This color scheme contains 147 colors with names:

ColorData@"HTML", "Range"D êê Short

88AliceBlue, AntiqueWhite, á144à, YellowGreen<<

In the following plot, we use two of these colors:

Graphics@8ColorData@"HTML"D@"Maroon"D,
Disk@D, ColorData@"HTML"D@"OliveDrab"D, Disk@81, 0<D<D

The image of the atoms color scheme gives a special plot:

Chapter 9  •  Data 307



Show@ColorData@"Atoms", "Image"D, ImageSize Ø 380D

9.3.4  Example Data

‡ ExampleData

ExampleData[] (Ÿ6)  Give a list of all types of examples
ExampleData["type"]  Give a list of examples of the given type
ExampleData[{"type", "name"}]  Show the named example of the given type

ExampleData[{"type", "name"}, "Properties"]  Give a list of properties available for the example
ExampleData[{"type", "name"}, "prop"]  Give the value of the given property

Here are all the types of examples and the numbers of examples in each type:

Grid@8Ò, LengthüExampleData@ÒD< & êü ExampleData@D, Alignment Ø 88Left, Right<<D

AerialImage 38

Geometry3D 27

LinearProgramming 138

Matrix 2338

Sound 63

TestAnimation 4

TestImage 44

Text 50

Texture 64

Short descriptions of the example types are as follows:

Graphics and sound examples:
"TestImage": test images for image processing
"AerialImage": sample aerial photography images
"Texture": sample textures
"Geometry3D": 3D geometry data for models and shapes
"TestAnimation": test animations for image processing
"Sound": sample audio clips

308 Mathematica Navigator



Mathematical examples:
"Matrix": sparse and dense matrices
"LinearProgramming": linear programming problems

Text examples:
"Text": sample text pieces

‡ TestImage, AerialImage, and Texture

Here are examples of test images, aerial images, and textures:

8Show@ExampleData@8"TestImage", "Sailboat"<D, ImageSize Ø 130D,
Show@ExampleData@8"AerialImage", "Earth"<D, ImageSize Ø 130D,
Show@ExampleData@8"Texture", "Bark"<D, ImageSize Ø 130D<

: , , >

For these examples, we can ask for the following properties:

ExampleData@8"TestImage", "Sailboat"<, "Properties"D

8BitDepth, ColorSpace, Data, DataType, Graphics,
GrayLevels, Image, ImageSize, Name, RGBColorArray<

‡ Geometry3D, TestAnimation, and Sound

Next, we show an example of a 3D geometry. The image can be rotated with the mouse.

Show@ExampleData@8"Geometry3D", "Galleon"<D, ImageSize Ø 200, ImagePadding Ø 0D

ExampleData@8"Geometry3D", "Galleon"<, "Properties"D

8Graphics3D, GraphicsComplex, Name, PolygonCount,
PolygonData, PolygonObjects, VertexData, VertexNormals<

Chapter 9  •  Data 309



The  four  test  animation  examples  animate  a  series  of  photographs.  These  examples  have  two
properties:

ExampleData@8"TestAnimation", "WalterCronkite"<, "Properties"D

8Animation, Frames<

Now we can hear a bassoon scale:

ExampleData@8"Sound", "BassoonScale"<D

ExampleData@8"Sound", "BassoonScale"<, "Properties"D
8Channels, Data, Duration, SampledSoundList, SampleRate, Sound<

‡ Matrix

One of the more than 2000 example matrices is FIDAP007:

m = ExampleData@8"Matrix", "FIDAP007"<D

SparseArray@<46 570>, 81633, 1633<D
MatrixPlot@m, ImageSize Ø 220D

1 500 1000 1633

1

500

1000

1633

1 500 1000 1633

1

500

1000

1633

Matrices have the following properties:

310 Mathematica Navigator



ExampleData@8"Matrix", "FIDAP007"<, "Properties"D

8AverageEntriesPerColumn, AverageEntriesPerRow, Bandwidth, Collection,
Dimensions, Entries, Format, ID, LowerBandwidth, Matrix, MatrixStructure,
Name, PatternSymmetry, PositiveDefiniteQ, Source, StrongComponents,
StructuralFullRankQ, StructuralRank, Symmetry, Type, UpperBandwidth, URL<

Our matrix has, for example, the following properties:

ExampleData@8"Matrix", "FIDAP007"<, ÒD & êü
8"Type", "Bandwidth", "AverageEntriesPerRow", "Source"<

8Real, 277, 28.5181,
ftp:êêmath.nist.govêpubêMatrixMarket2êSPARSKITêfidapêfidap007.mtx.gz<

‡ LinearProgramming

One of the smallest linear programming examples is afiro:

ExampleData@8"LinearProgramming", "afiro"<, "Dimensions"D

827, 32<

This example has 27 constraints and 32 variables. The form of the example is as follows:

Shallow@ExampleData@8"LinearProgramming", "afiro"<D, 3D

88á32à<, SparseArray@á4àD, 8á27à<, 8á32à<<

Thus, the example has four components. Let us give the components the names c, m, b, and n:

8c, m, b, n< = ExampleData@8"LinearProgramming", "afiro"<D;

Here are the four components:

c

80, -0.4, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.32, 0,
0, 0, -0.6, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -0.48, 0, 0, 10.<

m

SparseArray@<83>, 827, 32<D
Short@m êê Normal, 4D

88-1., 1., 1., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<, á25à, 80, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 1., 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1., 0<<

b

880., 0<, 80., 0<, 880., -1<, 80., -1<, 80., 0<, 80., 0<, 880., -1<,
80., -1<, 80., -1<, 80., -1<, 80., 0<, 80., 0<, 8500., -1<, 80., -1<,
80., 0<, 844., 0<, 8500., -1<, 80., -1<, 80., -1<, 80., -1<, 80., -1<,
80., -1<, 80., -1<, 80., -1<, 80., -1<, 8310., -1<, 8300., -1<<

n

880, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<,
80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<,
80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<, 80, ¶<<

The components  correspond with the linear programming problem where the coefficient  vector  of  the
objective function is c, the constraint matrix is m, the right-hand side of the constraints is b, and the usual
nonnegativity constraints apply.  So,  we can solve the problem as follows (for linear programming, see

Section 23.2.1, p. 753):

sol = LinearProgramming@c, m, bD

880., 25.5, 54.5, 84.8, 18.2143, 0., 0., 0., 0.,
0., 0., 0., 18.2143, 0., 19.3071, 500., 475.92, 24.08, 0.,
215., 0., 0., 0., 0., 0., 0., 0., 0., 339.943, 383.943, 0., 0.<

Chapter 9  •  Data 311



c.sol

-464.753

We could also write simply as follows:

ExampleData@8"LinearProgramming", "afiro"<D;

LinearProgramming üü %

880., 25.5, 54.5, 84.8, 18.2143, 0., 0., 0., 0.,
0., 0., 0., 18.2143, 0., 19.3071, 500., 475.92, 24.08, 0.,
215., 0., 0., 0., 0., 0., 0., 0., 0., 339.943, 383.943, 0., 0.<

Linear programming examples have the following properties:

ExampleData@8"LinearProgramming", "afiro"<, "Properties"D

8Collection, ConstraintMatrix, Dimensions,
Equations, LinearProgrammingData, Name, Source<

Next we ask for the explicit equations:

88obj, cons<, vars< = ExampleData@8"LinearProgramming", "afiro"<, "Equations"D;

For example, here are the objective function and the variables:

obj

-0.4 X02MPS - 0.32 X14MPS - 0.6 X23MPS - 0.48 X36MPS + 10. X39MPS

vars

8X01MPS, X02MPS, X03MPS, X04MPS, X06MPS, X07MPS, X08MPS, X09MPS, X10MPS, X11MPS, X12MPS,
X13MPS, X14MPS, X15MPS, X16MPS, X22MPS, X23MPS, X24MPS, X25MPS, X26MPS, X28MPS, X29MPS,
X30MPS, X31MPS, X32MPS, X33MPS, X34MPS, X35MPS, X36MPS, X37MPS, X38MPS, X39MPS<

The constraints form a large expression that we do not show here. Now we can use Minimize:

Minimize@8obj, cons<, varsD

8-464.753, 8X01MPS Ø 80., X02MPS Ø 25.5, X03MPS Ø 54.5, X04MPS Ø 84.8, X06MPS Ø 18.2143,
X07MPS Ø 0., X08MPS Ø 0., X09MPS Ø 0., X10MPS Ø 0., X11MPS Ø 0., X12MPS Ø 0.,
X13MPS Ø 0., X14MPS Ø 18.2143, X15MPS Ø 0., X16MPS Ø 19.3071, X22MPS Ø 500.,
X23MPS Ø 475.92, X24MPS Ø 24.08, X25MPS Ø 0., X26MPS Ø 215., X28MPS Ø 0.,
X29MPS Ø 0., X30MPS Ø 0., X31MPS Ø 0., X32MPS Ø 0., X33MPS Ø 0., X34MPS Ø 0.,
X35MPS Ø 0., X36MPS Ø 339.943, X37MPS Ø 383.943, X38MPS Ø 0., X39MPS Ø 0.<<

We obtained the same solution as with LinearProgramming.

‡ Text

One of the text examples is an excerpt from Hamlet. We only show the text of the first four rows:

StringTake@ExampleData@8"Text", "ToBeOrNotToBe"<D, 173D

To be, or not to be,--that is the question:-- Whether
'tis nobler in the mind to suffer The slings and arrows of
outrageous fortune Or to take arms against a sea of troubles

This is a single string, as can be seen with InputForm:

% êê InputForm

"To be, or not to be,--that is the question:-- \
Whether 'tis nobler in the mind to suffer The \
slings and arrows of outrageous fortune Or to take \
arms against a sea of troubles"

For text examples, we can ask for the following properties:

312 Mathematica Navigator



ExampleData@8"Text", "ToBeOrNotToBe"<, "Properties"D

8Author, FormattedText, FullTitle, Language,
Lines, NotebookExpression, String, Title, Words<

The  property "String"  gives  the  same result  as  we presented previously.  With "FormattedText"  we
get correct lines:

StringTake@ExampleData@8"Text", "ToBeOrNotToBe"<, "FormattedText"D, 173D

To be, or not to be,--that is the question:--
Whether 'tis nobler in the mind to suffer
The slings and arrows of outrageous fortune
Or to take arms against a sea of troubles

With InputForm we can see the newline characters \n:

% êê InputForm

"To be, or not to be,--that is the \
question:--\nWhether 'tis nobler in the mind to \
suffer\nThe slings and arrows of outrageous \
fortune\nOr to take arms against a sea of \
troubles"

With "Lines" we get the text as a list of lines (each line is a string):

Take@ExampleData@8"Text", "ToBeOrNotToBe"<, "Lines"D, 4D

8To be, or not to be,--that is the question:--,
Whether 'tis nobler in the mind to suffer,
The slings and arrows of outrageous fortune,
Or to take arms against a sea of troubles,<

With "Words" we get the text as a list of words (each word is a string):

Take@ExampleData@8"Text", "ToBeOrNotToBe"<, "Words"D, 33D

8To, be,, or, not, to, be,--that, is, the, question:--, Whether,
'tis, nobler, in, the, mind, to, suffer, The, slings, and, arrows, of,
outrageous, fortune, Or, to, take, arms, against, a, sea, of, troubles,<

With "NotebookExpression"  we can put the text into a separate notebook (the notebook is not shown
here):

NotebookPut@ExampleData@8"Text", "ToBeOrNotToBe"<, "NotebookExpression"DD

NotebookObjectB Untitled-4 F

For more about strings, see Sections 13.3.6, p. 433, and 16.2, p. 505.

‡ Additional Examples

Mathematica also has more than 100 additional example files:

SetDirectory@$InstallationDirectory <>
"êDocumentationêEnglishêSystemêExampleData"D; Short@FileNames@D, 1D

8100d.pdb, 1PPT.pdb, á133à, wr.rss<

These  examples  are  mainly  intended  for  internal  use  of Mathematica.  The  files  can  be  imported  with
Import:

Short@Import@"ExampleDataêfinancialtimeseries.csv"D, 2D

88Jan 03 2006, 11.82<, á249à, 8Dec 29 2006, 13.91<<

Chapter 9  •  Data 313



314 Mathematica Navigator

This page intentionally left blank



10
Manipulations

Introduction 315

10.1  Basic Manipulation 316

10.1.1  Introduction 316 Manipulate, ControlType, ControlPlacement

10.1.2  Sliders 318 Manipulator, Slider, VerticalSlider, Animator, Trigger, Slider2D

10.1.3  Locators 326 Locator

10.1.4  Other Controls 331 SetterBar, PopupMenu, CheckboxBar, InputField, ColorSlider, etc.

10.2  Advanced Manipulation 338

10.2.1  More about Controls 338 ControlPlacement, Delimiter

10.2.2  Handling Slow Manipulations 342 ControlActive, ContinuousAction

10.2.3  Bookmarks and More 348 SaveDefinitions, Initialization

10.2.4  Options of Manipulate 352 ControlType, Initialization, ContinuousAction, etc.

Introduction

The story is told about the mathematician Littlewood that he was lecturing to a class one day
and remarked about some step in a mathematical argument that it was obvious. Then he

stepped back from the board and said, “Mmm, I wonder if it is obvious?” He spent about
half an hour doing various calculations and finally declared with a smile, “Yes, it is obvious.”

Mathematica  6  brings  to  us dynamic  interactivity~that  is,  ways  to  create  interfaces  where  the  user  can
explore  the  output  by  some  controls  such  as  sliders  or  popup  menus.  Such  interfaces  range  from
interactive data viewers to interactive applications.

The  main  command,  considered  in  this  chapter,  is Manipulate.  It  creates  an  interface  where  an
expression containing some parameters can easily be studied or animated by adjusting the parameters
with some controls. We also have the lower-level command Dynamic  that can be used for more special
or more advanced cases or for more detailed formatting of the output. In addition, we have Animate for
animations and commands such as MenuView, TabView,  and OpenerView  to view data in various ways.
The  viewers  are  capable  of  creating  hierarchical  views,  suitable  for  representing  large  data  sets.  We
address Dynamic, Animator, and the views in Chapter 11. The commands presented in this and the next
chapter are new in Mathematica 6.

Wolfram  Research  has  a  special  Demonstrations  Project  at http:êêdemonstrations.wolfram.com  to
advance  the  use  of Manipulate.  Users  of Mathematica  6  can  submit  applications  of  this  command  for
publication on the website. Currently, the site contains nearly 4000 demonstrations in subject areas such
as  mathematics;  computation;  physical  sciences;  life  sciences;  business  and  social  systems;  systems,
models, and methods; engineering and technology; our world; creative arts; kids and fun; and Mathemat-
ica functionality. The demonstrations and their source codes can be freely loaded.



Although interesting and useful as such, the demonstrations are also valuable in studying the use of
Manipulate.  The  interested  reader  is  encouraged  to  study  the  applications  in  the  Demonstrations
Project because here we only have room for some basic examples.

Regarding dynamic features, also remember palettes, hyperlinks, and slide shows that we considered

in Section 3.1.3, p. 56.

To  avoid  some  printing  problems,  all  dynamic  outputs  shown  in  this  book  are  GIF  images  of  the
original  outputs.  Thus,  each  dynamic  output  was  exported  by Export["dyn.gif", %]  and  then
imported by Import[%].

10.1  Basic Manipulation

10.1.1  Introduction

‡ Manipulation

Here is a simple Manipulate command and its output panel:

Manipulate@Plot@Cos@a xD, 8x, 0, 3 p<, ImageSize Ø 200D, 8a, 1, 10<D

We can change the value of the parameter a  from 1 to 10 by moving the slider with the mouse; the
plot of cosHa xL is redrawn in real time.

In general, Manipulate has two arguments: the expression to be manipulated (the plotting command in
the previous example) and the specifications of the parameters ({a, 1, 10}). The expression to be manipu-
lated depends on the parameters. The output panel contains a control  (e.g., a slider) for each parameter
and a content area. The expression can be manipulated with the controls, and the content area shows the
current state of the expression.

The panel also has two special buttons: the animation button  and the utility button .  Clicking the

animation button  opens animation controls and a value field showing the current value of the parameter.
Clicking the utility button  opens the utility menu. We discuss these buttons later.

Mathematica  contains  several  types  of  controls. Manipulate  often  automatically  chooses  a  suitable
control type based on the form of the parameter specification. The automatically chosen control can be
one of the following: a manipulator, a 2D slider, a setter bar, a popup menu, a checkbox, an input field,
or  a  color  slider.  We  can  override  the  automatic  control  by  using  the ControlType  option.  With  this
option  we  can  also  ask  for  still  other  control  types,  such  as  a  slider,  a  vertical  slider,  an  animator,  a
trigger,  a  locator,  a  radio  button  bar,  a  toggler,  a  checkbox  bar,  a  toggler  bar,  or  a  color  setter.  We
consider this option in the next subsection.

Manipulate is an extremely powerful way to explore how various objects change as we interactively
change one or more parameters.

316 Mathematica Navigator



‡  Control Types and Placements

Manipulate chooses the type of control from the form of the parameter specification. With the following
option  we  can  override  the  automatic  setting.  With  this  option  we  have  access  to  all  of  the  various
control types.

ControlType  The type of control to produce in the output; possible values: Automatic, Animator,
Checkbox, CheckboxBar, ColorSetter, ColorSlider, InputField, Locator, Manipulator (slider;
animator under the  icon), PopupMenu, RadioButton, RadioButtonBar, Setter, SetterBar
(tabs), Slider, Slider2D, Toggler, TogglerBar, Trigger (like animator), VerticalSlider, None

The option can be used like other options, but a simpler way is to add the control type as an addi-
tional  list  element  of  the control  specification.  For example,  the automatic control  in the following is  a
slider:

Manipulate@Prime@nD, 8n, 1, 200, 1<D

We can ask, for example, for an input field with the option:

Manipulate@Prime@nD, 8n, 1, 200, 1<, ControlType Ø InputFieldD

A simpler way is to add the control type to the parameter specification:

Manipulate@Prime@nD, 8n, 1, 200, 1, InputField<D

The default is that the controls are placed at the top of the panel. With the following option we can
adjust the placement of the controls.

ControlPlacement  Placement of controls in the panel; examples of values: Automatic, Left, Right,
Bottom, Top

Manipulate@Prime@nD, 8n, 1, 200, 1<, ControlPlacement Ø BottomD

Next,  we  discuss  the  various  controls,  which  have  been  grouped  as  sliders,  locators,  and  other
controls.

Chapter 10  •  Manipulations 317



10.1.2  Sliders

‡ Manipulator, Slider, and VerticalSlider

The following box gives the two most common forms of Manipulate.

To create an interface enabling the interactive choice of the value of the parameter u with a slider and
showing the corresponding value of expr:

Manipulate[expr, {u, umin, umax}] (Ÿ6) u can have any value between umin and umax

Manipulate[expr, {u, umin, umax, du}] u can have any value between umin and umax in steps of du

For  these  kinds  of  parameter  specifications, Manipulate  automatically  chooses  the  control  to  be  a
manipulator.  A  manipulator  means  a  slider  together  with  animation  controls  under  the  button
(animation is considered later). In the first case, the slider is continuous, whereas in the latter case it is
discrete.

As an example, we create a panel where we can show the probability density function (PDF) of the
normal  distribution  with  mean  0  and  standard  deviation s  for  any  value  of s  in  the  interval @0.2, 5D.
Here, we have a continuous slider.

Manipulate@Plot@PDF@NormalDistribution@0, sD, xD,
8x, -5, 5<, PlotRange Ø 80, 2.05<, ImageSize Ø 200D, 8s, 0.2, 5<D

Next, we show the PDFs of c2HnL distributions with n = 1, …, 15. Now we have a discrete slider.

Manipulate@Plot@PDF@ChiSquareDistribution@nD, xD,
8x, 0, 20<, PlotRange Ø 80, 0.51<, ImageSize Ø 200D, 8n, 1, 15, 1<D

Note that often, as in the previous examples,  it  is useful to define the same PlotRange  for all plots.
Then the plots can be more easily compared.

Here are the probability functions of the Poisson distribution with parameter in the interval @0.7, 10D:

318 Mathematica Navigator



Manipulate@ListPlot@Table@8x, PDF@PoissonDistribution@lD, xD<, 8x, 0, 20<D,
Filling Ø Axis, PlotRange Ø 8-0.02, 0.51<, ImageSize Ø 200D, 8l, 0.7, 10<D

Note  that Manipulate  does  its  work  in  real  time:  It  does  not  precompute  all  the  possible  outputs.
Accordingly,  for  the  manipulation  to  be  practical,  the  computation  caused  by  moving  a  slider  should
not take more than, for example, 1 second. Fortunately, nowadays quite a lot can be computed within 1
second.

Manipulate[expr, {u, umin, umax, Manipulator}]

Manipulate[expr, {u, umin, umax, Slider}]

Manipulate[expr, {u, umin, umax, VerticalSlider}]

A manipulator can also be asked for by specifying the type of the control to be Manipulator.  If we
define  the  control  to  be Slider,  we  only  get  a  slider  without  the  animation  controls.  With
VerticalSlider,  we get a slider running from bottom to top (a good location for this control is on the
left; use the ControlPlacement option). Here, we ask for a slider:

Manipulate@Prime@nD, 8n, 1, 200, 1, Slider<D

‡ More Examples of Manipulate

Besides plots, we can manipulate any other expression. Below we can see any of the first 200 primes. We
have used the Alignment option to place the primes at the right of the panel.

Manipulate@Prime@nD, 8n, 1, 200, 1<, Alignment Ø RightD

Next,  we tabulate  the probabilities  of  getting k  sixes  when tossing a  die n  times.  We can adjust  the
value of n.

Chapter 10  •  Manipulations 319



Manipulate@TableForm@Table@8k, PDF@BinomialDistribution@n, 1 ê 6.D, kD<, 8k, 0, n<D,
TableSpacing Ø 81, 3<,
TableHeadings Ø 8None, 8"k", "PHX=kL"<<D êê Framed, 8n, 1, 10, 1<D

3D plots can be rotated with the mouse. Another way to rotate is to use Rotate with Manipulate. To
get a smooth rotation, we define a large enough PlotRange:

Manipulate@
Graphics3D@Rotate@Cuboid@8-1, -1, -1<, 81, 1, 1<D, q, 80, 0, 1<D, Boxed Ø False,
PlotRange Ø 88-1.5, 1.5<, 8-1.5, 1.5<, All<, ImageSize Ø 200D, 8q, 0, 2 p<D

Now we rotate a parametric surface by changing the viewpoint. To get a smooth rotation, we defined
a large enough PlotRange and set SphericalRegion to be True:

Manipulate@ParametricPlot3D@8s Cos@tD Sin@sD, s Cos@sD Cos@tD, -s Sin@tD<,
8s, 0, 2 p<, 8t, 0, p<, ViewPoint Ø 8Cos@qD, Sin@qD, 1<,
Boxed Ø False, Axes Ø False, PlotRange Ø 88-8, 8<, 8-8, 8<, All<,
SphericalRegion Ø True, PlotPoints Ø 20, ImageSize Ø 200D, 8q, 0, p<D

Next, we show how a small sphere moves around a larger sphere:

320 Mathematica Navigator



Manipulate@Graphics3D@8Sphere@D, Sphere@1.8 8Cos@tD, Sin@tD, 0<, 0.2D<,
Boxed Ø False, ViewPoint Ø 81.3, -2.4, 0.8<,
PlotRange Ø 88-2, 2<, 8-2, 2<, 8-1, 1<<, ImageSize Ø 200D, 8t, 0, 2 p<D

‡ Animation

We have several ways to run an animation:

Animate[expr, {u, umin, umax}]

Manipulate[expr, {u, umin, umax}]  Click  and use the animation controls

Manipulate[expr, {u, umin, umax}]  Click  and choose Autorun

Manipulate[expr, {u, umin, umax, Animator}]

Manipulate[expr, {u, umin, umax, Trigger} ]

Animate is considered in Section 11.1.2, p. 365. Here is an example:

Animate@Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 130D,
8n, 0, 10, 1<, AnimationRunning Ø FalseD

We can run the  animation  by  clicking the  play  button.  We can also  drag the slider  with the mouse to
show a particular plot. Manipulate produces very much the same view:

Manipulate@
Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D, 8n, 0, 10, 1<D

Chapter 10  •  Manipulations 321



Here, we can drag the slider. However, by clicking the animation button  next to the slider, we also get
controls to play an animation and a field showing the current value of the parameter:

Manipulate@
Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D, 8n, 0, 10, 1<D

Clicking the utility  button, we get a menu, with one of its items being Autorun. If we choose this

item, an animation is run automatically (for each parameter in turn, if we have several parameters). The
animation can be stopped by clicking close.

Manipulate@
Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D, 8n, 0, 10, 1<D

A fourth way to get an animation is to ask Manipulate to produce an animator:

Manipulate@Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D,
8n, 0, 1 μ 0, 1, Animator<D

A fifth way is to ask for a trigger. It is like an animator but does not have a slider:

322 Mathematica Navigator



Manipulate@Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 160D,
8n, 0, 10, 1, Trigger<D

In summary, Animate  is  intended to automatically show a series of  plots  from the beginning to the
end (although we can also  drag the  slider  by  ourselves). Manipulate  produces  an interface  where  we
can adjust the parameter in question by ourselves (although we can also run an animation). If we only
have one parameter, there is not much difference between Animate and Manipulate.

‡ Initial Values, Labels, and Current Values

Manipulate[expr, {{u, uinit}, umin, umax}]  The initial value of u is uinit

Manipulate[expr, {{u, uinit, ulbl}, umin, umax}]  The initial value of u is uinit and the label of the

slider is ulbl

Manipulate[expr, {u, umin, umax, Appearance Ø "Labeled"}] Show the current value of u

Previously, we created a panel showing the plot of some Chebyshev polynomials. The starting value
1  of  the  parameter n  produced  a  somewhat  noninteresting  plot  of  a  constant.  It  would  be  good  if  the
panel, immediately after executing the Manipulate command, would show something more interesting.
This can be done by giving an initial value for the parameter:

Manipulate@Plot@ChebyshevT@n, xD, 8x, -1, 1<,
PlotRange Ø 1.05, ImageSize Ø 200D, 88n, 5<, 0, 10, 1<D

The label on the left-hand side of the slider is, by default, the corresponding parameter. We can give
another label. As an example, next we write the parameter of the exponential distribution as 1 êl. Then
the expected value of the corresponding random variable is l. Hence, we can label the slider as EHXL:

Chapter 10  •  Manipulations 323



Manipulate@Plot@PDF@ExponentialDistribution@1 ê lD, xD, 8x, 0, 3<,
PlotRange Ø 80, 5.1<, ImageSize Ø 200D, 88l, 0.25, "EHXL"<, 0.2, 10<D

By clicking the animation button , we can see the current value of the parameter;  this is shown in
the  previous  panel.  Another  way  to  see  this  value  is  to  use  the Appearance  option.  The  value  of  the
parameter can be seen next to the  icon:

Manipulate@Plot@PDF@ExponentialDistribution@1 ê lD, xD,
8x, 0, 3<, PlotRange Ø 80, 5.1<, ImageSize Ø 200D,

88l, 0.25, "EHXL"<, 0.2, 10, Appearance Ø "Labeled"<D

‡ Two Manipulators and Slider2D

If we have two parameters, we can ask either for two usual 1D sliders or for one 2D slider:

Manipulate[expr, {x, xmin, xmax}, {y, ymin, ymax}]  Control the two parameters with two sliders

Manipulate[expr, {u, {xmin, ymin}, {xmax, ymax}}]  Control the two parameters with a 2D slider

A 2D slider can also be asked for by specifying the type of the control to be Slider2D.

With  a  manipulation,  we  can  investigate  the  PDF  of  a  beta  distribution  with  respect  to  its  two
parameters. Here, we use the LabelStyle option to make the labels a and b bold and somewhat larger.

324 Mathematica Navigator



Manipulate@Plot@PDF@BetaDistribution@a, bD, xD, 8x, 0, 1<, PlotRange Ø 80, 4.1<,
ImageSize Ø 200D, 88a, 2.5<, 0.01, 3, Appearance Ø "Labeled"<,

88b, 1.5<, 0.01, 3, Appearance Ø "Labeled"<, LabelStyle Ø 8Bold, 12<D

We  can  also  ask  for  a  2D  slider  that  allows  simultaneous  changes  of  the  parameters.  In  the  next
example,  the  2D  slider  can  be  moved  on  the  region H0.01, 3Lμ H0.01, 3L.  With  the ControlPlacement

option, we asked to put the 2D slider at the left of the panel.

Manipulate@Plot@PDF@BetaDistribution@aP1T, aP2TD, xD,
8x, 0, 1<, PlotRange Ø 80, 4.1<, ImageSize Ø 200D,

88a, 82.5, 1.5<<, 80.01, 0.01<, 83, 3<<, ControlPlacement Ø LeftD

In  the  2D  slider,  the  values  of a  go  from  left  bottom  to  right  bottom,  and  the  values  of b  go  from
bottom left  to top left.  For example, by moving the slider from bottom left to top right we see that for
these  values  of  the  parameters  the  PDF  is  symmetric,  one  of  the  PDF’s  being  the  one  of  the  uniform
distribution.

‡ Several Manipulators

We can have an arbitrary amount of parameters. In the following example, we ask for three sliders. The
plot  describes  the  evolution  of  the  solution of  a  logistic  differential  equation.  We can adjust  the initial
value and the two parameters of the model.

Chapter 10  •  Manipulations 325



Manipulate@Plot@M ê H1 + HM ê y0 - 1L Exp@-r M tDL, 8t, 0, 20<,
PlotRange Ø 80, All<, ImagePadding Ø 8815, 2<, 815, 5<<, ImageSize Ø 200D,

88y0, 0.2, "yH0L"<, 0.001, 5, Appearance Ø "Labeled"<,
88r, 0.15, "r"<, 0, 2, Appearance Ø "Labeled"<,
88M, 4, "M"<, 0, 10, Appearance Ø "Labeled"<D

Note that in this example, we used the ImagePadding option to make suitable space around the plot
so that even if the y tick labels change, the axes of the plot do not move.

10.1.3  Locators

‡ Locator

In the following example, we create a point that we can move with a 2D slider:

Manipulate@Graphics@8PointSize@LargeD, Point@pD<,
Frame Ø True, FrameTicks Ø None, PlotRange Ø 1.2, ImageSize Ø 60D,

88p, 80, 0<<, 8-1, -1<, 81, 1<<,
ControlPlacement Ø LeftD

However, we have a special control, called a locator, that is specifically designed for points that can be
moved.

Manipulate[expr, {pt, Locator}]  Create an interface enabling the interactive movement of a
point pt (displayed as a locator) and showing the corresponding value of expr

Manipulate[expr, {{pt, {x1, y1}}, Locator}]  The initial position of the locator is Ix1, y1M

We do not get a locator automatically; we have to define the control type as a Locator.

Here is a simple example:

326 Mathematica Navigator



Manipulate@Graphics@8<, PlotLabel Ø NumberForm@pt êê Chop, 83, 2<D, PlotRange Ø 1.1,
Frame Ø True, FrameTicks Ø None, ImageSize Ø 100D, 88pt, 80, 0<<, Locator<D

We created an empty graphics, containing only a frame and a plot label. However, the plot also contains
a locator that can be moved within the frame. The position of the locator is shown in the plot label. For a
locator, we do not need to define ranges because a locator takes suitable ranges from the ranges of the
plot.

Now we create three locators:

Manipulate@Graphics@8Orange, Polygon@8p1, p2, p3<D<,
PlotRange Ø 1.1, ImageSize Ø 120D, 88p1, 8-0.9, -0.9<<, Locator<,

88p2, 80.9, -0.9<<, Locator<, 88p3, 80, 0.9<<, Locator<D

By dragging on any one of the locators, the plot changes accordingly. You can also click anywhere in the
plot and the nearest locator moves to that point.

‡ More about Locator

It  is  almost  always  useful  to  define  initial  values  for  the  locators.  If  we  have  several  locators,  we  can
treat them as a whole, as is shown in the second item here:

{{pt, {x1, y1}}, Locator}  Represent pt as a locator whose initial position is Ix1, y1M

{{pt, {{x1, y1}, … , {xn, yn}}}, Locator}  Represent pt as a set of locators whose initial

positions are Ix1, y1M, …, Ixn, ynM

We can now write the preceding example as follows:

Chapter 10  •  Manipulations 327



Manipulate@Graphics@8Orange, Polygon@pD<, PlotRange Ø 1.1, ImageSize Ø 120D,
88p, 88-0.9, -0.9<, 80.9, -0.9<, 80, 0.9<<<, Locator<D

With the Appearance option we can define other symbols for the locators.

{{pt, {x1, y1}}, Locator, Appearance Ø obj}  Use obj as a locator object; examples of values of
obj: Automatic (the default “crosshairs” appearance), None (display nothing visible), "*", "Ê",
Graphics[{PointSize[Large], Point[{0, 0}]}]

Now, we show 50 random locators as colored points (the symbol Ë can be typed as \[FilledSmallCir-
cle]). Each point can be moved separately.

Manipulate@Graphics@8<, PlotRange Ø 1.1, ImageSize Ø 150D,
88pt, RandomReal@8-1, 1<, 850, 2<D<, Locator,
Appearance Ø Table@Style@"Ë", Hue@h ê 50DD, 8h, 50<D<D

‡ Adding and Removing Locators

The number of locators need not be fixed. With an option, we can allow more locators to be created or
old locators to be removed.

{{pt, {x1, y1}}, Locator, LocatorAutoCreate Ø True}  Allow autocreation and autodeletion of
locators

Now, if you hold down the ‡ key (Windows) or Ì key (Macintosh) and then click on the plot, a new
locator is created. If you hold down the ‡ or Ì key and then click on an existing locator, that locator is
removed.

Consider again the familiar triangle and try adding and removing locators:

328 Mathematica Navigator



Manipulate@Graphics@8Orange, Polygon@pD<, PlotRange Ø 1, ImageSize Ø 120D,
88p, 88-0.9, -0.9<, 80.9, -0.9<, 80, 0.9<<<, Locator, LocatorAutoCreate Ø True<D

‡ Example: Interactive Interpolation and Curve Fitting

The  document tutorialêIntroductionToManipulate  in  the  Documentation  Center  contains  interesting
examples of interactive interpolating and curve fitting. First, we consider interpolation:

Manipulate@Plot@InterpolatingPolynomial@points, xD,
8x, -2, 2<, PlotRange Ø 10.5, ImageSize Ø 230D,

88points, RandomReal@8-2, 2<, 82, 2<D<, Locator, LocatorAutoCreate Ø True<D

Here,  the  points  to  be  interpolated  are  represented  as  locators.  The  figure  shows  the  interpolating
polynomial.  Points  can be added and removed by ‡-  or Ì-clicking.  Now,  move the locators  and add
new locators to see how the interpolating polynomial changes. For more about interpolating polynomi-

als, see Section 24.1.1, p. 792.

Similarly, we can interactively investigate polynomial curve fitting:

Manipulate@DynamicModule@8x, fi<, fi = Fit@points, x^Range@0, orderD, xD;
Plot@fi, 8x, -2, 2<, PlotRange Ø 5.1, ImageSize Ø 230DD,

88order, 1<, 1, 10, 1, Appearance Ø "Labeled"<,
88points, RandomReal@8-2, 2<, 83, 2<D<, Locator, LocatorAutoCreate Ø True<D

Chapter 10  •  Manipulations 329



Again,  the  points  to  be  fitted  are  represented  as  locators.  The  figure  shows  the  fitted  polynomial.
Points can be added and removed by ‡- or Ì-clicking. Now, move the locators, add new locators, and
change the order of the polynomial to see how the fit changes. Note that in the previous command we
used DynamicModule to make the x variable local; now the command works even if x happens to have a

value. DynamicModule  is  considered in Section 11.2.1,  p. 371.  It  suffices here to say that it  is used like

Module and is designed for dynamic calculations. For more on curve fitting, see Section 25.1.1, p. 812.

‡ Example: Interactive Differential Equation Plotting

Next,  we study a differential  equation model of  competing species.  In the initial  position of  the panel,
we  show  four  trajectories  of  the  solution  of  the  equations,  corresponding  to  four  starting  points.  The
four points are represented by locators so that you can move them with the mouse. You can also create

new trajectories and delete old ones. This model is also studied in Section 26.3.2, p. 855.

Manipulate@DynamicModule@8x, y, t, sol<,
sol = 8x@tD, y@tD< ê. NDSolve@8x'@tD == x@tD H2 - 2 ê 3 x@tD - 2 y@tDL,

y'@tD == y@tD H2 - 4 ê 3 x@tD - y@tDL, x@0D == ÒP1T, y@0D == ÒP2T<,
8x@tD, y@tD<, 8t, 0, 10<D & êü start;

ParametricPlot@sol, 8t, 0, 10<, PlotRange Ø 80, 2.5<, ImageSize Ø 230DD,
88start, 880.2, 0.1<, 80.3, 0.3<, 82.5, 1.5<, 82.5, 2<<<,
Locator, LocatorAutoCreate Ø True<D

The examples of interactive interpolation, fitting, and differential equation plotting begin to give an
impression of the power of Manipulate. In a few lines of easy code we can create impressive interactive
applications.

‡ Geometric Constraints on Points

In the next examples,  we create points that  are constrained on a curve.  The points can be moved with
locators. In the first example, we can freely move a locator, but it in turn moves an arrow whose head is
on a circle:

330 Mathematica Navigator



Manipulate@Graphics@8Circle@D, Arrowheads@0.1D, Arrow@880, 0<, Normalize@ptD<D<,
PlotRange Ø 1.2, ImageSize Ø 100D, 88pt, 81, 0<<, Locator<D

Here,  the pt  is  a  locator.  The  position  of  the  arrowhead  is  obtained  from  the  locator  position  by
normalizing  the  latter  (i.e.,  by  dividing  with  the  norm).  Thus,  the  arrowhead always  has  norm 1,  and
this means that the point is on a circle.

Now, we create a locator that moves a point on a curve. With the Appearance option, we have asked
not to show the locator:

Manipulate@Plot@Sin@xD, 8x, 0, 10<,
Epilog Ø 8PointSize@LargeD, Point@8First@ptD, Sin@First@ptDD<D<, ImageSize Ø 200D,

88pt, 82, Sin@2D<<, Locator, Appearance Ø None<D

10.1.4  Other Controls

‡ SetterBar and RadioButtonBar

Manipulate[expr, {u, {u1, u2, … }}]  Create an interface enabling the interactive choice of the
value of the parameter u from the values u1, u2, … with a setter bar or popup menu and showing
the corresponding value of expr

For  this  type  of  parameter  specification,  we  automatically  get  either  a  setter  bar  or  a  popup menu.
Indeed, if we have at most five values for u, we get a setter bar (a row of tabs); for at least six values we
get a popup menu.

A setter bar or popup menu can also be asked for by specifying the control type to be SetterBar (or
Setter) or PopupMenu. The type RadioButtonBar (or RadioButton) produces a set of radio buttons.

Chapter 10  •  Manipulations 331



Manipulate[expr, {u, {u1, u2, … }, SetterBar}]

Manipulate[expr, {u, {u1, u2, … }, PopupMenu}]

Manipulate[expr, {u, {u1, u2, … }, RadioButtonBar}]

Setter bars and popup menus are useful in situations in which we are interested in an irregular set of
values  of  the  parameter  that  cannot  be  represented with  a  regular  iteration specification.  We can then
define  the  list  of  values  in  which  we  are  interested.  In  the  following  example,  we  can  ask  for  some
quantiles of the standard normal distribution:

Manipulate@Quantile@NormalDistribution@0, 1D, qD, 8q, 80.9, 0.95, 0.99, 0.999<<D

We got  a  setter  bar  or  a  set  of  tabs.  A TabView,  considered in Section 11.1.1,  p. 360,  produces  a  very

similar view:

TabView@Ò Ø Quantile@NormalDistribution@0, 1D, ÒD & êü 80.9, 0.95, 0.99, 0.999<D

We can also use radio buttons:

Manipulate@Quantile@NormalDistribution@0, 1D, qD,
8q, 80.9, 0.95, 0.99, 0.999<, RadioButtonBar<D

‡ PopupMenu

We continue the preceding examples. In the next example, we have more than five items so that now we
get a popup menu:

Manipulate@Quantile@NormalDistribution@0, 1D, qD,
8q, 80.8, 0.85, 0.9, 0.95, 0.99, 0.999<<D

A MenuView, considered in Section 11.1.1, p. 358, produces a very similar view:

332 Mathematica Navigator



MenuView@
Ò Ø Quantile@NormalDistribution@0, 1D, ÒD & êü 80.8, 0.85, 0.9, 0.95, 0.99, 0.999<D

Now we ask for the plots of the basic trigonometric functions:

Manipulate@Plot@f@xD, 8x, -p, p<, PlotRange Ø 8-5.1, 5.1<D,
88f, Sin, ""<, 8Sin, Cos, Tan, Cot, Sec, Csc<<D

‡ Checkbox and Toggler

A special case of the control specification {u, {u1, u2, … }} presented for setter bars is the one in which
the possible values are True or False:

Manipulate[expr, {u, {True, False}}] u takes on the values True and False

For  this  kind  of  parameter  specification, Manipulate  automatically  chooses  the  control  to  be  a
checkbox. A checkbox can also be asked for by specifying the control type to be Checkbox.

In the next example, we get the plot of the probability density function of various Poisson distribu-
tions. In addition, we can ask, with a checkbox, to also plot the cumulative distribution function.

Manipulate@dist = PoissonDistribution@lD; ListPlot@
If@cdf, Flatten@Table@88x, PDF@dist, xD<, 8x, CDF@dist, xD<<, 8x, 0, 15<D, 1D,
Table@8x, PDF@dist, xD<, 8x, 0, 15<DD, PlotRange Ø 80, If@cdf, 1, 0.51D<,
ImageSize Ø 200D, 88l, 3<, 0.7, 10<, 88cdf, True, "CDF"<, 8True, False<<D

Chapter 10  •  Manipulations 333



Manipulate[expr, {u, {u1, u2, … }, Checkbox}]

Manipulate[expr, {u, {u1, u2, … }, Toggler}]

If we have more than two choices, clicking the checkbox goes through the alternatives:

Manipulate@Quantile@NormalDistribution@0, 1D, qD,
8q, 8.9, .95, .99, .999<, Checkbox<D

In the next output, we have a toggler. When clicking the number next to q, the number goes through

the given alternatives:

Manipulate@Quantile@NormalDistribution@0, 1D, qD, 8q, 8.9, .95, .99, .999<, Toggler<D

‡ CheckboxBar and TogglerBar

Manipulate[expr, {u, {u1, u2, … }, CheckboxBar}]

Manipulate[expr, {u, {u1, u2, … }, TogglerBar}]

With  checkbox  bars  and  toggler  bars  we  can  choose  a list  of  values  from  a  given  list  (the

Initialization option is explained in Section 10.2.3, p. 349):

Manipulate@Quantile@NormalDistribution@0, 1D, qD,
8q, 8.9, .95, .99, .999<, CheckboxBar<, Initialization ß Hq = 8<LD

Manipulate@Quantile@NormalDistribution@0, 1D, qD,
8q, 8.9, .95, .99, .999<, TogglerBar<, Initialization ß Hq = 8<LD

334 Mathematica Navigator



‡  InputField

To create an interface enabling the interactive choice of the value of the parameter u with an input
field and showing the corresponding value of expr:

Manipulate[expr, {u}] The input field is initially empty
Manipulate[expr, {u, u0}] The input field initially contains u0

For  these  kinds  of  parameter  specifications, Manipulate  automatically  chooses  the  control  to  be  an
input field. An input field can also be asked for by specifying the control type to be InputField. Here is
an example:

Manipulate@Plot@f, 8x, a, b<, ImageSize Ø 130D, 8f, Sin@xD<, 8a, 0<, 8b, 2 p<D

We  got  three  input  fields~one  each  for  the  function  and  the  starting  and  ending  points.  After
executing the Manipulate  command,  the input  fields contain the values  of  parameters  we gave in the
command.  These  values  should  be  chosen  to  be  typical:  With  the  aid  of  the  example,  the  user  of  the
panel should be able to produce similar outputs. Indeed, we can now write new functions to be plotted
and new starting and ending points; press Í to go from one field to the next. Once the new inputs are
ready, press the Á key to get the new plot.

As another example, we create an interface where we can ask for binomial probabilities:

Chapter 10  •  Manipulations 335



Manipulate@
Column@8Grid@88"PHX = kL:", PDF@BinomialDistribution@n, pD, kD<, 8"PHX § kL:",

CDF@BinomialDistribution@n, pD, kD<<, Spacings Ø 2D,
ListPlot@Table@8x, PDF@BinomialDistribution@n, pD, xD<, 8x, 0, n<D,
Filling Ø Axis, ImageSize Ø 150D<, Center, 2D,

8n, 10<, 8p, 0.5<, 8k, 3<D êê TraditionalForm

Once  you  have  set  the  parameters n, p,  and k,  press  the Á  key.  In Section  11.2.3,  p. 384,  we  create  a

similar panel by using Dynamic.

‡ ColorSlider and ColorSetter

Manipulate[expr, {u, col}]  Create an interface enabling, with a color slider, the interactive choice
of a color as the value of the parameter u and showing the corresponding value of expr; the initial
value of the color is col

For this kind of parameter specification, Manipulate  automatically chooses the control to be a color
slider. A color slider can also be asked for by specifying the control type to be ColorSlider.  The color
can be selected by clicking on the slider. We can also ask for a ColorSetter.  When we click on a color
setter, a separate window appears where we can choose the color. Here we have both a color slider and
a color setter:

8Manipulate@Graphics@8col, Disk@D<, ImageSize Ø 30D, 8col, Red<D,
Manipulate@Graphics@8col, Disk@D<, ImageSize Ø 30D, 8col, Red, ColorSetter<D<

: , >

336 Mathematica Navigator



Thus far, we have manipulated plots produced by commands such as Plot or ListPlot. Interesting
manipulations can also be done with Graphics. Here is a simple example:

Manipulate@Graphics@8col1, PointSize@LargeD, Point@pD, col2, Circle@p, rD<,
Frame Ø True, FrameTicks Ø None, PlotRange Ø 2.05, ImageSize Ø 130D,

88p, 80, 0<, "Center point"<, 8-1, -1<, 81, 1<<,
88r, 0.8, "Radius"<, 0, 1<,
88col1, Blue, "Point color"<, Blue<,
88col2, Red, "Circle color"<, Red<, Alignment Ø Center, ControlPlacement Ø LeftD

Note that in manipulating graphics, it is almost always useful to give a fixed PlotRange. Previously,
we gave the value 2.05 for this option; it means that the plot range is H-2.05, 2.05L in both the x and the y

direction. Without a fixed plot range, the plot range varies according to the plotted figure and we cannot
get a good idea of the relative sizes and positions of the manipulated plots.

As  another  example  of  using  colors,  next  we create  an  interface  that  enables  us  to  study how RGB
colors change when we adjust the amount of red, green, and blue:

Manipulate@Graphics@8RGBColor@red, green, blueD, Disk@D<, ImageSize Ø 60D,
88red, 0.75, Graphics@8Red, Rectangle@D<, ImageSize Ø 20D<,
0, 1, Appearance Ø "Labeled"<,

88green, 0.5, Graphics@8Green, Rectangle@D<, ImageSize Ø 20D<,
0, 1, Appearance Ø "Labeled"<,

88blue, 0.25, Graphics@8Blue, Rectangle@D<, ImageSize Ø 20D<,
0, 1, Appearance Ø "Labeled"<, ControlPlacement Ø LeftD

Chapter 10  •  Manipulations 337



10.2  Advanced Manipulation

10.2.1  More about Controls

‡ Slowing Down the Speed of a Slider

Consider again the plots of the PDF of the beta distribution:

Manipulate@Plot@PDF@BetaDistribution@a, bD, xD, 8x, 0, 1<, PlotRange Ø 80, 4.1<,
ImageSize Ø 200D, 88a, 2.5<, 0.01, 3, Appearance Ø "Labeled"<,

88b, 1.0<, 0.01, 3, Appearance Ø "Labeled"<D

If you let the slider of a be in the default position and slightly move the slider of b, the plot changes
so rapidly that we lose the smooth deformation of the curve; we get a series of separate plots that differ
clearly from each other.

Fortunately, we can fine-tune the speed of the slider. Hold down the ‡ key on a Windows machine
or  the ı  key  on  a  Macintosh  machine,  and  then  move  the  slider.  Now  the  action  of  the  slider  is
slowed down by a factor of 20 relative to the movements of the mouse. With this method, we can see in
our example more clearly what happens near the value b = 1.  While pressing the special  keys,  we can
also move the mouse pointer outside the slider; then the value of the parameter keeps changing.

The speed of  the slider can still  be slowed down. In addition to the ‡  or ı  key,  if  we also hold
down the ‚ key, the speed is slowed down by an additional factor of 20. By holding down ‡, ‚, and
˜ keys, the speed is still slowed down by a factor of 20. These techniques apply, besides for sliders, for
2D sliders and locators.

‡ Enhancing the Controls

We  can  fine-tune  the  controls  by  defining  their  placement  and  style  and  by  adding  dividers  and  text
among the controls. Often the best place for the controls is at the top of the panel. However, we can also
ask to put the controls at the left, bottom, or right by using the ControlPlacement option.

ControlPlacement  Placement of controls; examples of values: Automatic, Left, Right, Bottom, Top

A single value such as Left defines that all controls are at the left. The placement of the controls can
also  be  defined  differently  for  the  variables.  Indeed,  we  can  either  define  the  value  of
ControlPlacement to be a list of placements or define the placement for each parameter separately. We
do the latter in the next example:

338 Mathematica Navigator



Manipulate@ListPlot@Table@8x, PDF@HypergeometricDistribution@n, W, TD, xD<,
8x, Max@0, W + n - TD, Min@n, WD<D, PlotRange Ø 8-0.04, 1.04<,

PlotStyle Ø PointSize@MediumD, ImageSize Ø 200D, 88T, 20<, 1, 20, 1<,
88W, 12<, 0, T, 1<, 88n, 14<, 1, T, 1, ControlPlacement Ø Bottom<D

The controls can be grouped by using Delimiter among the parameter specifications. A delimiter is
shown by a line between the controls:

Manipulate@ListPlot@Table@8x, PDF@HypergeometricDistribution@n, W, TD, xD<,
8x, Max@0, W + n - TD, Min@n, WD<D, PlotRange Ø 8-0.04, 1.04<,

PlotStyle Ø PointSize@MediumD, ImageSize Ø 200D, 88T, 20<, 1, 20, 1<,
88W, 12<, 0, T, 1<, Delimiter, 88n, 14<, 1, T, 1<D

We can also add text among the controls. The texts can be pure strings or styled with Style:

Chapter 10  •  Manipulations 339



Manipulate@Plot@PDF@ChiSquareDistribution@nD, xD, 8x, 0, 20<, PlotRange Ø 80, 0.51<,
ImageSize Ø 200D, Style@"Degrees of Freedom", Bold, 10D, 88n, 4<, 1, 15, 1<D

Using Item, we can define different alignments:

Manipulate@Plot@PDF@ChiSquareDistribution@nD, xD,
8x, 0, 20<, PlotRange Ø 80, 0.51<, ImageSize Ø 200D,

Item@Style@"Degrees of Freedom", BoldD, Alignment Ø CenterD, 88n, 4<, 1, 15, 1<D

‡ Interdependent Controls

In  the  next  example,  we  again  plot  the  PDF  of  a  hypergeometric  distribution.  The  distribution  arises
when we draw, without replacement, n  balls from an urn containing a total of T  balls, of which W  are
white. A random variable with this distribution gives the number of white balls in the sample.

340 Mathematica Navigator



Manipulate@ListPlot@Table@8x, PDF@HypergeometricDistribution@n, W, TD, xD<,
8x, Max@0, W + n - TD, Min@n, WD<D, PlotRange Ø 8-0.04, 1.04<,

PlotStyle Ø PointSize@LargeD, ImageSize Ø 200D,
88T, 20<, 1, 20, 1, Appearance Ø "Labeled"<,
88W, 12<, 0, T, 1, Appearance Ø "Labeled"<,
88n, 14<, 1, T, 1, Appearance Ø "Labeled"<D

Here, first let T,  the total number of balls, be at its maximum. Then try adjusting the value of n,  the
sample  size.  Then,  leave n  somewhere  in  the  middle  and try  adjusting  the  value of W,  the  number of
white balls. Then, leave W somewhere in the middle and try adjusting the value of T.

Try again giving T  increasingly smaller values. You observe that the sliders of W  and n also change,
in the opposite direction! Click on the  buttons next to the right of the sliders of W  and n. Now you can
see the actual values of these parameters. As you now move the slider of T, you see that the value of W
or n does not change. Note that the upper limits of W  and n are T. Thus, the smaller is T, the smaller are
the upper limits of W  and n so that fixed values of W  or n are increasingly nearer the upper limit. This
causes the movement of the sliders of W and n.

When you move the slider of T to the left, at some point one of the sliders of W  and n reaches its right
end; let it be the slider of W. If you continue moving the slider of T to the left, a red background appears
for the slider of W.  Also, the figure disappears and we only get the code of the plot with a pink back-
ground  and  we  get  an  error  message  above  the  plot.  This  means  that  something  is  wrong  with  this
parameter. Indeed, in our example, the cause is that we cannot have more white balls in the urn than we
have total balls. The list of values to be plotted became empty.

If  you  still  continue  moving  the  slider  of T  to  the  left,  at  some  point  another  slider  also  gets  a  red
background.

We can add the conditions that if T becomes smaller than W, then W  should be replaced by T, and if
T becomes smaller than n, then n should be replaced by T:

Chapter 10  •  Manipulations 341



Manipulate@If@T < W, W = TD; If@n > T, n = TD;
ListPlot@Table@8x, PDF@HypergeometricDistribution@n, W, TD, xD<,

8x, Max@0, W + n - TD, Min@n, WD<D, PlotRange Ø 8-0.04, 1.04<,
PlotStyle Ø PointSize@LargeD, ImageSize Ø 200D,

88T, 20<, 1, 20, 1, Appearance Ø "Labeled"<,
88W, 12<, 0, T, 1, Appearance Ø "Labeled"<,
88n, 14<, 1, T, 1, Appearance Ø "Labeled"<D

Now the pink background only flashes and the values of W  and n are automatically made smaller if we
make T small enough.

‡ Using Gamepads and Joysticks

Usually,  the  controls  of  a  panel  created  by Manipulate  are  used  with  the  mouse.  However,  there  are
other input devices such as gamepads and joysticks. Devices that enable us to use the controls are called
controllers. Indeed, gamepads and joysticks can also be used to interact with the outputs of Manipulate.
These  devices  have  the  advantage  that  they  have  several  buttons  and  joysticks  so  that  we  can  use
several controls at the same time. To use a gamepad or joystick, simply plug it in and select (highlight)
with  the  mouse  the  cell  bracket  containing  the Manipulate  output  you  want  to  control. Mathematica
automatically  detects  a  gamepad or  joystick,  and Manipulate  automatically  links  as  many parameters
as possible with the available joysticks and buttons. We do not go into further detail; see the document
tutorialêIntroductionToManipulate in the Documentation Center.

10.2.2  Handling Slow Manipulations

‡ Manipulating 3D Graphics

We can also manipulate 3D graphics:

342 Mathematica Navigator



Manipulate@ParametricPlot3D@2 8Sin@uD Cos@vD, Sin@uD Sin@vD, Cos@uD<,
8u, p, a<, 8v, -p, p<, ImageSize Ø 150, PlotRange Ø 2D, 88a, 1<, 0, p - 0.01<D

When you try the slider of this panel, you will see that when you drag the slider, the quality of the
plot  is  not  as  high as  usual.  As soon as you release the mouse button, a  high-quality plot is  rendered.
This behavior is designed to speed up the manipulation. Indeed, a 3D plot requires a lot of computation;
if all the plots during manipulation were of high quality, the manipulation would often be too slow.

Manipulated 3D plots can also be rotated with the mouse.

‡ Showing Degraded Output during Manipulation

When we previously considered the manipulation of  3D plots,  we noted that  the quality of  the plot is
automatically downgraded when moving a slider to make the manipulation speedier. Similarly, we can
do  this  in  any  manipulation:  With  the ControlActive  command,  we  can  ask  for  simpler  and  faster
computations while a slider is moved and produce a quality output when the mouse is released.

ControlActive[act, norm] (Ÿ6)  Evaluates to act if a control is actively being used, and to norm

otherwise

In plotting, a useful way to speed up the manipulation is to use fewer plot points when moving the
mouse and use more points to produce the plot when the mouse is released:

Manipulate@DensityPlot@Sin@Sqrt@nD x yD, 8x, 0, p<, 8y, 0, p<,
ImageSize Ø 150, PlotPoints Ø ControlActive@10, 50DD, 8n, 1, 5<D

Chapter 10  •  Manipulations 343



Here, we used 10 as the value of PlotPoints when the slider is moved and the value 50 to produce the
final  plot.  In  fact,  this  kind  of  functionality  is  the  default  in  density  plots,  although  the  final  plot  is
produced with a smaller amount of points. The default functionality corresponds with the following use
of the PerformanceGoal option:

Manipulate@DensityPlot@Sin@Sqrt@nD x yD, 8x, 0, p<, 8y, 0, p<, ImageSize Ø 150,
PerformanceGoal Ø ControlActive@"Speed", "Quality"DD, 8n, 1, 5<D

The ControlActive  command  can  also  be  used  to  control  the  value  of  the MaxRecursion  option.
This option defines the maximum number of recursive subdivisions allowed in improving the quality of
a  plot.  An  application  of ControlActive  to MaxRecursion  can  be  seen  in  a  manipulation  in Section

26.4.3, p. 876.

‡ Showing Only the Final Output of Manipulation

Another solution to slow manipulations is to arrange so that during movement of the slider the output
is not updated. Only when we release the mouse is the output updated.

ContinuousAction  Whether to update the panel continuously when controls are changed; possible
values: Automatic, True, False (updating only when mouse is released)

Usually,  the  output  is  continuously  updated.  If  we  ask  not  to  update  continuously,  then  we  can
rapidly move the slider. Here is an example:

Manipulate@ParametricPlot3D@2 8Sin@uD Cos@vD, Sin@uD Sin@vD, Cos@uD<,
8u, p, a<, 8v, -p, p<, ImageSize Ø 100, PlotRange -> 2D,

8a, 0, p - 0.01<, ContinuousAction Ø FalseD

Usually, if an update takes more than 5 seconds, the calculation is aborted. With the previous option,
there is no 5-second limit.

344 Mathematica Navigator



‡ Example: Two-Dimensional Normal Distribution

The  following  panel  shows  the  contour  plot  of  the  probability  density  function  of  the  2D  normal
distribution  with  means m1  and m2,  standard  deviations s1  and s2,  and  correlation r.  The  panel  also
shows the corresponding marginal distributions. To speed up the computations, we have asked for only
five contours.  If  the manipulation seems to be  too slow,  you can add the option ContinuousAction Ø

False.

<< MultivariateStatistics`
Manipulate@
Grid@88Plot@PDF@NormalDistribution@m2, s2D, yD, 8y, -6, 6<, PlotRange Ø All,

ImageSize Ø 150D, ContourPlot@PDF@
MultinormalDistribution@8m1, m2<, 88s1^2, r s1 s2<, 8r s1 s2, s2^2<<D, 8x, y<D,

8x, -6, 6<, 8y, -6, 6<, Contours Ø 5, PlotRange Ø All, ImageSize Ø 150D<,
8Null, Plot@PDF@NormalDistribution@m1, s1D, xD, 8x, -6, 6<,
PlotRange Ø All, ImageSize Ø 150D<<D,

88m1, 0<, -2, 2<, 88m2, 0<, -2, 2<, 88s1, 1.5<, 0.5, 2<,
88s2, 1.5<, 0.5, 2<,
88r, 0.5<, -0.9, 0.9, Appearance Ø "Labeled"<,
SaveDefinitions Ø TrueD

We can also put the marginal densities in the control area. This requires the plotting commands for
the marginals to be enclosed by Dynamic so that the plots are dynamically updated; Dynamic is consid-

ered in Section 11.2, p. 369.

Chapter 10  •  Manipulations 345



<< MultivariateStatistics`
Manipulate@ContourPlot@
PDF@MultinormalDistribution@8m1, m2<, 88s1^2, r s1 s2<, 8r s1 s2, s2^2<<D, 8x, y<D,
8x, -6, 6<, 8y, -6, 6<, Contours Ø 5, PlotRange Ø All, ImageSize Ø 210D,

88m1, 0<, -2, 2<, 88s1, 1.5<, 0.5, 2<,
Dynamic@Plot@PDF@NormalDistribution@m1, s1D, xD,

8x, -6, 6<, PlotRange Ø All, ImageSize Ø 100DD,
88m2, 0<, -2, 2<, 88s2, 1.5<, 0.5, 2<, Dynamic@Plot@
PDF@NormalDistribution@m2, s2D, yD, 8y, -6, 6<, PlotRange Ø All, ImageSize Ø 100DD,

88r, 0.5<, -0.9, 0.9<, SaveDefinitions Ø TrueD

‡ Updating the Output Only Partly

Each time we manipulate an expression,  the entire first argument of Manipulate  is  evaluated anew to
reflect the new values of the parameters. This is suitable in most cases. However, there are situations in
which  we  would  like  only  some  parts  of  the  first  expression  to  be  evaluated  anew.  One  situation  is
when we specifically want only some aspects of the output to be updated, to be able to see the effect of
only  some  parameters.  Another  is  when  it  would  be  advantageous  not  to  evaluate  the  entire  first
argument to reduce computing time.

In  the  following  example,  we  generate  a  sample  of  10,000  random  numbers  from  the  standard
normal distribution and show a histogram. We use the SaveDefinitions  option (see Section 10.2.3,  p.

348).

346 Mathematica Navigator



<< Histograms`
Manipulate@DynamicModule@8r<,
r = RandomReal@NormalDistribution@0, 1D, 10 000D;
Histogram@r, HistogramCategories Ø n, ApproximateIntervals Ø False,
ImageSize Ø 200, HistogramRange Ø 8-5, 5<, Ticks Ø 8Range@-4, 4D, Automatic<DD,

88n, 20<, 1, 50, 1<, SaveDefinitions Ø TrueD

The  adjustable  parameter n  gives  the  number  of  histogram  categories.  The  panel  works  but  has  a
drawback:  Each time we adjust n,  the first  argument of Manipulate  is  evaluated anew, causing a new
sample  to  be  drawn  from  the  normal  distribution.  We  would  instead  like  to  see  the  same  sample
displayed with various values of n.

To solve the problem, calculate the sample outside of Manipulate:

With@8s = RandomReal@NormalDistribution@0, 1D, 10^5D<,
Manipulate@Histogram@s, HistogramCategories Ø n,

ApproximateIntervals Ø False, ImageSize Ø 200, HistogramRange Ø 8-5, 5<,
Ticks Ø 8Range@-4, 4D, Automatic<D, 88n, 20<, 1, 50, 1<DD

When we now adjust n, the sample will remain the same. To investigate a different sample, execute the
command again.

Another solution is to enclose the command that calculates the histogram with Dynamic:

Chapter 10  •  Manipulations 347



Manipulate@DynamicModule@8t<,
t = RandomReal@NormalDistribution@0, 1D, 10^5D;
Dynamic@Histogram@t, HistogramCategories Ø n,

ApproximateIntervals Ø False, ImageSize Ø 200, HistogramRange Ø 8-5, 5<,
Ticks Ø 8Range@-4, 4D, Automatic<DDD, 88n, 20<, 1, 50, 1<D

Again,  when  we  now  adjust n,  the  sample  will  remain  the  same.  To  investigate  a  different  sample,
execute the command anew. The use of Dynamic has the effect that when we change the value of n, only
the value of the expression inside Dynamic will be updated. The essential point here is that n only occurs
inside  the  expression  enclosed  by Dynamic.  However,  note  that  generally  it  is  recommended  that
Dynamic not be used inside Manipulate.

10.2.3  Bookmarks and More

‡ Saving Definitions

Suppose  we  have  defined the  probability  function of  a  binomial  distribution and then  tabulated it  for
various values of n.  Lastly, we have saved and closed this notebook and opened it  again. This is what
we then get:

f@k_, n_D := PDF@BinomialDistribution@n, 1 ê 6.D, kD

Manipulate@TableForm@Table@8k, f@k, nD<, 8k, 0, n<D,
TableSpacing Ø 81, 3<, TableHeadings Ø 8None, 8"k", "PHX=kL"<<D, 8n, 1, 10, 1<D

As we see, the table in the panel does not know about the f function. We have to execute the definition
of f  to see the values of the probabilities.

To avoid this problem, we have the SaveDefinitions option.

SaveDefinitions  Whether to save with the output all definitions associated with the first argument
of Manipulate; possible values: False, True

With this option, we can save all the definitions used within the manipulation so that when we open
the notebook, the panel works without executing the definitions. Here is an example:

g@k_, n_D := PDF@BinomialDistribution@n, 1 ê 6.D, kD

348 Mathematica Navigator



Manipulate@TableForm@Table@8k, g@k, nD<, 8k, 0, n<D, TableSpacing Ø 81, 3<,
TableHeadings Ø 8None, 8"k", "PHX=kL"<<D, 8n, 1, 10, 1<, SaveDefinitions Ø TrueD

Now we see that the table in the panel knows the g function. We do not need to execute the definition of
g to see the values of the probabilities.

‡ Initialization

Consider using data in manipulations. To get an example, we tabulate some binomial probabilities and
save them into files:

t = Table@Table@8k, g@k, nD<, 8k, 0, n<D, 8n, 1, 10<D;
Do@Export@"bin" <> ToString@nD <> ".dat", tPnTD, 8n, 1, 10<D

Suppose we now would like to create a panel showing the binomial probabilities. We can first import
the files:

s = Table@Import@"bin" <> ToString@nD <> ".dat"D, 8n, 1, 10<D;

To also show the probabilities in future sessions, we can use SaveDefinitions as above:

Manipulate@TableForm@sPnT, TableSpacing Ø 81, 3<,
TableHeadings Ø 8None, 8"k", "PHX=kL"<<D, 8n, 1, 10, 1<, SaveDefinitions Ø TrueD

The probabilities are now saved in the current notebook. However, if the data sets are large, saving the
definitions could create a large notebook.

An alternative way is the use of the Initialization option to import the data sets.

Initialization  An expression to be evaluated before the main body of Manipulate is executed or
when the output of Manipulate is first displayed in a particular session; default value: None

The value of this option can consist of several commands. In the next example, we use the option to
import the probabilities:

Chapter 10  •  Manipulations 349



Manipulate@TableForm@rPnT, TableSpacing Ø 81, 3<,
TableHeadings Ø 8None, 8"k", "PHX=kL"<<D, 8n, 1, 10, 1<,

Initialization ß Hr = Table@Import@"bin" <> ToString@nD <> ".dat"D, 8n, 1, 10<DLD

Now the probabilities are not saved within the notebook. Instead, they are imported when the previous
table is first displayed in the current session.

‡ Snapshots

If we click on the utility button , we get the following utility menu:

If we have found, by manipulating the parameters, a particularly interesting value of a parameter or a
particularly interesting combination of values of parameters, we can produce a snapshot of the situation
by letting the controllers be at the interesting values and then choosing Paste Snapshot from the menu.
For  example,  a  special  case  of  the  beta  distribution  is  the  arcsine  distribution.  This  distribution  is
obtained with the parameters a = 1 ê 2 and b = 1 ê 2:

Manipulate@Plot@PDF@BetaDistribution@a, bD, xD, 8x, 0, 1<,
PlotRange Ø 80, 4.1<, ImageSize Ø 200D, 88a, 0.5<, 0.01, 3<, 88b, 0.5<, 0.01, 3<D

By choosing Paste Snapshot, we get, in a separate cell below the panel, the following input:

DynamicModule@8a = 0.5`, b = 0.5`<, Plot@PDF@BetaDistribution@a, bD, xD,
8x, 0, 1<, PlotRange Ø 80, 4.1`<, ImageSize Ø 200DD

350 Mathematica Navigator



The snapshot is in the form of a dynamic module (discussed in Section 11.2.1, p. 371). By executing this

command, we get a plot of the special case:

0.0 0.2 0.4 0.6 0.8 1.0

1

2

3

4

‡ Bookmarks

With the utility menu  we can also create a list of interesting values. They are stored into the memory

as  so-called bookmarks.  When  you  have  found  an  interesting  combination  of  values  of  parameters,
choose Add To Bookmarks…  from the menu. At the top of the panel, there is a field in which you can
write a name for the bookmark; then click add (click close if you do not want to create a bookmark).

In the following example, we have created four bookmarks:

Manipulate@Plot@PDF@BetaDistribution@a, bD, xD, 8x, 0, 1<,
PlotRange Ø 80, 4.1<, ImageSize Ø 200D, 88a, 0.5<, 0.01, 3<, 88b, 0.5<, 0.01, 3<D

The bookmarks can be seen from the same menu:

Chapter 10  •  Manipulations 351



Here,  we initially  only have one bookmark, Initial  Settings;  choosing this  bookmark gives us the plot
with  the  initial  values  used  for  the  parameters.  Similarly,  we  can  choose  other  bookmarks  to  show
interesting situations corresponding to special values of the parameters.

‡ Pasting and Animating Bookmarks

With Paste  Bookmarks  from  the  utility  menu  we  get  a  list  of  rules  for  the  bookmarks.  In  our

example, we get the following list:

8"Arcsine" ß 8a = 0.5`, b = 0.5`<, "Uniform" ß 8a = 1.`, b = 1.`<,
"Normal like" ß 8a = 3.`, b = 3.`<, "Exponential like" ß 8a = 1.`, b = 3.`<<

This list is of an appropriate form to be used as the value of the Bookmarks option. In this way, we can
get the bookmarks to a new panel. Now, they are also easy to edit:

Manipulate@Plot@PDF@BetaDistribution@a, bD, xD, 8x, 0, 1<,
PlotRange Ø 80, 4.1<, ImageSize Ø 200D, 88a, 0.5<, 0.01, 3<, 88b, 0.5<, 0.01, 3<,
Bookmarks Ø 8"Arcsine" ß 8a = 0.5`, b = 0.5`<, "Uniform" ß 8a = 1.`, b = 1.`<,

"Normal like" ß 8a = 3.`, b = 3.`<, "Exponential like" ß 8a = 1.`, b = 3.`<<D

The utility  menu  also has the Animate Bookmarks  command.  Now the animation goes through

the  bookmarks.  However,  the  animation  does  not  simply  show  each  bookmark  as  such  but,  rather,
shows a smooth animation where (by default) quadratic interpolation is used to get curves between the
bookmarks  (the  order  of  the  interpolation  can  be  set  with  the InterpolationOrder  option).  Try  the
animation with the previous panel.

10.2.4  Options of Manipulate

Manipulate has many options. However, the command works so well that we seldom need options. To
help find suitable  options,  we have grouped them into categories and marked noticeable options with
an asterisk *. Some of the options were considered previously.

352 Mathematica Navigator



‡ Controls

* ControlType  The type of control to produce in the output; possible values: Automatic, Animator,
Checkbox, CheckboxBar, ColorSetter, ColorSlider, InputField, Locator, Manipulator (slider;
animator under the  icon), PopupMenu, RadioButton, RadioButtonBar, Setter, SetterBar
(tabs), Slider, Slider2D, Toggler, TogglerBar, Trigger (like animator), VerticalSlider, None

* ControlPlacement  Placement of controls in the panel; examples of values: Automatic, Left,
Right, Bottom, Top

AutoAction  Whether to allow changing the controls by moving the mouse over them (without
pressing the mouse button); possible values: False, True

In  the  next  example,  we  can  change  a  control  simply  by  moving  the  mouse  over  the  control  area,
without pressing the mouse button:

Manipulate@Cos@xD, 8x, 0, 1<, AutoAction Ø TrueD

‡ Initialization

* Initialization  An expression to be evaluated before the main body of Manipulate is executed
or when the output of Manipulate is first displayed in a particular session; default value: None

SynchronousInitialization  Whether to perform initialization synchronously; possible values:
True (notebook editing impossible during initialization), False (notebook editing possible during
initialization)

Deinitialization  An expression to be evaluated if the output from Manipulate is deleted; default
value: None

* SaveDefinitions  Whether to save with the output all definitions associated with the first
argument of Manipulate; possible values: False, True

‡ Updating

* ContinuousAction  Whether to update the panel continuously when controls are changed;
possible values: Automatic, True, False (updating only when mouse is released)

SynchronousUpdating  Whether to update synchronously; possible values: Automatic (update
synchronously when controls are used, asynchronously otherwise), True (notebook editing
impossible during updating), False (notebook editing possible during updating)

TrackedSymbols  Symbols whose changes trigger updates in the output; examples of values: Full
(only symbols that appear explicitly in the first argument of Manipulate are tracked), All (output
is updated whenever any symbol encountered in its evaluation is changed), {x, y}

PreserveImageOptions  Whether to preserve image size and other options when updating graphics;
possible values: True, False

ShrinkingDelay  How long to delay before shrinking if the displayed object becomes smaller;
default value: 0

Chapter 10  •  Manipulations 353



‡ Bookmarks

Bookmarks  Bookmarks of the panel; examples of values: {}, {"Arcsine" ß {a = 0.5, b = 0.5},

"Uniform" ß {a = 1., b = 1.}}

InterpolationOrder  The order of interpolation used to get expressions between bookmarks;
examples of values: Automatic, 3

‡ Styling

BaseStyle  Base style specifications for the panel; default value: {}
DefaultBaseStyle  Default base style of the panel; default value: "Manipulate"
LabelStyle  Style specifications for the labels in the control area and for the labels of the panel;

examples of values: {}, {14, Red, Bold, Italic}
DefaultLabelStyle  Default label style of the panel; default value: "ManipulateLabel"
Alignment  How to align the output in the content area of the panel; examples of values: Automatic,

Left, Right, Bottom, Top, Center
BaselinePosition  Alignment of the panel relative to surrounding text; examples of values:

Automatic, Bottom, Center, Top
Paneled  Whether to put the displayed output in a panel; possible values: True, False

The default is that the output of Manipulate is put into a panel. We can ask not to use a panel:

Manipulate@Cos@xD, 8x, 0, 1<, Paneled Ø FalseD

‡ Frames and Margins

Frame  Whether to draw a frame around the controls; possible values: False, True
FrameMargins  Margins inside the content area; examples of values: Automatic, Large, 10
FrameLabel  Labels for each side of the panel; examples of values: None, {"bottom", "left",

"top", "right"}

RotateLabel  Whether to rotate y labels on the panel; possible values: False, True
ImageMargins  Margins outside the panel; examples of values: 0, Large, 10

We show two outputs that enable us to see the effect of these options. Here is a basic output:

Manipulate@Cos@xD, 8x, 0, 1<D

Now we show an enhanced panel:

354 Mathematica Navigator



Manipulate@Cos@xD, 8x, 0, 1<, Frame Ø True,
FrameMargins Ø 20, FrameLabel Ø 8"bottom", "left", "top", "right"<,
RotateLabel Ø True, ImageMargins Ø 20D êê Framed

Thus,  with Frame  we  can get  a  frame around the  controls  (the  frame in  a  way continues  the  frame
around the content area). FrameMargins changes the white space around the object in the content area.
With FrameLabel  we can add labels at each side of the panel.  With RotateLabel  we can ask to rotate
the  labels  on  the  vertical  sides  of  the  panel. ImageMargins  adjusts  the  margins  outside  the  panel  (we
have used Framed to make these margins more concrete).

‡ Controllers

ControllerLinking  When to activate links to external controllers; examples of values: Automatic,
Full, All, True, False

ControllerMethod  How external controllers should operate; examples of values: Automatic,
"Absolute"

ControllerPath  What external controllers to try to use; examples of values: Automatic, "Gamepad",
"Joystick", "Multi-Axis Controller", "Detachable", "BuiltIn"

‡ Miscellaneous

AppearanceElements  Buttons to include at the top right corner of the panel; examples of values:
Automatic (means the utility menu ), All; possible elements: "HideControlsButton",

"SnapshotButton", "ResetButton", "UpdateButton"
AutorunSequencing  How autorun (from the  menu) of the panel should use the controls;

examples of values: Automatic (run one parameter at a time), All (run all parameters simultane-
ously), {3, 1, 2} (run the parameters in the given order), {{3, 7}, {1, 4}, {2, 9}} (run the
parameters in the given order, each a given amount of seconds; the default is 5 seconds)

Deployed  Whether to restrict interactivity to the controls (then the output cannot be manipulated in
other ways); possible values: False, True

Evaluator  The kernel to use for evaluations; default value: Automatic
LocalizeVariables  Whether to localize the parameters; possible values: True, False (parameters

are treated as global)

By  default,  we  only  have  the  utility  button  at  the  top  right  corner  of  the  panel.  We  can  ask  for

more elements:

Chapter 10  •  Manipulations 355



Manipulate@Cos@xD, 8x, 0, 1<, AppearanceElements Ø AllD

Now we have the following buttons: Hide Controls (the controls disappear; the controls again appear by
clicking on the panel), Paste Snapshot (takes a snapshot of the current state), Reset  (sets the panel into its
initial state), Update (updates the content area), and the default utility menu button.

356 Mathematica Navigator



11
Dynamics

Introduction 357

11.1  Views and Animations 357

11.1.1  Views 357 MenuView, TabView, OpenerView, PopupView, SlideView, Tooltip, etc.

11.1.2  Animations 365 Animate, ListAnimate

11.2  Advanced Dynamics 369

11.2.1  Dynamic Expressions 369 Dynamic, DynamicModule

11.2.2  Sliders and Locators 375 Manipulator, Animator, Slider, Slider2D, Locator, etc.

11.2.3  Other Controls 380 SetterBar, RadioButtonBar, PopupMenu, InputField, ColorSlider, etc.

11.2.4  Special Controls 385 Opener, Button, PasteButton, ActionMenu

11.2.5  More about Dynamics 388 MenuView, PopupView, Dynamic, LocatorPane, ClickPane, etc.

Introduction

Bertrand Russell was once standing on the platform at Oxford railway station having just missed
his train to London. Suddenly, an express train to London made a unscheduled stop there, so
Russell hopped on board. “I’m sorry, sir,” said a porter. “You’ll have to get off, because this

train doesn’t stop here.” “That’s all right,” said Russell, “because in that case I’m not on it.”

In  the  preceding  chapter,  we  considered Manipulate,  the  main  command  for  creating  interactive
interfaces. Now we explore other commands to create dynamic interfaces.

Viewers such as MenuView, TabView,  and OpenerView  provide useful ways to represent data. As we
have  seen,  animations  can  be  done  with Manipulate,  but  they  can  also  be  done  using  the  special
command Animate.

Most  dynamic  interfaces  can  be  created  with Manipulate,  but Dynamic  may  be  valuable  in  more
special or more advanced cases or for more detailed formatting of the output.

The commands presented in this chapter are all new in Mathematica 6.

11.1  Views and Animations

11.1.1  Views

‡ Introduction

Tables are good representations for various data. Relatively small tables can be easily shown both on the
screen and printed. However, on the screen we have many other possibilities to show data when using
Mathematica 6.



Indeed,  if  the  amount  of  information  is  large,  it  may  be  advantageous  to  allow the  user  to  interac-
tively ask for  just  the information he or she needs. This can be done with dynamic views  such as menu
view, tab view, or opener view.

Before explaining the dynamic views, we show, as a comparison, how to use Grid  (see Section 15.2,

p. 470)  and Panel  (see Section  3.3.1,  p. 72)  to  display  tables.  As  an  example,  we  show the  probability

density function of some continuous distributions:

dist =

8ExponentialDistribution@lD, NormalDistribution@m, sD, GammaDistribution@a, lD<;

t = 8Ò, PDF@Ò, xD< & êü dist

:9ExponentialDistribution@lD, ‰-x l l=,

:NormalDistribution@m, sD,
‰
-
Hx-mL2

2 s2

2 p s

>, :GammaDistribution@a, lD,
‰
-

x

l x-1+a l-a

Gamma@aD
>>

Labeled@t êê Grid êê Framed, "Some discrete distributions", TopD êê TraditionalForm

Some discrete distributions

ExponentialDistribution@lD ‰-x l l

NormalDistribution@m, sD
‰

-
Hx-mL2

2s2

2 p s

GammaDistribution@a, lD
‰
-

x

l xa-1 l-a

GHaL

Panel@t êê Grid, "Some discrete distributions"D êê TraditionalForm

Some discrete distributions

ExponentialDistribution@lD ‰-x l l

NormalDistribution@m, sD
‰

-
Hx-mL2

2s2

2 p s

GammaDistribution@a, lD
‰
-
x

l x
a-1

l
-a

GHaL

‡ MenuView

MenuView[{lbl1 Ø expr1, lbl2 Ø expr2, … }] (Ÿ6)  Create a popup menu where selecting the
menu item with label lbli displays expri

MenuView[{lbl1 Ø expr1, lbl2 Ø expr2, … }, i]  Show initially the ith item
MenuView[{expr1, expr2, … }]  The labels are consecutive integers

A menu view is able to show large amounts of data in a very condensed way. A label is chosen from
a popup menu and the panel then shows the corresponding expression:

dist =

8ExponentialDistribution@lD, NormalDistribution@m, sD, GammaDistribution@a, lD<;

358 Mathematica Navigator



MenuView@Ò Ø PDF@Ò, xD & êü dist, 2D

With Manipulate we can get a similar view:

Manipulate@PDF@d, xD, 8d, dist, PopupMenu<D

The menus can be hierarchical:

MenuView@Ò Ø MenuView@8PDF Ø PDF@Ò, xD, CDF Ø CDF@Ò, xD,
Mean Ø Mean@ÒD, Variance Ø Variance@ÒD<, 2D & êü dist, 2D

A menu view is useful for showing a set of plots:

MenuView@
Table@n Ø Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D,
8n, 0, 10<D, 11D

Next, we show the complete name of the function plotted:

Chapter 11  •  Dynamics 359



MenuView@Table@Row@8"ChebyshevT@", n, ", xD"<D Ø Plot@ChebyshevT@n, xD,
8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D, 8n, 0, 10<D, 11D

We consider MenuView again in Section 11.2.5, p. 388.

‡ TabView

TabView[{lbl1 Ø expr1, lbl2 Ø expr2, … }] (Ÿ6)  Create a bar of tabs where selecting the tab with
label lbli displays expri

TabView[{lbl1 Ø expr1, lbl2 Ø expr2, … }, i]  Show initially the ith item
TabView[{expr1, expr2, … }]  The labels are consecutive integers

In a tab view, all the labels are shown on the top of the panel as a row of tabs. Clicking a tab shows
the corresponding expression:

Labeled@
TabView@Ò Ø Quantile@NormalDistribution@0, 1D, ÒD & êü 80.9, 0.95, 0.99, 0.999<, 3D,
"Quantiles", TopD

With Manipulate we can get a similar view:

Manipulate@Quantile@NormalDistribution@0, 1D, qD,
8q, 80.9, 0.95, 0.99, 0.999<, SetterBar<D

Tab views can be hierarchical:

360 Mathematica Navigator



TabView@Ò Ø TabView@8PDF Ø PDF@Ò, xD,
CDF Ø CDF@Ò, xD, Mean Ø Mean@ÒD, Variance Ø Variance@ÒD<, 1D & êü

8NormalDistribution@m, sD, GammaDistribution@a, lD<, 2D

A tab view is also useful in presenting a set of plots:

TabView@
Table@n Ø Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D,
8n, 0, 10<D, 7D

‡ OpenerView

OpenerView[{lbl, expr}] (Ÿ6)  Create an opener where label lbl is displayed if the opener is
closed and both lbl and expr are displayed if the opener is open

OpenerView[{lbl, expr}, open]  Show the item open if open is True, closed if open is False

An  opener  view  shows  a  triangle  before  each  label.  Clicking  a  triangle  opens  the  corresponding
expression.  We  have  to  separately  create  an  opener  for  each  label-expression  pair.  In  the  following
example, we use Map to get a list of openers and Column to show the list as a column:

dist =

8ExponentialDistribution@lD, NormalDistribution@m, sD, GammaDistribution@a, lD<;

OpenerView@8Ò, PDF@Ò, xD<D & êü dist êê Column êê TraditionalForm

ExponentialDistribution@lD

NormalDistribution@m, sD

‰

-
Hx-mL2

2s2

2 p s

GammaDistribution@a, lD

We can create hierarchical displays:

Chapter 11  •  Dynamics 361



OpenerView@8Ò,
8OpenerView@8PDF, PDF@Ò, xD<D,

OpenerView@8CDF, CDF@Ò, xD<D,
OpenerView@8Mean, Mean@ÒD<D,
OpenerView@8Variance, Variance@ÒD<D< êê Column<D & êü dist êê Column êê

TraditionalForm

ExponentialDistribution@lD

NormalDistribution@m, sD

PDF

CDF

1

2
erf

x-m

2 s

+ 1

Mean

Variance

GammaDistribution@a, lD

An advantage of an opener view over menu view or tab view is that more than one item can be open
so that comparing two or more items is easier.

‡ PopupView, SlideView, and FlipView

To create a popup/slide/flip view that shows the given expressions:
PopupView[{expr1, expr2, … }] (Ÿ6)
SlideView[{expr1, expr2, … }] (Ÿ6)
FlipView[{expr1, expr2, … }] (Ÿ6)

With a second argument, we can tell which item we would initially like to see shown.

Popup, slide, and flip views are restricted in that they merely show a chosen expression. They do not
have the ability to show a label attached to an expression (the expression shown can, however, be a list
containing as much information as we want; we do this in the following examples). In a popup view, an
expression is chosen from a popup menu:

t = 8Ò, PDF@Ò, xD< & êü dist

:9ExponentialDistribution@lD, ‰-x l l=,

:NormalDistribution@m, sD,
‰
-
Hx-mL2

2 s2

2 p s

>, :GammaDistribution@a, lD,
‰
-

x

l x-1+a l-a

Gamma@aD
>>

PopupView@t, 2D

We consider PopupView again in Section 11.2.5, p. 389.

With a slide view, we can show the expressions like in a slide show by using the four buttons:

362 Mathematica Navigator



SlideView@t, 2D

In a flip view, the output moves to the next expression each time we click on the output:

FlipView@t, 2D

‡ PopupWindow, Tooltip, Mouseover, StatusArea, and Annotation

PopupWindow[lbl, expr] (Ÿ6)
Tooltip[lbl, expr] (Ÿ6)
Mouseover[lbl, expr] (Ÿ6)
StatusArea[lbl, expr] (Ÿ6)
Annotation[lbl, expr, "Mouse"] (Ÿ6)

The methods presented here produce a list  a labels.  In a special way, we can see the corresponding
expression.  By  clicking  a  label  in  the  following  output,  the  corresponding  expression  appears  in  a
separate window:

PopupWindow@Ò, PDF@Ò, xDD & êü dist êê Column

ExponentialDistribution@lD
NormalDistribution@m, sD
GammaDistribution@a, lD

Next, when the mouse pointer is over a label, a tooltip appears showing the corresponding expression:

Tooltip@Ò, PDF@Ò, xDD & êü dist êê Column

ExponentialDistribution@lD
NormalDistribution@m, sD
GammaDistribution@a, lD

By moving the mouse pointer over a label (without clicking), the corresponding expression replaces the
expression:

Mouseover@Ò, PDF@Ò, xDD & êü dist êê Column

ExponentialDistribution@lD
NormalDistribution@m, sD
GammaDistribution@a, lD

Now the expression appears  at  the lower left  corner of  the window when the mouse pointer is  over a
label:

StatusArea@Ò, PDF@Ò, xDD & êü dist êê Column

ExponentialDistribution@lD
NormalDistribution@m, sD
GammaDistribution@a, lD

Chapter 11  •  Dynamics 363



Lastly, in the following way we get an expression in place of the Null output of the Dynamic command
when we move the mouse over the Annotation output that contains the labels:

Column@
8Column@Annotation@Ò, PDF@Ò, xD, "Mouse"D & êü distD, Dynamic@MouseAnnotation@DD<D

The  document tutorialêFormattedOutput  in  the  Documentation  Center  gives  the  following  application
of Tooltip.  By moving the mouse over a country on the map, we can see the name of the country and
its flag.

Graphics@8LightBlue, EdgeForm@GrayD,
Dynamic@Tooltip@CountryData@Ò, 8"SchematicPolygon", "Mollweide"<D,

Panel@CountryData@Ò, "Flag"D, ÒDDD & êü CountryData@D<, ImageSize Ø 420D

Here, we used Dynamic to reduce the size of the output (see more in Section 11.2.5, p. 388).

‡ Options

The dynamic views have several options, but we rarely need them; the default views are very good. For
example, here are the options of MenuView:

Options@MenuViewD

8Alignment Ø 8Left, Top<, Background Ø None, BaselinePosition Ø Automatic,
BaseStyle Ø 8<, ControlPlacement Ø 8Top, Left<, DefaultBaseStyle Ø MenuView,
DefaultLabelStyle Ø MenuViewLabel, Deployed Ø False, Enabled Ø Automatic,
FrameMargins Ø Automatic, ImageMargins Ø Automatic, ImageSize Ø All, LabelStyle Ø 8<<

With ControlPlacement we can ask to put the controls, for example, at the bottom or left:

364 Mathematica Navigator



MenuView@HÒ Ø PDF@Ò, xD &L êü
8ExponentialDistribution@lD, NormalDistribution@m, sD, GammaDistribution@a, lD<,

ControlPlacement Ø 8Bottom, Center<D

TabView@Ò Ø Quantile@NormalDistribution@0, 1D, ÒD & êü 80.9, 0.95, 0.99, 0.999<,
ControlPlacement Ø LeftD

The  default  value  of ImageSize  is All  for  most  views.  The  default  value  is Automatic  for
OpenerView  and FlipView.  The value All  means that the output is large enough to contain the largest
of the items.  In this case,  the size of the output remains the same for all  items. On the other hand, the
value Automatic means that the size of the output is set separately for each item so that the size is just
large enough to show the current item. In this case, the size of the output changes according to the size
of  the  current  item.  For  example,  in  the  following  menu  view,  the  size  changes  according  to  the  item
shown:

MenuView@HÒ Ø PDF@Ò, xD &L êü 8ExponentialDistribution@lD,
NormalDistribution@m, sD, GammaDistribution@a, lD<, ImageSize Ø AutomaticD

11.1.2  Animations

‡ Basics of Animation

Here is a simple Animate command and its output panel:

Animate@Plot@Sin@x - aD, 8x, 0, 4 p<, ImageSize Ø 200D, 8a, 0, 2 p<D

Chapter 11  •  Dynamics 365



The animation starts immediately after we have executed the command: The value of the parameter
a  is changed and the plot is redrawn in real time. Thus, a sequence of plots is shown rapidly one after
the other,  giving the impression of a  continuously changing curve.  We can control  the animation with
the following icons at the top right of the panel: Play/Pause, Faster, Slower, and Forward/Backward/Forward
and Backward. We can also manually change the value of the parameter a by moving the slider with the
mouse; the plot of sinHx - aL is again redrawn in real time.

In  general, Animate  has  two  arguments:  the expression  to  be  animated  (the  plotting  command  in  the
previous example) and the specifications of the parameters ({a, 0, 2p}). In addition, we can have options.
The expression to be animated depends on one or more parameters. The output panel contains a slider
and animation controls for each parameter and a content area for the expression to be animated.

Recall from the previous chapter that animations can also be run with Manipulate.

‡ Forms of Animation

To create an interface enabling the animation of expr by changing the value of a parameter u:

Animate[expr, {u, umin, umax}] (Ÿ6) u can have any value between umin and umax

Animate[expr, {u, umax, umax, du}] u can have any value between umin and umax in steps of du

Animate[expr, {{u, uinit}, umin, umax}]  The initial value of u is uinit

Animate[expr, {u, {u1, u2, … }}] u takes on the values u1, u2, …

AnimationRunning  Whether the animation is running after execution of Animate or after opening a
notebook containing the animation; possible values: True, False

We will  use  the AnimationRunning  option  to  ask  that  the  animation  not  be  run automatically;  this
saves computer load.

The typical use of Animate is to animate a series of plots by changing a continuous parameter (note,
however, that expr in the previous box need not be a plotting command; it can be any expression). This
was the case in the previous example, in which we animated the graph of the function sinHx - aL.

Sometimes we want to show only the animation for a given discrete set of values of the parameter.
Next, we show some Chebyshev polynomials:

Animate@Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D,
8n, 0, 10, 1<, AnimationRunning Ø FalseD

Note that  often,  as  in the previous example,  it  is  useful to define the same PlotRange  for  all  of  the
plots. Then the plots can be more easily compared. Sometimes ImagePadding is a useful option for Plot

to  ensure  that  the  same space  is  reserved for  tick  labels  in  all  plots  so  that,  again,  the positions of  the
axes do not change during the animation.

366 Mathematica Navigator



With the third form of Animate given previously, we can define an initial value of the parameter. The
corresponding  plot  is  shown  immediately  after  the  animation  command  is  executed.  This  could  be
useful if the minimum value of the parameter gives an uninteresting plot.

The maximum value of the parameter can be infinite. In this case, the animation can run forever.

The  fourth  form  of Animate  provides  the  possibility  to  give  a  list  of  (irregular)  values  for  the
parameter.

 We  can  also  animate  with  respect  to  several  parameters.  However,  such  an  animation  is  probably
not very useful. Use Manipulate instead; see Chapter 12.

3D plots can be animated in the same way as 2D plots:

Animate@Plot3D@Sin@x y - aD, 8x, 0, p<, 8y, 0, p<, ImageSize Ø 160D,
8a, 0, 2 p<, AnimationRunning Ø FalseD

Here is an example in which we animate a plot produced by Graphics:

Animate@Graphics@
8Translate@Rotate@8Thick, Green, Line@88-1, 0<, 81, 0<<D, Line@880, -1<, 80, 1<<D,

Red, Circle@D, Blue, PointSize@LargeD, Point@80, 0<D<, -tD, 8t, 0<D,
Line@88-1, -1.03<, 83 p + 1, -1.03<<D<, PlotRange Ø 88-1.1, 3 p + 1<, 8-1.3, 1.3<<,

ImageSize Ø 250D, 8t, 0, 3 p<, AnimationRunning Ø FalseD

‡ Animating a Given List of Plots

Thus far, we have considered animations where the sequence of plots is produced during the animation.
Now we consider animating an existing list of plots.

ListAnimate[plots] (Ÿ6)  Animate the given list of plots
ListAnimate[plots, rate]  Animate the given list of plots, displaying rate plots per second

Previously,  we  animated  Chebyshev  polynomials  with Animate.  The  same  animation  can  also  be
obtained by precomputing the plots and asking for an animation:

t = Table@Plot@ChebyshevT@n, xD,
8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D, 8n, 0, 10, 1<D;

Chapter 11  •  Dynamics 367



ListAnimate@t, AnimationRunning Ø FalseD

‡ Options of Animate

Animate  has many options. Most of them are the same as the options of Manipulate.  Indeed, Animate

can be seen as a special case of Manipulate.  The latter command is considered in Chapter 12. Here are
special  options  of Animate;  we  also  give  one  option  (AppearanceElements)  whose  default  value  is
different than the default value of the same option for Manipulate.

DefaultDuration  The default duration (in seconds) of one run of the animation; default value: 5.

AnimationRate  The rate at which the animation should run; examples of values: Automatic, 0.1

RefreshRate  The default number of times per second to refresh; default value: Automatic

AnimationRunning  Whether the animation is running after execution of Animate or after opening a
notebook containing the animation; possible values: True, False

AnimationDirection  The direction of the animation; possible value: Forward, Backward,
ForwardBackward

AnimationRepetitions  How many times to run before stopping; default value: ¶
DisplayAllSteps  Whether to force all discrete steps to be displayed; possible values: False, True

Exclusions  Specific values to be excluded; default value: {}

AnimatorElements  Animation control elements to include; examples of values: Automatic, All;
default elements: “ProgressSlider", "PlayPauseButton", "FasterSlowerButtons",
"DirectionButton"; additional elements: "StepLeftButton", "StepRightButton",
"ResetButton", "PlayButton", "ResetPlayButton"

AppearanceElements  Utility buttons to include at the top right corner of the panel; examples of
values: None, Automatic (means the utility menu ), All; possible elements:

"HideControlsButton", "SnapshotButton", "ResetButton", "UpdateButton"

In addition, Animate has the following options:

Alignment, AppearanceElements, BaselinePosition, BaseStyle, ControlAlignment,
ControllerLinking, ControllerMethod, ControllerPath, ControlPlacement,
Deinitialization, Deployed, FrameMargins, ImageMargins, Initialization,
LabelStyle, PreserveImageOptions, SaveDefinitions, ShrinkingDelay,
SynchronousInitialization, SynchronousUpdating, TrackedSymbols

For these options, see the same options of Manipulate in Section 10.2.4, p. 352.

368 Mathematica Navigator



In animating a continuous variable such as in Animate[expr, {u, umin, umax}], a discrete set of plots

are shown by producing plots for which the value of the parameter u  differs by an amount of du.  The
value of du  is determined from the value of RefreshRate.  For example, if the value of this option is 3,
then 3 plots are produced in a second, and because the animation runs for 5 seconds (by default), then
we get 15 plots in a run so that du should be approximately Humax - uminL ê15 (the actual value may differ

somewhat).

An  explicit  setting  for AnimationRate  takes  precedence  over  the  setting  for DefaultDuration.  For

AppearanceElements, see the options of Manipulate in Section 10.2.4, p. 352.

ListOptions has almost the same options as Animate; the default value of DisplayAllSteps is now
True.

11.2  Advanced Dynamics

11.2.1  Dynamic Expressions

‡ Introduction

Recall that for graphics we have such high-level commands as Plot  but also the lower-level command
Graphics.  Mostly  high-level  plotting  commands  suffice  for  us,  but  sometimes  we  need Graphics  to
create  advanced  or  special  plots.  Actually,  commands  such  as Plot  utilize  the  lower-level  command
Graphics, as can be seen from the following output:

Plot@Sin@xD, 8x, 0, p<D êê InputForm êê Short

Graphics@888<, 8<, 8<<2>><<<, 8<<6>><D

For  dynamic  interfaces,  the  situation  is  similar.  We  have  the  high-level  command Manipulate,  but
we also have the lower-level command Dynamic. Manipulate usually suffices for us, but sometimes we
need Dynamic to create advanced or special dynamic interfaces. Actually, Manipulate utilizes the lower-
level command Dynamic. This cannot be directly demonstrated, but consider the following example:

Manipulate@Sin@xD, 8x, 0, p<D

A similar output can be obtained with Dynamic by using the Manipulator control:

PanelüDynamicModule@8x = 0<,
Column@8Manipulator@Dynamic@xD, 80, p<D, Dynamic@Sin@xDD<DD

Manipulate  works  as  follows:  It  applies Dynamic  to  allow  dynamic  changes  of  values,  adds  controls
such as sliders to create an interactive interface, and adds formatting constructs to arrange the compo-
nents of the panel.

We now begin to study Dynamic in more detail.

Chapter 11  •  Dynamics 369



‡  Dynamic Expressions

Calculate the value of the factorial function n !:

n = 3;

n!

6

Then change the value of n:

n = 4;

The value of n ! did not change. This is the normal way Mathematica  works: New values of variables do
not change the values of old expressions. With Dynamic we get a different working.

Dynamic[expr] (Ÿ6)  An object whose value is updated whenever any of the parameters in expr get
a new value

Define a dynamic expression:

Dynamic@n!D

n!

We do not have any unusual features here: The value of this expression reflects the current value of n.
However, change the value of n:

n = 5;

Here,  the  value  of Dynamic[n!]  changed to 5 !.  In  this  way,  a  dynamic  expression  always  changes  its
value if any of its variables gets a new value. Note that here we did not execute the command n = 5 in
order not to destroy the initial value of Dynamic[n!].  You should perform the computations presented
here on your computer to actually see what happens.

‡ Adjusting Parameters

The heart  of  dynamics is  the ability to interactively change the values of some parameters to see what
effect  this  has  on  an  expression.  To  change  parameters,  we  have  many  types  of  controls,  as  we  saw
when  we  studied Manipulate.  The  basic  control  is  a  slider.  We consider  sliders  and other  controls  in
forthcoming sections, but here we present some simple examples.

For convenience, we again present the dynamic expression we considered previously:

Dynamic@n!D

n!

Now define a slider:

Slider@Dynamic@nD, 81, 100, 1<D

To dynamically change the value of n,  we enclosed it  with Dynamic.  Try adjusting the value of n  with
the slider. Observe how the value of Dynamic[n!] changes accordingly. In fact, any dynamic expression
containing n would change accordingly.

Note  that  only  dynamic  outputs  currently  visible  on  the  screen  are  updated.  Dynamic  outputs
outside the current state of the screen are not updated; they are updated when we scroll to them.

370 Mathematica Navigator



Often, it is useful to gather together a slider and an expression to be manipulated:

8Slider@Dynamic@n1D, 81, 100, 1<D, Dynamic@n1D<

: , 1>

Again,  to  show the  current  value of n1,  we  enclosed it  with Dynamic.  A more  polished version of  this
output can be obtained with Row:

Row@8"n ", Slider@Dynamic@n2D, 81, 100, 1<D, " ", Dynamic@n2D<D

Create an interface to find the nth prime:

Column@8Row@8"n ", Slider@Dynamic@n3D, 81, 100, 1<D, " ", Dynamic@n3D<D,
Row@8"Prime@nD: ", Dynamic@Prime@n3DD<D<D

Finally, add a panel:

PanelüColumn@8Row@8"n ", Slider@Dynamic@n4D, 81, 100, 1<D, " ", Dynamic@n4D<D,
Row@8"Prime@nD: ", Dynamic@Prime@n4DD<D<D

Thus, we have obtained a similar output as is given by Manipulate:

Manipulate@Prime@nD, 8n, 1, 100, 1<, FrameLabel Ø "Prime@nD"D

In  summary,  with Dynamic  we  can  obtain  similar  interfaces  as  with Manipulate,  but  usually  the
latter command is easier to apply.

‡ Dynamic Modules

Previously,  we  observed  that  adjusting n  with  a  slider  changes  all  dynamic  expressions  containing n.
This may not be what we want. Indeed, often we want to restrict the effect of changing parameters into
a single dynamic expression. This can be achieved with a dynamic module.

DynamicModule[{x = x0, y = y0, … }, expr] (Ÿ6)  An object that maintains the same local instance
of the variables x, y, … in the course of all evaluations of Dynamic objects in expr; initial values x0,
y0, … are used for the variables (initial values need not be given)

Chapter 11  •  Dynamics 371



Consider now the following example:

DynamicModule@8n = 5<, 8Slider@Dynamic@nD, 81, 100, 1<D, Dynamic@nD<D

When  moving  the  slider,  other  dynamic  objects  having  the  parameter n  do  not  change  because  this
object has a local version of n.

You may observe that DynamicModule and Module are formally similar. However, behind the scenes
they work differently. Module does its work in the kernel, and DynamicModule does its work in the front
end. The latter command maintains, in the output cell, the current values of the parameters so that the
values are saved when the notebook is saved. For example, suppose we have a dynamic module and we
have set the slider to a specific position. Then we save the notebook, quit Mathematica, start Mathematica
again,  and open the same notebook.  The slider still  has the same position.  If  we had used Module,  the
slider would instead be in the default position.

‡ Dynamic Graphics

Like DynamicModule, Dynamic  is  an exceptional  command in that  it  does its  work entirely in the front
end, not in the kernel. This is important to keep in mind when we design dynamic interfaces.

For  example,  in  the  following  we  have  enclosed  the  plotting  command  with Dynamic  to  get  it
updated every time the value of n is changed:

DynamicModule@8n = 3<, Column@8Manipulator@Dynamic@nD, 80, 10, 1<D,
Dynamic@Plot@Sin@n xD, 8x, 0, 2 p<, PlotRange Ø 1.05, ImageSize Ø 200DD<DD

Note  that  here Dynamic  is  used inside Manipulator,  around n.  Why  did  we  use Dynamic outside  of
Plot? Why did we not write Plot[Sin[Dynamic[n] x]…? The latter does not work. This is because the
kernel needs a specific value of n to plot the function, but Dynamic[n] does not evaluate to anything in
the kernel~it remains Dynamic[n]. Thus, the plotting does not succeed.

We can also use Dynamic to adjust the value of some options. Here, we adjust the font size:

372 Mathematica Navigator



DynamicModule@8s = 5<,
Column@8Manipulator@Dynamic@sD, 85, 16, 1<D, Plot@Sin@3 xD, 8x, 0, 2 p<,

LabelStyle Ø 8FontSize Ø Dynamic@sD<, ImageSize Ø 200D<DD

Indeed,  an  option  such  as FontSize  takes  its  effect  in  the  front  end  so  that  we  can  write FontSize Ø

Dynamic[s] to be able to change s (without recomputing the curve).

However,  there  are  options  whose  values  cannot  be  adjusted  in  this  way.  For  example,  the  kernel
needs  the  value  of PlotStyle  so  that  we  cannot  write PlotStyle Ø

AbsoluteThickness[Dynamic[th]].  In this case, we have to enclose the entire plotting command with
Dynamic:

DynamicModule@8th = 1<,
Column@8Manipulator@Dynamic@thD, 80, 6<D, Dynamic@Plot@Sin@3 xD,

8x, 0, 2 p<, PlotStyle Ø AbsoluteThickness@thD, ImageSize Ø 200DD<DD

Now, each time we adjust the thickness of the curve, the kernel produces a new plot.

‡ Options of Dynamic

Initialization  An expression to be evaluated before the main body of Dynamic is executed or
when the output of Dynamic is first displayed in a particular session; default value: None

Deinitialization  An expression to be evaluated if the output from Dynamic is deleted; default
value: None

TrackedSymbols  Symbols whose changes trigger updates in the output; examples of values: All

(output is updated whenever any symbol encountered in its evaluation is changed), Full (only
symbols that appear explicitly in the first argument of Dynamic are tracked), {x, y}

UpdateInterval  Time interval (in seconds) at which to do updates; examples of values: ¶, 1

ShrinkingDelay  How long to delay before shrinking if the displayed object gets smaller; default
value: 0.

Editable  Whether to allow the textual display of Dynamic to be edited; possible values: False, True

Evaluator  The kernel to use for evaluations; default value: Automatic

Chapter 11  •  Dynamics 373



Options of Dynamic are seldom needed; more often, we need the options of the various controls such
as sliders, locators, or input fields.

Sometimes the update or refreshing of a dynamic object does not work unless we specifically ask to
refresh. For example, the following does not continuously generate random numbers; it only generates
one random number:

Dynamic@RandomReal@DD

0.753821

To continuously get new random numbers, define how often the update should occur:

Dynamic@RandomReal@D, UpdateInterval Ø 1D

0.256163

We can also use the Refresh command and its options to define when an update should be made.

Dynamic[Refresh[expr, opts]] (Ÿ6)  Update according to the options

Options of Refresh:
TrackedSymbols  Symbols whose changes trigger an update; examples of values: Automatic, {x, y}

UpdateInterval  Time interval (in seconds) at which to do updates; examples of values: ¶, 1

‡ Common Options of Controls

We  will  soon  study various  controls  such  as Manipulator, Slider, Locator,  and InputField.  Before
we do so, we present the options that are shared with most of the controls so that these options need not
be  repeated  for  all  the  controls.  In  addition  to  these  common  options,  each  control  has  a  few  special
options; they are mentioned for each control separately.

We have divided the common options into two categories:

Options relating to style:
ImageSize  The overall size of the control; examples of values: Automatic, All (default for

PopupMenu, Setter, and Toggler), Tiny, Small, Medium, Large, 20, {100, 20} (the option is not
for Checkbox or Opener)

ImageMargins  Margins around the control; examples of values: 0, Tiny, Small, Medium, Large, 10

Background  The background color of the control; examples of values: Automatic, Red (the option is
not for Manipulator)

BaselinePosition  Alignment of the control relative to surrounding text; examples of values:
Automatic, Bottom, Center, Top (the option is not for Locator)

BaseStyle  Base style specifications for the control; examples of values: {}, {Red, Bold} (the option
is not for Manipulator)

DefaultBaseStyle  Default base style of the control; examples of values: {}, "InputField" (the
option is not for Manipulator)

Options relating to controls:
Enabled  Whether adjusting the control is enabled; possible values: Automatic, True, False

AutoAction  Whether to allow adjusting the control by moving the mouse over it (without pressing
the mouse button); possible values: False, True (the option is not for InputField)

ContinuousAction  Whether to update continuously when the control is adjusted; possible values:
True, False (updating only when mouse is released; default for InputField, Checkbox, Opener)

374 Mathematica Navigator



Previously, we indicated some controls that do not have some of the options. In addition, the options
ImageSize, ImageMargins, AutoAction,  and ContinuousAction  are  not  for SetterBar,
RadioButtonBar, CheckboxBar, or TogglerBar.

For example, here are sliders and locators of varying sizes:

Slider@3, 80, 10, 1<, ImageSize Ø ÒD & êü 8Tiny, Small, Medium<

: , , >

Graphics@Locator@80, 0<, ImageSize Ø ÒD, ImageSize Ø 25D & êü 8Tiny, Small, Medium<

: , , >

Next, we discuss the various controls and how they are used with Dynamic. We consider the controls
approximately in the same order they were presented for Manipulate in the previous chapter.

11.2.2  Sliders and Locators

‡ Manipulator

With the Manipulator control we can get similar results as with Manipulate.

To create a manipulator enabling the interactive choice of the value of the parameter u:
Manipulator[Dynamic[u]] (Ÿ6) u can have any value between 0 and 1
Manipulator[Dynamic[u], {umin, umax}] u can have any value between umin and umax

Manipulator[Dynamic[u], {umin, umax, du}] u can have any value between umin and umax in steps

of du

Special options:
Appearance The appearance of the manipulator; examples of values: Automatic, "Closed", "Open",

"Labeled", {"Open", "Labeled"}

AppearanceElements  Animation controls to include; examples of values: Automatic, All; default
elements: “ProgressSlider", "InputField", "StepLeftButton", "PlayPauseButton",
"StepRightButton", "FasterSlowerButtons", "DirectionButton"; additional elements:
"InlineInputField", "ResetButton", "PlayButton", "ResetPlayButton"

AnimationRate  The rate at which the animation should run; examples of values: Automatic, 0.1

AnimationDirection  The direction of the animation; possible values: Forward, Backward,
ForwardBackward

Exclusions  Specific values to be excluded; default value: {}

With  the Appearance  option  we  can  ask  to  show  the  animation  control  opened  and  to  display  the
current  value  of  the  parameter  next  to  the  slider.  The  current  value  of  the  parameter  can  also  be
obtained  with  the  appearance  element "InlineInputField".  Note  that  the  animation  controls  can  be
adjusted  with AppearanceElements;  recall  that  for Animate,  the  animation  controls  can  be  adjusted
with AnimatorElements. The size of the slider can be adjusted with ImageSize.

Chapter 11  •  Dynamics 375



DynamicModule@8a = 3<,
Column@8Manipulator@Dynamic@aD, 81, 10<, Appearance Ø 8"Open", "Labeled"<D,

Dynamic@Plot@Cos@a xD, 8x, 0, 2 p<, ImageSize Ø 200DD<DD

‡ Animator and Trigger

To create an animator enabling the interactive choice of the value of the parameter u:
Animator[Dynamic[u]] (Ÿ6) u can have any value between 0 and 1
Animator[Dynamic[u], {umin, umax}] u can have any value between umin and umax

Animator[Dynamic[u], {umin, umax, du}] u can have any value between umin and umax in steps of du

Special options:
Appearance The appearance of the manipulator; examples of values: Automatic, Tiny, Small,

Medium, Large

AppearanceElements  Animation controls to include; examples of values: Automatic, All; default
elements: “ProgressSlider", "StepLeftButton", "PlayPauseButton", "StepRightButton",
"FasterSlowerButtons", "DirectionButton"; additional elements: "ResetButton",
"PlayButton", "ResetPlayButton"

Exclusions  Specific values to be excluded; default value: {}

In  addition  to  the  options  mentioned in  the  box, Animator  has  the  following options  familiar  from
Animate: AnimationDirection, AnimationRate, AnimationRepetitions, AnimationRunning,
DefaultDuration, DisplayAllSteps, and RefreshRate.  Note again that the animation controls can be
adjusted  with AppearanceElements;  recall  that  for Animate,  the  animation  controls  can  be  adjusted
with AnimatorElements.

With Animator we get a similar result as with Animate:

DynamicModule@8a = 3<,
Column@8Animator@Dynamic@aD, 81, 10<, AnimationRunning Ø FalseD,

Dynamic@Plot@Cos@a xD, 8x, 0, 2 p<, ImageSize Ø 200DD<DD

With Trigger we get a simplified animation:

376 Mathematica Navigator



DynamicModule@8a = 3<, Column@8Trigger@Dynamic@aD, 81, 10<D,
Dynamic@Plot@Cos@a xD, 8x, 0, 2 p<, ImageSize Ø 200DD<DD

‡ Slider and VerticalSlider

To create a slider enabling the interactive choice of the value of the parameter u:
Slider[Dynamic[u]] (Ÿ6) u can have any value between 0 and 1
Slider[Dynamic[u], {umin, umax}] u can have any value between umin and umax

Slider[Dynamic[u], {umin, umax, du}] u can have any value between umin and umax in steps of du

Special options:
Appearance  The appearance of the slider; examples of values: Automatic, "UpArrow", "DownArrow"

Exclusions  Specific values to be excluded; default value: {}

Here is an example showing the thumb of a slider as a down arrow:

DynamicModule@8n = 3<,
Slider@Dynamic@nD, 80, 10, 1<, Appearance Ø "DownArrow", Background Ø LightPurpleDD

Sometimes we would like to create a set of sliders with Table. The following does not work:

DynamicModule@8data = 83, 3, 3, 3<<,
Column@8Table@Slider@Dynamic@dataPiTD, 80, 10<D, 8i, 4<D, Dynamic@dataD<DD

This does not work because Dynamic has the attribute HoldFirst so that Dynamic does not evaluate its
first argument. Thus, dataPiT remains as such for each value of i. A trick to get the command to work
is the use of With:

DynamicModule@8data = 83, 3, 3, 3<<, Column@
8Table@With@8i = i<, Slider@Dynamic@dataPiTD, 80, 10<DD, 8i, 4<D, Dynamic@dataD<DD

Chapter 11  •  Dynamics 377



Here is an example of a vertical slider:

<< MultivariateStatistics`
DynamicModule@8s1 = 1, s2 = 1, x, y<,

Grid@88VerticalSlider@Dynamic@s2D, 80.5, 2<, ImageSize Ø SmallD,
Dynamic@ContourPlot@PDF@MultinormalDistribution@80, 0<,

88s1^2, 0.5 s1 s2<, 80.5 s1 s2, s2^2<<D, 8x, y<D, 8x, -6, 6<,
8y, -6, 6<, Contours Ø 5, PlotRange Ø All, ImageSize Ø 150DD<,

8Null, Slider@Dynamic@s1D, 80.5, 2<, ImageSize Ø SmallD<<DD

‡ Slider2D

To create a 2D slider enabling the interactive choice of the value of the point pt:
Slider2D[Dynamic[pt]] (Ÿ6) x and y coordinates can have any value between 0 and 1

Slider2D[Dynamic[pt], {min, max}]  The coordinates are between min and max

Slider2D[Dynamic[pt], {min, max, d}] The coordinates jump in steps of d

Define different ranges in x and y directions:

Slider2D[Dynamic[pt], {{xmin, ymin}, {xmax, ymax}}]

Slider2D[Dynamic[pt], {{xmin, ymin}, {xmax, ymax}, {dx, dy}}]

A special option:
Exclusions  Specific values to be excluded; default value: {}

In the following, we use a 2D slider to move a Point:

DynamicModule@8pt = 80, 0<<, Row@8Slider2D@Dynamic@ptD, 8-1, 1<D,
" ", Graphics@8PointSize@LargeD, Point@Dynamic@ptDD<,

PlotRange Ø 1.1, Frame Ø True, FrameTicks Ø None, ImageSize Ø 80D<DD

With Manipulate we get a similar result:

378 Mathematica Navigator



Manipulate@Graphics@8PointSize@LargeD, Point@ptD<,
PlotRange Ø 1.1, Frame Ø True, FrameTicks Ø None, ImageSize Ø 80D,

88pt, 80, 0<<, 8-1, -1<, 81, 1<<, ControlPlacement Ø LeftD

‡ Locator

Locator[Dynamic[pt]] (Ÿ6)  Create a locator enabling the interactive choice of the point pt

Locator[Dynamic[pt], obj]  Use obj as the locator object; examples of values of obj: Automatic

(the default “crosshairs” appearance), None (display nothing visible), "*",
Graphics[{PointSize[Large], Point[{0, 0}]}]

A special option:
LocatorRegion  Where the locator is allowed to go; examples of values: Automatic (within plot

range), Full (all of the graphics)

Recall that a locator can be moved with the mouse. An example:

DynamicModule@8pt = 80, 0<<,
Graphics@8Locator@Dynamic@ptDD<, PlotLabel Ø Dynamic@NumberForm@pt, 83, 2<DD,

PlotRange Ø 1, Frame Ø True, FrameTicks Ø None, ImageSize Ø 100DD

With Manipulate we get a similar result (we already presented this example in Section 10.1.3, p. 326):

Manipulate@Graphics@8<, PlotLabel Ø NumberForm@pt, 83, 2<D, PlotRange Ø 1.1,
Frame Ø True, FrameTicks Ø None, ImageSize Ø 100D, 88pt, 80, 0<<, Locator<D

Chapter 11  •  Dynamics 379



11.2.3  Other Controls

‡ SetterBar and RadioButtonBar

SetterBar[Dynamic[x], list] (Ÿ6)  Create a setter bar (a set of tabs) enabling the interactive
choice of the value of the parameter x from list

RadioButtonBar[Dynamic[x], list] (Ÿ6)  Create a radio button bar enabling the interactive choice
of the value of the parameter x from list

A special option:
Appearance The appearance of the bar; examples of values: Automatic, "Horizontal",

"Vertical", "Row"

An example:

DynamicModule@8q = 0.95<,
Column@8 SetterBar@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<D,

Dynamic@Quantile@NormalDistribution@0, 1D, qDD<DD

The same kind of interface can be more easily obtained with TabView:

TabView@Ò Ø Quantile@NormalDistribution@0, 1D, ÒD & êü 80.9, 0.95, 0.99, 0.999<D

An example of a radio button bar:

DynamicModule@8q = 0.95<,
Row@8RadioButtonBar@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<, Appearance Ø "Vertical"D,

" Quantile: ", Dynamic@Quantile@NormalDistribution@0, 1D, qDD<DD

380 Mathematica Navigator



‡ PopupMenu

PopupMenu[Dynamic[x], {val1, val2, … }] (Ÿ6)  Create a popup menu enabling the interactive
choice of the value of the parameter x from the given list

PopupMenu[Dynamic[x], {val1 Ø lbl1, val2 Ø lbl2, … }]  Show the values as the given labels in
the popup menu

Special options:
FieldSize  The size of the menu; examples of values: {{1, 50}, {1, 10}}, width, {width, height},

{{wmin, wmax}, {{hmin, hmax}}

FrameMargins  Margins inside the menu; examples of values: Automatic, 2

Here is an example of the first form of PopupMenu:

DynamicModule@8q<,
Column@8Row@8PopupMenu@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<D, "-quantile:"<D,

Dynamic@Quantile@NormalDistribution@0, 1D, qDD<DD

With the second form we can get arbitrary labels in the menu:

DynamicModule@8r<,
Column@8PopupMenu@Dynamic@rD,

Quantile@NormalDistribution@0, 1D, ÒD Ø Row@8Ò, "-quantile"<D & êü
80.9, 0.95, 0.99, 0.999<D, Dynamic@rD<DD

With MenuView we get a similar result:

MenuView@Row@8Ò, "-quantile"<D Ø Quantile@NormalDistribution@0, 1D, ÒD & êü
80.9, 0.95, 0.99, 0.999<D

In the next example, we use PopupMenu to show plots:

Chapter 11  •  Dynamics 381



DynamicModule@8y<,
Column@8PopupMenu@Dynamic@yD, Table@Plot@ChebyshevT@n, xD, 8x, -1, 1<D Ø

Row@8"ChebyshevT@", n, ", xD"<D, 8n, 0, 10<DD, Dynamic@yD<DD

Now the popup menu appears as the plot label:

DynamicModule@8n = 5<, Dynamic@Plot@ChebyshevT@n, xD, 8x, -1, 1<, ImageSize Ø 200,
PlotLabel Ø Row@8"n = ", PopupMenu@Dynamic@nD, Range@0, 10DD<DDDD

‡ Checkbox and Toggler

Checkbox[Dynamic[x]] (Ÿ6)  Create a checkbox enabling the interactive choice of either False

( , the default) or True ( ) as the value of the parameter x

Checkbox[Dynamic[x], list]  Create a checkbox enabling the interactive choice of an element from
list as the value of the parameter x; the values cycle through the elements of list (the first

element is shown as , the second as , and next ones as )

A special option:
Appearance  The appearance of the input field; examples of values: Automatic, Tiny, Small, Medium,

Large

In the following, the variable is either False or True:

DynamicModule@8x<, Row@8Checkbox@Dynamic@xDD, Dynamic@xD<DD

Now the values go through the list 81, 2, 3, 4, 5, 6<:

382 Mathematica Navigator



DynamicModule@8q = 0.95<,
Column@8 Row@8Checkbox@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<D, " ", Dynamic@qD<D,

Dynamic@Quantile@NormalDistribution@0, 1D, qDD<DD

Toggler[Dynamic[x]] (Ÿ6)  Create a toggler enabling the interactive choice of True or False as the
value of the parameter x

Toggler[Dynamic[x], list]  Create a toggler enabling the interactive choice of an element from
list as the value of the parameter x

DynamicModule@8q = 0.95<,
Row@8Toggler@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<D,

" ", Dynamic@Quantile@NormalDistribution@0, 1D, qDD<DD

Here,  by  clicking  the  first  number,  the  second  number  goes  through  the  various  quantiles  of  the
standard normal distribution.

‡ CheckboxBar and TogglerBar

CheckboxBar[Dynamic[x], list] (Ÿ6)  Create a checkbox bar enabling the interactive choice of a
list of values from list as the value of the parameter x

TogglerBar[Dynamic[x], list] (Ÿ6)  Create a toggler bar enabling the interactive choice of a list of
values from list as the value of the parameter x

A special option:
Appearance The appearance of the setter bar; examples of values: Automatic, "Horizontal",

"Vertical", "Row"

With checkbox bars and toggler bars we can choose a list of values from a given list:

DynamicModule@8q = 8<<,
Column@8CheckboxBar@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<D, Dynamic@qD<DD

DynamicModule@8q = 8<<,
Column@8TogglerBar@Dynamic@qD, 80.9, 0.95, 0.99, 0.999<D, Dynamic@qD<DD

Chapter 11  •  Dynamics 383



‡ InputField

InputField[Dynamic[u]] (Ÿ6)  Create an input field enabling the interactive input of the value of
the parameter u

InputField[Dynamic[u], Number]  The input can only contain number characters
InputField[Dynamic[u], String]  The input is converted into a string

Special options:
FieldSize  The size of the input field; examples of values: {{20, 20}, {1, ¶}}, width, {width,

height}, {{wmin, wmax}, {{hmin, hmax}}

Appearance  The appearance of the input field; examples of values: Automatic, "Framed",
"Frameless"

FrameMargins  Margins inside the frame; examples of values: Automatic, 3

Tab can be used to move from one input field to the next. Once all fields are filled in, press the Á key
to get the corresponding result. Note that if the second argument is Number, we can only input number
characters 0, …, 9 and a decimal point; we cannot input, for example, fractions such as 1/6.

We return to an example discussed in Section 10.1.4, p. 335, in which we used Manipulate to create a

panel to calculate binomial probabilities. Now we use Dynamic and InputField:

DynamicModule@8n = 10, p = 0.5, k = 3, x, left, right<,
left = Style@Grid@88"n", InputField@Dynamic@nDD<,

8"p", InputField@Dynamic@pDD<,
8"k", InputField@Dynamic@kDD<, 8"", ""<, 8"PHX = kL",

InputField@Dynamic@PDF@BinomialDistribution@n, pD, kDD, Enabled Ø FalseD<,
8"PHX § kL", InputField@Dynamic@CDF@BinomialDistribution@n, pD, kDD,

Enabled Ø FalseD<<D, DefaultOptions Ø 8InputField Ø 8FieldSize Ø 8<<D;
right = InputField@Dynamic@ListPlot@Table@8x, PDF@BinomialDistribution@n, pD, xD<,

8x, 0, n<D, Filling Ø Axis, PlotRange Ø All,
ImagePadding Ø 8825, 15<, 810, 10<<, ImageSize Ø 180DD, Enabled Ø FalseD;

DeployüPanelüTraditionalFormüRow@8left, right<, Spacer@14DDD

Here,  we  used InputField  for  all  the  numbers  and  also  for  the  plot.  Using Enabled Ø False,  we
specified  that  the  probabilities  or  the  plot  cannot  be  edited.  We  have  also  used Deploy  to  disable  the
edition  of  the  panel.  In Style,  we  defined  with DefaultOptions  the  default  value  of  the FieldSize

option of InputField.

384 Mathematica Navigator



‡ ColorSlider and ColorSetter

To create an interface enabling the interactive choice of a color as the value of the parameter x:
ColorSlider[Dynamic[x]] (Ÿ6)
ColorSetter[Dynamic[x]] (Ÿ6)

A special option of ColorSlider:
AppearanceElements  Elements to include in the slider; examples of values: Automatic, "Swatch",

"Spectrum", "SwatchSpectrum"

In the following way, we can get the RGB color corresponding to a given color:

DynamicModule@8x<, Column@8ColorSlider@Dynamic@xDD, Dynamic@xD<DD

A color setter is a special case of a color slider. Indeed, a color setter only contains the “swatch” part
of a standard color slider:

DynamicModule@8x<, Row@8ColorSetter@Dynamic@xDD, Dynamic@xD<DD

11.2.4  Special Controls

‡ Opener

Row[{Opener[Dynamic[x]], PaneSelector[{False Ø expr1, True Ø expr2}, Dynamic[x]]}] (Ÿ6)

Create an opener enabling the interactive choice of either False (opener is displayed and expr1

is evaluated) or True (opener is displayed and expr2 is evaluated) as the value of the parame-

ter x

A special option:
Appearance  The appearance of the opener; examples of values: Automatic, Tiny, Small, Medium,

Large

An opener can be used to hide and expose additional controls. In the next example, with the opener
we get animation controls:

Chapter 11  •  Dynamics 385



DynamicModule@8n = 2, x<, Column@
8Row@8Opener@Dynamic@xDD, PaneSelector@8False Ø Slider@Dynamic@nD, 81, 6, 1<D,

True Ø Animator@Dynamic@nD, 81, 6, 1<, AnimationRunning Ø False,
AppearanceElements Ø 8"StepLeftButton", "PlayPauseButton",

"StepRightButton", "FasterSlowerButtons", "DirectionButton"<D<,
Dynamic@xDD<D, Dynamic@Plot@Sin@n xD, 8x, 0, 2 p<DD<DD

‡ Button and PasteButton

Button[label, action] (Ÿ6)  Create a button that does action when the button is pressed; put
label on the button

PasteButton[label, expr] (Ÿ6)  Create a button that pastes expr when the button is pressed; put
label on the button

Special options:
Appearance  The appearance of the button; examples of values: Automatic (default for Button),

"DialogBox", "Palette" (default for PasteButton), "Frameless", "AbuttingLeftRight",
"AbuttingRight", "Pressed", "None"

FrameMargins  Margins inside the frame; examples of values: Automatic, 3

Method  The evaluation method to use; examples of values: "Preemptive" (default for Button),
"Queued" (default for PasteButton)

With many views and controls we can easily choose items from a given list. If we would like to do a
more general action, then Button (or ActionMenu) can be useful.

In  the  following  example,  we  take  a  sample  from  the  standard  normal  distribution.  With  four
buttons, we can double the sample size, keep it unchanged, or halve it; resetting the sample size to the
default 100 is also possible. The two lines in the plot give the 95% and 5% quantiles; thus, approximately
10% of the points lie outside the region given by the two lines.

386 Mathematica Navigator



DynamicModule@8n = 100, q = Quantile@NormalDistribution@0, 1D, 0.95D<,
Row@8Column@8Button@"Double", n = 2 nD, Button@"Keep", ++n; --nD,

Button@"Halve", n = n ê 2D, Button@"Reset", n = 100D, Dynamic@nD<, Center, 2D,
Dynamic@ListPlot@Sort@RandomReal@NormalDistribution@0, 1D, nDD,

PlotStyle Ø 8Black, AbsolutePointSize@1D<,
PlotRange Ø 8-5.1, 5.1<, AxesOrigin Ø 8-n ê 20, 0<, ImageSize Ø 300,
Epilog Ø 8Line@880, q<, 8n, q<<D, Line@880, -q<, 8n, -q<<D<DD<DD

Note  that  to  keep the value of n  unchanged,  we have added 1  to n  and then subtracted 1  from the
result with ++n  and --n.  This is a trick: We do something with n  to trigger the update of the Dynamic

part of the code.

With FileNameSetter we get a Browse  button. Clicking the button opens a standard window where
we can choose a file; the complete name of that file is set as the value of the given variable:

DynamicModule@8f = ""<, Column@8FileNameSetter@Dynamic@fDD, Dynamic@fD<DD

‡ ActionMenu

ActionMenu[name, {lbl1 :> act1, lbl2 :> act2, … }] (Ÿ6)  Create a menu with name, containing
items with the given labels; each item does the given action

Special options:
Appearance  The appearance of the menu; examples of values: Automatic, "PopupMenu", "Button",

"None"

FieldSize  The size of the field for menu items; default value: {{1, 50}, {1, 10}}

FrameMargins  Margins inside the frame; examples of values: Automatic, 3

We  continue  the  normal  distribution  example  we  presented  previously.  Now  we  apply  an  action
menu:

Chapter 11  •  Dynamics 387



DynamicModule@8n = 100, q = Quantile@NormalDistribution@0, 1D, 0.95D<, Row@
8Column@8ActionMenu@"Number of Points", 8"Double" ß Hn = 2 nL, "Keep" ß H++n; --nL,

"Halve" ß Hn = n ê 2L, "Reset" ß Hn = 100L<D, Dynamic@nD<, Center, 2D,
Dynamic@ListPlot@Sort@RandomReal@NormalDistribution@0, 1D, nDD,

PlotStyle Ø 8Black, AbsolutePointSize@1D<,
PlotRange Ø 8-5.1, 5.1<, AxesOrigin Ø 8-n ê 20, 0<, ImageSize Ø 250,
Epilog Ø 8Line@880, q<, 8n, q<<D, Line@880, -q<, 8n, -q<<D<DD<DD

11.2.5  More about Dynamics

‡ MenuView Revisited

Now that  we know about Dynamic,  we can consider again some of  the views we presented in Section

11.1.1, p. 357. Indeed, as we will see, using Dynamic with the views may have advantages and give new

possibilities to show data.

MenuView[{lbl1 Ø expr1, lbl2 Ø expr2, … }]  Create a popup menu where selecting the menu
item with label lbli displays expri; compute all the values in advance

MenuView[{lbl1 Ø Dynamic[expr1], lbl2 Ø Dynamic[expr2], … }]  Compute the values of the
expressions on the fly

The first item is familiar from Section 11.1.1, p. 358. The second item is useful to show large data sets.

As  an  example,  consider  the  following,  in  which  we  can  choose  a  country  and  the  menu  view  then
shows the size of the population from 1970 to 2005:

MenuView@
Ò Ø Dynamic@DateListPlot@CountryData@Ò, 88"Population"<, 81970, 2005<<DDD & êü

CountryData@D, ImageSize Ø 250D

388 Mathematica Navigator



Why have we enclosed the plotting command with Dynamic? It is not necessary; indeed, the follow-
ing command works (although it generates a series of warnings):

MenuView@Ò Ø DateListPlot@CountryData@Ò, 88"Population"<, 81970, 2005<<DD & êü
CountryData@D, ImageSize Ø 250D

The  point  here  is  that  this  command  computes  in  advance  all  the  plots  corresponding  to  the  237
countries of the world. This takes a lot of time and memory. Instead, when we use Dynamic, each plot is
generated on demand,  not  in  advance.  Accordingly,  the  view appears  almost  instantly  and takes  very
little memory.

MenuView[{{v1, lbl1 Ø expr1}, {v2, lbl2 Ø expr2}, … }, Dynamic[x]]  If lbli is selected,
display expri and give x the value vi; if x has the value vi, select lbli and display expri

This form of MenuView is useful if we need the value chosen from the popup menu outside MenuView.
As an example, consider again the population data. Because the list of countries is very long, it may take
some time to scroll to a specific country. Thus, it  may be useful to be able to simply write the name of
the country. Thus, we add an input field:

DynamicModule@8country = "Finland"<,
Column@8Row@8InputField@Dynamic@countryD, String, FieldSize Ø 16D, Dynamic@

Show@CountryData@country, "Shape"D, ImageSize Ø 850, 50<DD<D, MenuView@8Ò, Ò Ø

Dynamic@DateListPlot@CountryData@Ò, 88"Population"<, 81970, 2005<<DDD< & êü
CountryData@D, Dynamic@countryD, ImageSize Ø 250D<DD

‡ PopupView Revisited

PopupView[{expr1, expr2, … }]  Create a popup menu whose items are the given expressions
PopupView[{expr1, expr2, … }, Dynamic[n]]  If the ith expression is chosen, give n the value i; if n

has value i, select the ith expression

First, we choose quantiles of the standard normal distribution:

Chapter 11  •  Dynamics 389



DynamicModule@8a = 80.9, 0.95, 0.99, 0.999<, n<,
Column@8PopupView@Row@8Ò, "-quantile"<D & êü a, Dynamic@nDD,

Dynamic@Quantile@NormalDistribution@0, 1D, aPnTDD<DD

A menu view is easier to build:

MenuView@Row@8Ò, "-quantile"<D Ø Quantile@NormalDistribution@0, 1D, ÒD & êü
80.9, 0.95, 0.99, 0.999<D

Next, we show Chebyshev polynomials:

DynamicModule@8n = 6<,
Column@8PopupView@Range@0, 10D, Dynamic@nDD, Dynamic@Plot@ChebyshevT@n - 1, xD,

8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200DD<, CenterDD

Again, menu view is easier:

MenuView@Table@Row@8"ChebyshevT@", n, ", xD"<D Ø

Plot@ChebyshevT@n, xD, 8x, -1, 1<, PlotRange Ø 1.05, ImageSize Ø 200D, 8n, 0, 10<DD

Here are some country data:

390 Mathematica Navigator



PanelüDynamicModule@8c = CountryData@D, n<, Column@8PopupView@c, Dynamic@nDD,
Dynamic@FramedüDateListPlot@CountryData@cPnT, 88"Population"<, 81970, 2005<<D,

ImageSize Ø 250, Background Ø WhiteDD<, RightDD

‡ What to Do When Moving a Slider

In simple cases, when we move the slider, the thumb of the slider continuously follows the mouse and
the value of the parameter is directly based on the position of the mouse:

8Slider@Dynamic@mD, 80, 10<D, Dynamic@mD<

: , 0.>

This is the automatic working of a slider. We can add a second argument Automatic into Dynamic to get
the same functioning:

8Slider@Dynamic@n, AutomaticD, 80, 10<D, Dynamic@nD<

: , 7>

However,  the  second argument  can  also  be  an  arbitrary  pure  function.  In  interactive  mouse  opera-
tions, this function defines what is done while we move the slider with the mouse. The argument #  of
the pure function is the current position of the mouse.

Dynamic[u, ( … )&]  The pure function ( … )& defines what is done during mouse movement; the
argument # of the function is the position of the mouse

Typically,  the  pure  function  is  used  to  define  the  current  value  of  the  parameter u.  The  default
functioning of a slider can also be obtained as follows:

8Slider@Dynamic@p, Hp = ÒL &D, 80, 10<D, Dynamic@pD<

: , 0.>

Here,  during  moving  of  the  slider,  the  value  of  the  parameter p  is  defined  to  be  the  position #  of  the
mouse.

Next, the value of q is constrained to be the integer part of the position # of the mouse:

8Slider@Dynamic@q, Hq = IntegerPart@ÒDL &D, 80, 10<D, Dynamic@qD<

Chapter 11  •  Dynamics 391



: , 0>

We  can  see  that  although  we  can  drag  the  thumb  with  the  mouse  continuously,  the  thumb  moves  in
steps of unit and the value of q shown at the end of the slider also shows only integer values.

In  the  next  example,  the  slider  shows  directly  the  position  of  the  mouse,  but  from the  position  we
extract both the integer and the fractional part and show them at the end of the slider:

8Slider@Dynamic@u, Hu = Ò; v = IntegerPart@ÒD; w = FractionalPart@ÒDL &D, 80, 10<D,
Dynamic@8v, w<D<

: , 80, 0.<>

If the second argument is Temporary, the value of the parameter is updated after the mouse button is
released:

8Slider@Dynamic@q, TemporaryD, 80, 10<D, Dynamic@qD<

: , 0>

We can also define what to do when the mouse button is first pressed and lastly released:

Dynamic[u, (during)&]  The given pure function defines what is done during mouse movement
Dynamic[u, {(during)&, (end)&}]  The given pure functions define what is done during mouse

movement and when the mouse button is released
Dynamic[u, {(start)&, (during)&, (end)&}]  The given pure functions define what is done when

the mouse button is first pressed, during mouse movement, and when the mouse button is released

For example,  in the following,  the background of the frame is yellow when the slider is not moved
but green when the slider is moved:

8Slider@Dynamic@q, 8Hq = IntegerPart@ÒD; col = GreenL &, Hcol = YellowL &<D, 80, 10<D,
Framed@Dynamic@qD, Background Ø Dynamic@colDD<

: , 0. >

‡ Geometric Constraints on Points

In Section  10.1.3, p. 330,  we  demonstrated  how  we  can  constrain  the  movement  of  a  point  with

Manipulate.  Now  we  show  how  the  second  argument  of Dynamic  can  be  used  to  define  geometric
constraints to a 2D slider or locator.

In  the  following  example,  the  position pt  of  the  slider  is  obtained  from  the  mouse  position  by
normalizing it (i.e., by dividing with the norm). Thus, the point corresponding to the slider always has
norm 1, and this means that the point is on a circle.

392 Mathematica Navigator



DynamicModule@8pt = 81, 0<<,
8Slider2D@Dynamic@pt, Hpt = Normalize@ÒDL &D, 8-1, 1<D, Dynamic@ptD<D

In the same way, we can restrict a locator to move on a circle:

DynamicModule@8pt = 81, 0<<,
Graphics@8Circle@D, Locator@Dynamic@pt, Hpt = Normalize@ÒDL &DD<,

PlotRange Ø 1.2, ImageSize Ø 100DD

‡ Locator Panes and Click Panes

LocatorPane[Dynamic[pt], back] (Ÿ6)  Create a pane with a locator enabling the interactive
choice of the point pt; the background of the pane is back

LocatorPane[Dynamic[{pt1, pt2, … }], back]  Create locators at the given points

A special option:
LocatorAutoCreate  Whether to allow additions and deletions of locators by ‡- or Ì-clicking;

possible values: False, True

In addition to Locator, locators can also be created with LocatorPane. In the following, we create a
locator both with Locator and with LocatorPane:

8DynamicModule@8pt = 80, 0<<,
Graphics@Locator@Dynamic@ptDD, PlotRange Ø 1, ImageSize Ø 100DD,

LocatorPane@Dynamic@psD, Graphics@8<, PlotRange Ø 1, ImageSize Ø 100DD<

: , >

ClickPane[image, ( … ) &] (Ÿ6)  Display image and apply the pure function ( … ) & to the x and y

coordinates of each click on the pane

In the following, we create the same kind of plot both with ClickPane and with Manipulate:

Chapter 11  •  Dynamics 393



8DynamicModule@8pt = 80, 0<<,
FramedüClickPane@Graphics@8Red, PointSize@LargeD, Dynamic@Point@ptDD<,

PlotRange Ø 1, ImageSize Ø 90D, Hpt = ÒL &DD, Manipulate@
Graphics@8Red, PointSize@LargeD, Point@ptD<, PlotRange Ø 1, ImageSize Ø 60D,
88pt, 80, 0<<, Locator, Appearance Ø None<D<

: , >

In  the  first  plot,  each  time  we  click  on  the  plot,  the  red  point  moves  to  the  corresponding  point.  The
same happens in the second plot but, in addition, we can drag the point with the mouse.

‡ Event Handler and Mouse Position

EventHandler[expr, "MouseDown" :> action] (Ÿ6)  If the mouse button is pressed down, do
action and then evaluate expr

MousePosition["Graphics"] (Ÿ6)  Give the mouse position in the coordinates of the current
graphic

As an example of handling mouse-related events, we create an interface in which the position of the
point moves according to where we click with the mouse:

DynamicModule@8pt = 80, 0<<, EventHandler@Framedü

Graphics@8PointSize@LargeD, Point@Dynamic@ptDD<, PlotRange Ø 1, ImageSize Ø 70D,
"MouseDown" ß Hpt = MousePosition@"Graphics"DLDD

394 Mathematica Navigator



12
Numbers

Introduction 395

12.1  Introduction to Numbers 396

12.1.1  Integers 396 Prime, PrimePi, FactorInteger, Divisors, GCD, Mod, IntegerPartitions, etc.

12.1.2  Real and Complex Numbers 398 N, NumberForm, Round, Floor, Chop, Re, Im, ComplexExpand, etc.

12.1.3  Constants and Units 401 E, GoldenRatio, Pi, Infinity, SpeedOfLight, Convert, etc.

12.2  Real Numbers 403

12.2.1  Precision and Accuracy 403 Precision, Accuracy

12.2.2  Two Types of Real Numbers 404 MachinePrecision, SetPrecision

12.2.3  Round-off Errors and Interval Arithmetic 407 Interval, $MachineEpsilon, etc.

12.3  Options of Numerical Routines 409

12.3.1  Options for Precision 409 WorkingPrecision, PrecisionGoal, AccuracyGoal

12.3.2  Other Common Options 411 StepMonitor, EvaluationMonitor, Compiled

Introduction

As Ramanujan, the great Indian mathematical genius, lay dying, he was visited by his friend
 and mentor G. H. Hardy. To make conversation, Hardy mentioned the number of the taxi he
 had arrived in, 1729, and remarked that it seemed a very uninteresting number. Ramanujan

 is reputed to have raised himself from his deathbed and said feebly, “On the contrary, my dear
 Hardy. It is the smallest number expressible as the sum of two cubes in two different ways.”

Numbers  are  clear  for  us,  but  the  representation  and  interaction  of  various  kinds  of  numbers  in  the
computer  involve  aspects  worth  careful  study.  Also, Mathematica  has  a  richer  assortment  of  numbers
than is  usually found in computer applications.  We can use arbitrarily large integers,  we can calculate
with exact rational numbers, and we can ask to calculate with real numbers containing as many digits as
we want.

We also study the precision and accuracy of real  numbers. These relate to the relative and absolute
error  in  the  result.  In  Section  12.3,  we  study  how  to  control  the  precision  and  accuracy  of  numerical
routines in Mathematica.

Note that although Section 12.1.1 contains commands relating to number theory, we do not consider
number theory with Mathematica at any length. The interested reader should consult the following pages
in the Documentation Center:

• guideêNumberTheory • guideêAlgebraicNumberTheory • guideêCryptographicNumberTheory

• tutorialêIntegerAndNumberTheoreticalFunctions • PrimalityProvingêguideêPrimalityProvingPackage

See also Ruskeepää (2008a, b).



12.1  Introduction to Numbers

12.1.1  Integers

‡ Four Types of Numbers

Mathematica has four types of numbers: integers such as 38254, rationals such as 41 ê 7, reals such as 58.723,
and complexes such as 9.45 + 3 Â. The type of the number can be asked with Head:

Head êü 838 254, 41 ê 7, 58.723, 9.45 + 3 I<
8Integer, Rational, Real, Complex<

Although Mathematica  has  the  four  basic  types  of  numbers,  it  recognizes  more  types  with  special

tests. For example, Mathematica knows that 2  is an algebraic number:

Sqrt@2D œ Algebraics True

These tests are often used in simplifying expressions, and so we consider them in Section 13.2.1, p. 419,

in which we study simplification of expressions.

‡ Primes

Prime[n] nth prime (the first prime is 2)
Prime[{m, n, … }]  List of mth, nth, … primes
PrimePi[x]  The number of primes pHxL less than or equal to x

NextPrime[x]  The next prime larger than x

NextPrime[x, -1]  The largest prime smaller than x

RandomPrime[{imin, imax}]  A random prime in the range imin to imax

PrimeQ[n]  Test whether n is a prime
PrimeQ[n, GaussianIntegers Ø True]  Test whether n is a Gaussian prime
PrimePowerQ[n]  Test whether n is a power of a prime

CoprimeQ[m, n]  Test whether m and n are relatively prime
EulerPhi[n]  The number of integers § n which are relatively prime to n

Find the seven first primes:

Prime@Range@7DD 82, 3, 5, 7, 11, 13, 17<

Check integers up to 17 for primality and show each prime framed:

If@PrimeQ@ÒD, Framed@ÒD, ÒD & êü Range@17D

:1, 2 , 3 , 4, 5 , 6, 7 , 8, 9, 10, 11 , 12, 13 , 14, 15, 16, 17 >

‡ Factors and Divisors of Integers

FactorInteger[n]  List of the prime factors of n together with their exponents
FactorInteger[n, GaussianIntegers Ø True]  Factor over Gaussian integers

fa = FactorInteger@3 361 743D 883, 4<, 87, 3<, 811, 2<<

With Apply we can check that the factors give the original number:

396 Mathematica Navigator



Apply@Times, Apply@Power, fa, 81<DD 3 361 743

This can also be written as

Times üü Power üüü fa 3 361 743

We can also show the factorization as follows:

CenterDot üü Superscript üüü fa 34
ÿ 73

ÿ 112

Next, we factor over Gaussian integers (complex numbers with integer real and imaginary parts):

FactorInteger@13, GaussianIntegers Ø TrueD
88-Â, 1<, 82 + 3 Â, 1<, 83 + 2 Â, 1<<
Times üü Power üüü % 13

For an application of FactorInteger, see Section 1.1.1, p. 2.

Divisors[n]  List of the integers that divide n
Divisors[n, GaussianIntegers Ø True]  Include Gaussian integers
DivisorSigma[k, n]  The sum of the kth powers of the divisors of n
Divisible[m, n] (Ÿ6)  Test whether m is divisible by n

IntegerExponent[n, b]  The highest power of b that divides n

GCD[m, n, …]  The greatest common divisor of the integers
LCM[m, n, …]  The least common multiple of the integers

A perfect  number is  a  number whose sum of  divisors  is  two times the number.  We find all  perfect

numbers less than or equal to 104:

Select@Range@10 000D, DivisorSigma@1, ÒD ã 2 Ò &D
86, 28, 496, 8128<

‡ More about Integers

Quotient[m, n]  The integer quotient of m and n

Mod[m, n] m modulo n or the remainder on division of m by n

PowerMod[a, b, n] a^b modulo n

QuotientRemainder[m, n]  The quotient and remainder from division of m by n

IntegerLength[n]  Number of digits in n

IntegerDigits[n]  List of digits of n
FromDigits[list]  Construct an integer from the list of its digits
DigitCount[n]  List of the numbers of the digits 1, 2, …, 9, 0 in n

EvenQ[n]  Test whether n is even
OddQ[n]  Test whether n is odd

IntegerPartitions[n] (Ÿ6)  Give all ways to partition n into sum of integers
IntegerPartitions[n, k]  Give partitions into at most k integers
IntegerPartitions[n, {k}]  Give partitions into exactly k integers
PartitionsP[n]  Give the number of partitions

Chapter 12  •  Numbers 397



PowersRepresentations[n, k, p] (Ÿ6)  Give distinct sets of k integers whose sum of pth powers is
n: n = n1p + … + nk

p

Throw three dice. In how many ways can we get 7 as the sum?

IntegerPartitions@7, 83<D
885, 1, 1<, 84, 2, 1<, 83, 3, 1<, 83, 2, 2<<

We now return to the story about Ramanujan at the beginning of this chapter. Are there numbers n1
and n2 such that 1729 = n13 + n23?

pr = PowersRepresentations@1729, 2, 3D 881, 12<, 89, 10<<

Thus, both 1729 = 13 + 123 and 1729 = 93 + 103. Verify this as follows:

Total êü Hpr^3L 81729, 1729<

Next, we find all integers less than or equal to 21,000 that can be represented as the sum of two cubes in
at least two ways:

Hpr = Select@PowersRepresentations@Ò, 2, 3D & êü Range@21 000D, Length@ÒD ¥ 2 &DL êê
Timing

870.1857,
8881, 12<, 89, 10<<, 882, 16<, 89, 15<<, 882, 24<, 818, 20<<, 8810, 27<, 819, 24<<<<
Map@Total, pr^3, 82<D
881729, 1729<, 84104, 4104<, 813 832, 13 832<, 820 683, 20 683<<

We see that 1729 is the smallest of such numbers, as Ramanujan said. The next ones are 4104, 13,832, and
20,683.

RamanujanTau[n] (Ÿ6)  Ramanujan tau function
RamanujanTauL[s] (Ÿ6)  Ramanujan tau Dirichlet L-function
RamanujanTauZ[t] (Ÿ6)  Ramanujan tau Z-function
RamanujanTauTheta[t] (Ÿ6)  Ramanujan tau  theta function

12.1.2  Real and Complex Numbers

‡ Asking a Decimal Value

If an expression does not contain a decimal point, the result is an exact expression:

3 + H3 ê 5L^2 - Sin@p ê 3D + Log@2D
84

25
-

3

2
+Log@2D

If an expression contains a decimal point, the whole result is a real number:

3. + H3 ê 5L^2 - Sin@p ê 3D + Log@2D 3.18712

To get a decimal result, we can also use N.

N[expr]  or expr//N  Calculate decimal value of expr
N[expr, n]  Calculate decimal value of expr to n|digit precision

First, we calculate a numerical value in the usual way:

Sin@2D êê N 0.909297

398 Mathematica Navigator



The  result  was  calculated  by  using  the  normal  floating-point  numbers  with  16  decimal  digits  of
precision. Then we ask for a numerical value to 30|digit precision:

N@Sin@2D, 30D 0.909297426825681695396019865912

Note that expr  in N[expr, n]  must contain exact numbers or numbers of sufficiently high precision
for the n to have an effect. Asking for N[2.3 Pi, 20], for example, is useless because the expression 2.3

Pi  contains a low|precision number;  the result  is  the same as with N[2.3 Pi].  Indeed, normal 16|digit
real numbers are used in the evaluation of an expression as soon as such a number is encountered in the
expression. Ask for N[23/10 Pi, 20] or N[2.3`20 Pi, 20] instead (with 2.3`20 we give 2.3 to 20 digits

of precision, as explained in Section 12.2.2, p. 406).

If  you  are  trying  to  find  an answer  satisfying  a  given  requirement  of  precision, N  can  use  extra
precision  in  the calculations.  However,  the  extra  precision  cannot  exceed $MaxExtraPrecision,  which
has a  default  value of  50.  This means that  if  you ask for  a  value to 20|digit  precision, Mathematica  can
use  at  most  70|digit  precision  during  the  computation.  If  a  calculation  does  not  succeed  within  this
limit,  we  can  increase  the  value  of  this  constant  (by  typing,  for  example, $MaxExtraPrecision = 100)
and then retry the calculation.

‡ Adjusting the Number of Digits Shown

Mathematica  normally shows six digits of decimal numbers; this is suitable in most cases. Sometimes we
want to show more or fewer digits, and then we can use NumberForm.

NumberForm[expr, n]  Show expr using n digits
NumberForm[expr, {n, f}]  Show expr using n digits, of which f digits are to the right of the

decimal point

Exp@3.2D 24.5325

NumberForm@Exp@3.2D, 4D 24.53

NumberForm@Exp@3.2D, 84, 1<D 24.5

The way numbers are displayed can be controlled by opening the preferences from Mathematica @

Preferences and going to Appearance @ Numbers. In addition to NumberForm, we have other formatting
commands: ScientificForm, EngineeringForm, and AccountingForm.

‡ Manipulating Real Numbers

Round[x]  Integer closest to x

Floor[x]  or dxt  Greatest integer less than or equal to x

Ceiling[x]  or `xp  Smallest integer greater than or equal to x

IntegerPart[x]  Integer part of x
FractionalPart[x]  Fractional part of x

Chop[expr]  Replace all real numbers in expr with magnitude less than 10-10 with 0
Chop[expr, dx]  Replace all real numbers in expr with magnitude less than dx with 0

Note  that  the  result  of Round[x.5]  is  the even  integer  nearest  to x.  Thus, Round[2.5]  gives  2,  but
Round[3.5] gives 4. Symbols d and t can be written as ÂlfÂ and ÂrfÂ, and ` and p can be written
as ÂlcÂ and ÂrcÂ, respectively.

Chapter 12  •  Numbers 399



Rationalize[x]  Rational number close to x with small denominator
Rationalize[x, dx]  Rational number within dx of x with the smallest denominator

ContinuedFraction[x, n]  Continued fraction representation 8a, b, c, …< of x with n terms:
x = a + 1 ê Hb + 1 ê Hc + …

Convergents[list] (Ÿ6)  Give the convergents 8a, a + 1 ê b, a + 1 ê Hb + 1 ê cL, …< from the continued
fraction representation

FromContinuedFraction[list]  Reconstruct a number from its continued fraction representation

RealDigits[x]  List of the digits in x together with the number of digits to the left of the decimal
point

FromDigits[list]  Construct a real number from the list of its digits
MantissaExponent[x]  Give the mantissa and the exponent of x

Rescale[x, {A, B), {a, b}]  Rescale x so that for x = A the rescaled expression is a, and for x = B the
rescaled expression is b

r = Rescale@x, 8A, B<, 8a, b<D êê Simplify

A b - a B + a x - b x

A - B
8r ê. x Ø A, r ê. x Ø B< êê Simplify

8a, b<

‡ Manipulating Complex Numbers

I -1

Re[z]  Real part
Im[z]  Imaginary part
Conjugate[z]  or z  Complex conjugate
Abs[z]  Absolute value

Arg[z]  Argument f such that z = … z … eif

ComplexExpand[z]  Expand z to real and imaginary parts

The imaginary unit can be written as I or Â. The latter form can be written as ÂiiÂ. The symbol
can be written as ÂcoÂ.

z = 3 - 2 I; 8Re@zD, Im@zD, Conjugate@zD, Abs@zD, Arg@zD<

:3, -2, 3 + 2 Â, 13 , -ArcTanB
2

3
F>

ComplexExpand@H-1L^H1 ê 3LD
1

2
+
Â 3

2

ComplexExpand@Log@2 IDD
Â p

2
+Log@2D

For more information on ComplexExpand, see Section 13.3.4, p. 430.

400 Mathematica Navigator



12.1.3  Constants and Units

‡ Mathematical Constants

Mathematica has the following mathematical constants:

const = Select@Names@"*"D, MemberQ@Attributes@ÒD, ConstantD &D

{Catalan, Degree, E, EulerGamma, Glaisher, GoldenRatio, Khinchin,
MachinePrecision, Pi}

They have the following numerical values, respectively:

const êê ToExpression êê N

80.915966, 0.0174533, 2.71828, 0.577216, 1.28243, 1.61803, 2.68545, 15.9546, 3.14159<

Of these constants, Degree, E,  and Pi  can also be  entered as ÂdegÂ, ÂeeÂ,  and ÂpÂ,  and the
results are °, ‰,  and p. In traditional form, Catalan, Glaisher, GoldenRatio,  and Khinchin  are written
as C, A, f, and K, respectively:

const êê ToExpression êê TraditionalForm

8C, ±, ‰, ˝, A, f, K, MachinePrecision, p<

Note  that Catalan C  is ⁄k=0¶ H-1Lk H2 k + 1L-2, Degree  °  is p ê 180  (the  degrees|to|radians  conversion

factor), EulerGamma ˝  is limmØ¶ J⁄k=1m 1

k
- logHmLN, Glaisher A satisfies the equation logHAL = 1

12
- z£H-1L,

GoldenRatio f  is 1
2
K1 + 5 O,  and Khinchin K  is Ps=1

¶ J1 +
1

s Hs+2L
Nlog2 s. MachinePrecision  is  considered

in Section 12.2.2, p. 405.

‡ Infinite and Indeterminate Quantities

Infinity ¶

ComplexInfinity  An infinite quantity with an undetermined direction
DirectedInfinity[z]  An infinite quantity in the direction of the complex number z
Indeterminate  An indeterminate numerical result

Of these, Infinity  can be written as ÂinfÂ and the result is ¶. Internally, Mathematica  transforms
Infinity  to DirectedInfinity[1], -Infinity  to DirectedInfinity[-1],  and ComplexInfinity  to
DirectedInfinity[]. To demonstrate these special symbols, write the following:

8Sqrt@-1D, I^2, Exp@-p ID< 8Â, -1, -1<

:LimitB
1

x
, x Ø 0, Direction Ø -1F, LimitB

1

x
, x Ø 0, Direction Ø 1F,

1

0
>

Power::infy : Infinite expression
1

0
encountered. à

8¶, -¶, ComplexInfinity<

Next, we get several indeterminate quantities:

Chapter 12  •  Numbers 401



80 ê 0, 0^0, ¶ - ¶<

Power::infy : Infinite expression
1

0
encountered. à

¶::indet : Indeterminate expression 0ComplexInfinity encountered. à

Power::indet : Indeterminate expression 00 encountered. à

¶::indet : Indeterminate expression -¶+¶ encountered. à

8Indeterminate, Indeterminate, Indeterminate<

Note that the limit of xx exists at 0:

Limit@x^x, x Ø 0D 1

The result of some calculations may also be an interval (for interval arithmetic, see Section 12.2.3, p.

408):

Limit@Sin@1 ê xD, x Ø 0D Interval@8-1, 1<D

‡ Physical Constants

The PhysicalConstants`  package  contains  the  values  of  51  physical  constants.  To  get  a  list  of  the
constants, type the following:

<< PhysicalConstants`

Style@Names@"PhysicalConstants`*"D, 7D
8AccelerationDueToGravity, AgeOfUniverse, AvogadroConstant, BohrRadius, BoltzmannConstant,

ClassicalElectronRadius, CosmicBackgroundTemperature, DeuteronMagneticMoment, DeuteronMass, EarthMass,

EarthRadius, ElectronCharge, ElectronComptonWavelength, ElectronGFactor, ElectronMagneticMoment,

ElectronMass, FaradayConstant, FineStructureConstant, GalacticUnit, GravitationalConstant,

HubbleConstant, IcePoint, MagneticFluxQuantum, MolarGasConstant, MolarVolume, MuonGFactor,

MuonMagneticMoment, MuonMass, NeutronComptonWavelength, NeutronMagneticMoment, NeutronMass,

PlanckConstant, PlanckConstantReduced, PlanckMass, ProtonComptonWavelength, ProtonMagneticMoment,

ProtonMass, QuantizedHallConductance, RydbergConstant, SackurTetrodeConstant, SolarConstant,

SolarLuminosity, SolarRadius, SolarSchwarzschildRadius, SpeedOfLight, SpeedOfSound,

StefanConstant, ThomsonCrossSection, VacuumPermeability, VacuumPermittivity, WeakMixingAngle<

Here are some examples:

? AccelerationDueToGravity

AccelerationDueToGravity is the acceleration

of a body freely falling in a vacuum on Earth at sea level.à

8IcePoint, SpeedOfLight, SpeedOfSound, AccelerationDueToGravity<

:273.15 Kelvin,
299 792 458 Meter

Second
,
340.292 Meter

Second
,
9.80665 Meter

Second2
>

See PhysicalConstantsêguideêPhysicalConstantsPackage for more information about physical constants.

‡ Physical Units

In the Units` package:

Convert[expr, newunits]  Convert expr to newunits

ConvertTemperature[temp, oldunits, newunits]  Convert temperature
SI[expr]  Convert to SI units
MKS[expr]  Convert to MKS units (meter/kilogram/second)
CGS[expr]  Convert to CGS units (centimeter/gram/second)

402 Mathematica Navigator



This package has information on approximately 250 units related to temperature, electricity,  length,
information, time, mass, weight, force, inverse length, volume, viscosity, luminous energy and intensity,
radiation, angles, power, area, amounts of substances, acceleration due to gravity, magnetism, pressure,
energy, frequency, speed, and fineness for yam or thread. Here are some examples of conversion:

<< Units`

Convert@60 Mile ê Hour, Kilo Meter ê HourD
301 752 Kilo Meter

3125 Hour

ConvertTemperature@100, Celsius, FahrenheitD 212

See UnitsêguideêUnitsPackage for more information on physical constants.

12.2  Real Numbers

12.2.1  Precision and Accuracy

‡ Precision and Accuracy

The following definitions are used for real numbers:

Precision:  The total number of significant decimal digits
Accuracy:  The number of significant decimal digits to the right of the decimal point

The  precision  and  accuracy  of  a  number  can  be  asked  for  using Precision  and Accuracy.  Before
presenting examples, we define a function that gives the precision and accuracy of a number:

pa@x_D := 8Precision@xD, Accuracy@xD<

An example:

pa@11 111.222223333344444D 819.0458, 15.<

The precision of the number is approximately 20 and the accuracy is 15. Some other examples:

pa@0.0000011111222223333344444D 819.0458, 25.<
pa@111 112 222 233 333.44444 μ 10^10D 819.0458, -5.<

Thus, the accuracy can be a negative number; in this example, it tells us that there are five insignificant
digits  (zeros  in  this  case)  between  the  least  significant  digit  and  the  decimal  point.  The  precision  and
accuracy of exact numbers (e.g., integers, rational numbers, and special constants) are infinity:

8pa@7D, pa@3 ê 4D, pa@PiD, pa@Sin@2DD<
88¶, ¶<, 8¶, ¶<, 8¶, ¶<, 8¶, ¶<<

‡ Relative and Absolute Errors

Precision and accuracy have interpretations in terms of relative and absolute errors.

Relative error > 10-precision

Absolute error > 10-accuracy

Thus, if the precision of a result is p,  the relative error of the result is of the order 10-p.  Similarly, if

the accuracy of a result is a, the absolute error of the result is of the order 10-a.

Chapter 12  •  Numbers 403



Note  that  precision  is  approximately -log10Hrelative errorL  and  accuracy  is  approximately

-log10Habsolute errorL.  For example, the absolute error in 11111.22222 33333 44444 can be considered to

be  approximately  0.00000 00000 00000 5,  and  the  precision  and  accuracy  thus  have  the  following
approximate values:

-Log@10, 0.0000000000000005 ê 11 111.222223333344444D 19.3468

-Log@10, 0.0000000000000005D 15.301

These  are  close  to  the  values  19.0458  and 15.  given  by Precision  and Accuracy.  We  can  also  see  the
precision of our number from the InputForm:

11 111.222223333344444 êê InputForm

11111.222223333344444`19.04576183352721

12.2.2  Two Types of Real Numbers

‡ Two Types of Arithmetic

Mathematica has two types of floating|point arithmetic.

Fixed|precision arithmetic:  Implemented in the hardware
Variable|precision arithmetic:  Implemented in Mathematica

There are several ways to guide Mathematica to use the arithmetic we want, as we soon discuss. As an
example, we calculate a decimal value by fixed|precision arithmetic and ask the precision of the result:

N@Sin@2DD 0.909297

Precision@%D êê N 15.9546

Then we use variable|precision arithmetic:

N@Sin@2D, 30D 0.909297426825681695396019865912

Precision@%D 30.

Usually, fixed|precision arithmetic is used. The name of this system comes from the representation of
real  numbers  in  the  computer  hardware.  Real  numbers  have  a  mantissa  and  an  exponent,  with  the
mantissa  always  containing  a  fixed  number  of  bits;  this  usually  means  16  decimal  digits.  There  is  no
way to determine how precise such a number is, and Mathematica has adopted the convention that if you
ask  for  the  precision  of  such  a  number,  the  maximum  precision  (usually  approximately  16,  as  in  the
previous  example)  is  given  as  the  answer,  independent  of  the  true  precision.  Thus  the  name  fixed|
precision  arithmetic:  All  numbers  have  the  same  precision,  independent  of  what  can  be  justified  for
them (i.e., whether or not all the digits in the result can be determined to be correct on the basis of the
numbers in the input). Therefore, the results you get with this arithmetic can contain insignificant digits
because Mathematica cannot determine which digits are significant and which are insignificant.

Variable|precision arithmetic is what arithmetic should be: The precision of the result is what can be
justified  from  the  input  and  calculations.  Only  significant  digits  are  then  included  in  the  result.  The
precision  of  such  numbers  varies~thus  the  name variable|precision  arithmetic.  This  arithmetic  is
implemented in the software of Mathematica.  Variable|precision arithmetic has two remarkable proper-
ties. First, all digits returned by Mathematica  are correct if this arithmetic is used. Second, we can ask for
the result to whatever precision we want.

404 Mathematica Navigator



‡ Two Types of Real Numbers

There are two types of real numbers, which correspond with the two types of arithmetic:

Machine|precision numbers:  Numbers produced by fixed|precision arithmetic
Arbitrary|precision numbers:  Numbers produced by variable|precision arithmetic

Machine|precision  numbers  correspond to  double|precision  floating|point  numbers  in  the  underly-

ing  computer  system.  Arbitrary|precision  numbers  are  handled  with  the  software  of Mathematica.
Usually,  machine|precision  numbers  are  used.  Arbitrary|precision  numbers  can  be  formed  in  some
special ways, which we consider later.

The precision of machine|precision numbers is indicated by the special symbol MachinePrecision.

MachinePrecision  The precision specification used to indicate machine|precision numbers
$MachinePrecision  Numerical value of MachinePrecision

When  we  calculate  a  numerical  value  with N[expr],  we  actually  ask  the  result  as  a  machine|
precision number. We could equally well write N[expr, MachinePrecision]:

8N@PiD, N@Pi, MachinePrecisionD<
83.14159, 3.14159<

The precision of these numbers is, indeed, MachinePrecision:

Precision êü %

8MachinePrecision, MachinePrecision<

The numerical value of MachinePrecision is $MachinePrecision, which is approximately 16:

8MachinePrecision êê N, $MachinePrecision<
815.9546, 15.9546<

The  fixed  precision  used  in  machine|precision  numbers  may  vary  between  computer  systems,  but
usually  it  is  approximately  16. Mathematica  knows  the  precision:  It  is  the  value  of  the  constant
$MachinePrecision.

‡ Machine|Precision Numbers

Here are examples of machine|precision numbers:

82.2, N@PiD, 1.2345678901234567, N@Sin@2.2D, 20D<
82.2, 3.14159, 1.23457, 0.808496<

The internal representations in Mathematica are as follows:

InputForm@%D
{2.2, 3.141592653589793, 1.2345678901234567, 0.8084964038195901}

For example, N[Pi] is internally calculated with all of the standard 16 digits, but normally only 6 digits
are  shown.  Note  especially  that  in N[Sin[2.2], 20],  the  number  2.2  is  a  machine|precision  number;
this causes all calculations in this expression to be done with fixed|precision arithmetic. Thus, asking for
the  value  of Sin[2.2]  to  20|digit  precision  does  not  have  the  desired  effect;  the  result  is  a  16|digit
machine|precision number.

Chapter 12  •  Numbers 405



‡ Arbitrary|Precision Numbers

Ways to form an arbitrary|precision number:

2.2`9  Use ` to write a number with any precision (here with precision 9)
N[22/10, 20]  Use N to form a number with any precision (here with precision 20)
2.20000000000000000  Write at least 18 significant digits (in most computers)
SetPrecision[2.2, 9]  Use SetPrecision to write a number with any precision

Note  that machine|precision  numbers  are  used  in  a  calculation  as  soon  as  a  machine|precision  number  is
encountered. Thus, to use arbitrary|precision numbers in a computation, all numbers in the input have to
be exact quantities or arbitrary|precision numbers.

Here are examples of arbitrary|precision numbers and their internal representations:

82.2`9, N@Pi, 17D, 1.234567890123456789, N@Sin@22 ê 10D, 20D<
82.20000000, 3.1415926535897932, 1.234567890123456789, 0.80849640381959018430<
InputForm@%D
{2.2`9.000000000000002,
 3.14159265358979323846264338358`17.,
 1.234567890123456789`18.091514977212704,
 0.8084964038195901843040369104161190646`20.}

We  see  that  the  internal  representation  of  arbitrary|precision  numbers  contains,  after  the  mark `,  the
precision of  the  number.  The input  forms of  the second and fourth numbers  contain even more digits
than were requested. The accuracy of a number can be set with ``.

‡ Printing

For machine|precision numbers, usually 6 digits are printed (with InputForm all 16 digits are
shown).

For arbitrary|precision numbers, significant digits are printed.

Machine|precision  numbers  are  usually  printed  with  6  digits  (however,  trailing zeros,  even signifi-
cant ones, are not printed). If you want to see all of the internal 16 digits, apply InputForm to the result.

If you want to adjust the number of digits shown, use NumberForm (see Section 12.1.2, p. 399).

An excellent aspect of arbitrary|precision numbers is that Mathematica  shows for them only the digits
for which it can be sure are significant. Thus, we can trust that all digits in such a result are correct.

‡ Advantages and Disadvantages

The primary advantage of fixed|precision arithmetic is that it is fast; this is because the calculations are
done  by  the  hardware  in  the  floating|point  unit.  Conversely,  the  primary  disadvantage  of  variable|
precision  arithmetic  is  that  it  is  slow;  this  is  because  the  arithmetic  is  implemented  in  the  software  of
Mathematica.

Advantages of variable|precision arithmetic include the following:

• we can use arbitrary precision in the calculations;
• no round|off errors are introduced by the arithmetic itself; and
• results contain only correct digits.

Conversely, disadvantages of fixed|precision arithmetic include the following:

406 Mathematica Navigator



• we cannot do high|precision calculations;
• round|off errors are introduced by the arithmetic (see the next section); and
• results may contain insignificant digits.

An additional disadvantage of variable|precision arithmetic has to be mentioned. It is good that the
result contains only correct digits, but it is not so good that the rules used to determine the precision of
the  result  may  yield  an  overly  pessimistic  precision.  This  means  that  the  result  often  has  a  better
precision  than  the  one  given  by Mathematica.  The  cause  for  this  pessimism  is  the  assumption  that  all
errors are independent. For example, let a  be a given arbitrary|precision number. Then a - a  should be
exactly 0, but it is not:

a = N@Pi, 20D;

a - a 0. μ 10-20

The errors in the two a’s are considered as independent instead of equal, and therefore a - a  cannot be
assigned the value 0.

12.2.3  Round|off Errors and Interval Arithmetic

‡ Round|off Errors

It  is  well-known  how  round|off  errors  affect  the  results  of  fixed|precision  arithmetic.  Consider  the
following sum:

1.234567890123456 + 10.^-16 êê InputForm

1.234567890123456

We see that the value of the sum is the same as the first summand; the second summand had no effect.
The fixed|precision 16|digit system could not represent the result adequately. Such round|off errors are
the  primary  sources  of  errors  in  this  system.  Round|off  errors  are  also  called  representation  errors.
Instead, if we use variable|precision arithmetic, then no round|off error is introduced:

1.234567890123456`17 + 10.`17^-16

1.2345678901234561

As another example, define the following function:

f@x_D := HLog@1 - xD + x Exp@x ê 2DL ê x^3

Here is its limit at the origin (we use Quiet to drop any messages):

Limit@f@xD, x Ø 0.D êê Quiet -0.208333

Calculating values of the function near the origin results in huge errors:

Table@f@10.^-nD, 8n, 4, 8<D

9-0.208345, -0.162823, -28.9641, 52 635.4, -5.02476 μ 107=
To obtain correct values, use arbitrary|precision numbers:

Table@f@10.`23^-nD, 8n, 4, 8<D
8-0.20835625197412, -0.20833562502, -0.208333563, -0.2083334, -0.20833<

Notice how we get increasingly fewer digits the nearer we get to the origin. This is because significant
digits are lost increasingly more. If we try to plot the function near the origin, the result is far from good:

Chapter 12  •  Numbers 407



Plot@f@xD, 8x, 0, 0.001<, PlotPoints Ø 200, Ticks Ø 880.0005<, Automatic<D

0.0005

-0.2086

-0.2085

-0.2084

-0.2083

-0.2082

The plot shows clearly how wildly the machine|precision values of the function vary near the origin. If
we use arbitrary|precision numbers, we get the correct plot:

Plot@f@xD, 8x, 0, 0.001<, WorkingPrecision Ø 25, Ticks Ø 880.0005<, Automatic<D

0.0005

-0.20850

-0.20845

-0.20840

-0.20835

In Section 18.1.1, p. 543, there is a similar example.

Sometimes Mathematica may give numbers so near to 0 that we prefer to replace them with an exact 0;
the nonzero digits are possibly only the result of round|off and other errors. We can use Chop, which is

explained in Section 12.1.2,  p. 399. Chop[expr]  replaces  all  real  numbers  in expr  with a  magnitude of

less than 10-10 with 0:

Exp@N@Pi ê 2 IDD 6.12323 μ 10-17
+1. Â

Chop@%D 1. Â

‡ Interval Arithmetic

We can do interval arithmetic with Mathematica. Interval[{min, max}]  represents the range of values
between min and max. As an example, we consider linear algebra. First, we form a square matrix that has
intervals as elements, which reflects the uncertainty we have about these numbers:

a = 882, -1<, 83, -5<<;
aa = Map@Interval@8Ò - 0.01, Ò + 0.01<D &, a, 82<D
88Interval@81.99, 2.01<D, Interval@8-1.01, -0.99<D<,
8Interval@82.99, 3.01<D, Interval@8-5.01, -4.99<D<<

Then we calculate the determinant and solve a system of linear equations:

Det@aaD Interval@8-7.11, -6.89<D
Solve@aa.8x, y< ã 84, 1<, 8x, y<D
88x Ø Interval@82.67932, 2.75036<D, y Ø Interval@81.39944, 1.45864<D<<

The results belong to the intervals shown.

‡ More about Computer Arithmetic

Not  all  machine|precision  numbers  can  be  distinguished  because  of  the  limited  precision  available.
$MachineEpsilon  is  the  smallest  machine|precision  number  such  that  1.0  + $MachineEpsilon  is  not
equal  to  1.0. $MaxMachineNumber  is  the  largest  positive  machine|precision  number  and
$MinMachineNumber the smallest positive machine|precision number:

408 Mathematica Navigator



8$MachineEpsilon, $MaxMachineNumber, $MinMachineNumber<

92.22045 μ 10-16, 1.79769 μ 10308, 2.22507 μ 10-308=
Note that  if  the result  of  a  calculation is  a  number outside the range specified by $MinMachineNumber

and $MaxMachineNumber, the result is automatically converted to arbitrary|precision form.

The ComputerArithmetic`  package  can  be  used  to  investigate  floating|point  systems  with  various
rounding rules, bases, and precisions; see ComputerArithmeticêguideêComputerArithmeticPackage.

12.3  Options of Numerical Routines

12.3.1  Options for Precision

‡ Three Options

Although the main scope of Mathematica is symbolic calculation, sooner or later we encounter a problem
for  which Mathematica  cannot  find  a  solution  in  a  symbolic  and  exact  form.  Then  we  can  resort  to
numerical routines such as NIntegrate, FindRoot,  and NDSolve  and obtain an approximate numerical
solution.

The  numerical  routines  have  several  options  with  which  we  can  control  and  modify  the  routines.
Most of the routines include one or more of the following three options. We consider them here for two
reasons. First, they are closely related to round|off errors, precision, and accuracy, which we considered
in Section 12.2. Second, the three options do not then need to be separately considered in detail for each
routine.

WorkingPrecision Ø w  Calculations are done using numbers with w|digit precision
PrecisionGoal Ø p  Result should have p|digit precision
AccuracyGoal Ø a  Result should have a|digit accuracy

WorkingPrecision  affects  the  precision  of  the calculations,  whereas PrecisionGoal  and
AccuracyGoal  affect  the  precision  of  the result.  With WorkingPrecision,  we  can  control  the  effect  of
round|off error. With PrecisionGoal and AccuracyGoal, we can control the effect of truncation error.

‡ Precision and Accuracy Goals

Truncation  errors  are  caused  by  the  iterative  method  used~that  is,  by  approximating  the  original
problem with  another,  simpler  one.  Typically,  the  iterative  methods  rely  on  calculating  the  value  of  a
function  at  a  finite  set  of  points,  whereas  an  infinite  set  would  be  required  for  the  exact  solution.  For
example, in calculating the value of an infinite sum by numerical methods, only a finite number of terms
are summed, and the rest are estimated by various methods.

Precision and accuracy were considered in Section 12.2.1, p. 403. There, we noted that if the precision

of a result is p, the relative error of the result is of the order 10-p,  and if the accuracy of a result is a, the

absolute error of the result is of the order 10-a.  So we get the following interpretations of the two options:

PrecisionGoal Ø p  The relative error of the result should be at most of the order 10-p.
AccuracyGoal Ø a  The absolute error of the result should be at most of the order 10-a.

Chapter 12  •  Numbers 409



The goals  are  used in  the  stopping criteria  for  the  iterative  methods: Iterations  are  stopped  as  soon as
either the accuracy goal or the precision goal is satisfied. Note that the precision and accuracy goals are only
goals;  this is because the true relative and absolute errors are unknown and have to be estimated with
the iterative methods. The true relative or absolute error may be much larger or much smaller than the
given goal.

Note that p and a can also be infinite. If p is infinity, the precision goal will never be satisfied, and so
only  absolute  error  is  used  as  the  criterion.  Similarly,  if a  is  infinity,  the  accuracy  goal  will  never  be
satisfied, and so only relative error is used as the criterion.

‡ Example

We calculate an integral:

f = Sin@4 xD Exp@-xD;
Integrate@f, 8x, 0, 50<D
1

17
4 -

4 Cos@200D + Sin@200D
‰50

N@%, 20D
0.23529411764705882353

Numerical integration gives the following result:

NIntegrate@f, 8x, 0, 50<D êê InputForm

0.23529411799402022

The result has 9 correct decimals, so it is very good. However, we try to get a still better result by using
30 digits during the calculations (so arbitrary|precision numbers are used) and asking for a result with

an absolute error of at most 10-20:

NIntegrate@f, 8x, 0, 50<, WorkingPrecision Ø 30, AccuracyGoal Ø 20D
0.235294117647058823529399530360

The result has, indeed, at least 20 correct digits. If we are satisfied with a lower precision and accuracy,
we can write the following:

NIntegrate@f, 8x, 0, 10<, PrecisionGoal Ø 2, AccuracyGoal Ø 2D êê InputForm

0.23529925221643583

‡ Default Values of Options

The three options mentioned previously usually have the following default values:

WorkingPrecision Ø MachinePrecision  (= 16 in most computers)
PrecisionGoal Ø Automatic  (= 8 in most computers)
AccuracyGoal Ø Automatic  (= 8 in most computers)

The  default  value MachinePrecision  of WorkingPrecision  means  that  normal  machine|precision

numbers are used in the calculations. As we discussed in Section 12.2.2,  p. 405,  the numerical value of

MachinePrecision is $MachinePrecision, which usually means a number close to 16.

The default values of the two goals mean that iterations are normally stopped when either the relative

or the absolute error is less than 10-8. More detailed information about the default stopping criteria is as
follows:

410 Mathematica Navigator



Default stopping criteria:

FindMinimum, FindMaximum  The relative or absolute error of the optimum point and of the value of the

function at the optimum point is less than 10-8.
NMinimize, NMaximize  The relative or absolute error of the optimum point and of the value of a penalty

function at the optimum point is less than 10-8.
FindFit  The relative or absolute error of the optimum point and of a norm function (e.g., squared

residuals) is less than 10-8.

FindRoot  The relative or absolute error of the root is less than 10-8 and the absolute value of the

function at the root is less than 10-8.
NDSolve  The relative or absolute error of the solution of the differential equation at each chosen point is

less than 10-8.

NIntegrate  The relative error of the integral is less than 10-6.

NSum  The relative error of the sum is less than 10-6.

NProduct  The relative error of the product is less than 10-6.

‡ Adjusting the Options

With  the  default  value MachinePrecision  (which  is  approximately  16  in  most  computers)  of
WorkingPrecision,  the  usual  fixed|precision  numbers  are  used  and  the  calculations  are  fast,  but  the

precision may not  suffice  in  a  critical  or  ill|conditioned case (see Section 12.2.2,  p. 406,  for  advantages

and disadvantages of fixed|precision numbers).

By  specifying  a  value  for WorkingPrecision  other  than MachinePrecision,  the  calculations  are
done  with  variable|precision  arithmetic.  Using  a  high  value  such  as  20  or  more  generally  gives  more
accurate results; the disadvantage is that the calculations take more time. Note that WorkingPrecision
affects  only  the  calculations;  the  result  probably  has  a  lower  precision.  To  control  the  precision  and
accuracy of the result, use PrecisionGoal and AccuracyGoal.

The  default  value Automatic  of PrecisionGoal  and AccuracyGoal  usually  means  8  if
WorkingPrecision has its default value. If WorkingPrecision has another value, then the default value
of  the  precision  and  accuracy  goals  is  generally WorkingPrecision/2.  For  example,  if
WorkingPrecision  is  30,  the  default  value  of  the  precision  and  accuracy  goals  is  usually  15.  (For
NIntegrate, NSum, and NProduct, the default value of PrecisionGoal is 6 or WorkingPrecision | 10.)

If you increase the precision or accuracy goal from the default value 8, you often also have to increase
the value of WorkingPrecision; give it a value that is at least a few digits larger than the goal.

12.3.2  Other Common Options

‡ StepMonitor and EvaluationMonitor

Here are two options for various iterative numerical methods:

StepMonitor  An option that gives a command to be executed after each step; examples of values:
None, Sow[x], ++n, AppendTo[iters, x]

EvaluationMonitor  An option that gives a command to be executed after each evaluation of
functions derived from the input; examples of values: None, Sow[x], ++n, AppendTo[points, x]

Chapter 12  •  Numbers 411



StepMonitor  and EvaluationMonitor  are  useful  when  investigating  how  a  numerical  method
proceeds  (e.g.,  how  many  iterations  are  needed  and  what  are  all  the  points  that  a  numerical  method
generates). The following commands have both of these options: FindFit, FindMaximum, FindMinimum,
FindRoot, NMaximize, NMinimize,  and NDSolve.  In  addition, NIntegrate, NProduct, NSum,  and  many
plotting commands have the EvaluationMonitor option.

The values of these two options are set with a delayed setting by using :> instead of -> (to avoid the
immediate evaluation of the command given). Note that Mathematica  automatically replaces :> with the
special symbol ß. The following is a typical example:

f = Exp@-xD - x^2;

n = 0; FindRoot@f, 8x, -1<, StepMonitor ß ++nD
8x Ø 0.703467<
n 6

We needed six iterations to find the root. Here is another example:

iters = 8<; FindRoot@f, 8x, -1<, StepMonitor ß AppendTo@iters, xDD
8x Ø 0.703467<
iters

81.39221, 0.835088, 0.709834, 0.703483, 0.703467, 0.703467<

These are the six points generated by the iterative method used by FindRoot. We could also use Sow and

Reap (see Section 18.2.3, p. 564):

Reap@FindRoot@f, 8x, -1<, StepMonitor ß Sow@xDDD
88x Ø 0.703467<, 881.39221, 0.835088, 0.709834, 0.703483, 0.703467, 0.703467<<<

Reap[expr]  returns a list of two components: the value of expr  (here, the result of FindRoot) together
with a list of values of the expression to which Sow has been applied during the calculation of expr.

‡ Compiled

Compiled  An option for various numerical methods that indicates whether to compile the expres-

sion with which they are working; possible values: Automatic, True, False

The default value Automatic of Compiled usually means True; this means that the command compiles
the expression to be manipulated. Compilation transforms the expression to a kind of pseudocode that
contains simple instructions for evaluating the expression. This speeds up the computations.

Compiled expressions use only normal machine|precision numbers. If you want the command to use
arbitrary|precision numbers when calculating the value of an expression, you have to turn the compil-
ing off by giving the option Compiled Ø False.

Compiling is considered in more detail in Section 17.2.3, p. 528.

412 Mathematica Navigator



13
Expressions

Introduction 413

13.1  Basic Techniques 414

13.1.1  Assigning and Clearing Values 414 %, Out, =, ?, Names, =., Clear, Remove

13.1.2  Inserting Values 416 /., //.

13.1.3  Picking Parts 418 [[ ]]

13.2  Manipulating Expressions 419

13.2.1  Simplifying 419 Simplify, FullSimplify, Assuming, Refine

13.2.2  Expanding 424 Expand, ExpandAll, FunctionExpand, PowerExpand

13.2.3  More about Expressions 425 Length, Short, Shallow, FullForm, Head

13.3  Manipulating Special Expressions 427

13.3.1  Rational Expressions 427 Factor, Together, Apart, ExpandNumerator, Variables, etc.

13.3.2  Polynomial Expressions 429 FactorTerms, Collect, Coefficient, Exponent, etc.

13.3.3  Trigonometric and Hyperbolic Expressions 429 TrigExpand, TrigFactor, TrigReduce, etc.

13.3.4  Complex Expressions 430 ComplexExpand

13.3.5  Logical Expressions 431 ã, !=, ===, <, §, NumericQ, EvenQ, &&, ||, !, LogicalExpand, etc.

13.3.6  Strings 433 Characters, StringLength, StringJoin, StringReverse, StringTake, etc.

13.4  Mathematical Functions 435

13.4.1  Basic Functions 435 Sqrt, Exp, Log, Sin, ArcSin, Sinh, ArcSinh, etc.

13.4.2  More Functions 437 !, Binomial, Fibonacci, Piecewise, DiracDelta, LegendreP, etc.

13.4.3  Special Functions 439 Gamma, Beta, Hypergeometric2F1, Erf, Zeta, BesselJ, etc.

Introduction

Algebra is generous: She often gives more than is asked for.~J. d’Alembert

Section 13.1 contains some very basic techniques for expressions: assigning values for variables, clearing
values of variables, inserting a value of a variable into an expression, and picking parts of an expression.
Read this section carefully.

Mathematica  often  writes  the  result  in  a  good  form,  but  occasionally  we  will  want  to  perform some
manipulations  on  an  expression;  see  Sections  13.2  and  13.3. Mathematica  has  many  commands  to  this
end, although a little experimenting is sometimes needed to get the desired result.

You will  probably  find in Mathematica  all  of  the  usual  and special  functions  you need;  Section 13.4
gives some lists of these functions. Mathematica  also uses the functions effectively by itself; for example,
many  integrals  can  be  written  only  in  terms  of  certain  special  functions.  Note  that
http://functions.wolfram.com/ is an excellent website for information about functions.



Lists  are very important expressions in Mathematica; they are considered in Chapter 14. Chapter 15 is
devoted to converting lists to tables. Patterns, considered in Chapter 16, represent classes of expressions.

13.1  Basic Techniques

13.1.1  Assigning and Clearing Values

For referring to earlier  results,  you have at least three methods at your disposal:  use %,  use Out[n],  or
give a name to the result to which you want to refer.

Using % (see Section 1.2.2, p. 7) is convenient provided that you refer to a very recent result and you

do  not  need  to  execute  the  command containing %  several  times.  If  you  have  to  execute  several  times
until you obtain the desired result, then you need to use %%, %%%, and so on in the succeeding executions
so that you refer to the correct result.

A better possibility to refer to an earlier result may be the use of Out[n] (see Section 1.2.2) because n

remains the same even if you execute several times. (By the way, to start the numbering of results from
1 again, execute $Line = 0.)

Giving a name to the result and using it later may be the best method. This is considered next.

‡ Assigning Values to Symbols

x = a  Assign the value a to x

x = y = a  Assign the same value to several symbols
{x, y, …} = {a, b, …}  Assign a to x, b to y, …

Assigning  values  to  symbols  with =  (or Set)  has  a  drawback.  Suppose  you  want  to  consider  the
following expression:

p = x + Sin@yD;

You want to calculate the value of p when x is 3.7 and y is 1.2. One possibility is to assign the values to x

and y and then ask the value of p:

x = 3.7; y = 1.2; p 4.63204

This is a straightforward method but has a drawback: x and y have from here on the values 3.7 and 1.2,
and p has from here on the value 4.63204, unless you assign a new value for x or y or clear the values of
x and y. The values of x and y are applied in all expressions in which x or y appear. This can cause trouble later
when  you  have  perhaps  forgotten  that  you  assigned  a  value  for x  and y.  Thus,  remember  to  clear  or
remove a symbol when you no longer need it so that the value of the symbol does not cause trouble in
later calculations. If the symbol is x, type x =., Clear[x], or Remove[x]; these commands are explained
soon.

A recommended rule is to assign values for variables sparingly. The preferred method for calculating
values of expressions for particular values of variables is to use transformation rules (see Section 13.1.2,

p. 416).

414 Mathematica Navigator



‡ Asking Information about Symbols

x  Give the value of symbol x

Definition[x]  Give the definitions associated with x

?x  Give the context of and definitions associated with symbol x

?x*  Print all symbols beginning with x

?Global`*  Print all user|defined symbols
Names["Global`*"]  Give a list of all user|defined symbols
ToExpression[%]  Give a list of the values of the symbols given by Names

These commands are useful if you have forgotten what symbols you have used and what values they
have been given. We ask the current value and the original definition of p:

p 4.63204

Definition@pD

p = x + Sin@yD
? p

Global`p

p = x + Sin@yD

Here are all the symbols we have used in this section:

? Global`*

Global`

p x y

Clicking the name of a symbol prints its definition. Next, we ask for our symbols and their values in a
list form:

Names@"Global`*"D 8p, x, y<
ToExpression@%D 84.63204, 3.7, 1.2<

We consider contexts such as Global` in Section 17.3.1, p. 531. It may suffice here to mention that the

Global` context is an environment that contains all the user|defined symbols.

‡ Removing Symbols

x =.  Clear the value of x

Clear[x]  Clear the value of x

Remove[x]  Remove x completely
Remove[x, y , … ]  Remove x, y, ...
Remove["x*"]  Remove all symbols that start with x

Remove["Global`*"]  Remove all user|defined symbols

Clear and Remove are used in the same way. Clear as well as =. (or Unset) only clears the value of a
symbol. Remove not only clears the value of a symbol but also removes the entire symbol.

Chapter 13  •  Expressions 415



Occasionally, we may observe that Mathematica is not working as expected. With high probability, we
have forgotten that some symbols have specified values, and this causes the trouble. One way to “clear
the table” is to use the command Remove["Global`*"];  it  removes all  user|defined symbols.  Another,
even easier, way is to quit the kernel with the menu command Evaluation @ Quit Kernel (the kernel can
be started anew by executing a command or with the menu command Evaluation @ Start Kernel).

13.1.2  Inserting Values

‡ Using Transformation Rules

If we want to calculate the value of an expression expr for a specific value a of a variable x, we can use
two methods. One method is to assign the value a to x and then ask the value of expr:

x = a
expr

Another method is to apply a transformation rule:

expr ê. x Ø a

The latter method is better. The first method has the drawback that x has the value a during the rest of
the session, and this may cause trouble.

Getting used to the transformation technique may take some time. However, it is worth spending the
time on this topic because it is very important in Mathematica. First, you can use the technique to insert
values  into  expressions.  Second,  some  important  commands,  such  as Solve, NSolve, FindRoot,
FindMinimum, Minimize, NMinimize, FindFit, DSolve,  and NDSolve,  give  the  result  in  the  form  of  a
transformation  rule,  so  you  have  to  know  how  to  handle  such  results.  Some  examples  were  already

worked in Sections 2.3.3, p. 43, and 2.3.6, p. 48. Transformation rules are also considered in Sections 16.1

p. 494, 18.4.1, p. 584, and 18.5.3, p. 610.

Note  that  the arrow (Ø)  can be  written as ->  because Mathematica  automatically  replaces  these  two
marks with a genuine arrow. The arrow can also be written as Â->Â.

‡ Simple Rules

expr /. x Ø a  Replace x with a in expr

f = expr /. x Ø a  Replace x with a and assign the result to f

In place of expr /. x Ø a, we could use ReplaceAll[expr, x Ø a]. Here is an expression:

Clear@x, yD; p = x + Sin@yD;

Here is a value of the expression:

p ê. x Ø 3.7 3.7+Sin@yD

Note that after the transformation p /. x Ø 3.7, the variable p still has its original value x + Sin[y] and
x has no value, as can be seen by asking for the value of {p, x}:

8p, x< 8x + Sin@yD, x<

In general, after a transformation such as expr /. x Ø a, x has no value and the value of expr has not
changed. Mathematica  only calculates and shows the value of expr  after the transformation is done; no
assignment  is  made  for expr.  Write f = expr /. x Ø a  if  you  want  to  store  the  result  as  a  value  of  a
variable.

416 Mathematica Navigator



‡ Several Rules

expr /. {x Ø a, y Ø b, … }  Replace x with a, y with b, …
expr /. Thread[{x, y, … } Ø {a, b, … }]  Replace x with a, y with b, …
expr /. Thread[vars Ø vals]  Replace variables in the list vars with the corresponding values in

the list vals

expr /. x Ø a /. y Ø b  Replace x with a; in the result, replace y with b

Try two rules:

p ê. 8x Ø 3.7, y Ø 1.2< 4.63204

Suppose we have some variables and some values:

vars = 8x, y<; vals = 83.7, 1.2<;

If we want to replace vars with vals in expr, we cannot write expr /. vars Ø vals. We have to apply
Thread to obtain the list of rules:

Thread@vars Ø valsD 8x Ø 3.7, y Ø 1.2<

Thus, we can write the following:

p ê. Thread@vars Ø valsD 4.63204

Note that when calculating a transformation such as expr /. {x Ø a, y Ø b, … }, Mathematica  looks at
each part of the expression, tries all the rules on it, and then goes on to the next part. The first rule that
applies  to  a  particular  part  is  used;  no  other  rules  are tried on that  part  or  on any of  its  subparts.  For
example,

8x, y< ê. 8x Ø y, y Ø x< 8y, x<

Here, Mathematica  tries the rules that may apply to x, finds that x Ø y is suitable, and applies it (y Ø x is
no  longer  applied).  Then  it  goes  to y,  finds  that y Ø x  is  suitable,  and  applies  it  (x Ø y  is  no  longer
applied). On the other hand, consider the next example:

8x, y< ê. x Ø y ê. y Ø x 8x, x<

Mathematica first replaces x with y and then, in the resulting list {y, y}, replaces y with x.

‡ Forming a List of Values

expr /. {{x Ø a}, {x Ø b}, … }  Replace x with a, b, …; the result is a list
expr /. {{x Ø a, y Ø b, … }, {x Ø c, y Ø d, … }, … }  Apply several sets of rules; the result is a list

We calculate the value of p with several values of x:

p ê. 88x Ø 3.7<, 8x Ø 3.8<, 8x Ø 3.9<<

83.7 + Sin@yD, 3.8 + Sin@yD, 3.9 + Sin@yD<

The result is a list. We can apply several sets of rules:

p ê. 88x Ø 3.7, y Ø 1.2<, 8x Ø 3.8, y Ø 1.3<, 8x Ø 3.9, y Ø 1.4<<

84.63204, 4.76356, 4.88545<

Solve gives several sets of rules as the answer. As an example, we solve the following equation:

eqn = 6 - 5 x + x^2 ã 0;

Chapter 13  •  Expressions 417



sol = Solve@eqn, xD 88x Ø 2<, 8x Ø 3<<

The  result  is  a  list  of  lists.  Each sublist  gives  one solution of  the  equation.  The  form of  the  solution is
useful for continuing the calculations. Because sol now has the value {{x Ø 2}, {x Ø 3}}, to get a list of
values (instead of a list of transformation rules), we can write the following:

x ê. sol 82, 3<

We can check that the solution is correct by inserting it into the equation:

eqn ê. sol 8True, True<

Mathematica  could  conclude  that  both  solutions  are  correct~that  is,  that  both  solutions  simplify  the
equation  into  the  form 0 == 0,  which  is  true.  Similarly,  we  can  calculate  the  value  of  any  expressions
with the solutions:

1 ê H1 + xL ê. sol :
1

3
,
1

4
>

We could also ask directly for the values of x:

sol2 = x ê. Solve@eqn, xD 82, 3<

If we now want to check the solution, we must directly write the necessary transformation rules:

eqn ê. 88x Ø sol2@@1DD<, 8x Ø sol2@@2DD<< 8True, True<

Compare  this  with  the  simple  command eqn /. sol.  We  see  that  the  transformation  rules  given  by
Solve are handy when we continue the calculations.

‡ Using Rules Repeatedly

expr //. {x Ø a, y Ø b, … }  Apply the rules repeatedly until the result no longer changes

Consider the following example:

p ê. 8x Ø y, y Ø a< y +Sin@aD

At each part of p, the rules are applied only once. Write the following:

p ê. x Ø y ê. y Ø a a +Sin@aD

First, x  is  replaced  with y,  and  then y  is  replaced  with a. Mathematica  also  has  the  command
ReplaceRepeated, which is formed by //.. It applies the rules until the result no longer changes:

p êê. 8x Ø y, y Ø a< a +Sin@aD

13.1.3  Picking Parts

expr[[i]]  or exprPiT  The ith part of expr

expr[[i, j]]  or exprPi, jT  The jth part of the ith part of expr

Picking parts of expressions can be done with double brackets. We can also use the special symbols P

and T;  they can be written as Â[[Â  and Â]]Â.  We will use the symbols P  and T  because they are
simpler and shorter than the double brackets. Consider the following expression:

p = Hy^2 + 2 y - 8L ê Hy + 4L^2 + 2 ê Hx + 3L

2

3 + x
+

-8 + 2 y + y2

H4 + yL2

418 Mathematica Navigator



We pick several parts:

8pP1T, pP2T, pP1, 1T, pP1, 2T, pP1, 2, 1T, pP1, 2, 2T<

:
2

3 + x
,

-8 + 2 y + y2

H4 + yL2
, 2,

1

3 + x
, 3 + x, -1>

The result is not always the one you expect. For example, you might expect that pP1, 2T is 3 + x instead
of 1 ê H3 + xL.  Given that pP1, 2T  is 1 ê H3 + xL,  you might expect that pP1, 2, 1T  is 1 instead of 3 + x. The
explanation  is  that  the  parts  are  picked  from  the  representation Mathematica  uses  internally.  You  can
look at this representation with FullForm:

FullForm@pP1TD

Times@2, Power@Plus@3, xD, -1DD

From this we see that pP1, 2T is in fact Power[Plus[3, x], -1]~that is, 1 ê H3 + xL~and that pP1, 2, 1T

is Plus[3, x]~that is, 3 + x.

‡ Example

Let us calculate the area enclosed by two curves. Here are the curves:

f1 = x^2 ê 2 + x ê 2 + 1;
f2 = x^2 - 1 ê 2;

We want to calculate the filled area between the points of intersection:

Plot@8f1, f2<, 8x, -1.5, 2.5<, Filling Ø TrueD

The points of intersection are as follows:

sol = x ê. Solve@f1 ã f2D :
1

2
1 - 13 ,

1

2
1 + 13 >

Then we integrate the difference of the curves between these points:

Integrate@f1 - f2, 8x, solP1T, solP2T<D
13 13

12

13.2  Manipulating Expressions

13.2.1  Simplifying

Simplify[expr]  Simplify by trying algebraic and trigonometric transformations
FullSimplify[expr]  Try a much wider range of transformations

Chapter 13  •  Expressions 419



These  commands  can  also  be  used in  the  form expr // Simplify  as  all  commands  with  one argu-

ment.  Often, Simplify  does  a  good job,  but  if  we  are  not  satisfied,  we  can use FullSimplify.  It  tries
many more transformations,  and it  knows much about  special  functions;  however,  calculations can be
long. As an example, Simplify does not do anything to the following expressions:

Hn + 3L! ê n! êê Simplify
H3 + nL!

n!

Sqrt@5 + 2 Sqrt@6DD êê Simplify 5 + 2 6

FullSimplify succeeds in the simplification:

Hn + 3L! ê n! êê FullSimplify H1 + nL H2 + nL H3 + nL

Sqrt@5 + 2 Sqrt@6DD êê FullSimplify 2 + 3

Next,  we consider the use of  assumptions with simplification.  Then,  we examine the options of  the
two commands.

‡ Using Assumptions

Simplify[expr, ass]  Use assumptions ass during the simplification
FullSimplify[expr, ass]  Use assumptions ass during the simplification

Simplify  and FullSimplify  (and  also FunctionExpand;  see Section  13.2.2,  p. 424)  accept  assump-

tions. The assumptions can be given by declaring domains of variables and by specifying equations and
inequalities  (note  that  a  variable declared to satisfy an inequality is  automatically assumed to be real).
Various assumptions can be combined with logical operators such as &&  (and), ||  (or), and !  (not) (see

Section 13.3.5, p. 431). Domains can be declared as follows:

x œ dom  Declare that x is an element of domain dom

{x, y, … } œ dom  or (x|y| … ) œ dom  Declare that x, y, ... are elements of domain dom

Possible domains:
Complexes, Reals, Algebraics, Rationals, Integers, Primes, Booleans

Write œ by pressing ÂelÂ. In place of x œ dom and {x, y, … } œ dom, we can write Element[x, dom]

and Element[{x, y, … }, dom].

Domains are often used in simplification, but we can also ask whether a given expression belongs to
a certain domain:

8Sqrt@5 + 2 Sqrt@7^H3 ê 8LDD œ Algebraics,
E œ Algebraics, Pi œ Algebraics, E + Pi œ Algebraics<

8True, False, False, ‰ + p œ Algebraics<

(Note that it is not yet known whether ‰ + p is an algebraic number.)

In  simplifying  expressions,  note  the  following:  Every  variable  is  assumed  to  be  a  generic complex
quantity.  This  causes Mathematica  sometimes  not  to  do  the  simplifications  we  expect.  However,  by
specifying  suitable  domains  or  other  assumptions,  we  can  get  the  results  we  want.  Next,  we  consider
several examples.

420 Mathematica Navigator



‡ Square Roots

Mathematica does not automatically simplify x2  to » x »:
Sqrt@x^2D êê Simplify x2

The reason for this is that this simplification does not hold for complex numbers:

8Sqrt@H2 + 3 IL^2D, Abs@2 + 3 ID< :2 + 3 Â, 13 >
However, if we assume that x is real, then the simplification is valid:

Simplify@Sqrt@x^2D, x œ RealsD Abs@xD

If we assume that x < 0, then we get -x:

Simplify@Sqrt@x^2D, x < 0D -x

In the following, we also need various assumptions:

Simplify@Sqrt@xD Sqrt@yD, x > 0 && y > 0D x y

In the following, we need the assumption that x is positive:

Simplify@Sqrt@1 ê xD, x > 0D
1

x

‡ Powers of Powers

The expression IabMc cannot always be simplified as ab c:

Simplify@Ha^bL^cD IabMc

If c is an integer or if a and b are positive, then we get the simplified form:

Simplify@Ha^bL^c, c œ IntegersD ab c

Simplify@Ha^bL^c, a > 0 && b > 0D ab c

‡ Logarithmic Expressions

Simplification of logarithmic expressions often also requires suitable assumptions:

Simplify@Log@aD + Log@bD, a > 0 && b > 0D Log@a bD
Simplify@Log@a^2D, a > 0D 2 Log@aD
Simplify@Log@1 ê aD, a > 0D -Log@aD

‡ Trigonometric Expressions

Trigonometric expressions often become simpler if some parameters are integers:

Integrate@Sin@m xD Cos@n xD, 8x, 0, Pi<D

m - m Cos@m pD Cos@n pD - n Sin@m pD Sin@n pD
m2 - n2

Simplify@%, 8m, n< œ IntegersD -

I-1 + H-1Lm+nM m

m2 - n2

Chapter 13  •  Expressions 421



Note, however, that this result holds for generic values of m and n. For the special case of m = n, we get
another result:

Integrate@Sin@m xD Cos@m xD, 8x, 0, Pi<D
Sin@m pD2

2 m
Simplify@%, m œ IntegersD 0

‡ Inequalities

If the expression to be simplified is an inequality, then Simplify

• gives True if the inequality holds for all values of variables in the specified domain;
• gives False if the inequality does not hold at any point in the specified domain; and
• does not claim anything if the inequality holds for some points but does not hold for some others,

or if the validity of the inequality cannot be decided.

Here are some examples:

Simplify@x § x + a, a ¥ 0D True

Simplify@x § x + a, a < 0D False

Simplify@x § x + a, a § 0D a ¥ 0

Here is a less trivial example:

Simplify@Exp@xD > Log@xD + 2, x > 0D True

‡ Other Expressions

Many kinds of expressions can be simplified with assumptions. Here, we demonstrate that Mathematica
knows about Fermat’s Last Theorem:

FullSimplify@x^n + y^n ã z^n, 8x, y, z, n< œ Integers && n > 2 && x y z 0D False

‡ Specifying Default Assumptions

Assumptions  can  be  used  with  some  commands,  such  as Simplify, FullSimplify, FunctionExpand,
Limit,  and Integrate.  Actually,  we  can  distinguish  two  types  of  assumptions:  default  and  specific.
When we previously wrote Simplify[Sqrt[x^2], x < 0],  we used a  specific  assumption.  The default
assumptions are represented by the variable $Assumptions. Its initial value is true:

$Assumptions True

This has no effect, and so this means, in practice, that there are no default assumptions.

Default  assumptions  can  be  added  by Assuming.  As  an  example,  we  note  that  in  place  of
Simplify[Sqrt[x^2], x < 0], we can write the following:

Assuming@x < 0, Simplify@Sqrt@x^2DDD -x

Here,  we  added  the  assumption x < 0  into  the  current  value  of $Assumptions,  giving  the  default
assumption True && Hx < 0L~that is, x < 0.

Assuming  can be used to define local environments with given default assumptions in a way that is

similar to the way Module and Block (see Section 17.1.4, p. 520) are used to define local environments

with  given  variables  or  their  values.  Inside Assuming,  we  can  write  several  commands:
Assuming[assum, expr1; expr2; … ].  Thus,  we  do  not  need  to  write  the  assumptions  in  each  com-

mand. Each command, however, can have its specific assumptions.

422 Mathematica Navigator



‡  Options

Options of Simplify and FullSimplify:

Assumptions  Default assumptions; default value: $Assumptions

TimeConstraint  Time in seconds to try a particular transformation; default values: 300 (Simplify),
¶ (FullSimplify)

ComplexityFunction  Function used in assessing the complexity of the transformed expression;
examples of values: Automatic, (LeafCount[#]&)

Trig  Whether to also use trigonometric transformations; possible values: True, False

TransformationFunctions  Functions tried in transforming the expression; examples of values:
Automatic, {Automatic, f}

ExcludedForms  Forms of subexpressions not touched in simplification; examples of values: {},
Gamma[_]

In addition to using Assuming, default assumptions can be given with the Assumptions option.

Simplify and FullSimplify do a sequence of transformations when searching for the simplest form
of the expression. If Simplify does not complete a particular transformation in 300 seconds, it gives up,
prints  a  warning,  and  goes  to  the  next  transformation.  In  such  a  case,  you  can  consider  trying  the
simplification  anew  with  a  larger  value  of TimeConstraint. FullSimplify,  by  default,  does  all
transformations until completion.

Normally, Simplify  and FullSimplify  assess  the  complexity  of  the  transformed  expressions
primarily  according  to  their LeafCount  (the  total  number  of  indivisible  subexpressions),  with  correc-

tions to treat integers with more digits as more complex. For example, 4 logH6L is considered the simplest

form, but if only LeafCount is used, then the simplest form is the following:

Simplify@4 Log@6D, ComplexityFunction Ø HLeafCount@ÒD &LD

Log@1296D

Normally, both algebraic and trigonometric transformations are tried. Set Trig to False if you want
trigonometric transformations not to be tried.

Simplify  and,  in  particular, FullSimplify  have  large  collections  of  transformations  to  try.  How-

ever,  sometimes they are not  able to simplify an expression.  We can then help them by adding one or
more  transformation  functions.  For  example,  without  the  function comp, FullSimplify  does  not
succeed in performing the following simplification:

comp@x_^H2 n_LD := Expand@x^2D^n

FullSimplify@H1 + Sqrt@2DL^H2 nL - H3 + 2 Sqrt@2DL^n,
n œ Integers, TransformationFunctions Ø 8Automatic, comp<D
0

With an option we can exclude some forms of subexpressions in the simplification. For example, if all
subexpressions are taken into account in the simplification, we get the following:

FullSimplify@Hn + 3L! Gamma@n + 1D ê Hn! Gamma@n + 2DLD

H2 + nL H3 + nL

However, if gamma functions are not touched, we get the following:

FullSimplify@Hn + 3L! Gamma@n + 1D ê Hn! Gamma@n + 2DL, ExcludedForms Ø Gamma@_DD

H1 + nL H2 + nL H3 + nL Gamma@1 + nD
Gamma@2 + nD

Chapter 13  •  Expressions 423



‡  Refine

Refine[expr, ass]  Give the form of expr that would be obtained if symbols in it were replaced
with explicit numerical expressions satisfying assumptions ass

Refine is useful for simplifying or developing expressions under given assumptions. For example, in
the following cases, Simplify does nothing, but Refine gives us a modified expression:

8Refine@Abs@xD, x < 0D, Refine@Log@xD, x < 0D,
Refine@Sin@x + n pD, n œ IntegersD, Refine@Sqrt@x yD, x > 0D<

:-x, Â p + Log@-xD, H-1Ln Sin@xD, x y >

13.2.2  Expanding

Expand[expr]  Expand products and positive integer powers in the top level
Expand[expr, patt]  Do not expand any parts that are free of pattern patt

ExpandAll[expr]  Expand products and positive integer powers in all levels
ExpandAll[expr, patt]  Do not expand any parts that are free of pattern patt

FunctionExpand[expr]  Expand special functions
FunctionExpand[expr, ass]  Use assumptions ass during the expansion

PowerExpand[expr]  Expand powers of products and powers of powers
PowerExpand[expr, Assumptions Ø ass]  Use assumptions ass. The default value Automatic does

not check the validity of the expansion. The value True gives a universally valid expansion.
PowerExpand[expr, {x, y, …}]  Expand only with respect to the given variables

‡ Expand and ExpandAll

In the following example, we do not expand terms not containing x:

Expand@H1 + aL^2 H1 + xL^2, xD

H1 + aL2
+ 2 H1 + aL2 x + H1 + aL2 x2

Expand does not expand denominators, but ExpandAll does:

Expand@H1 + aL^2 ê H1 + xL^2D

1

H1 + xL2
+

2 a

H1 + xL2
+

a2

H1 + xL2

ExpandAll@H1 + aL^2 ê H1 + xL^2D

1

1 + 2 x + x2
+

2 a

1 + 2 x + x2
+

a2

1 + 2 x + x2

‡ FunctionExpand

FunctionExpand does not automatically write logIx yM = logHxL logIyM:
Log@x yD êê FunctionExpand Log@x yD

This  happens  because  log(x y) = log(x) log[y)  is  not  always  correct.  If x  and y  are  positive,  then  the

expansion can be made:

FunctionExpand@Log@x yD, x > 0 && y > 0D Log@xD +Log@yD

424 Mathematica Navigator



FunctionExpand  is  sometimes  able  to  convert  expressions  to  forms  in  which  the  arguments  and
functions are simpler:

Cos@ArcSin@x ê 3DD êê FunctionExpand
1

3
3 - x 3 + x

ChebyshevT@n, xD êê FunctionExpand Cos@n ArcCos@xDD
Log@ProductLog@3, zDD êê FunctionExpand

6 Â p + Log@zD - ProductLog@3, zD

‡ PowerExpand

PowerExpand  does,  by default,  brutal  expansions without taking into account the appropriate assump-

tions. For example,

8PowerExpand@Sqrt@x^2DD, PowerExpand@Ha^bL^cD, PowerExpand@Log@x yDD<

9x, ab c, Log@xD + Log@yD=

As previously noted, these results are not always correct. In general, IabMc  = abc and Ha bLc  = acbc  hold only

if c is an integer or a and b are positive real numbers. However, using assumptions we get correct results:

PowerExpand@Sqrt@x^2D, Assumptions Ø TrueD

‰
Â p FloorB 1

2
-

Arg@xD

p
F
x

8Simplify@%, x < 0D, Simplify@%, x > 0D< 8-x, x<
PowerExpand@Sqrt@x^2D, Assumptions Ø x < 0D -x

13.2.3  More about Expressions

‡ Short Forms for Results

Sometimes the  result  of  a  computation is  so  long and complicated that  we do not  want  to  see it  com-

pletely.  On  the  other  hand,  we  might  sometimes  be  interested  in  the  structure  of  the  complicated
expression. The following commands are useful in these cases:

Length[expr]  Give the number of topmost parts of expr

Short[expr]  Print expr in a shortened form that is less than approximately one line
Short[expr, n]  Print expr in a shortened form that is approximately n lines long

Shallow[expr]  Show a shallow form of expr

Shallow[expr, depth]  Show all parts below depth in skeleton form
Shallow[expr, {depth, length}]  Show all parts below depth or longer than length in skeleton

form

Shallow[expr] means Shallow[expr, {4, 10}]. Here is a long expression:

q = Integrate@x^2 Sqrt@1 + x^2D ê H1 - x + x^2L, xD êê Simplify;

We ask for some short and shallow forms:

Short@qD

1

12
12 1 + x2

+á11à

Chapter 13  •  Expressions 425



Short@q, 2D

1

12
12 1 + x2

+ 6 x 1 + x2
+á10à

Shallow@qD

1

12
HTimes@á2àD + Times@á3àD + Times@á2àD + Times@á3àD +

Times@á3àD + Times@á3àD + Times@á3àD + Times@á3àD + Times@á3àDL
Shallow@q, 8¶, 3<D

1

12
12 1 + x2

+ 6 x 1 + x2
+ 6 ArcSinh@xD +á6à

If an output is very long, Mathematica may show only a short form of it:

Range@10^5D

A very large output was generated. Here is a sample of it:

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, á99 962à,
99 982, 99 983, 99 984, 99 985, 99 986, 99 987, 99 988, 99 989, 99 990, 99 991,
99 992, 99 993, 99 994, 99 995, 99 996, 99 997, 99 998, 99 999, 100 000<

Show Less Show More Show Full Output Set Size Limit...

‡ Everything Is an Expression

In  previous  sections,  we  considered  expressions  in  the  ordinary  mathematical  sense.  In Mathematica,
however, an expression is a much wider concept. In fact, in Mathematica, everything is an expression. This
fact is most clearly seen from the internal representation of the various objects of Mathematica. A typical
expression is of the form head[arguments]. The internal form can be seen with FullForm, and the head
can be seen with Head. Here are simple examples:

FullForm êü 8x + y, x y, x^y, 8x, y<<

8Plus@x, yD, Times@x, yD, Power@x, yD, List@x, yD<
Head êü 8x + y, x y, x^y, 8x, y<<

8Plus, Times, Power, List<

Here are some other examples of expressions:

FullForm êü 8x ã y, x < y, x Ø y<

8Equal@x, yD, Less@x, yD, Rule@x, yD<
FullForm êü 8x - y, x ê y, Sqrt@xD<

8Plus@x, Times@-1, yDD, Times@x, Power@y, -1DD, Power@x, Rational@1, 2DD<

It is sometimes useful to know the internal form, particularly if we want to pick a part of an expres-

sion,  as  we  saw  in Section  13.1.3,  p. 418.  The  parts  of  an  expression  are  decided  from  the  internal

representation and not from the normal form.

Mathematica  has exactly six basic expressions, which are called atoms. All expressions are made up of
these basic elements. Here are examples of all of them:

Head êü 82, 2 ê 5, 3.7, 6 + 2 I, x, "message"<

8Integer, Rational, Real, Complex, Symbol, String<

426 Mathematica Navigator



‡  Levels of Expressions

Here is a list:

t = 880, 1<, 81, p<, 82, p^2<, 83, p^3<<

980, 1<, 81, p<, 92, p2=, 93, p3==
To  illustrate  the levels  of  an  expression,  we  first  define  that  the  zeroth  level  of  an  expression  is  the
expression itself.  So,  the  zeroth  level  of t  is t.  At  the  first  level,  we  have  the  four  lists {0, 1},  ..., {3,

p^3}. At the second level, we have the elements of the lists: 0, 1, 1, p, ..., p^3. At the third level, we have
the components of the powers: p, 2, p, 3. Expressed in another way, the level of a part is the number of
indices needed to show the position. For example,

8tP4T, tP4, 2T, tP4, 2, 1T<

993, p3=, p3, p=
The levels of the expressions {3, p^3}, p^3, and p (the p in p^3) in t are thus 1, 2, and 3, respectively. A
list of the parts of an expression at a given level can be seen with Level:

Level@t, 83<D 8p, 2, p, 3<

In  some  commands,  such  as Apply  and Map  (Section  14.2,  p. 459)  and Position  and Cases  (Sectio

16.1.1, p. 493), we can use a level specification. It defines the level or levels of the expression toward whic

the operation of the command is directed. Levels are specified as follows:

0  The expression itself
n  Levels 1 through n
¶  All levels 1, 2, …
{n}  Level n only
{n, m}  Levels n through m
{-1}  The lowest level

For example, the position of 2 in t at level 3 is as follows:

Position@t, 2, 83<D 883, 2, 2<<

13.3  Manipulating Special Expressions

13.3.1  Rational Expressions

‡ Factoring

Factor[expr]  Factor numerator and denominator
Factor[expr, Extension Ø {a, b, …}]  Allow coefficients that are rational combinations of the

algebraic numbers a, b, …
Factor[expr, Extension Ø Automatic]  Allow coefficients that are rational combinations of the

algebraic numbers in expr

Factor[expr, GaussianIntegers Ø True]  Factor over Gaussian integers (complex numbers with
integer real and imaginary parts)

FactorList[expr]  Give the factors in a list form

Chapter 13  •  Expressions 427



a = Hx^2 + 2 x - 8L ê Hx + 4L^2 + 2 ê Hx + 3L

2

3 + x
+

-8 + 2 x + x2

H4 + xL2

Factor@aD
H1 + xL H2 + xL
H3 + xL H4 + xL

Next, we try the Extension option:

Factor@1 + x^4D 1 +x4

Factor@1 + x^4, Extension Ø ID I-Â + x2M IÂ + x2M
Factor@1 + x^4, Extension Ø Sqrt@2DD

- -1 + 2 x - x2 1 + 2 x + x2

Factor@1 + x^4, Extension Ø 8I, Sqrt@2D<D

1

4
2 - H1 + ÂL x 2 - H1 - ÂL x 2 + H1 - ÂL x 2 + H1 + ÂL x

Factor@1 + x^4, GaussianIntegers Ø TrueD

I-Â + x2M IÂ + x2M
With FactorList we get a list of the factors:

FactorList@aD

881, 1<, 81 + x, 1<, 82 + x, 1<, 83 + x, -1<, 84 + x, -1<<

From this list, we get the factored expression as follows, by using Apply:

Times üü Power üüü %
H1 + xL H2 + xL
H3 + xL H4 + xL

‡ Other Manipulations

Together[expr]  Put terms over a common denominator and cancel factors
Cancel[expr]  Cancel out common factors in the numerator and denominator

Apart[expr]  Give the partial fraction expansion
Apart[expr, x]  Treat only x as a variable (treat other variables as constants)

HornerForm[expr] (Ÿ6)  Put the numerator and denominator in Horner form

ExpandNumerator[expr]  Expand the numerator
ExpandDenominator[expr]  Expand the denominator

Numerator[expr]  Give the numerator
Denominator[expr]  Give the denominator

Variables[expr]  Give a list of all variables

Together  and Cancel  also  have  the Extension  option  mentioned  previously.  Remember  also  the

commands Simplify and FullSimplify (see Section 13.2.1, p. 419). We try some commands:

8Simplify@aD, Factor@aD, Together@aD, Cancel@aD, Apart@aD<

:
2 + 3 x + x2

12 + 7 x + x2
,

H1 + xL H2 + xL
H3 + xL H4 + xL

,
2 + 3 x + x2

H3 + xL H4 + xL
,

2

3 + x
+

-2 + x

4 + x
, 1 +

2

3 + x
-

6

4 + x
>

428 Mathematica Navigator



13.3.2  Polynomial Expressions

Factor[poly]  Factor poly; see other forms of Factor in Section 13.3.1, p. 427

FactorTerms[poly]  Pull out any overall numerical factor
FactorTerms[poly, {x, y, …}]  Pull out any overall factor that does not depend on x, y, …

Expand[poly]  Expand out products and powers
Expand[poly, x]  Avoid expanding parts not containing x

Collect[poly, x]  Collect together terms involving the same powers of x

Collect[poly, x, h]  Apply function h to the coefficients of the powers of x

Decompose[poly, x]  Decompose poly into a composition of simpler polynomials
HornerForm[poly, x] (Ÿ6)  Put poly in Horner form

Coefficient[poly, expr]  Give the coefficient of expr

Coefficient[poly, expr, n]  Give the coefficient of expr^n

CoefficientList[poly, x]  Give a list of coefficients of powers of x

Exponent[poly, x]  Give the maximum power of x

Exponent[poly, x, h]  Apply h to the set of exponents of x (the default of h is Max)
Variables[poly]  Give a list of all variables

PolynomialQuotient[p, q, x]  Give the result of dividing p by q, with any remainder dropped
PolynomialRemainder[p, q, x]  Give the remainder from dividing p by q

Remember also the commands Simplify and FullSimplify. Consider the following polynomial:

r = c^2 + 8 c x + 16 x^2 + 2 c x^2 + 8 x^3 + x^4;

We collect terms with respect to c and factor the coefficients:

Collect@r, c, FactorD c2
+2 c x H4 + xL +x2 H4 + xL2

The Horner form is efficient and stable in numerical computations:

HornerForm@r ê. c Ø 8D 64 +x H64 + x H32 + x H8 + xLLL

Here are the coefficients of various powers of x:

CoefficientList@r, xD 9c2, 8 c, 16 + 2 c, 8, 1=
Here are the maximum and minimum exponents of x and all the exponents with which x appears:

8Exponent@r, xD, Exponent@r, x, MinD, Exponent@r, x, ListD<

84, 0, 80, 1, 2, 3, 4<<

13.3.3  Trigonometric and Hyperbolic Expressions

TrigExpand[expr]  Expand sums and multiple angles in arguments into sums of powers of
trigonometric functions

TrigFactor[expr]  Factor expr in a product form, converting powers into multiple angles
TrigReduce[expr]  Write expr into a sum with no products or powers, using combined arguments
TrigToExp[expr]  Write trigonometric functions in terms of complex exponentials
ExpToTrig[expr]  Write complex exponentials in terms of trigonometric functions

Chapter 13  •  Expressions 429



These  commands  work  for  both  trigonometric  and  hyperbolic  functions.  Remember  that Simplify

and FullSimplify also simplify, by default, trigonometric expressions (write the option Trig Ø False if
you do not want do trigonometric simplifications):

8Simplify@1 - Sin@xD^2D, Simplify@H1 - Cos@xDL ê Sin@xDD<

:Cos@xD2, TanB
x

2
F>

Remember also that Simplify and FullSimplify accept assumptions:

Integrate@x^2 Sin@n xD, 8x, 0, Pi<D

-2 + I2 - n2 p2M Cos@n pD + 2 n p Sin@n pD

n3

FullSimplify@%, n œ IntegersD

-2 + H-1Ln I2 - n2 p2M

n3

Here are some examples of the other commands:

8TrigReduce@2 Sin@xD^2D, TrigReduce@2 Sin@xD Cos@yDD<

81 - Cos@2 xD, Sin@x - yD + Sin@x + yD<
8TrigFactor@Sin@3 xDD, TrigExpand@Sin@3 xDD<

9H1 + 2 Cos@2 xDL Sin@xD, 3 Cos@xD2 Sin@xD - Sin@xD3=
8TrigToExp@2 Sin@xDD, ExpToTrig@Exp@I xD + Exp@-I xDD<

9Â ‰
-Â x

- Â ‰
Â x, 2 Cos@xD=

With TrigExpand, we can calculate Chebyshev polynomials from a trigonometric expression:

Table@TrigExpand@Cos@n ArcCos@xDDD, 8n, 0, 4<D

91, x, -1 + 2 x2, -3 x + 4 x3, 1 - 8 x2
+ 8 x4=

The same commands we considered previously for trigonometric functions also work for hyperbolic
functions. The following are examples:

8Simplify@1 + Sinh@xD^2D, TrigReduce@2 Sinh@xD^2D, TrigFactor@Sinh@3 xDD<

9Cosh@xD2, -1 + Cosh@2 xD, H1 + 2 Cosh@2 xDL Sinh@xD=
ExpToTrig@Exp@xD - Exp@-xDD

2 Sinh@xD

13.3.4  Complex Expressions

ComplexExpand[expr]  Expand to real and imaginary parts assuming all variables are real
ComplexExpand[expr, {x, y, … }]  Expand assuming x, y, … are complex
ComplexExpand[expr, TargetFunctions Ø list]  Try to expand in terms of functions in list

Possible target  functions are Re, Im, Abs, Arg, Conjugate,  and Sign  (for these functions, see Section

12.1.2, p. 400). The default is typically to give results in terms of Re and Im. The following are examples:

H-8L^H1 ê 3L 2 H-1L1ë3

ComplexExpand@%D 1 +Â 3

ComplexExpand@Sin@x + I yDD Cosh@yD Sin@xD +Â Cos@xD Sinh@yD

430 Mathematica Navigator



We assume that z is complex:

ComplexExpand@z, zD Â Im@zD +Re@zD

The result is written, by default, in terms of Re and Im. Next, we ask for the result in a polar form~that
is, in terms of Abs and Arg:

ComplexExpand@z, z, TargetFunctions Ø 8Abs, Arg<D

Abs@zD Cos@Arg@zDD + Â Abs@zD Sin@Arg@zDD

Note that in Section 5.2.6, p. 137, we considered plotting complex|valued functions. In Section 13.4.1,

p. 435, we consider roots such as H-8L1ê3.

13.3.5  Logical Expressions

‡ Logical Tests

For  testing  whether  an  expression  has  a  given  property, Mathematica  has  several  built|in  tests.  The

following is a collection of such tests. Tests are used, for example, with Select (see Section 14.1.7, p. 457

with patterns (see Section 16.1.2, p. 496), and with If and Which (see Section 18.2.2, p. 556).

== (Equal), != (Unequal), === (SameQ), =!= (UnsameQ), PossibleZeroQ (Ÿ6)
< (Less), £ (LessEqual), > (Greater),  (GreaterEqual)
Negative, NonPositive, NonNegative, Positive

NumericQ, NumberQ, IntegerQ, EvenQ, OddQ, PrimeQ

ListQ, VectorQ, MatrixQ, TensorQ, PositiveDefiniteMatrixQ (Ÿ6)
PolynomialQ, StringQ, OptionQ

FreeQ, MemberQ, MatchQ

To get all names that end with Q, execute ?*Q.

A logical statement gives a result of True or False or, if Mathematica cannot decide the validity of the
property, the test as such. Here are some examples:

82 < 3, 4 < 3, x < 3<

8True, False, x < 3<
8Positive@-3D, IntegerQ@3D, EvenQ@3D, PrimeQ@3D<

8False, True, False, True<
8ListQ@3D, ListQ@8<D, ListQ@83, 5, 2<D<

8False, True, True<
IntegerQ@2D && EvenQ@2D && PrimeQ@2D True

NumericQ  tests  whether  the  expression  has  a  numerical  value,  whereas NumberQ  tests  whether  the

expression  is  a  number.  Recall  from Section  12.1.1,  p. 396,  that Mathematica  has  four  kinds  of  number

integers,  rationals,  reals,  and  complexes. Mathematica  does  not  consider  exact  expressions  such  as Pi,
Sqrt[2], or Sin[5] as numbers, but they do have numeric values:

8NumberQ@PiD, NumericQ@PiD< 8False, True<

VectorQ  and MatrixQ  accept a  second argument defining a test  to be satisfied by the elements (the

test is written as a pure function; see Section 2.2.2, p. 38):

VectorQ@82, a, Sqrt@5D<D True

Chapter 13  •  Expressions 431



VectorQ@82, -3, Sqrt@5D<, NumericQD True

VectorQ@82, 3, Sqrt@5D<, NumericQ@ÒD && Positive@ÒD &D True

The following second|order polynomial does not contain y:

FreeQ@a + b x + c x^2, yD True

The attributes of Pi are as follows:

Attributes@PiD 8Constant, Protected, ReadProtected<

This means that Constant is a member of Attributes[Pi]:

MemberQ@Attributes@PiD, ConstantD True

‡ Testing Equality

Now we compare the tests expr1 ã expr2  (Equal) and expr1 === expr2  (SameQ).  In general,  the latter
test  is  more demanding.  Both tests give True  if  the expressions are identical and False  if  they are not
identical.  If Mathematica  cannot  decide  whether  the  expressions  are  identical, ã  gives  the  original  test
expr1 ã expr2  as  such,  but ===  gives False.  The  expression expr1 ã expr2  returned  by ã  can  be
considered as an equation from which we can perhaps solve a variable. For example,

82 ã 2, 2 === 2, 2 - x ã 0, 2 - x === 0<

8True, True, 2 - x ã 0, False<

The tests  differ  somewhat  in the way they treat  numerical  expressions.  The test ã  gives True  if  the
numerical values of the expressions differ in at most their 8 binary digits, which correspond roughly to
their last two decimal digits of the 16 standard digits. On the other hand, the test ===  gives True  if the
difference of the expressions is less than the uncertainty of either of them, which means in practice that
the expressions must be equal to the last digit and that exact numbers are not considered equal to their
decimal values. Here are some examples:

82 ã 2., 2 === 2.<

8True, False<
82. + 10^-13 ã 2., 2. + 10^-14 ã 2.<

8False, True<
82. + 10^-15 === 2., 2. + 10^-16 === 2.<

8False, True<

In general, use Equal to form equations and to test the equality of numbers and strings. Use SameQ to
test arbitrary expressions for equality in structure.

Note that Equal, Unequal, SameQ, and UnsameQ accept more than two expressions as arguments. For
example,

UnsameQ@1, 2, 3, 4, 5, 2D False

‡ Logical Expressions

The  logical  tests  can  be  combined with  the  following  logical  operations  to  form more  complex  logical
expressions:

432 Mathematica Navigator



p && q  True if both p and q are true (AND)
p || q  True if one or both of p and q are true (OR)
!p  True if p is false (NOT)
Xor[p, q]  True if one and only one of p and q is true (exclusive OR)
Nand[p, q]  Means Not[And[p, q]] (true if p or q is false; false if they are both true)
Nor[p, q]  Means Not[Or[p, q]] (true if both p and q are false; false if either is true)

LogicalExpand[expr]  Expand a logical statement

We  can  write &&, ||,  and !  in  the  form fl, fi, ¬  by  writing ÂandÂ, ÂorÂ,  and ÂnotÂ,
respectively.

LogicalExpand@Nand@p, qDD ! p »» ! q

LogicalExpand@Hp »» qL && Hr »» sLD

Hp && rL »» Hp && sL »» Hq && rL »» Hq && sL

Quantifiers ForAll and Exists and Resolve are considered in Section 22.2.5, p. 728.

13.3.6  Strings

‡ Introduction

A string is an expression written inside quotation marks, such as "Here is a message.". The quotation
marks do not appear in the output:

"Here is a message."

Here is a message.

However, the quotation marks can be seen with InputForm:

% êê InputForm

"Here is a message."

In a string, a new line can be defined by \n and a tab with \t:

"\tHere is a message\n\tin two rows."

Here is a message
in two rows.

A string consists of characters:

Characters@"A message"D

8A, , m, e, s, s, a, g, e<

Characters also have quotation marks:

% êê InputForm

{"A", " ", "m", "e", "s", "s", "a", "g", "e"}

Mathematica  has powerful string and character manipulation commands. Here, we consider the basic

manipulation of strings. In Section 16.2, p. 505, we consider string patterns. We denote strings by symbo

such as s, s1, and s2.

Chapter 13  •  Expressions 433



‡ Characters

Characters[s]  Convert a string into a list of characters
CharacterRange["c1", "c2"]  Generate a list of all characters from c1 to c2

ToCharacterCode[s]  Give a list of the integer codes of the characters in s

FromCharacterCode[{n1, n2, … }]  Convert the character codes into a string

CharacterRange@"a", "f"D 8a, b, c, d, e, f<

% êê InputForm 8"a", "b", "c", "d", "e", "f"<

ToCharacterCode@"Message"D 877, 101, 115, 115, 97, 103, 101<

FromCharacterCode@%D Message

‡ Basics of Strings

StringLength[s]  Give the number of characters (\n and \t count as one character)
StringLength[{s1, s2, …}]  Give the number of characters of each of the strings

ToString[expr]  Convert expr into a string
ToExpression[s]  Convert s into an expression

ToLowerCase[s]  Change all uppercase letters to lowercase
ToUpperCase[s]  Change all lowercase letters to uppercase

StringQ[expr]  Give True is expr is a string, False otherwise
LetterQ[s]  Give True if all the characters in s are letters, False otherwise
DigitQ[s]  Give True if all the characters in s are digits (0-9), False otherwise

ToString@2 + 3D 5

% êê InputForm "5"

ToExpression@"2+3"D 5

‡ String Manipulation

StringJoin[s1, s2, …]  or StringJoin[{s1, s2, …}]  or s1 <> s2 <> …  Join the strings together
Sort[{s1, s2, … }]  Sort the strings into standard order
StringReverse[s]  Reverse the order of the characters of s

StringTake[s, n]  Give the string containing the first n characters of s

StringDrop[s, n]  Give the string s with its first n characters dropped
StringInsert[s, s1, n]  Give a string with s1 inserted starting at position n in s

StringReplacePart[s, s1, {m, n}]  Replace characters at positions m, …, n in s by s1

For StringTake and StringDrop, we can use the same kinds of part specifications as with Take and

Drop (see Section 14.1.2, p. 449). Thus, in place of n we can have -n (take/drop the last n characters), {n}

(take/drop  the nth  character), {-n}  (take/drop  the nth  character  from  the  end), {m, n}  (take/drop
characters m  through n),  or {m, n, d}  (take/drop  characters m  through n  in  steps  of d).  Here  is  an
example of StringJoin. Note that the same kind of output can also be obtained with Row:

"abc" <> " " <> "def" abc def

Row@8"abc", " ", "def"<D abc def

434 Mathematica Navigator



13.4  Mathematical Functions

13.4.1  Basic Functions

Some basic functions are Sqrt, Exp, and Log, together with the trigonometric and hyperbolic functions:

trig = 8Sin, Cos, Tan, Cot, Sec, Csc<;
invtrig = 8ArcSin, ArcCos, ArcTan, ArcCot, ArcSec, ArcCsc<;
hyp = 8Sinh, Cosh, Tanh, Coth, Sech, Csch<;
invhyp = 8ArcSinh, ArcCosh, ArcTanh, ArcCoth, ArcSech, ArcCsch<;

We also have Sinc[x] or sinHxL ê x; sincH0L = 1. Note that Sqrt[x] can also be written as x^(1/2) or x

and Exp[x] as E^x or ‰x. Also note that Log[x] is the natural logarithm and Log[b, x] the logarithm to
base b. The argument of the trigonometric functions is in radians.

For all mathematical functions of Mathematica, note the following:

• For integers, rational numbers, and special symbols, the functions give an exact result: the expres-

sion as such if it cannot be simplified or a simplified expression.
• A decimal value is calculated if the argument contains a decimal number.
• Values  can be  calculated to any numerical  precision by giving a  high-precision argument or  with

N[expr, n] (see Sections 12.1.2, p. 398, and 12.2.2, p. 404).

• Arguments can be complex numbers.
• Arguments can be lists.

For example,

8Exp@0.3`18D, Exp@3.5 + ID, Exp@81., 2., 3.<D<

81.349858807576003104, 17.8924 + 27.8657 Â, 82.71828, 7.38906, 20.0855<<

Note that to calculate expH0.3L to high precision, the argument has to be written in a high-precision form

(see Section 12.2.2, p. 406). We could also have written N[Exp[3/10], 19].

Some notes about roots and inverse trigonometric functions follow.

‡ Roots

Sqrt[x]  is  not  a  true inverse function of the function x^2.  The true inverse is  two|valued:  The square
root of 4 is a number x such that x2 = 4, and there are two solutions for this equation: x = 2 and x = -2.
However, Sqrt[4] gives only the positive value 2. If we want both the positive and the negative value
for a square root, one possibility is to use Solve:

Solve@x^2 ã 4D 88x Ø -2<, 8x Ø 2<<

The situation is similar for other roots. For example, the third root of 8 is a number x such that x3 = 8.
There  are  three  solutions  to  this  equation,  but Mathematica  gives  only  one~the principal  root  (the  root
with the last positive argument):

88^H1 ê 3L, H-8L^H1 ê 3L< :2, 2 H-1L1ë3>

% êê ComplexExpand :2, 1 + Â 3 >
With Solve, we get all roots:

Solve@x^3 ã 8D :8x Ø 2<, :x Ø -1 - Â 3 >, :x Ø -1 + Â 3 >>

Chapter 13  •  Expressions 435



Solve@x^3 ã -8D :8x Ø -2<, :x Ø 1 - Â 3 >, :x Ø 1 + Â 3 >>
If we only want a real root, we can use Reduce:

Reduce@x^3 == -8, x, RealsD x ã -2

‡ Inverse Trigonometric and Hyperbolic Functions

Inverse trigonometric  functions and ArcCosh  and ArcSech  are also multiple-valued. Mathematica  gives
the principal value for them. For easy reference, here are plots of all of the trigonometric and hyperbolic
functions and their inverse functions:

trigPlot@functs_, interval_, ranges_, ticks_D :=
Plot@Ò@xD, interval, PlotLabel Ø Ò, Ticks Ø ticks,

PlotRange Ø ranges, AspectRatio Ø AutomaticD & êü functs;

r = Range@-3, 3D; t = 8-3.2, 3.2<; p1 = 8-p ê 2, "-pê2"<; p2 = 8p ê 2, "pê2"<;

g1 = trigPlot@trig, 8x, -p, p<, t, 88-p, p1, p2, p<, r<D;
g2 = trigPlot@invtrig, 8x, -3.2, 3.2<, 8t, 8-1.8, 3.4<<, 8r, 8p1, p2, p<<D;

GraphicsGrid@8g1, g2<, Spacings Ø 0, ImageSize Ø 420D

-p-pê2 pê2 p

-3
-2
-1

1
2
3
Sin

-p-pê2 pê2 p

-3
-2
-1

1
2
3
Cos

-p-pê2 pê2 p

-3
-2
-1

1
2
3
Tan

-p-pê2 pê2 p

-3
-2
-1

1
2
3
Cot

-p-pê2 pê2 p

-3
-2
-1

1
2
3
Sec

-p-pê2 pê2 p

-3
-2
-1

1
2
3
Csc

-3-2-1 1 2 3
-pê2

pê2

p

ArcSin

-3-2-1 1 2 3
-pê2

pê2

p

ArcCos

-3-2-1 1 2 3
-pê2

pê2

p

ArcTan

-3-2-1 1 2 3
-pê2

pê2

p

ArcCot

-3-2-1 1 2 3
-pê2

pê2

p

ArcSec

-3-2-1 1 2 3
-pê2

pê2

p

ArcCsc

g3 = trigPlot@hyp, 8x, -3.2, 3.2<, t, 8r, r<D;
g4 = trigPlot@invhyp, 8x, -3, 3<, 8t, t<, 8r, r<D;

GraphicsGrid@8g3, g4<, Spacings Ø 0, ImageSize Ø 420D

-3-2-1 1 2 3

-3
-2
-1

1
2
3
Sinh

-3-2-1 1 2 3

-3
-2
-1

1
2
3

Cosh

-3-2-1 1 2 3

-3
-2
-1

1
2
3

Tanh

-3-2-1 1 2 3

-3
-2
-1

1
2
3
Coth

-3-2-1 1 2 3

-3
-2
-1

1
2
3

Sech

-3-2-1 1 2 3

-3
-2
-1

1
2
3

Csch

-3-2-1 1 2 3

-3
-2
-1

1
2
3

ArcSinh

-3-2-1 1 2 3

-3
-2
-1

1
2
3

ArcCosh

-3-2-1 1 2 3

-3
-2
-1

1
2
3

ArcTanh

-3-2-1 1 2 3

-3
-2
-1

1
2
3

ArcCoth

-3-2-1 1 2 3

-3
-2
-1

1
2
3

ArcSech

-3-2-1 1 2 3

-3
-2
-1

1
2
3

ArcCsch

436 Mathematica Navigator



13.4.2  More Functions

‡ Combinatorial Functions

n!  or Factorial[n]  Factorial nHn - 1L Hn - 2L ... 1
n!!  or Factorial2[n]  Double factorial nHn - 2L Hn - 4L ...

Subfactorial[n] (Ÿ6)  Subfactorial ! n = n !⁄k=0n H-1Lk

k!
 (the number of derangements of n objects~

that is, the number of ways to permute n objects so that none is in its natural place)
Pochhammer[n, m]  Pochhammer symbol HnLm = nHn + 1L Hn + 2L ... Hn + m - 1L

Binomial[n, m]  Binomial coefficient
n

m
=

n!
m! Hn-mL!

CatalanNumber[n] (Ÿ6)  Catalan number Cn =
1
n+1

2 n

n

Multinomial[n1, …, nk]  Multinomial coefficient IN; n1, …, nkM = N!
n1!… nk!

, N =⁄i=1k ni

BellB[n] (Ÿ6)  Bell number Bn
BernoulliB[n]  Bernoulli number Bn
EulerE[n]  Euler number En
StirlingS1[n, m]  Stirling number of the first kind Sn

HmL

StirlingS2[n, m]  Stirling number of the second kind n
HmL

Fibonacci[n]  Fibonacci number Fn: Fn = Fn-1 + Fn-2, F1 = F2 = 1

LucasL[n] (Ÿ6)  Lucas number Ln: Ln = Ln-1 + Ln-2, L1 = 1, L2 = 3

HarmonicNumber[n]  Harmonic number Hn =⁄i=1n 1

i

HarmonicNumber[n, k]  Harmonic number Hn
IkM

=⁄i=1n 1

ik

Note that with the exception of subfactorial, Bell, Bernoulli, Euler, and Stirling numbers, the numbers
in the previous boxes can also be calculated for noninteger arguments.

‡ Nonsmooth Functions

Max[x, y, … ], Max[list]  The maximum of x, y, ... or of the elements in list

Min[x, y, … ], Min[list]  The minimum of x, y, ... or of the elements in list

Clip[x]  Give x clipped to be within @-1, 1D: -1 if x < -1, 1 if x > 1, and x if » x » § 1
Abs[x] » x »: -x if x < 0, and x if x ¥ 0

Chapter 13  •  Expressions 437



Plot@Abs@Max@Sin@xD, Cos@xDDD, 8x, 0, 2 Pi<D

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

Boole[expr]  1 if expr is True, 0 if expr is False

Piecewise[{{val1, cond1}, {val2, cond2}, …}]  Give the first vali for which condi is True

We also consider Boole in Section 20.1.4, p. 642, in the context of integration. Piecewise is consid-

ered in Section 17.1.2, p. 516, in the context of piecewise functions. Here are some examples:

Integrate@Boole@x^2 + y^2 § 1D x y^2, 8x, 0, 1<, 8y, -1, 1<D

2

15

g@x_D = Piecewise@88Cos@xD, -Pi § x § 0<, 8-Cos@xD, 0 < x § Pi<<, 1 ê 2D

Cos@xD -p § x § 0

-Cos@xD 0 < x § p

1

2
True

Plot@g@xD, 8x, -5, 5<D

-4 -2 2 4

-1.0

-0.5

0.5

1.0

Sign[x] sgnHxL: -1, 0, or 1 if x < 0, x = 0, or x > 0, respectively

Unitize[x] (Ÿ6)  0 if x = 0, and 1 for any other numerical x
UnitStep[x] qHxL: 0 if x < 0, and 1 if x ¥ 0
UnitStep[x, y, … ]  0 if any of x, y, ... is negative, and 1 if x, y, ... are all nonnegative

DiscreteDelta[m, n, … ] dHm, n, …L: 1 if m, n, ... are all 0, and 0 otherwise
KroneckerDelta[m, n, … ] dm, n,…: 1 if m, n, ... are all equal, and 0 otherwise

Plot@UnitStep@Sin@2 xDD, 8x, 0, 10<, AxesOrigin Ø 8-0.3, -0.1<D

0 2 4 6 8 10

0.0

0.2

0.4

0.6

0.8

1.0

438 Mathematica Navigator



‡ Generalized Functions

HeavisideTheta[x] (Ÿ6) qHxL: 0 if x < 0, and 1 if x > 0
HeavisideTheta[x, y, … ]  0 if any of x, y, ... is negative, and 1 if x, y, ... are all positive

DiracDelta[x] dHxL: 0 if x 0
DiracDelta[x, y, … ]  0 if any of x, y, … is not 0

Heaviside  theta  and  Dirac  delta  are  generalized  functions.  They  can  be  used,  for  example,  with
integrals, integral transformations, and differential equations:

D@HeavisideTheta@xD , xD DiracDelta@xD
Integrate@DiracDelta@xD , xD HeavisideTheta@xD
Integrate@DiracDelta@xD, 8x, -¶, ¶<D 1

Integrate@DiracDelta@x - 3D f@xD, 8x, -¶, ¶<D f@3D

‡ Orthogonal Polynomials

The following are  some orthogonal  polynomials;  for  more,  see tutorialêOrthogonalPolynomials.  If PnHxL  is
an  orthogonal  polynomial  on Ha, bL  with  respect  to  weight  function wHxL,  it  satisfies  the  orthogonality

condition ŸabPnHxL PmHxLwHxL „x = 0, m n.

LegendreP[n,x]  Orthogonal in H-1, 1L with respect to 1

ChebyshevT[n,x]  Orthogonal in H-1, 1L with respect to I1 - x2M-1ê2
ChebyshevU[n,x]  Orthogonal in H-1, 1L with respect to I1 - x2M1ê2
HermiteH[n,x]  Orthogonal in H-¶, ¶L with respect to ‰-x

2

LaguerreL[n,x]  Orthogonal in H0, ¶L with respect to ‰-x

t1 = Table@ChebyshevT@n, xD, 8n, 0, 4<D

91, x, -1 + 2 x2, -3 x + 4 x3, 1 - 8 x2
+ 8 x4=

Plot@t1, 8x, -1, 1<D

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

13.4.3  Special Functions

The  following  are  some  lists  of  special  functions  in Mathematica;  for  details  and  a  complete  list,  see
guideêSpecialFunctions. We consider probability distribution functions in Section 29.1.

Gamma[z]  Gamma function GHzL
Gamma[a, z]  Incomplete gamma function GHa, zL
Gamma[a, z0, z1]  Generalized incomplete gamma function GHa, z0L - GHa, z1L
GammaRegularized[a, z]  Regularized incomplete gamma function QHa, zL

Chapter 13  •  Expressions 439



g p g
InverseGammaRegularized[a, s]  Inverse gamma function
PolyGamma[z]  Digamma function yHzL
PolyGamma[n, z]  The nth derivative of y(z)

GHzL = ‡
0

¶

tz-1 ‰-t „ t, GHa, zL = ‡
z

¶

ta-1 ‰-t „ t, QHa, zL = GHa, zL
GHaL , yHzL = d

dz
logGHzL = G£HzL

GHzL .

Beta[a, b]  Beta function BHa, bL
Beta[z, a, b]  Incomplete beta function BzHa, bL
BetaRegularized[z, a, b]  Regularized incomplete beta function IzHa, bL
InverseBetaRegularized[s, a, b]  Inverse beta function
Hypergeometric1F1[a, b, z]  Confluent hypergeometric function 1F1 Ha; b; zL
Hypergeometric2F1[c, a, b, z]  Hypergeometric function 2F1 Hc, a; b; zL

BHa, bL = GHaL GHbL
GHa + bL = ‡

0

1
ta-1 H1 - tLb-1 „ t, BzHa, bL = ‡

0

z

ta-1 H1 - tLb-1 „ t, IzHa, bL = BzHa, bL
BHa, bL ,

1F1 Ha; b; zL = Ÿ01 ta-1 H1 - tLb-a-1 ‰z t „ t

BHa, b - aL , 2F1 Hc, a; b; zL = Ÿ01ta-1 H1 - tLb-a-1 H1 - t zL-c „ t

BHa, b - aL .

Erf[z]; Erfc[z]  Error function erfHzL; complementary error function erfcHzL
InverseErf[s]; InverseErfc[s]  Inverse error and complementary error function
ExpIntegralE[n, z]; ExpIntegralEi[z]  Exponential integrals EnHzL and EiHzL
LogIntegral[z]; PolyLog[n, z]  Logarithmic integral liHzL; polylogarithm function LinHzL
Zeta[s]  Riemann zeta function zHsL
SinIntegral[z]; CosIntegral[z]  Sine and cosine integrals SiHzL and CiHzL
SinhIntegral[z]; CoshIntegral[z]  Hyperbolic sine and cosine integrals ShiHzL and ChiHzL
ProductLog[z]  Product log function WHzL (solution for w of z = w ‰w)

erf z =
2

p
‡
0

z

‰-t
2
„ t, erfcHzL = 1 - erfHzL, EnHzL = ‡

1

¶ ‰-z t

tn
„ t, EiHzL = -‡

-z

¶ ‰-t

t
„ t,

liHzL = ‡
0

z „ t

logHtL „ t, Li2HzL = ‡
z

0 logH1 - tL
t

„ t, LinHzL =‚
k=1

¶ zk

kn
, zHsL =‚

k=1

¶ 1

ks
Hs > 1L,

SiHzL = ‡
0

z sinHtL
t

„ t, CiHzL = -‡
z

¶ cosHtL
t

„ t,

ShiHzL = ‡
0

z sinhHtL
t

„ t, ChiHzL = ˝ + logHzL +‡
0

z coshHtL - 1

t
„ t.

440 Mathematica Navigator



LegendreP[n, z]; LegendreQ[n, z]  Legendre function PnHzL; Legendre function of the second kind
QnHzL

LegendreP[n, m, z]; LegendreQ[n, m, z]  Associated Legendre function Pn
mHzL; associated Legendre

function of the second kind Qn
mHzL

BesselJ[n, z]; BesselY[n, z]  Bessel functions JnHzL and UnHzL
BesselI[n, z]; BesselK[n, z]  Modified Bessel functions InHzL and KnHzL
AiryAi[z]; AiryBi[z]  Airy functions AiHzL and BiHzL
PnHzL, QnHzL:  independent solutions of I1 - z2M y - 2 z y£ + nHn + 1L y = 0

Pn
mHzL, Qn

mHzL:  independent solutions of I1 - z2M y - 2 z y£ + AnHn + 1L - m2 ë I1 - z2ME y = 0

JnHzL, YnHzL:  independent solutions of z2 y + z y£ + Iz2 - n2M y = 0

InHzL, KnHzL:  independent solutions of z2 y + z y£ - Iz2 + n2M y = 0

AiHzL, BiHzL:  independent solutions of y - z y = 0

Plot@BesselJ@5, xD, 8x, 0, 50<D

10 20 30 40 50

-0.2

-0.1

0.1

0.2

0.3

Remember  that FullSimplify  and FunctionExpand  (see Sections  13.2.1,  p. 419,  and 13.2.2,  p. 424)

know much about special functions. For more information about special functions, see Trott (2006b).

Chapter 13  •  Expressions 441



442 Mathematica Navigator

This page intentionally left blank



14
Lists

Introduction 443

14.1  Basic List Manipulation 444

14.1.1  Forming Lists 444 Dimensions, Transpose, Table, Map, Range, Array, ConstantArray, etc.

14.1.2  Selecting Parts 448 [[ ]], ;;, First, Last, Rest, Most, Take, Drop, TakeWhile, LengthWhile

14.1.3  Inserting and Deleting 449 Prepend, Append, Insert, Delete, Riffle, PadRight, etc.

14.1.4  Ungrouping and Grouping 450 Flatten, Partition, Split

14.1.5  Reordering 452 Transpose, Sort, SortBy, Union, Reverse, RotateLeft, RotateRight

14.1.6  Combinatorial Operations 454 Permutations, Subsets, Tuples

14.1.7  Searching Elements 457 Select, Count, Cases, DeleteCases

14.1.8  Searching Positions 458 Position, Extract, Ordering

14.1.9  Operations on Several Lists 459 Join, Union, Intersection, Complement

14.2  Advanced List Manipulation 459

14.2.1  Mapping the Elements 459 Map, MapAt, MapAll, MapIndexed, Scan

14.2.2  Changing the Head 462 Apply

14.2.3  Sequences 463 Sequence, Apply

14.2.4  Mapping Two Lists 465 Thread, MapThread, Inner, Outer

 Introduction

Wiener once went to a doctor and told him that his memory was terrible and that he
 couldn’t remember anything from one minute to the next. “How long has this been

 going on?” asked the doctor. “How long has what been going on?” said Wiener.

A list is Mathematica’s way of storing information so that the pieces of information are well arranged and
can,  at  any time,  be easily “remembered” or retrieved. Lists are the bread and butter of Mathematica~
you simply cannot live without them.

Lists  are  used  as  the  basic  method  of  collecting  numbers,  symbols,  and  other  objects.  In  addition,
vectors and matrices are, in fact, lists. Mathematica contains a rich collection of tools to work with lists, as
can  be  seen  from  this  chapter.  In  the  next  chapter,  we  show  how  to  form  tables  from  lists.  By  using
patterns  we  get  powerful  tools  for  working  with  lists  and other  expressions  (see  Chapter  16).  Vectors
and  matrices  are  considered  in  Chapter  21.  In  Section  29.1,  we  discuss  the  commands RandomChoice

and RandomSample for taking samples; in Section 30.2, we discuss Tally and BinCounts for calculating
frequencies; and in Section 30.6.1, we discuss ListCorrelate and ListConvolve for smoothing.



14.1  Basic List Manipulation

14.1.1  Forming Lists

‡ Lists of Various Dimensions

A list is an ordered collection of zero or more elements. Here are some examples:

m1 = 832, 214, 5<;
m2 = 8832.7, 8.39, -412.64<, 84.5, -56.2163, -7.606<<;
m3 = 8881, a<, 82, b<, 83, c<<, 884, d<, 85, e<, 86, f<<<;

The ordering means that, for example, lists {3, 2, 5}  and {2, 3, 5} are not the same lists. An empty
list  is {}.  A 1D list  such as m1  can  also  be  considered as  a  vector  and a  2D list  such as m2  as  a  matrix
(each row is a list and so m2 is a 2μ 3 matrix). Higher-dimensional lists such as m3 are tensors.

With  the  menu  command Insert @ Table/Matrix @ New  we  can  ask  for  an  empty  2D  table  that
contains placeholders for the entries:

m4 =
Ñ Ñ Ñ

Ñ Ñ Ñ

We can then fill in the placeholders with the Í key to get a 2D list:

m4 =
3 2 7

6 3 5
883, 2, 7<, 86, 3, 5<<

2D  tables  can  also  be  entered  with  the  keyboard.  To  start,  type ‚Î,Ï  (i.e.,  keep  the  Control  key
pressed and type the comma); two placeholders of a 1μ 2 table appear. To get more columns, type ‚Î,Ï
several times. To get more rows, type ‚Î¿Ï several times. Then fill in the table.

Length[list]  Number of elements at the top level of list

Dimensions[list]  Dimensions of list

ArrayDepth[list]  The depth to which list is a full array
ArrayQ[list]  Test whether list is a full array (i.e., all parts at a particular level are lists of the

same length)

Length êü 8m1, m2, m3< 83, 2, 2<
Dimensions êü 8m1, m2, m3< 883<, 82, 3<, 82, 3, 2<<
ArrayDepth êü 8m1, m2, m3< 81, 2, 3<
ArrayQ@m3D True

Manipulating lists is considered in detail  in forthcoming sections,  but here we present some impor-
tant commands that you may need soon.

list[[i]], list[[i, j]] ith and (i, j)th part of list

Transpose[list]  or list¨  Transpose the first two levels of list

Recall that list[[i]]  can also be written as listPiT,  where P  and T  can be written as Â[[Â  and
Â[[Â. In list¨, the ¨ can be written as ÂtrÂ.

Picking of parts was considered in Section 13.1.3, p. 418.

m2P1T 832.7, 8.39, -412.64<

444 Mathematica Navigator



m3P1, 2, 2T b

Transposing a 2D list means converting columns to rows:

m2¨ 8832.7, 4.5<, 88.39, -56.2163<, 8-412.64, -7.606<<
Next,  we  consider  various  commands  to  generate  lists.  Note  that  sparse  arrays  are  considered  in

Section 21.2.1, p. 689.

‡ Forming Lists with Table

Table is one of the most useful commands in Mathematica. If the elements of a list can be obtained from
a formula, then Table is the correct tool to use to form the list.

Table[expr, iterspec]  Form a list from expr according to the iteration specification iterspec

The following forms can be used for iterspec:
{b}  Make a list of b copies of expr

{i, b}  Make a list of the values of expr when i runs from 1 to b

{i, a, b} i runs from a to b

{i, a, b, d} i runs from a to b in steps of d

Iteration specifications extend to more indices.  For example,  the specification {i, a, b}, {j, c, d}

means that i runs from a to b and, for each i, j runs from c to d (c and d can contain i). Here are some
examples:

Table@1, 83<D 81, 1, 1<
Table@Cos@n Pi ê 2D, 8n, 0, 6, 2<D 81, -1, 1, -1<
Table@Integrate@1 ê x^i, xD, 8i, 0, 4<D

:x, Log@xD, -
1

x
, -

1

2 x2
, -

1

3 x3
>

Table@1 ê Hi + j - 1L, 8i, 3<, 8j, 3<D

::1,
1

2
,
1

3
>, :

1

2
,
1

3
,
1

4
>, :

1

3
,
1

4
,
1

5
>>

The index can also have decimal values, and the expression to be tabulated may be a list:

Table@Log@xD, 8x, 1, 2, 0.2<D

80, 0.182322, 0.336472, 0.470004, 0.587787, 0.693147<
Table@8x, Log@xD<, 8x, 1, 2, 0.2<D

881, 0<, 81.2, 0.182322<, 81.4, 0.336472<,
81.6, 0.470004<, 81.8, 0.587787<, 82., 0.693147<<

Table[expr, {x, {x1, x2, …}}] (Ÿ6)  Form a list by giving, in expr, x the values x1, x2, …
Map[expr &, {x1, x2, …}]  Form a list by giving, in expr, # the values x1, x2, …
expr & /@ {x1, x2, …}  Form a list by giving, in expr, # the values x1, x2, …

Sometimes we want  to tabulate an expression for such irregular values of  a  variable that  cannot be
formed by an iteration specification; instead, we have the values of the variable as a list. Table can also
be used in such cases, although Map is an alternative. Map can also be used with /@:

Table@x^2, 8x, 81, 3, 4, 9<<D 81, 9, 16, 81<
Map@Ò^2 &, 81, 3, 4, 9<D 81, 9, 16, 81<

Chapter 14  •  Lists 445



Ò^2 & êü 81, 3, 4, 9< 81, 9, 16, 81<

Here we form a 2D table:

Table@x^2 + y^2, 8x, 81, 3, 4, 9<<, 8y, 82, 5, 7<<D

885, 26, 50<, 813, 34, 58<, 820, 41, 65<, 885, 106, 130<<

‡ Forming Lists with Range

With Range, it is easy to form lists of consecutive numbers.

Range[n] 81, 2, 3, …, n<
Range[m, n] 8m, m + 1, m + 2, …, n<
Range[m, n, d] 8m, m + d, m + 2 d, …, n<

8Range@4D, Range@0, 4D, Range@0, 4, 2D<

881, 2, 3, 4<, 80, 1, 2, 3, 4<, 80, 2, 4<<

Range even works with real numbers:

Range@2.6, 5.4, 0.5D

82.6, 3.1, 3.6, 4.1, 4.6, 5.1<

Note  that Range  stopped  at  5.1  because  the  next  number,  5.6,  would  be  larger  than  the  upper  bound
given~5.4.

‡ Forming Lists with Array

With Table we can also generate lists of indexed variables:

vv = Table@v@iD, 8i, 0, 5<D

8v@0D, v@1D, v@2D, v@3D, v@4D, v@5D<
ww = Table@w@i, jD, 8i, 2<, 8j, 2<D

88w@1, 1D, w@1, 2D<, 8w@2, 1D, w@2, 2D<<

This can also be done with Array.

Array[f, n] {f[1], …, f[n]}

Array[f, {m, n}] {{f[1, 1], …, f[1, n]}, …, {f[m, 1], …, f[m, n]}}

ConstantArray[c, n] (Ÿ6) {c, …, c}

ConstantArray[c, {m, n}] {{c, …,c}, …, {c, …, c}}

A possible third argument gives the index origin (the default is 1). For example,

rr = Array@r, 5D

8r@1D, r@2D, r@3D, r@4D, r@5D<
ss = Array@s, 6, 0D

8s@0D, s@1D, s@2D, s@3D, s@4D, s@5D<
tt = Array@t, 82, 3<D

88t@1, 1D, t@1, 2D, t@1, 3D<, 8t@2, 1D, t@2, 2D, t@2, 3D<<

For the elements, we can define a function:

r@i_D := 2 + i 0.2

446 Mathematica Navigator



Now all elements of rr have a value:

rr 82.2, 2.4, 2.6, 2.8, 3.<

The function can also be given directly in the Array command as a pure function:

Array@2 + Ò 0.2 &, 5D

82.2, 2.4, 2.6, 2.8, 3.<
Array@Ò1^Ò2 &, 83, 4<D

881, 1, 1, 1<, 82, 4, 8, 16<, 83, 9, 27, 81<<

Here are constant arrays:

Table@4, 86<D 84, 4, 4, 4, 4, 4<
Array@4 &, 6D 84, 4, 4, 4, 4, 4<
ConstantArray@4, 6D 84, 4, 4, 4, 4, 4<

‡ Some Notes about Indexed Variables

Forming a series of values is important in many mathematical calculations. Often, it suffices to generate
a list of values, for example, xx, and then to refer to its components with xx[[i]]:

xx = Table@2 + i 0.2, 8i, 0, 5<D

82, 2.2, 2.4, 2.6, 2.8, 3.<
xxP1T 2

We can also use indexed variables such as x[i]:

Do@x@iD = 2 + i 0.2, 8i, 0, 5<D

x@0D 2

If we need both the indexed variables and a symbol for the whole set of variables, we can do as follows:

xx = Table@x@iD = 2 + i 0.2, 8i, 0, 5<D

82, 2.2, 2.4, 2.6, 2.8, 3.<

If we want to see the values of all indexed variables with a certain name, for example, x, then we type
?x. To clear a single value, we type x[i] =., and to clear all values, we type Clear[x].

For indexed variables, we can also use subscripts. They can be made with Subscript or by entering
the subscripts in a 2D form. 2D subscripts can be written with the BasicMathInput  palette (the second

button  in  the  next-to-last  row)  and  with ‚Î_Ï  or ‚Î|Ï  (see Section  3.3.3,  p. 76;  to  get  out  of  the

subscript position, press ‚ÎâÏ). Here, we use both Subscript and 2D input:

vv = Table@Subscript@v, iD, 8i, 0, 5<D

8v0, v1, v2, v3, v4, v5<
ww = Table@wi,j, 8i, 2<, 8j, 3<D

88w1,1, w1,2, w1,3<, 8w2,1, w2,2, w2,3<<
Array@fÒÒ &, 83, 3<D

88f1,1, f1,2, f1,3<, 8f2,1, f2,2, f2,3<, 8f3,1, f3,2, f3,3<<

Chapter 14  •  Lists 447



14.1.2  Selecting Parts

‡ Taking Parts of Lists

listPiT ith part of list

listP-iT ith part counted from the end
listPi, jT  (i, j)th part
listPi, j, kT  (i, j, k)th part

listP{i, j, … }T  Parts i, j, ...

Instead  of listPiT,  we  can  write list[[i]].  Recall  that P  and T  can  be  written  as Â[[Â  and
Â]]Â,  respectively.  We will  use  the  symbols P  and T  because  they  are  simpler  and shorter  than the
double brackets. Instead of listPiT, we can write Part[list, i]. Examples:

m = 8811, 12, 13<, 821, 22, 23<, 831, 32, 33<<;

mP2T 821, 22, 23<
mP2, 3T 23

mP82, 1, 3<T 8821, 22, 23<, 811, 12, 13<, 831, 32, 33<<

listPi ;; jT (Ÿ6)  Take parts i through j

listPi ;; T  Take parts from i to the end
listP-i ;; T  Take the last i parts
listP ;; jT  Take the first j parts
listP ;; -jT  Take parts from the beginning to the jth part from the end
listPi ;; j ;; dT  Take parts i through j in steps of d

Internally, Mathematica uses Span for ;;:

2 ;; 6 êê FullForm Span@2, 6D

Examples:

mP2 ;;T 8821, 22, 23<, 831, 32, 33<<
mP ;; -2T 8811, 12, 13<, 821, 22, 23<<

‡ Resetting Parts

Parts specified by P T can be used to set new values for parts:

listPiT = a  Set the ith part to a

listPi ;; jT = a  Set parts i through j to a

listPi ;; jT = {a, …, b}  Set part i to a, …, part j to b

listP{i, j, … }T = {a, b, …}  Set parts i, j, … to a, b, …

Note that these commands modify the original list:

mP3, 3T = 333 333

m 8811, 12, 13<, 821, 22, 23<, 831, 32, 333<<

448 Mathematica Navigator



‡ Taking and Dropping Parts

First[list], Rest[list]  Take/drop the first part
Last[list], Most[list]  Take/drop the last part

Take[list, n], Drop[list, n]  Take/drop the first n parts
Take[list, -n], Drop[list, -n]  Take/drop the last n parts

Take[list, {n}], Drop[list, {n}]  Take/drop the nth part
Take[list, {-n}], Drop[list, {-n}]  Take/drop the nth part from the end

Take[list, {m, n}], Drop[list, {m, n}]  Take/drop parts m through n

Take[list, {m, n, d}], Drop[list, {m, n, d}]  Take/drop parts m through n in steps of d

Note that the commands in the previous box do not modify the original list. For example, if we want
to replace list with a list in which the last part is dropped, we have to write list = Most[list].

TakeWhile[list, crit] (Ÿ6)  Take elements from list as long as crit gives True

LengthWhile[list, crit] (Ÿ6)  Give the length of the list given by TakeWhile

The criterion is written as a pure function:

t = 84, 7, 2, 4, 8, 6, 10, 3, 9<;

TakeWhile@t, Ò < 10 &D 84, 7, 2, 4, 8, 6<
LengthWhile@t, Ò < 10 &D 6

14.1.3  Inserting and Deleting

Prepend[list, elem]  or Join[{elem}, list]  Insert elem at the beginning of list

Append[list, elem]  or Join[list, {elem}]  Insert elem at the end of list

PrependTo[list, elem]  Insert elem at the beginning of list and reset list to the result
AppendTo[list, elem]  Insert elem at the end of list and reset list to the result

Insert[list, elem, i]  Insert elem at position i in list

ReplacePart[list, i Ø elem]  Replace the ith element of list with elem

Delete[list, i]  Delete the ith element of list

Delete[list, {{i}, {j}, … }]  Delete elements i, j, …

The argument i in Insert, ReplacePart, and Delete can also be negative, meaning that the position
is  counted  from  the  end  of  the  list.  The  last  argument  can  also  be  a  more  detailed  definition  of  the
position, such as {i, j}.

Note that with the exception of PrependTo and AppendTo, the commands in the previous box do not
modify the original value of list:

Append@m, 841, 42, 43<D

8811, 12, 13<, 821, 22, 23<, 831, 32, 333<, 841, 42, 43<<
m 8811, 12, 13<, 821, 22, 23<, 831, 32, 333<<

However, PrependTo[list, a] and AppendTo[list, a] do modify the original list. The same effect can
also be obtained by list = Prepend[list, a] and list = Append[list, a]:

Chapter 14  •  Lists 449



AppendTo@m, 841, 42, 43<D

8811, 12, 13<, 821, 22, 23<, 831, 32, 333<, 841, 42, 43<<
m 8811, 12, 13<, 821, 22, 23<, 831, 32, 333<, 841, 42, 43<<

Riffle[{a, b, c, … }, x] (Ÿ6)  {a, x, b, x, c, x, …}
Riffle[{a, b, c, … }, x, d]  Every dth element is x

Riffle[{a, b, c, … }, x, {p0, p1, d}] x appears at positions p0, p0 + d, p0 + 2d, … (a negative p1

counts from the end)
Riffle[{a, b, c, … }, {x, y, z, … }]  {a, x, b, y, c, z, …}

Note that

Riffle[list, x] is equivalent to Riffle[list, x, {2, -2, 2}];
Riffle[list, x, d] is equivalent to Riffle[list, x, {d, -2, d}].

With Riffle we can intersperse additional elements:

Riffle@81, 2, 3, 4<, xD 81, x, 2, x, 3, x, 4<
Riffle@81, 2, 3, 4, 5<, x, 3D 81, 2, x, 3, 4, x, 5<
Riffle@81, 2, 3, 4<, x, 82, -2, 2<D 81, x, 2, x, 3, x, 4<
Riffle@81, 2, 3, 4<, x, 81, -1, 2<D 8x, 1, x, 2, x, 3, x, 4, x<

We can also  merge two lists.  If  the latter  list  is  shorter  than the first,  the elements  of  the latter  list  are
used cyclically:

Riffle@81, 2, 3, 4<, 8x, y<D 81, x, 2, y, 3, x, 4<
Riffle@81, 2, 3, 4<, 8u, v, w, x<D 81, u, 2, v, 3, w, 4, x<

PadRight[v, n]  Pad vector v with zeros on the right to make a vector of length n

PadRight[v, n, a]  Pad vector v with replicates of a

PadRight[m, {n1, n2}]  Pad matrix m with zeros to an n1 n2 matrix
PadRight[m, {n1, n2}, a]  Pad matrix m with replicates of matrix a

PadLeft works similarly.

14.1.4  Ungrouping and Grouping

Flatten[list]  Flatten out all levels in list by deleting all inner braces
Flatten[list, n]  Flatten out the top n levels in list

Partition[list, n]  Partition list into nonoverlapping sublists of n elements
Partition[list, n, d]  Generate sublists with offset d

Split[list]  Split list into pieces consisting of runs of identical elements
Split[list, test]  Consider adjacent elements as identical if test gives True

‡ Flatten

We first make a table:

450 Mathematica Navigator



a = Table@8x, y, x y, x + y<, 8x, 1, 2<, 8y, 2, 4<D

8881, 2, 2, 3<, 81, 3, 3, 4<, 81, 4, 4, 5<<, 882, 2, 4, 4<, 82, 3, 6, 5<, 82, 4, 8, 6<<<

Flatten removes all inner curly braces { } and so ungroups the list:

at = Flatten@aD

81, 2, 2, 3, 1, 3, 3, 4, 1, 4, 4, 5, 2, 2, 4, 4, 2, 3, 6, 5, 2, 4, 8, 6<

Next, we flatten only the first level:

Flatten@a, 1D

881, 2, 2, 3<, 81, 3, 3, 4<, 81, 4, 4, 5<, 82, 2, 4, 4<, 82, 3, 6, 5<, 82, 4, 8, 6<<

We will use this kind of flattening several times in later chapters.

‡ Partition

Now we partition the flattened list into sublists of four elements:

b = Range@12D 81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12<
Partition@b, 3D 881, 2, 3<, 84, 5, 6<, 87, 8, 9<, 810, 11, 12<<

If we partition into sublists of five elements, the remaining two elements (11 and 12) are dropped:

Partition@b, 5D 881, 2, 3, 4, 5<, 86, 7, 8, 9, 10<<

We then partition with offset 1:

Partition@81, 2, 3, 4, 5, 6<, 3, 1D 881, 2, 3<, 82, 3, 4<, 83, 4, 5<, 84, 5, 6<<

As we saw, a possible incomplete sublist at the end will, by default, be dropped. However, we have
more advanced forms of Partition  that  allow us  to  define  what  to  do  with  an incomplete  sublist.  In
particular, we can define how to pad an incomplete sublist.

How to pad a possible incomplete sublist:

Partition[list, n]  Do not pad: drop an incomplete sublist
Partition[list, n, n, 1]  Pad with elements from the beginning of list

Partition[list, n, n, 1, a]  Pad with repetitions of element a

Partition[list, n, n, 1, padlist]  Pad cyclically with padlist

Partition[list, n, n, 1, {}]  Do not pad: allow an incomplete sublist at the end

Partition@b, 5, 5, 1D

881, 2, 3, 4, 5<, 86, 7, 8, 9, 10<, 811, 12, 1, 2, 3<<
Partition@b, 5, 5, 1, 0D

881, 2, 3, 4, 5<, 86, 7, 8, 9, 10<, 811, 12, 0, 0, 0<<
Partition@b, 5, 5, 1, 8x, y<D

881, 2, 3, 4, 5<, 86, 7, 8, 9, 10<, 811, 12, x, y, x<<
Partition@b, 5, 5, 1, 8<D

881, 2, 3, 4, 5<, 86, 7, 8, 9, 10<, 811, 12<<

‡ Split

Split finds runs of identical elements:

at 81, 2, 2, 3, 1, 3, 3, 4, 1, 4, 4, 5, 2, 2, 4, 4, 2, 3, 6, 5, 2, 4, 8, 6<

Chapter 14  •  Lists 451



Sort@atD 81, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 8<
Split@%D

881, 1, 1<, 82, 2, 2, 2, 2, 2<, 83, 3, 3, 3<, 84, 4, 4, 4, 4, 4<, 85, 5<, 86, 6<, 88<<

If we also count the number of elements in each sublist, we get the so-called run|length encoding:

8First@ÒD, Length@ÒD< & êü %

881, 3<, 82, 6<, 83, 4<, 84, 6<, 85, 2<, 86, 2<, 88, 1<<

To get the original list, do as follows:

ConstantArray@ÒP1T, ÒP2TD & êü % êê Flatten

81, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 6, 6, 8<

The default  test  used by Split  is SameQ  or,  to  write  it  more completely, SameQ[#1, #2]&.  Here, #1

and #2 represent two consecutive elements. Thus, two consecutive elements are put into the same run, if
they  are  considered  the  same.  Consider  some  other  test  functions.  First,  define  a  pair  of  elements  to
belong to the same run if the absolute value of their difference is at most 2:

Split@at, Abs@Ò1 - Ò2D § 2 &D

881, 2, 2, 3, 1, 3, 3, 4<, 81<, 84, 4, 5<, 82, 2, 4, 4, 2, 3<, 86, 5<, 82, 4<, 88, 6<<

Then, consider elements to belong to the same run if they are different:

Split@at, UnsameQD

881, 2<, 82, 3, 1, 3<, 83, 4, 1, 4<, 84, 5, 2<, 82, 4<, 84, 2, 3, 6, 5, 2, 4, 8, 6<<

Now we consider a pair of elements to belong to different runs if the previous element is at most 4 and
the next element is greater than 4:

Split@at, ! HÒ1 § 4 && Ò2 > 4L &D

881, 2, 2, 3, 1, 3, 3, 4, 1, 4, 4<, 85, 2, 2, 4, 4, 2, 3<, 86, 5, 2, 4<, 88, 6<<

Split after each element that equals 4:

Split@at, Ò1 != 4 &D

881, 2, 2, 3, 1, 3, 3, 4<, 81, 4<, 84<, 85, 2, 2, 4<, 84<, 82, 3, 6, 5, 2, 4<, 88, 6<<
a =.; at =.

14.1.5  Reordering

Transpose[list]  or list¨  Transpose the first two levels of list (¨ can be written as ÂtrÂ)

Sort[list]  Sort the elements of list into a standard order
Sort[list, p]  Sort the elements of list using the ordering function p

SortBy[list, f] (Ÿ6)  Sort the elements of list in the order defined by applying f to each of them
Union[list]  Sort the elements and remove any duplicates

Reverse[list]  Reverse the order of elements
Reverse[list, n]  Reverse the order of elements at level n

RotateLeft[list]  Rotate the elements one position to the left; similarly for RotateRight

RotateLeft[list, n]  Rotate the elements n positions to the left
RotateLeft[list, {n1, n2, … }]  Rotate the elements to the left n1 positions at the first level, n2

positions at the second level, …

452 Mathematica Navigator



‡ Sort and Union

Consider the following list:

r = 83, 2, C, b, A, 1, a, 2, B, A, c<

83, 2, C, b, A, 1, a, 2, B, A, c<

We sort the elements into standard order:

r êê Sort 81, 2, 2, 3, a, A, A, b, B, c, C<

Then we sort the elements but also remove any duplicates:

r êê Union 81, 2, 3, a, A, b, B, c, C<

‡ Advanced Sorting

By default, the ordering function that Sort uses is OrderedQ[{#1, #2}]&. Mathematica uses this function
to decide whether two elements are in order. For example,

8OrderedQ@82, 3<D, OrderedQ@83, 2<D<

8True, False<

We can define another ordering function. In the following examples, we order into descending order:

s = 83, 2, 4, 5, 1<;

s êê Sort êê Reverse 85, 4, 3, 2, 1<
Sort@s, OrderedQ@8Ò2, Ò1<D &D 85, 4, 3, 2, 1<
Sort@s, GreaterD 85, 4, 3, 2, 1<
Sort@s, Greater@Ò1, Ò2D &D 85, 4, 3, 2, 1<
Sort@s, Ò1 > Ò2 &D 85, 4, 3, 2, 1<

Next, we order according to absolute value. We can use both Sort and SortBy, the latter being easier:

Sort@8-4, 6, -2, 3<, Abs@Ò1D § Abs@Ò2D &D 8-2, 3, -4, 6<
SortBy@8-4, 6, -2, 3<, AbsD 8-2, 3, -4, 6<

Now we order according to real part:

SortBy@83 - 2 I, 4 I, -5 + 3 I<, ReD 8-5 + 3 Â, 4 Â, 3 - 2 Â<

Consider a nested list:

t = 8830, 2<, 810, 3<, 820, 1<<;

Sort@tD 8810, 3<, 820, 1<, 830, 2<<

By default, the sublists are ordered according to the first element. Then we order the sublists such that
the second elements of the sublists appear in ascending order. Again, SortBy is easier:

Sort@t, Ò1P2T § Ò2P2T &D 8820, 1<, 830, 2<, 810, 3<<
SortBy@t, LastD 8820, 1<, 830, 2<, 810, 3<<

Note that special symbols and structures are not ordered according to their numerical values:

u = :-¶, Sin@2D, ‰, p, 10 , ¶>;

u êê Sort : 10 , ‰, p, -¶, ¶, Sin@2D>

Chapter 14  •  Lists 453



To get the list ordered according to size, do as follows:

Sort@u, LessD :-¶, Sin@2D, ‰, p, 10 , ¶>

14.1.6  Combinatorial Operations

Permutations[list]  Give all possible permutations having all the elements of list (repeated
elements are treated as identical)

Permutations[list, {k}]  Give all permutations having exactly k elements (k|permutations)
Permutations[list, k]  Give all permutations having at most k elements

Subsets[list]  Give all possible subsets (the power set) (repeated elements are treated as distinct)
Subsets[list, {k}]  Give all subsets having exactly k elements (k|combinations)
Subsets[list, k]  Give all subsets having at most k elements

Tuples[list, k]  Give all k|tuples (repeated elements are treated as distinct)
Tuples[{list1, list2, … }]  Give all tuples whose ith element is from listi

See also CombinatoricaêguideêCombinatoricaPackage in the Documentation Center for information about
the Combinatorica` package.

‡ Permutations

Here are all permutations of the elements of a list:

r = 81, 2, 3<;

Permutations@rD

881, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

For a list with n elements, we have n ! permutations. Generate all k|permutations~that is, permutations
having length k, k = 0, 1, 2, 3:

Permutations@r, 80<D 88<<
Permutations@r, 81<D 881<, 82<, 83<<
Permutations@r, 82<D

881, 2<, 81, 3<, 82, 1<, 82, 3<, 83, 1<, 83, 2<<
Permutations@r, 83<D

881, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

For a list with n elements, the number of k|permutations is n ! ê Hn - kL ! or Hn - k + 1Lk  or Pochhammer[n -

k + 1, k]. Generate all permutations having lengths 0, 1, 2, and 3:

Permutations@r, 3D

88<, 81<, 82<, 83<, 81, 2<, 81, 3<, 82, 1<, 82, 3<, 83, 1<,
83, 2<, 81, 2, 3<, 81, 3, 2<, 82, 1, 3<, 82, 3, 1<, 83, 1, 2<, 83, 2, 1<<

Consider a list with repeated elements:

s = 81, 1, 2<;

Now we get only three permutations because repeated elements are treated as identical:

Permutations@sD 881, 1, 2<, 81, 2, 1<, 82, 1, 1<<

454 Mathematica Navigator



‡ Subsets

For subsets, the order of the elements does not matter. Thus, for r, we get the following different subsets:

r = 81, 2, 3<;

Subsets@rD

88<, 81<, 82<, 83<, 81, 2<, 81, 3<, 82, 3<, 81, 2, 3<<

For a set with n elements, we have 2n different subsets; all these together form the so-called power set of
the given set. Next, generate all k|combinations~that is, all subsets having k elements, k = 0, 1, 2, 3:

Subsets@r, 80<D 88<<
Subsets@r, 81<D 881<, 82<, 83<<
Subsets@r, 82<D 881, 2<, 81, 3<, 82, 3<<
Subsets@r, 83<D 881, 2, 3<<

For  a  set  with n  elements,  the  number  of k|combinations  is
n

k
. Repeated  elements  are  treated  as

distinct:

Subsets@81, 1, 2<D

88<, 81<, 81<, 82<, 81, 1<, 81, 2<, 81, 2<, 81, 1, 2<<

As an example, generate six points and plot the points and their connecting lines:

Table@8Cos@2 Pi i ê 6D, Sin@2 Pi i ê 6D<, 8i, 6<D;

Subsets@%, 82<D;

Graphics@8Point@%%D, Line@%D<D

‡ Tuples

Generate, for r, tuples of sizes 0, 1, 2, and 3:

r = 81, 2, 3<;

Tuples@r, 0D 88<<
Tuples@r, 1D 881<, 82<, 83<<
Tuples@r, 2D

881, 1<, 81, 2<, 81, 3<, 82, 1<, 82, 2<, 82, 3<, 83, 1<, 83, 2<, 83, 3<<
Tuples@r, 3D

881, 1, 1<, 81, 1, 2<, 81, 1, 3<, 81, 2, 1<, 81, 2, 2<, 81, 2, 3<,
81, 3, 1<, 81, 3, 2<, 81, 3, 3<, 82, 1, 1<, 82, 1, 2<, 82, 1, 3<, 82, 2, 1<,
82, 2, 2<, 82, 2, 3<, 82, 3, 1<, 82, 3, 2<, 82, 3, 3<, 83, 1, 1<, 83, 1, 2<,
83, 1, 3<, 83, 2, 1<, 83, 2, 2<, 83, 2, 3<, 83, 3, 1<, 83, 3, 2<, 83, 3, 3<<

Chapter 14  •  Lists 455



For a list with n elements, we have nk tuples of size k. Here are all possible results with two dice:

Tuples@Range@6D, 82<D

881, 1<, 81, 2<, 81, 3<, 81, 4<, 81, 5<, 81, 6<, 82, 1<, 82, 2<, 82, 3<,
82, 4<, 82, 5<, 82, 6<, 83, 1<, 83, 2<, 83, 3<, 83, 4<, 83, 5<, 83, 6<,
84, 1<, 84, 2<, 84, 3<, 84, 4<, 84, 5<, 84, 6<, 85, 1<, 85, 2<, 85, 3<,
85, 4<, 85, 5<, 85, 6<, 86, 1<, 86, 2<, 86, 3<, 86, 4<, 86, 5<, 86, 6<<

Next, we generate, from two letters, all words of length three:

StringJoin êü Tuples@8"a", "b"<, 83<D

8aaa, aab, aba, abb, baa, bab, bba, bbb<

Repeated elements are treated as distinct:

Tuples@81, 1, 2<, 2D

881, 1<, 81, 1<, 81, 2<, 81, 1<, 81, 1<, 81, 2<, 82, 1<, 82, 1<, 82, 2<<

As an example, generate the corner points of a unit cube, from all pairs of the points, and draw the
points and the connecting lines between points:

Tuples@80, 1<, 3D

880, 0, 0<, 80, 0, 1<, 80, 1, 0<, 80, 1, 1<, 81, 0, 0<, 81, 0, 1<, 81, 1, 0<, 81, 1, 1<<
Subsets@%, 82<D;

Graphics3D@8AbsolutePointSize@4D, Point@%%D, Line@%D<, Boxed Ø FalseD

Form all possible tuples from two or three lists:

Tuples@881, 2, 3<, 8a, b<<D

881, a<, 81, b<, 82, a<, 82, b<, 83, a<, 83, b<<
Tuples@881, 2<, 8a, b<, 8A, B<<D

881, a, A<, 81, a, B<, 81, b, A<, 81, b, B<, 82, a, A<, 82, a, B<, 82, b, A<, 82, b, B<<

We could also use Distribute:

Distribute@881, 2, 3<, 8a, b<<, ListD

881, a<, 81, b<, 82, a<, 82, b<, 83, a<, 83, b<<

With Outer we get a more structured list:

Outer@List, 81, 2, 3<, 8a, b<D

8881, a<, 81, b<<, 882, a<, 82, b<<, 883, a<, 83, b<<<

456 Mathematica Navigator



14.1.7  Searching Elements

‡ Searching with a Test

Select[list, test]  Select the elements of list for which test gives True

Select[list, test, n]  Select the first n elements

With Select,  we can search for  elements  that  satisfy a  logical  test.  Logical  tests  were mentioned in

Section 13.3.5, p. 431. Tests useful with Select include the following:

==, !=, <, £, >, , Negative, Nonnegative, Positive,
NumericQ, IntegerQ, EvenQ, OddQ, FreeQ, MemberQ.

In  general,  a  test  used in Select  is  written as  a  pure  function,  such as Select[c, EvenQ[#]&]  (for

pure functions, see Sections 2.2.2, p. 38, and 17.1.4, p. 520). The argument of a pure function is written as

#, and at the end we write &. However, simple built|in tests with one argument can be written without #

and &  so  that  we  can  write  simply Select[c, EvenQ].  More  complicated  built|in  tests  that  use  two
arguments have to be written as pure functions; for example, Select[c, # < 2 &].

The built|in tests can be combined with logical operations such as &&  (and), ||  (or), and !  (not) (see

Section  13.3.5,  p. 431).  Such  combined  tests  also  have  to  be  written  as  pure  functions;  for  example,

Select[c, EvenQ[#] && Positive[#] &].

To demonstrate, we throw a die 20 times and select the results that satisfy various tests:

a = RandomInteger@81, 6<, 820<D

82, 4, 3, 5, 4, 1, 4, 5, 6, 2, 4, 6, 4, 1, 3, 2, 4, 2, 1, 3<
Select@a, EvenQD 82, 4, 4, 4, 6, 2, 4, 6, 4, 2, 4, 2<
Select@a, EvenQ@ÒD && Ò ¥ 4 &D 84, 4, 4, 6, 4, 6, 4, 4<
Select@a, 2 § Ò § 4 &D 82, 4, 3, 4, 4, 2, 4, 4, 3, 2, 4, 2, 3<
Select@a, Ò == 1 »» Ò ã 6 &D 81, 6, 6, 1, 1<

In nested lists, a part specification may be needed:

b = Table@8i, RandomReal@D<, 8i, 5<D

881, 0.179938<, 82, 0.0702301<, 83, 0.900999<, 84, 0.274275<, 85, 0.799332<<
Select@b, ÒP2T § 0.5 &D

881, 0.179938<, 82, 0.0702301<, 84, 0.274275<<

‡ Searching with a Pattern

Count[list, pattern]  Give the number of elements in list that match pattern

Cases[list, pattern]  Give the elements of list that match pattern

DeleteCases[list, pattern]  Remove the elements of list that match pattern

These commands are considered in Section 16.1.1, p. 493, so here we consider them only briefly. A tru

pattern  is  formed  with  the  underscore  (_),  but  simple  expressions  such  as 6, x,  or {1, 2}  can  also  be
considered as patterns: They are degenerate patterns. We count the number of sixes and results that are
at least 4:

Chapter 14  •  Lists 457



Count@a, 6D 2

Cases@a, x_ ê; x ¥ 4D 84, 5, 4, 4, 5, 6, 4, 6, 4, 4<

14.1.8  Searching Positions

‡ Searching Positions with a Pattern

Position[list, pattern]  Give the positions at which objects matching pattern occur in list

Extract[list, positions]  Extract the parts at the given positions

Position is considered in more detail in Section 16.1.1, p. 493. Here, we give only one example. In th

sequence of tosses presented in Section 14.1.7, sixes occurred at the following times:

Position@a, 6D 889<, 812<<
Extract@a, %D 86, 6<
Clear@a, bD

‡ Searching the Positions of the Smallest through Largest Elements

Ordering[list]  Give the positions of all elements of Sort[list] in list

Ordering[list, n]  Give the positions of the first n elements of Sort[list] in list

Ordering[list, -n]  Give the positions of the last n elements in Sort[list] in list

Ordering[list, 1]  Give the position of the smallest element in list

Ordering[list, -1]  Give the position of the largest element in list

Consider the following list and its sorted version:

c = 813, 16, 14, 15, 11, 12<;

sc = Sort@cD 811, 12, 13, 14, 15, 16<

Ordering gives the following list:

Ordering@cD 85, 6, 1, 3, 4, 2<

This means that the first element of sc  (the smallest element of c) is the fifth element of c,  the second-
smallest element of c is the sixth element of c, and so on, with the largest element of c being the second
element of c. The sorted list can be obtained as follows:

cP%T 811, 12, 13, 14, 15, 16<

The position of the smallest element and the smallest element itself are as follows:

8minpos = Ordering@c, 1DP1T, cPminposT< 85, 11<

Another way to get the position of the smallest element is to write the following:

Position@c, Min@cDDP1, 1T 5

The position of the largest element and the largest element itself are as follows:

8maxpos = Ordering@c, -1DP1T, cPmaxposT< 82, 16<

Another way to get the position of the largest element is to write the following:

Position@c, Max@cDDP1, 1T 2

458 Mathematica Navigator



c =.

14.1.9  Operations on Several Lists

Join[list1, list2, … ]  Concatenate the lists together
Union[list1, list2, …]  or list1 ‹ list2 ‹ …  Give a sorted list of all distinct elements that

appear in any of the lists
Intersection[list1, list2, … ]  or list1 › list2 › …  Give a sorted list of all distinct elements

common to all lists
Complement[list0, list1, list2, … ]  Give a sorted list of all distinct elements of list0 that are

not in any of the other lists

Here, ‹ can be written as ÂunÂ and › as ÂinterÂ. With Union, Complement, and Intersection

we can use the option SameTest to define a test to be used for deciding whether two elements should be
considered the same.

e = 8r, 3, 1, p, 2, r, 2, q<;
f = 8A, C, p, A, B, 3<;

Join@e, fD 8r, 3, 1, p, 2, r, 2, q, A, C, p, A, B, 3<
Union@e, fD 81, 2, 3, A, B, C, p, q, r<
Complement@e, fD 81, 2, q, r<
Union@83, -2, -4, -3, 2<, SameTest Ø HAbs@Ò1D == Abs@Ò2D &LD

8-4, -3, -2<
Clear@e, fD

14.2  Advanced List Manipulation

14.2.1  Mapping the Elements

‡ Basic Mapping

Suppose we have a list such as

t = 8a, b, c<;

and we want to map each element of the list with a function. One way to do this is to use Table:

Table@f@tPiTD, 8i, 3<D 8f@aD, f@bD, f@cD<

However, we can also use Table in a special way:

Table[expr, {x, {x1, x2, … }}] (Ÿ6)  Form a list by giving, in expr, x the values x1, x2, …

Table@f@xD, 8x, t<D 8f@aD, f@bD, f@cD<

In addition to Table, we also have Map and its shortened form /@:

Map[expr &, {x1, x2, … }]  Form a list by giving, in expr, # the values x1, x2, …
expr & /@ {x1, x2, … }  Form a list by giving, in expr, # the values x1, x2, …

Chapter 14  •  Lists 459



Map  or /@  is  one  of  the  most  useful  commands  of Mathematica.  With  map,  we  can  apply  a  given
function to each element (at  the first  level)  of  a  list.  The function to be mapped is  expressed as a pure

function (for pure functions, see Sections 2.2.2, p. 38, and 17.1.4, p. 520). The argument of the function is

# and at the end of the function we have &. We can map the elements of t in either of the following ways:

Map@f@ÒD &, tD 8f@aD, f@bD, f@cD<
f@ÒD & êü t 8f@aD, f@bD, f@cD<

As another example, take the logarithm of each element:

Map@Log@ÒD &, tD 8Log@aD, Log@bD, Log@cD<
Log@ÒD & êü t 8Log@aD, Log@bD, Log@cD<

However,  when  the  function to  be  mapped is  a  built|in  function,  such as Log,  the  argument  of  the
pure function need not be written:

Log êü t 8Log@aD, Log@bD, Log@cD<

Note  that  often  we  can  calculate  with  lists  very  simply  without Map  because Mathematica  does  all
operations automatically element by element:

Log@tD 8Log@aD, Log@bD, Log@cD<

t^2 + 1 91 + a2, 1 + b2, 1 + c2=
Map is very useful for more complicated list manipulation, and we will use it frequently in this book.

Next, we consider some examples.

‡ Matrix Manipulation

Consider the matrix

m = 881, 2, 3<, 8a, b, c<, 8A, B, C<<;

Reverse reverses the order of the rows:

Reverse@mD 88A, B, C<, 8a, b, c<, 81, 2, 3<<

However, to reverse each of the rows, write

Reverse êü m 883, 2, 1<, 8c, b, a<, 8C, B, A<<

To sort the elements of each row of the previous matrix, write

Sort êü % 881, 2, 3<, 8a, b, c<, 8A, B, C<<

The first row of m can be taken with mP1T, but to take the first column, pick the first element of each row
with

ÒP1T & êü m 81, a, A<

or with mPAll, 1T.

‡ Gradient

To calculate the gradient of a function, we have D:

D@x y z, 88x, y, z<<D 8y z, x z, x y<

However, we can also write the following:

D@x y z, ÒD & êü 8x, y, z< 8y z, x z, x y<

460 Mathematica Navigator



‡  Frequencies

To calculate frequencies, we have Tally:

u = RandomInteger@81, 6<, 820<D

84, 1, 4, 5, 6, 3, 3, 6, 6, 5, 6, 6, 2, 2, 5, 5, 1, 5, 6, 1<
Tally@uD êê Sort

881, 3<, 82, 2<, 83, 2<, 84, 2<, 85, 5<, 86, 6<<

However, we can also write the following:

8Ò, Count@u, ÒD< & êü Range@6D

881, 3<, 82, 2<, 83, 2<, 84, 2<, 85, 5<, 86, 6<<

‡ Run|length Encoding

Consider the following list:

u = RandomInteger@1, 820<D

81, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0<

Split it into runs of identical elements:

Split@uD

881<, 80, 0<, 81, 1, 1<, 80, 0, 0, 0<, 81<, 80<, 81, 1, 1<, 80, 0, 0, 0, 0<<

Then form the run|length encoding of u by forming a list of pairs of numbers where the first number is
the element of the run in consideration and the second number the length of the run:

8First@ÒD, Length@ÒD< & êü %

881, 1<, 80, 2<, 81, 3<, 80, 4<, 81, 1<, 80, 1<, 81, 3<, 80, 5<<

The decoding can be done as follows:

ConstantArray@ÒP1T, ÒP2TD & êü % êê Flatten

81, 0, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 0<

‡ Special Mappings

Map[f, list, levspec]  Apply f to each element at the specified levels of list

MapAt[f, list, parts]  Apply f to the specified parts of list

MapAll[f, list]  Apply f to all parts of list

These  special  mapping  commands  are  not  at  all  important.  Level  specifications  were  considered in

Section 13.2.3, p. 427. The default level in Map  is {1}, which means that each element at the first level is

mapped.

m = 881, 2, 3<, 8a, b, c<, 8A, B, C<<;

Map@ToString, m, 82<D êê InputForm

{{"1", "2", "3"}, {"a", "b", "c"}, {"A", "B", "C"}}

MapAt@Ò^2 &, m, 3D

981, 2, 3<, 8a, b, c<, 9A2, B2, C2==

Chapter 14  •  Lists 461



MapIndexed[f, list]  Apply f to the elements of list, putting the part specification of each
element as a second argument to f

Scan[f, list]  Apply f to each element in list, but do not form a list from the results

MapIndexed@f@Ò1, Ò2D &, 8a, b, c<D

8f@a, 81<D, f@b, 82<D, f@c, 83<D<
MapIndexed@1 ê H1 + Ò1L^Ò2P1T &, 81, 2, 3<D

:
1

2
,
1

9
,

1

64
>

Scan@Print@"The divisors of ", Ò, " are ", Divisors@ÒDD &, 815, 16, 17<D

The divisors of 15 are 81, 3, 5, 15<
The divisors of 16 are 81, 2, 4, 8, 16<
The divisors of 17 are 81, 17<

14.2.2  Changing the Head

‡ How to Change the Head

Consider the internal forms of a list, sum, and product:

8a, b, c< êê FullForm List@a, b, cD
a + b + c êê FullForm Plus@a, b, cD
a b c êê FullForm Times@a, b, cD

We  can  see  that  the  internal  forms  are  very  similar:  Only  the  head  of  the  expression  is  different  (for

heads, see Section 13.2.3, p. 426). Therefore, if we had a command to change the head of an expression,

we would easily do various changes to expressions. Apply is such a command.

Apply[head, list]  or head @@ list  Replace the head List of list with head

The only thing Apply does is change the head:

t = 8a, b, c<;

Apply@head, tD head@a, b, cD
head üü t head@a, b, cD

Then change the head to Plus, Times, and And:

8Plus üü t, Times üü t, And üü t<

8a + b + c, a b c, a && b && c<

In the following table, we have collected useful applications of Apply:

Apply[Plus, list]  Calculate the sum of the elements of list; also Total[list]

Apply[Times, list]  Calculate the product of the elements of list

Apply[And, list]  Calculate the logical AND of the elements of list

Apply[List, sum]  Form a list from the terms of sum

462 Mathematica Navigator



‡ Level Specifications

Apply[head, list, {1}]  or head @@@ list  Replace the head at level 1
Apply[head, list, levspec]  Replace the head at the specified levels

Level  specifications  were  considered  in Section  13.2.3,  p. 427.  For  example,  level  specification  {0}

means the whole expression, {1} means the parts of the expression at level 1, and {0, 1} means the parts
at  levels  0  and  1.  The  default  level  of Apply  is  {0},  which  means  that Apply  replaces  the  head  of  the
whole expression. As an example, we calculate column and row sums and the sum of all elements of a
matrix:

m = 881, 2, 3<, 8a, b, c<, 8A, B, C<<;

Apply@Plus, mD 81 + a + A, 2 + b + B, 3 + c + C<
Apply@Plus, m, 81<D 86, a + b + c, A + B + C<
Apply@Plus, m, 80, 1<D 6 +a +A +b +B +c +C

As another example, factor an integer:

fac = FactorInteger@1 234 800D

882, 4<, 83, 2<, 85, 2<, 87, 3<<

This means that 1 234 800 = 24 32 52 73. Suppose we are given this factorization and we have to construct
the original number. Let us see how Mathematica represents a power:

a^b êê FullForm Power@a, bD

Thus, the head is Power. So, we have to change the head List of the pairs of numbers (which are at level
1) to the head Power and then multiply the powers:

Power üüü fac 816, 9, 25, 343<
Times üü % 1 234 800

By the way, a formula such as 24 32 52 73 can be obtained as follows:

CenterDot üü HSuperscript üüü facL 24
ÿ 32

ÿ 52
ÿ 73

14.2.3  Sequences

‡ Sequences

Suppose we want to calculate, with Plus, the sum of a, b, and c. Compare the following two commands:

Plus@8a, b, c<D 8a, b, c<
Plus@a, b, cD a +b +c

We see that the arguments of Plus cannot be within a list: The arguments have to be loose. In Mathemat-
ica, it is said that the arguments a, b, and c in Plus[a, b, c] form a sequence. Thus, a sequence is like a
list but the braces { } are lacking. We can form a sequence with Sequence:

Sequence@a, b, cD Sequence@a, b, cD

However, the result is not a, b, c but Sequence[a, b, c]. We get the result a, b, c only inside another
expression:

8v, x, Sequence@a, b, cD, y, z< 8v, x, a, b, c, y, z<

Chapter 14  •  Lists 463



Suppose, in general, that we have a multivariate function f where the arguments have to be loose~
that is, they form a sequence. Thus, the function has to be called like f[x, y, … ], not like f[{x, y, … }].
Apply  is  a  command  that  enables  us  to  calculate  the  value  of  the  multivariate  function  even  if  the
arguments are supplied in the form of a list. Indeed, a more general syntax of Apply is the following:

Apply[f[##]&, {x, y, … }]  Calculate f[x, y, … ]

Here, ## represents all of the arguments of f. A simple example:

Plus@ÒÒD & üü 8a, b, c< a +b +c

‡ Example: Multiple Iteration Specifications

An  application  of  the  more  general  syntax  of Apply  is  with  commands  such  as Table, Do, Sum,  or
Integrate that sometimes have several iteration specifications. Suppose we want to calculate

‚
i1=1

3

‚
i2=1

3

‚
i3=1

3

Hi1 + i2 + i3L

In this example, it is simple to write

Sum@i1 + i2 + i3, 8i1, 3<, 8i2, 3<, 8i3, 3<D 162

Note that the three iteration specifications have to form a sequence~that is, they cannot be within a list:

Sum@i1 + i2 + i3, 88i1, 3<, 8i2, 3<, 8i3, 3<<D

8H1 - i2 + i3L Hi1 + i2 + i3L, i1 + i2 + i3<

Suppose now that we have the iteration specifications as a list:

iter = Table@8ij, 3<, 8j, 3<D

88i1, 3<, 8i2, 3<, 8i3, 3<<

Note again that we cannot write

Sum@i1 + i2 + i3, iterD

Sum::itform : Argument iter at position 2 does not have the correct form for an iterator. à

Sum@i1 + i2 + i3, iterD

Instead, we can use Apply and write

Sum@i1 + i2 + i3, ÒÒD & üü iter 162

because now the iteration specifications appear as a sequence in Sum. So we get the following command:

Sum@i1 + i2 + i3, 8i1, 3<, 8i2, 3<, 8i3, 3<D 162

We could also write

Sum@i1 + i2 + i3, Evaluate@Sequence üü iterDD 162

Here,  we  changed  the list  of  iteration  specifications  into  a sequence  with Apply  by  changing  the  head
List of iter to the head Sequence. In addition, Sum requires the use of Evaluate to get explicit iteration
specifications.

‡ Example: Stirling Numbers

Stirling numbers of the second kind Sn
IkM

 can be calculated with StirlingS2[n, k]:

464 Mathematica Navigator



StirlingS2@7, 3D 301

Let us try to calculate these numbers from (see Trott, 2004b, p. 717)

Sn
HkL

=
n!

k !
‚
r1=1

n

‚
r2=1

n-r1

‚
rk=1

n-r1-…-rk-1
dn,⁄j=1

k r j

P
j=1

k
r j !

Here, d  is  the  Kronecker d:  It  is  1  if  all  the arguments  are equal  and 0  otherwise.  Note  that  we have k
indices of summation. How can we write such a general number of summation indices? The solution is
to  form  a list  of  summation  specifications  with Table  and  then  feed  the  specifications  into Sum  in  a
sequence form with Apply:

stirlingS2@n_, k_D :=

n!

k!
SumB

KroneckerDeltaAn, ⁄j=1
k rjE

¤j=1
k rj!

, ÒÒF & üü TableB:ri, n -‚
j=1

i-1

rj>, 8i, k<F

stirlingS2@7, 3D 301

14.2.4  Mapping Two Lists

‡ Threading

Thread[f[{a, b, c}, {A, B, C}]] {f[a, A], f[b, B], f[c, C]}

MapThread[f, {{a, b, c}, {A, B, C}}] {f[a, A], f[b, B], f[c, C]}

The  results  of Thread  and MapThread  are  the  same,  but  the  way  the  two  lists  are  inputted  differs.
Some  examples  follow. Thread  also  has  applications  in  manipulating  equations  (see Section  22.2.3,  p.

725).

‡ Constructing Explicit Lists of Rules

Note that the following does not work:

a + b + c ê. 8a, b, c< Ø 8A, B, C< a +b +c

We have to use an explicit list of rules:

a + b + c ê. 8a Ø A, b Ø B, c Ø C< A +B +C

With Thread  we can construct such a list of substitutions; we could also use MapThread,  but Thread  is
simpler:

Thread@8a, b, c< Ø 8A, B, C<D 8a Ø A, b Ø B, c Ø C<
MapThread@Rule, 88a, b, c<, 8A, B, C<<D 8a Ø A, b Ø B, c Ø C<

Thus, write as follows:

a + b + c ê. Thread@8a, b, c< Ø 8A, B, C<D A +B +C

‡ Constructing Explicit Lists of Equations

Note that Solve does not need an explicit list of equations:

Chapter 14  •  Lists 465



Solve@8x + y, y + z, x + z< == 81, 0, 1<D

88x Ø 1, y Ø 0, z Ø 0<<

However, an explicit list of equations can be obtained with Thread or MapThread:

Thread@8x + y, y + z, x + z< == 81, 0, 1<D

8x + y ã 1, y + z ã 0, x + z ã 1<
MapThread@Equal, 88x + y, y + z, x + z<, 81, 0, 1<<D

8x + y ã 1, y + z ã 0, x + z ã 1<

‡ Other Examples

Form pairs with a constant second element:

Thread@88a, b, c<, 1<D 88a, 1<, 8b, 1<, 8c, 1<<

Calculate the pairwise maximums of two lists:

MapThread@Max, 882, 3, 1, 4<, 83, 1, 2, 3<<D 83, 3, 2, 4<

‡ Inner and Outer Products

Inner[f, {a, b, c}, {A, B, C}] f[a, A] + f[b, B] + f[c, C]

Inner[f, {a, b, c}, {A, B, C}, g] g[f[a, A], f[b, B], f[c, C]]

Outer[f, {a, b, c}, {A, B, C}] {{f[a, A], f[a, B], f[a, C]},

 {f[b, A], f[b, B], f[b, C]},

 {f[c, A], f[c, B], f[c, C]}}

With Inner, we can form the inner product of two vectors. For a simple function such as Times, the
name of the function suffices, although we could also write two arguments for the pure function:

Inner@Times, 8a, b, c<, 8A, B, C<D a A +b B +c C

Inner@Times@Ò1, Ò2D &, 8a, b, c<, 8A, B, C<D a A +b B +c C

An easier way, however, is to use the dot:

8a, b, c<.8A, B, C< a A +b B +c C

Inner can have a function as the fourth argument. The default of this function is Plus:

Inner@f, 8a, b, c<, 8A, B, C<, PlusD

f@a, AD + f@b, BD + f@c, CD

With Outer, we can calculate the outer product of two vectors:

Outer@Times, 8a, b, c<, 8A, B, C<D

88a A, a B, a C<, 8A b, b B, b C<, 8A c, B c, c C<<

We then form all pairs of the elements of two lists:

Outer@List, 8a, b, c<, 8A, B, C<D

888a, A<, 8a, B<, 8a, C<<, 88b, A<, 8b, B<, 8b, C<<, 88c, A<, 8c, B<, 8c, C<<<

With Tuples of Distribute we get a nonnested list of pairs:

Tuples@88a, b, c<, 8A, B, C<<D

88a, A<, 8a, B<, 8a, C<, 8b, A<, 8b, B<, 8b, C<, 8c, A<, 8c, B<, 8c, C<<

466 Mathematica Navigator



15
Tables

Introduction 467

15.1  Basic Tabulating 467

15.1.1  TableForm 467 TableForm, PaddedForm

15.1.2  Column and Row 469 Column, Row

15.2  Advanced Tabulating 470

15.2.1  Introduction to Grid and Its Options 470 Grid

15.2.2  Options of Grid 475 Alignment, Dividers, Spacings, ItemStyle, Background, Frame, etc.

 Introduction

Why are numbers beautiful? It is like asking why is Beethoven’s Ninth Symphony beautiful.
If you don’t see why, someone can’t tell you.

I know numbers are beautiful. If they aren’t beautiful, nothing is.~Paul Erdös

Tabular  representation  of  data  has  proved  to  be  an efficient  way to  transmit  information. Mathematica
has good tools for preparing tables. TableForm is familiar from earlier versions of Mathematica, whereas
Grid, Column,  and Row  are  new  in  version  6. Grid  is  versatile  and  powerful  for  even  complex  tables,
giving the possibility of detailed formatting.

15.1  Basic Tabulating

15.1.1  TableForm

The main commands used to tabulate lists are TableForm and Grid. Of these, TableForm is an elemen-
tary tabulating command that can be used to adjust the spacings between the items, to give headings to
rows  and  columns,  and  to  also  tabulate  three-  and  higher-dimensional  lists. Grid  is  an  advanced
tabulating command with which we can adjust the table in numerous ways, for example, with dividers

and frames. First, we consider TableForm; Grid is addressed in Section 15.2, p. 470.

TableForm[list]  Form a table from list

Options:
TableAlignments  Alignment of elements in horizontal and vertical directions; examples of values:

Automatic (means {Left, Baseline}), Right, Decimal, ".", {Center, Baseline}, {Right,
Bottom}

TableSpacing  Space between rows and columns; examples of values: Automatic (means, for a 2D
list, {1, 1}), {1, 2}

TableHeadings  Labels for rows and columns; examples of values: {None, None, None, None, … },
Automatic (means consecutive integers), {None, {"Col1", "Col2", "Col3"}}



g
TableDepth  Up to what level the tabular form is used; examples of values: ¶, 2
TableDirections  How to arrange each dimension (as a row or column); examples of values:

{Column, Row, Column, Row, … }, {Row, Column}

We try TableForm for a 1D, 2D, and 3D list:

m1 = 832, 214, 5<;
m2 = 8832.7, 8.39, -412.64<, 84.5, -56.2163, -7.606<<;
m3 = 8881, a<, 82, b<, 83, c<<, 884, d<, 85, e<, 86, f<<<;
8TableForm@m1D, TableForm@m2D, TableForm@m3D<

:
32

214

5

,
32.7 8.39 -412.64

4.5 -56.2163 -7.606
,

1

a

2

b

3

c

4

d

5

e

6

f

>

For decimal numbers, alignment according to the decimal point is useful:

TableForm@m2, TableAlignments Ø DecimalD
32.7 8.39 -412.64

4.5 -56.2163 -7.606

For integers, right alignment is suitable:

TableForm@Table@8n!, H2 nL!, H3 nL!<, 8n, 4<D, TableAlignments Ø RightD
1 2 6

2 24 720

6 720 362 880

24 40 320 479 001 600

For a higher-dimensional table, it may be advantageous to adjust the spacing and directions:

8TableForm@m3, TableSpacing Ø 82, 3, 0<D,
TableForm@m3, TableSpacing Ø 83, 3, 1<, TableDirections Ø 8Column, Row, Row<D<

:
1
a

2
b

3
c

4
d

5
e

6
f

,
1 a 2 b 3 c

4 d 5 e 6 f
>

Here are some examples of TableHeadings:

TableForm@m2, TableHeadings Ø AutomaticD
1 2 3

1 32.7 8.39 -412.64

2 4.5 -56.2163 -7.606

TableForm@m2, TableHeadings Ø 8None, 8"Col. 1 ", "Col. 2 ", "Col. 3"<<D
Col. 1 Col. 2 Col. 3

32.7 8.39 -412.64

4.5 -56.2163 -7.606

TableForm@m2, TableHeadings Ø 8Automatic, 8"Col. 1 ", "Col. 2 ", "Col. 3"<<D
Col. 1 Col. 2 Col. 3

1 32.7 8.39 -412.64

2 4.5 -56.2163 -7.606

468 Mathematica Navigator



TableForm@m2,
TableHeadings Ø 88"Row 1", "Row 2"<, 8"Col. 1 ", "Col. 2 ", "Col. 3"<<D êê Text

Col. 1 Col. 2 Col. 3

Row 1 32.7 8.39 -412.64

Row 2 4.5 -56.2163 -7.606

PaddedForm[TableForm[list], {n, f}]  Align all numbers right; reserve space for n digits for all
numbers, with f of them for decimals

To align columns with the decimal point, use PaddedForm to define a fixed space for the decimals:

8TableForm@m2D, PaddedForm@TableForm@m2D, 86, 3<D<
: 32.7 8.39 -412.64

4.5 -56.2163 -7.606
,

32.700 8.390 -412.640

4.500 -56.216 -7.606
>

If necessary, the decimal digits are shortened and zeros are added to fill the fixed space of the decimals;
the  decimal  point  and  the  possible  sign  are  not  counted  in  the  total  space. PaddedForm  has  several
options that  we do not explore here.  We only note that  if  you do not want the filling zeros after short
decimal parts, use the option NumberPadding Ø {" ", " "}.

15.1.2  Column and Row

Column[v] (Ÿ6)  Form a column from a list
Column[v, alignment]  Align columns in the specified way
Column[v, alignment, spacings]  Leave the specified spaces between the rows

Column  has  the same options as Grid,  with the following exceptions.  For Grid,  the default  value of
Alignment  is {Center, Baseline},  but  for Column  the  default  value  is {Left, Baseline}.  Thus,  the
elements  in  the  column  are,  by  default,  aligned  left.  In  addition, Column  also  has  the  special  option
ColumnAlignments,  with  default  value Left.  However,  usually  we  do  not  need  either Alignment  or
ColumnAlignments  because we can simply add to the command a  second argument that  indicates the
alignment. The alignment can be Left, Center, Right, and "c" (where c is a character).

v = Table@Binomial@n, iD, 8n, 0, 3<, 8i, 0, n<D
881<, 81, 1<, 81, 2, 1<, 81, 3, 3, 1<<
8Grid@vD, Column@vD, Column@v, Center, 0.6D<

:

1

1 1

1 2 1

1 3 3 1

,

81<
81, 1<
81, 2, 1<
81, 3, 3, 1<

,

81<
81, 1<

81, 2, 1<
81, 3, 3, 1<

>

8Column@Table@n!, 8n, 10, 12<D, Right, Frame Ø TrueD,
Column@Table@Exp@xD, 8x, 2., 6, 2<D, ".",
Dividers Ø All, Background Ø Lighter@Green, 0.7DD< êê Text

:
3 628 800

39 916 800

479 001 600

,

7.38906

54.5982

403.429

>

Row[v] (Ÿ6)  Form a row from a list (word wrap if necessary)
Row[v, separator]  Insert the given separator between elements

Chapter 15  •  Tables 469



Row  does  not  have  any  options.  Without  a  separator  the  elements  are  written  side  by  side  with  no
space  in  between.  The  separator  is  typically  a  string  such  as "  "  or ",  ";  it  can  also  be  given  in
printer’s points with Spacer:

v = Table@Exp@xD, 8x, 2., 6, 2<D
87.38906, 54.5982, 403.429<
Row@vD êê Text

7.3890654.5982403.429

Row@v, ", "D êê Text

7.38906, 54.5982, 403.429

Row@v, " "D êê Text

7.38906 54.5982 403.429

Row@v, Spacer@8DD êê Text

7.38906 54.5982 403.429

15.2  Advanced Tabulating

15.2.1  Introduction to Grid and Its Options

‡ Creating Tables

Grid[m] (Ÿ6)  Form a table from a 2D list
Grid[m] // Text  Format the items as text

With Grid, we can show 2D lists in a tabular form:

m = 886, 21.2, 3.05, 64.2<, 834, 9.582, 143.17, 8.702<, 8985, 0.6914, 70.4, 126.6<<;
m2 = Table@Binomial@n, iD, 8n, 0, 3<, 8i, 0, n<D
881<, 81, 1<, 81, 2, 1<, 81, 3, 3, 1<<
8Grid@mD, Grid@mD êê Text, Grid@m2D<

:
6 21.2 3.05 64.2

34 9.582 143.17 8.702

985 0.6914 70.4 126.6

,

6 21.2 3.05 64.2

34 9.582 143.17 8.702

985 0.6914 70.4 126.6

,

1

1 1

1 2 1

1 3 3 1

>

The  first  two  examples  show  that  the  default  is  that  the  items  in  each  column  are  centered.  The  last
example shows that the rows of the list need not be of the same length.

Next,  we begin the study of  the many options of Grid.  We list  the options and show some general

rules for using them. In Section 15.2.2, p. 475, we study each option in detail.

‡ Options of Grid

Here are the options of Grid. We have tried to classify the options with respect to importance: Options
with ** are assumed to be the most important, options with * are assumed to be not as important, and
options without an asterisk are assumed to be seldom used.

470 Mathematica Navigator



Options of Grid:

** Alignment  Horizontal and vertical alignment of items; examples of values: {Center, Baseline}
(columns are centered, rows are at baseline), Left (columns are aligned left), Right (columns are
aligned right), "." (columns are aligned at the decimal point). In horizontal (or column) alignment,
we can use Left, Center, Right, and "c" (where c is a character). In vertical (or row) alignment,
we can use Bottom, Center, Baseline, and Top.

** Dividers  Where to draw lines; examples of values: None, All (all items become boxed), Center
(all interior dividers), {None, All} (no column lines, all row lines, lines also before the first row
and after the last row), {2 Ø True} (a line after the first column), {None, 2 Ø True} (a line below
the first row), {2 Ø True, 2 Ø True} (a line after the first column and below the first row)

** Spacings  Space between columns and rows (in units of the current font size); examples of
values: Automatic (usually means {0.7, 0.4}: the space between columns is 0.7 and that between
rows is 0.4), 1.2 (the space between columns is 1.2 and that between rows is the default 0.4)

** ItemStyle  Styles of columns and rows; examples of values: None, Blue (all items are blue), {1 Ø

Red} (the first column is red), {Automatic, 1 Ø Bold} (the first row is bold), {1 Ø Directive[Red,

Bold, 14]} (the first column is red, bold, and size 14), {1 Ø Bold, 1 Ø Bold} (the first column and
row are bold)

* Background  Colors of the background; examples of values: None, GrayLevel[0.9] (all items are
gray), {Automatic, {{ White, LightGray}}} (columns are as default, rows alternate between
white and gray)

** Frame  Where to draw frames; examples of values: None, True (frame around the whole grid), All
(all items become boxed), {All} (frame around each column), {None, All} (frame around each
row)

FrameStyle  Style of frames and dividers; examples of values: Automatic, Red, Directive[Gray,
Thickness[2]]

ItemSize  Width and height of each item; examples of values: Automatic (separately size items to fit
within the total formatting width; long items may take several lines), All (make all items the same
width and height), Full (allow each item its full width and height; long items are not divided into
several lines), w (give all items width w, measured in ems), {w, h} (give all items width w and
height h, with h measured in line heights)

BaseStyle  Base style specifications for the grid; examples of values: {}, Blue (all items are blue),
Directive[Red, Bold, Italic] (all items are red, bold, and italic)

BaselinePosition  How the grid should be positioned inside text; examples of values: Automatic
(means Axis), Axis (axis of the middle row in the grid), Baseline (baseline of the middle row in
the grid), Bottom (bottom of the whole grid), Center (halfway from top to bottom), Top (top of the
whole grid)

Note that the examples of values of the options in the previous table are very simple. More advanced
forms for the options exist, as is explained next.

‡ General Forms of the Values of Options

With  the  exception  of BaselinePosition, BaseStyle, FrameStyle,  and Spacings,  the  values  of  the
options can be of the forms given in the next box.

Chapter 15  •  Tables 471



Values of options can be given as follows:

val  Apply val for all items
{valc}  Apply valc for columns
{valc, valr}  Apply valc for columns and valr for rows

The values valc and valr can be of the forms given in the following box:

Values valc and valr can be a single value or a list of values of the following general form:

9a1, …, ak, 9b1, …, bl= , c1, …, cm=  Apply a1, …, ak at the beginning, c1, …, cm at the end, and cyclically

the sequence b1, …, bl in between

• Some typical special cases are as follows:

9a1, …, ak, 8 < , c1, …, cm=  Apply the default value in between

9a1, …, ak, 9b1, …, bl= =  Apply cyclically b1, …, bl through the end

9a1, …, ak=  Apply a1, …, ak at the beginning and then the default value

8a1<  Apply a1 at the beginning and then the default value

99b1, …, bl= =  Apply cyclically b1, …, bl

98b1, b2< =  Apply cyclically b1 and b2~that is, alternate between b1 and b2

88b1<<  or b1  Apply repeatedly b1

The forms of the options are very flexible but, as such, it requires some time to get used to them. In
the  following  examples,  we  illustrate  the  various  forms  of  the  options.  After  that,  we  study,  in  some
detail, most of the options.

‡ Example 1

To practice the forms of the options, we consider the following matrix:

w = 881, 2, 3, 4, 5, 6, 7<, 88, 9, 10, 11, 12, 13, 14<<;
Here are three different tables for the matrix:

Row@8Grid@w, Background Ø 88Red, Blue, 8Gray<, Green, Yellow<<D,
Grid@w, Background Ø 88Red, Blue, 8<, Green, Yellow<<D,
Grid@w, Background Ø 88Red, Blue, 8White, Gray<<<D<, ", "D

1 2 3 4 5 6 7

8 9 10 11 12 13 14
,

1 2 3 4 5 6 7

8 9 10 11 12 13 14
,

1 2 3 4 5 6 7

8 9 10 11 12 13 14

In these examples,  the value of the Background  option is of the form {valc}  mentioned previously
and  so  the  value  is  applied  for  columns.  In  the  first  example, valc  is  of  the  form 8a1, a2, 8b1<, c1, c2<
mentioned previously and so the first column is red, the second column is blue, the next-to-last column
is green, the last column is yellow, and the columns in between are gray. In the second example, we use
the  default  background (white)  for  the  columns in  between.  In  the  third  example,  beginning from the
third column, white and gray are used cyclically.

Here are further examples:

472 Mathematica Navigator



Row@8Grid@w, Background Ø 88Red, Blue<<D,
Grid@w, Background Ø 88Red<<D,
Grid@w, Background Ø 888White, Gray<<<D<, ", "D

1 2 3 4 5 6 7

8 9 10 11 12 13 14
,

1 2 3 4 5 6 7

8 9 10 11 12 13 14
,

1 2 3 4 5 6 7

8 9 10 11 12 13 14

In these examples, the value of the option is again of the form {valc}. In the first example, valc is of
the form 8a1, a2< and so the first two columns are red and blue, respectively. In the second example, valc
is  of  the  form 8a1<  and  so  the  first  column  is  red.  In  the  third  example, valc  is  of  the  form 88b1, b2<<
mentioned previously and so white and gray are used cyclically.

‡ Example 2

Now we draw various frames:

v = 881, 2, 3, 4<, 85, 6, 7, 8<, 89, 1, 11, 12<<;
Row@8Grid@v, Frame Ø AllD,

Grid@v, Frame Ø 8All<D,
Grid@v, Frame Ø 88All<<D,
Grid@v, Frame Ø 888All<<<D<, ", "D

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

In the first example, the value All  is  of the general form val  mentioned previously; thus, the value
All is used for all items so that all items have a frame.

In the second example, the value {All} is of the form {valc} mentioned previously; thus, the value
All is used for all columns.

In the third example,  the value {{All}}  is  again of  the form {valc};  however,  now valc  is {All},
and  this  is  of  the  general  form 8a1<  mentioned  previously.  Thus,  the  value All  is  used  for  the  first
column; the default (i.e., no frame) is used for other columns.

In  the  fourth  example,  the  value {{{All}}}  is  again  of  the  form {valc};  however,  now valc  is
{{All}},  and  this  is  of  the  general  form 88b1<<  mentioned previously.  Thus,  the  value All  is  used
cyclically for columns, and this means that the value All is used repeatedly for all columns.

Next, we draw frames for rows:

Row@8Grid@v, Frame Ø 8None, All<D,
Grid@v, Frame Ø 8None, 8All<<D,
Grid@v, Frame Ø 8None, 88All<<<D<, ", "D

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

In this example, the value of the Frame option is of the form {valc, valr} so that valc or None is used
for columns and valr for rows.

‡ Exceptional Values

If  we  have  some exceptional  formatting  for  some columns,  rows,  or  items,  we  can add definitions  for
these cases as rules.

Chapter 15  •  Tables 473



Exceptional values can be given as rules (a single rule or a list of rules):

{rulesj}  Apply rulesj for specific columns
{rulesj, rulesi}  Apply rulesj for specific columns and rulesi for specific rows

{valc, rulesj}  Apply valc for columns but rulesj to specific columns
{{valc, rulesj}, {valr, rulesi}}  Apply valc for columns and valr for rows but rulesj to

specific columns and rulesi to specific rows

{valc, valr, rulesij}  Apply valc and valr for columns and rows but rulesij for specific items
(not applicable for Dividers and Spacings)

Here, rulesj  may  be,  for  example, 4 Ø True,  meaning  that  the  value True  is  used  for  the  fourth
column. Similarly, rulesi may be, for example, 3 Ø Green, meaning that the value Green is used for the
third row. Also, rulesij may be, for example, {2, 5} Ø Red, meaning that the value Red is used for the
item at position H2, 5L.  In addition, rulesij  may define a  range of items.  An example is {{2, 4}, {1,

3}} Ø Red,  meaning that  the value Red  is  used for items with row index in 82, 4<  and column index in
81, 3<.

‡ Example 3

As an example, consider again the Frame option:

Row@8Grid@v, Frame Ø 81 Ø True<D,
Grid@v, Frame Ø 881 Ø True, 3 Ø True<<D, Grid@v, Frame Ø 81 Ø True, 3 Ø True<D<, ", "D

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

In the first example, the value {1 Ø True}  is  of the form {rulesj}  so that a frame is drawn for the
first column. In the second example, the value {{1 Ø True, 3 Ø True}} is again of the form {rulesj} so
that  a  frame is  drawn for  the  first  and third  columns.  In  the  third  example,  the value {1 Ø True, 3 Ø

True} is of the form {rulesj, rulesi} so that a frame is drawn for the first column and the third row.

Here are further examples:

Row@8Grid@v, Frame Ø 881 Ø True, 3 Ø True<, 3 Ø True<D,
Grid@v, Frame Ø 8None, 3 Ø True<D,
Grid@v, Frame Ø 8None, None, 83, 3< Ø True<D,
Grid@v, Frame Ø 8None, None, 882, 3<, 82, 4<< Ø True<D<, ", "D

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

,

1 2 3 4

5 6 7 8

9 1 11 12

In  the  first  example,  the  value {{1 Ø True, 3 Ø True}, 3 Ø True}  is  again  of  the  form {rulesj,

rulesi} so that a frame is drawn for the first and third columns and the third row.

In  the  second  example,  the  value {None, 3 Ø True}  is  of  the  form {{valc, rulesj}, {valr,

rulesi}}  or,  actually,  the  special  case {valc, rulesi}  of  this  form,  so  that  frames are  not  drawn for
columns but a frame is drawn for the third row.

In the third example, the value {None, None, {3, 3} Ø True} is of the form {valc, valr, rulesij}

so that a frame is not drawn for the columns or rows but a frame is drawn for the H3, 3Lth item.

In the fourth example, we draw a frame around items with row index in 82, 3<  and column index in
82, 4<.

474 Mathematica Navigator



Next, we study the various options in more detail with the aid of an example. For other examples, see

Sections 23.2.1, p. 755, 29.2.1, p. 968, 29.3.2, p. 980, and 29.4.2, p. 992.

‡ Example 4

The grid may also contain text and graphics:

t1 = "Here is the cumulative distribution
function HCDFL of the standard normal distribution with mean

0 and standard deviation 1.\nThe CDF is
1

2 p

‡
|¶

x

‰
-t2ë2

„t.";

t2 = "Here is the probability density function HPDFL of the
standard normal distribution with mean 0 and

standard deviation 1.\nThe PDF is
1

2 p

‰
-x2ë2.";

g1 = Plot@CDF@NormalDistribution@0, 1D, xD, 8x, -3, 3<, ImageSize Ø 120D;
g2 = Plot@PDF@NormalDistribution@0, 1D, xD, 8x, -3, 3<, ImageSize Ø 120D;
Grid@88t1, g1<, 8t2, g2<<, Alignment Ø 8Left, Center<, ItemSize Ø 8820, 20<<D êê Text

Here is the cumulative distribution
function HCDFL of the standard
normal distribution with mean
0 and standard deviation 1.

The CDF is 1

2 p
Ÿ|¶

x
‰-t2ë2„t.

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

Here is the probability density
function HPDFL of the standard
normal distribution with mean
0 and standard deviation 1.

The PDF is 1

2 p
‰-x2ë2.

-3 -2 -1 1 2 3

0.1

0.2

0.3

0.4

15.2.2  Options of Grid

‡ Example: Row and Column Sums

In Section 17.2.1, we listed the options of Grid  and discussed general rules of how they are used. Now
we explore in detail each of the options. However, first we generate an example. Consider the matrix

m = 886, 21.2, 3.05, 64.2<, 834, 9.582, 143.17, 8.702<, 8985, 0.6914, 70.4, 126.6<<;
Let us prepare a table in which we have the column sums, row sums, and the total sum. First, calculate

the sums (see Section 21.2.3, p. 697):

colSums = Total@mD 81025, 31.4734, 216.62, 199.502<
rowSums = Total êü m 894.45, 195.454, 1182.69<
totSum = Total@rowSumsD 1472.6

Then form the rows of the table:

Chapter 15  •  Tables 475



firstRow = 88"Rows", "Col 1", "Col 2", "Col 3", "Col 4", "Sums"<<
88Rows, Col 1, Col 2, Col 3, Col 4, Sums<<

mainRows = JoinA88"Row 1", "Row 2", "Row 3"<<¨, m, 8rowSums<¨, 2E
88Row 1, 6, 21.2, 3.05, 64.2, 94.45<, 8Row 2, 34, 9.582, 143.17, 8.702, 195.454<,
8Row 3, 985, 0.6914, 70.4, 126.6, 1182.69<<
lastRow = 8Join@8"Sums"<, colSums, 8totSum<D<
88Sums, 1025, 31.4734, 216.62, 199.502, 1472.6<<

(Here,  means a transpose; it can be written as ÂtrÂ.) Join the rows:

t = Join@firstRow, mainRows, lastRowD
88Rows, Col 1, Col 2, Col 3, Col 4, Sums<,
8Row 1, 6, 21.2, 3.05, 64.2, 94.45<, 8Row 2, 34, 9.582, 143.17, 8.702, 195.454<,
8Row 3, 985, 0.6914, 70.4, 126.6, 1182.69<,
8Sums, 1025, 31.4734, 216.62, 199.502, 1472.6<<

A first draft for a table is as follows:

Grid@tD
Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we try several options to enhance the table.

‡ Alignment

** Alignment  Horizontal and vertical alignment of items; examples of values: {Center, Baseline}
(columns are centered, rows are at baseline), Left (columns are aligned left), Right (columns are
aligned right), "." (columns are aligned at the decimal point). In horizontal (or column) alignment,
we can use Left, Center, Right, and "c" (where c is a character). In vertical (or row) alignment,
we can use Bottom, Center, Baseline, and Top.

As an example, we consider the table t we formed previously. First, we align the columns at the right:

Grid@t, Alignment Ø RightD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Right alignment is good for integers. Then we align the columns at the decimal point:

Grid@t, Alignment Ø "."D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

476 Mathematica Navigator



This alignment is also well suited for integers. Note that the column headers are aligned such that they
end at the position of the decimal point, and this causes the headers to be too far to the left. For the row
headers, the right alignment is not good.

Now  we  align  the  first  column  left,  the  second  column  right,  and  the  rest  of  the  columns  at  the
decimal point:

Grid@t, Alignment Ø 88Left, Right, 8"."<<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Note that here the value of the option is of the form {valc} mentioned previously in a box. This form of
the option means that valc  is  applied for columns. Here, valc  is {Left, Right, {"."}}  and this is of
the general form 8a1, a2, 8b1<< mentioned in a box in Section 17.2.1. This form of the option means that a1
is applied for the first column, a2 for the second column, and b1 for the rest of the columns.

The previous table is quite good. However, the column headers should be aligned better. We define
these exceptional alignments as rules:

Grid@t, Alignment Ø 88Left, Right, 8"."<<, Baseline, 881, 1<, 82, 6<< Ø Center<D êê
Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Here, the value of the option is of the form {valc, valr, rulesij} mentioned previously in a box. This
form  of  the  option  means  that valc  is  applied  for  columns, valr  for  rows,  and rulesij  for  special
items. Actually, valr or Baseline is the default for rows but we have to define something for the rows
so that we can define rules for single items. The rule {{1, 1}, {2, 6}} Ø Center defines that the column
alignment  should  be Center  for  items  with  row  indices  in  the  range 81, 1<  and  column  indices  in  the
range 82, 6<.

‡ Dividers

** Dividers  Where to draw lines; examples of values: None, All (all items become boxed), Center
(all interior dividers), {None, All} (no column lines, all row lines, lines also before the first row
and after the last row), {2 Ø True} (a line after the first column), {None, 2 Ø True} (a line below
the first row), {2 Ø True, 2 Ø True} (a line after the first column and below the first row)

Note that if we give Dividers  a list of values, the first value corresponds with the divider before  the
first  column  or above  the  first  row.  The  last  value  that  can  be  given  concerns  the  divider after  the  last
column or below the last row.

First, we draw all dividers:

Chapter 15  •  Tables 477



Grid@t, Dividers Ø AllD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Then we draw all interior dividers:

Grid@t, Dividers Ø CenterD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we ask for no column dividers and all row dividers:

Grid@t, Dividers Ø 8None, All<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we add, for both the columns and the rows, the second divider:

Grid@t, Dividers Ø 82 Ø True, 2 Ø True<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Now we add, for columns, the second divider and the next-to-last divider:

Grid@t, Dividers Ø 882 Ø True, -2 Ø True<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we add, for rows, the second divider and the next-to-last divider:

478 Mathematica Navigator



Grid@t, Dividers Ø 8None, 82 Ø True, -2 Ø True<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Now we combine the column and row dividers:

Grid@t, Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, -2 Ø True<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Instead of the value True, we can also define colors:

Grid@t, Dividers Ø 882 Ø Blue, -2 Ø Blue<, 82 Ø Red, -2 Ø Red<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

The style of the dividers can also be defined by the FrameStyle option; this option is considered later.

For tables with many rows, it may be useful to define a row divider after, for example, five rows:

Style@Grid@RandomReal@1, 815, 5<D,
Dividers Ø 8None, 8False, 8False, False, False, False, True<<<D, 7D

0.351699 0.0975843 0.920731 0.328851 0.278958

0.300958 0.75641 0.456994 0.0566562 0.822485

0.721353 0.894927 0.3933 0.263716 0.858048

0.371972 0.656398 0.835972 0.473315 0.657873

0.402682 0.126343 0.923583 0.605294 0.26255

0.78003 0.125083 0.49996 0.812553 0.864977

0.440816 0.29955 0.845526 0.201106 0.0514095

0.0339601 0.153938 0.322785 0.68958 0.228968

0.739786 0.0508808 0.453728 0.908037 0.573318

0.761619 0.0938451 0.199507 0.199536 0.602789

0.259405 0.742096 0.143953 0.699057 0.277642

0.0825613 0.354035 0.223007 0.0525714 0.057686

0.562795 0.470452 0.137385 0.31363 0.548075

0.778625 0.868359 0.735533 0.414053 0.288367

0.345906 0.826166 0.425129 0.877104 0.756518

Here, we defined that there should not be a divider above the first row, and after that we have, repeat-
edly, four rows with no divider and one row with a divider.

‡ Spacings

** Spacings  Space between columns and rows (in units of the current font size); examples of
values: Automatic (usually means {0.7, 0.4}: the space between columns is 0.7 and that between
rows is 0.4), 1.2 (the space between columns is 1.2 and the space between rows is the default 0.4)

Chapter 15  •  Tables 479



Note  that  if  we  give Spacings  a  list  of  values,  the  first  value  corresponds  with  the space before  the
first column or above  the first row, and the last value that can be given concerns the space after  the last
column or below  the last row. However, the first or last value does not have any effect unless there is a
frame line or divider line before the first column or row or after the last column or row.

We make the space between columns 2 (the space between rows is the default 0.4):

Grid@t, Spacings Ø 2D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Now make the space between columns 2 and the space between rows 0.1:

Grid@t, Spacings Ø 82, 0.1<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums
Row 1 6 21.2 3.05 64.2 94.45
Row 2 34 9.582 143.17 8.702 195.454
Row 3 985 0.6914 70.4 126.6 1182.69
Sums 1025 31.4734 216.62 199.502 1472.6

Next, we fine|tune the spacings:

Grid@t, Spacings Ø 81.5, 80, 1, 80.5<, 1, 0<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Here, the space between columns is 1.5. The space below the first row and above the last row is 1; for the
rows in between, we use the space of 0.5.

Note that Mathematica  assumes that the spacings begin above the first row and extend below the last
row. Thus, to get the space 1 after the first row and above the last row, we have to define a space also
above the first  row and below the last  row.  We used the value 0  for  these  spaces,  but  in this example
these values do not have any effect.

If  we  have  a  frame  or  dividers  above  the  first  row  and  below  the  last  row,  then  the  first  and  last
values of Spacings do have an effect because these spacings define how much space should be around
the first and last divider. Here, we use the value 1 for these spacings:

Grid@t, Spacings Ø 81.5, 81, 1, 80.5<, 1, 1<<,
Dividers Ø 8None, 81 Ø True, 2 Ø True, -2 Ø True, -1 Ø True<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

480 Mathematica Navigator



‡  ItemStyle

** ItemStyle  Styles of columns and rows; examples of values: None, Blue (all items are blue), {1 Ø

Red} (the first column is red), {Automatic, 1 Ø Bold} (the first row is bold), {1 Ø Directive[Red,

Bold, 14]} (the first column is red, bold, and size 14), {1 Ø Bold, 1 Ø Bold} (the first column and
row are bold)

First, we define bold style for the first row:

Grid@t, ItemStyle Ø 8Automatic, 1 Ø Bold<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Then we use the bold style for both the first column and the first row:

Grid@t, ItemStyle Ø 81 Ø Bold, 1 Ø Bold<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Now the first and last column and row are bold:

Grid@t, ItemStyle Ø 881 Ø Bold, -1 Ø Bold<, 81 Ø Bold, -1 Ø Bold<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

The following is another way:

Grid@t, ItemStyle Ø 88Bold, 8<, Bold<, 8Bold, 8<, Bold<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we use both the bold style and a color:

Grid@t, ItemStyle Ø 81 Ø Directive@Bold, BlueD, 1 Ø Directive@Bold, RedD<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Chapter 15  •  Tables 481



Styles can also be defined for a range of items or for a singe item:

Grid@t, ItemStyle Ø

8Automatic, Automatic, 882, 4<, 82, 5<< Ø Directive@Bold, BlueD<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Grid@t, ItemStyle Ø 8Automatic, Automatic, 85, 6< Ø Directive@Bold, RedD<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

‡ Background

** Background  Colors of the background; examples of values: None, GrayLevel[0.9] (all items are
gray), {Automatic, {{ White, LightGray}}} (columns are default, rows alternate between white
and gray)

Define a gray background for the table:

Grid@t, Background Ø LightGrayD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we define a gray background for the first row:

Grid@t, Background Ø 8Automatic, 1 Ø GrayLevel@0.9D<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Now we define an alternating background for the rows:

Grid@t, Background Ø 8Automatic, 88White, LightGray<<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Define then the first and last rows to be light red:

482 Mathematica Navigator



Grid@t, Background Ø 8Automatic, 8LightRed, 8White, LightGray<, LightRed<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we define the background for a range of items or for a singe item:

Grid@t, Background Ø 8Automatic, Automatic, 882, 4<, 82, 5<< Ø LightGray<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Grid@t, Background Ø 8Automatic, Automatic, 8885, 5<, 82, 5<< Ø Darker@Yellow, 0.1D,
882, 4<, 86, 6<< Ø Darker@Yellow, 0.1D, 85, 6< Ø Red<<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Grid@t, Background Ø 8Automatic, Automatic, 85, 6< Ø Pink<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

‡ Frame

** Frame  Where to draw frames; examples of values: None, True (frame around the whole grid), All
(all items become boxed), {All} (frame around each column), {None, All} (frame around each
row)

Add a frame for the whole table:

Grid@t, Frame Ø TrueD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Add a frame for all items (this can also be obtained with Dividers Ø All):

Chapter 15  •  Tables 483



Grid@t, Frame Ø AllD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Add a frame for each row:

Grid@t, Frame Ø 8None, All<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we use both dividers and a frame:

Grid@t, Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, -2 Ø True<<, Frame Ø TrueD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Now we define a frame for items with row index in 82, 4< and column index in 82, 5<:
Grid@t, Frame Ø 8None, None, 882, 4<, 82, 5<< Ø True<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Lastly, we give a frame for a single item:

Grid@t, Frame Ø 8None, None, 85, 6< Ø True<D êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

‡ FrameStyle

FrameStyle  Style of frames and dividers; examples of values: Automatic, Red, Directive[Gray,
Thickness[2]]

Here, we define the style of a frame:

484 Mathematica Navigator



Grid@t, Frame Ø True, FrameStyle Ø Directive@Red, Thickness@2D, Dashing@3DDD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

We could also define the style in the Frame option:

Grid@t, Frame Ø Directive@Red, Thickness@2D, Dashing@3DDD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we define a style for dividers:

Grid@t, Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, -2 Ø True<<,
FrameStyle Ø Directive@Blue, Thickness@1DDD êê Text

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

We could also define the style in the Dividers option using Directive.

‡ ItemSize

ItemSize  Width and height of each item; examples of values: Automatic (separately size items to fit
within the total formatting width; long items may take several lines), All (make all items the same
width and height), Full (allow each item its full width and height; long items are not divided into
several lines), w (give all items width w, measured in ems), {w, h} (give all items width w and
height h, with h measured in line heights; the default value of h is 1)

The default is to adjust the width of each column separately:

Grid@t, ItemSize Ø Automatic, Frame Ø 8All<D
Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Next, we ask for the same width for all columns:

Chapter 15  •  Tables 485



Grid@t, ItemSize Ø All, Frame Ø 8All<D
Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

‡ Example: Combining the Options

Now we use many of the options we considered previously:

Labeled@
Grid@t, Alignment Ø 88Left, Right, 8"."<<, Baseline, 881, 1<, 82, 6<< Ø Center<,
Frame Ø True, Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, -2 Ø True<<,
Spacings Ø 81.5, 81.5, 1, 80.5<, 1, 1<<, ItemStyle Ø 81 Ø Bold, 1 Ø Bold<,
Background Ø 8Automatic, Automatic, 882, 4<, 82, 5<< Ø GrayLevel@0.9D<D,
Style@"Row and column sums", BoldD, TopD êê Text

Row and column sums

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

% êê Panel

Row and column sums

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

‡ Example: Chemical Elements

Consider the following chemical elements:

e = Table@ElementData@iD, 8i, 1, 51, 10<D
8Hydrogen, Sodium, Scandium, Gallium, Niobium, Antimony<

For  these  elements,  we  gather  the  element  abbreviations,  atomic  numbers,  atomic  weights,  boiling
points, melting points, and stable isotopes:

ea = Table@ElementData@i, "Abbreviation"D, 8i, 1, 51, 10<D
8H, Na, Sc, Ga, Nb, Sb<
a = Table@ElementData@i, "AtomicNumber"D, 8i, 1, 51, 10<D
81, 11, 21, 31, 41, 51<

486 Mathematica Navigator



w = Table@ElementData@i, "AtomicWeight"D, 8i, 1, 51, 10<D
81.00794, 22.989770, 44.955910, 69.723, 92.90638, 121.760<
b = Table@ElementData@i, "BoilingPoint"D, 8i, 1, 51, 10<D
8-252.87, 883., 2830., 2204., 4744., 1587.<
m = Table@ElementData@i, "MeltingPoint"D, 8i, 1, 51, 10<D
8-259.14, 97.72, 1541., 29.76, 2477., 630.63<
s = Table@ElementData@i, "StableIsotopes"D, 8i, 1, 51, 10<D
881, 2<, 823<, 845<, 869, 71<, 893<, 8121, 123<<

We form the rows of the table:

data0 = 8e, ea, a, w, b, m, s<¨
88Hydrogen, H, 1, 1.00794, -252.87, -259.14, 81, 2<<,
8Sodium, Na, 11, 22.989770, 883., 97.72, 823<<,
8Scandium, Sc, 21, 44.955910, 2830., 1541., 845<<,
8Gallium, Ga, 31, 69.723, 2204., 29.76, 869, 71<<,
8Niobium, Nb, 41, 92.90638, 4744., 2477., 893<<,
8Antimony, Sb, 51, 121.760, 1587., 630.63, 8121, 123<<<

We form the headings of the table to be formed, and we add these headings as the first row of the table:

h = 8"Element", "Abbr.", "No.", "Weight ", "Boiling ", "Melting", "Isotopes"<;
data = Prepend@data0, hD
88Element, Abbr., No., Weight , Boiling , Melting, Isotopes<,
8Hydrogen, H, 1, 1.00794, -252.87, -259.14, 81, 2<<,
8Sodium, Na, 11, 22.989770, 883., 97.72, 823<<,
8Scandium, Sc, 21, 44.955910, 2830., 1541., 845<<,
8Gallium, Ga, 31, 69.723, 2204., 29.76, 869, 71<<,
8Niobium, Nb, 41, 92.90638, 4744., 2477., 893<<,
8Antimony, Sb, 51, 121.760, 1587., 630.63, 8121, 123<<<

Here is a table for the data:

Grid@data, Alignment Ø 88Left, Left, Right, 8"."<, Left<, Baseline,
Thread@Table@81, j<, 8j, 7<D Ø 8Left, Left, Right, Right, Right, Right, Left<D<,

Dividers Ø 8None, 81 Ø True, 2 Ø True, -1 Ø True<<,
Spacings Ø 880, 1.8, 1.1, -0.4, 1, 0.4, 2.6<, 81.2, 0.8, 80.5<, 1<<,
ItemStyle Ø 8Automatic, 1 Ø Bold, 882, 7<, 81, 1<< Ø Italic<,
Background Ø 8None, 88White, LightGray<<<D êê Text

Element Abbr. No. Weight Boiling Melting Isotopes

Hydrogen H 1 1.00794 -252.87 -259.14 81, 2<
Sodium Na 11 22.989770 883. 97.72 823<
Scandium Sc 21 44.955910 2830. 1541. 845<
Gallium Ga 31 69.723 2204. 29.76 869, 71<
Niobium Nb 41 92.90638 4744. 2477. 893<
Antimony Sb 51 121.760 1587. 630.63 8121, 123<

Here, we used Thread to form a list of rules:

Thread@Table@81, j<, 8j, 7<D Ø 8Left, Left, Left, Right, Right, Right, Left<D
881, 1< Ø Left, 81, 2< Ø Left, 81, 3< Ø Left,
81, 4< Ø Right, 81, 5< Ø Right, 81, 6< Ø Right, 81, 7< Ø Left<

Chapter 15  •  Tables 487



Note  also  that  when  we  defined  the  list h  of  headings,  we  added  two  spaces  after  “Weight”  and  one
space after “Boiling” to further fine|tune the alignments of the headings.

‡ Item

Previously,  we  found  that  we  can  format,  with  the  options  of Grid,  even  single  items:  We  can,  for
example, draw a frame around or give a color or background to a single item. Sometimes it is useful to
format single items with Item.

Item[expr, opts]  Apply options opts to the given item

Options:
Alignment  Alignment of the item; examples of values: {}, Left, Right
Background  Background color of the item; examples of values: Automatic, Yellow
Frame  Whether to draw a frame around the item; examples of values: {}, True
FrameStyle  Style of the frame; examples of values: {}, Blue
ItemSize  Size of the item; examples of values: {}, 1.5

Toss a die 30 times:

SeedRandom@2D; t2 = RandomInteger@81, 6<, 830<D
86, 2, 3, 3, 6, 3, 2, 6, 6, 1, 1, 5, 4, 5, 1, 2, 2, 6, 2, 6, 5, 5, 1, 1, 5, 5, 2, 3, 4, 4<

We give each 6 a red color, a yellow background, and a frame:

t3 = If@Ò == 6, Item@Style@Ò, RedD, Background Ø Yellow, Frame Ø TrueD, ÒD & êü t2
86, 2, 3, 3, 6, 3, 2, 6, 6, 1, 1, 5, 4, 5, 1, 2, 2, 6, 2, 6, 5, 5, 1, 1, 5, 5, 2, 3, 4, 4<

Then we ask a grid:

Grid@Partition@t3, 10DD
6 2 3 3 6 3 2 6 6 1

1 5 4 5 1 2 2 6 2 6

5 5 1 1 5 5 2 3 4 4

Notice the high quality of the frames: Frames that are side by side have common edges.

‡ Spanning Elements and Nested Grids

With SpanFromLeft  or  (ÂsflÂ), SpanFromAbove  or ª  (ÂsfaÂ),  and SpanFromBoth  or
(ÂsfbÂ), we get results such as the following:

GridA9
84, 3, , 5, 6<,
86, 5, 2, 9, <,
9ª, 6, 8, ª, =,
9ª, 4, 1, 7, 5==, Frame Ø AllE

4 3 5 6

6 5 2 9

6 8

4 1 7 5

Spanning  elements  can  also  be  specified  with  the  menu  command Insert @ Table/Matrix @ Make
Spanning. As an example, write first

488 Mathematica Navigator



Grid@884, 3, x, 5, 6<,
86, 5, 2, 9, x<, 8x, 6, 8, x, x<, 8x, 4, 1, 7, 5<<, Frame Ø AllD

4 3 x 5 6

6 5 2 9 x

x 6 8 x x

x 4 1 7 5

Then select,  with the mouse,  the elements  3  and x from the first  row and choose the menu command.
Then select the elements 6, x, and x from the first column and choose the menu command. Lastly, select
the elements 9, x, x, and x and again choose the menu command. The result is

4 3 x 5 6

6
x
x

5 2 9 x
x x6 8

4 1 7 5

Then delete the x’s to get

4 3 5 6

6 5 2 9

6 8

4 1 7 5

One use of spanning elements is to write a common explanation for the columns:

r0 = 8"", "Columns", , , , ""<;
Grid@Prepend@t, r0D,

Alignment Ø 88Left, Right, 8"."<<, Baseline, 881, 2<, 82, 6<< Ø Center<,
Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, 3 Ø True, -2 Ø True<<,
Spacings Ø 81.5, 80, 0.7, 80.5<, 0.7, 0<<,
ItemStyle Ø 81 Ø Bold, 81 Ø Bold, 2 Ø Bold<<,
Background Ø 8Automatic, Automatic, 883, 5<, 82, 5<< Ø GrayLevel@0.9D<D êê Text

Columns

Rows Col 1 Col 2 Col 3 Col 4 Sums

Row 1 6 21.2 3.05 64.2 94.45

Row 2 34 9.582 143.17 8.702 195.454

Row 3 985 0.6914 70.4 126.6 1182.69

Sums 1025 31.4734 216.62 199.502 1472.6

Grids can also be nested:

Grid@88Grid@88""<<D, Grid@88"j"<<D<,
8Grid@88"i"<<D, Grid@88a, b, c, d<, 8e, f, g, h<, 8i, j, k, l<<D<<, Frame Ø AllD

j

i

a b c d

e f g h

i j k l

Chapter 15  •  Tables 489



490 Mathematica Navigator

This page intentionally left blank



16
Patterns

Introduction 491

16.1  Patterns 491

16.1.1  Introduction to Patterns 491 _, Position, Count, Cases, DeleteCases, Pick, /., //., etc.

16.1.2  Patterns with Restrictions 496 ?, /;

16.1.3  More about Patterns 500 _, __, ___, :, |, .., ..., Repeated, Except, Longest, Shortest, etc.

16.2  String Patterns 505

16.2.1  String Patterns 505 DictionaryLookup, StringExpression, StringPosition, etc.

16.2.2  More about String Patterns 509 StringSplit, LetterCharacter, StartOfString, etc.

Introduction

Mathematics is the art of giving the same name to different things.~Henri Poincaré
Poetry is the art of giving different names to the same thing.~Anonymous poet

A pattern represents a class of expressions. Expressions matching a pattern all have the structure  given by
the pattern. Using patterns we get powerful methods to manipulate lists and other expressions. We can
also  use  patterns  with  transformation  rules,  and patterns  are  used with  the  arguments  of  functions  to
restrict the arguments to suitable expressions. Here, patterns are considered in two parts. Section 16.1 is
devoted to general patterns and Section 16.2 to special patterns for strings.

Patterns constitute one of  the two main components of  rule-based programming. The other compo-

nent is the use of rules. We consider rule-based and other programming styles in Chapter 18.

For more information about patterns, see tutorialêPatternsOverview.

16.1  Patterns

16.1.1  Introduction to Patterns

‡ Applications of Patterns

A pattern represents a class of  expressions~that  is,  all  expressions having a given structure.  Patterns are
used

• in function definitions to specify the class of arguments;
• in transformation rules to specify the class of subexpressions to be transformed; and
• in several list manipulation commands.

Let us first consider functions.



f[pattern] := expr

The  pattern  in f  defines  the  class  of  arguments  that  the  function  is  designed  to  accept.  Often,  the
pattern is  simply,  for  example, x_,  and then any expression is  accepted as an argument.  However,  we
can also form more restrictive patterns such as the one in the following example:

f@n_Integer?PositiveD := Prime@nD

This  function only  accepts  positive  integers  as  arguments;  these  numbers match  the  given pattern.  For
other types of arguments, nothing is done:

8f@5D, f@7.4D, f@-8D<

811, f@7.4D, f@-8D<

In transformation rules, patterns are used as follows:

expr /. pattern Ø value

The pattern in the transformation rule  defines the class of  subexpressions of expr  that  are replaced
with value. Often, the pattern is a degenerate pattern such as x, and then x is replaced with value in all
places x  appears  in expr.  However,  we can also form more restrictive  patterns  such as x_ /; x > 0.5,
and now the numbers that are greater than 0.5 are replaced with a given value:

80.2, 0.6, 0.8< ê. Hx_ ê; x > 0.5L Ø a

80.2, a, a<

Patterns  are  also  used  in  some  commands,  such  as Position, Cases, DeleteCases, Count,  and

Switch (for Switch, see Section 18.2.2, p. 556) and in some tests such as FreeQ, MemberQ, and MatchQ.

‡ Special Patterns

Two patterns are very special: a degenerate pattern and a pattern representing anything. A degenerate
pattern  is  a  given  expression  such  as  6.  This  represents  a  class  of  expressions  consisting  of  only  one
element: the element given. Later, we consider commands such as Count. In the following example, we
count all the elements of a given list that match the degenerate pattern 6~that is, we count all 6’s:

Count@83, 2, 6, 4, 6, 1<, 6D 2

Now we replace all 6’s with a string:

83, 2, 6, 4, 6, 1< ê. 6 Ø "win" 83, 2, win, 4, win, 1<

Next, we consider a pattern representing anything.

_  A pattern representing any expression
x_  A pattern representing any expression; the expression is referred to with the name x

The most general pattern is _. It matches anything, and its internal name is Blank:

FullForm@_D Blank@D

In Section 18.2.2, p. 556, we present the following example of Switch:

volume@name_D := Switch@name, cylinder, Pi r^2 h,
sphere, 4 Pi r^3 ê 3, ellipsoid, 4 Pi a b c ê 3, _, unknownD

The blank _ matches anything, and so the result of volume is unknown if name is not cylinder, sphere, or
ellipsoid.

492 Mathematica Navigator



The pattern x_  also represents any expression, but now we give a name x  for the expression so that
we can refer to it later. The most important use of this pattern is in defining the arguments of a function

(see Section 17.1.1, p. 512). An example is f[x_] := x Sin[x]. In the next example, we form powers:

88a, b<, 8c, d<, 8c, d<< ê. 8x_, y_< Ø x^y

9ab, cd, cd=

‡ Searching Expressions Using Patterns

Position[list, pattern]  Give the positions of the parts of list that match pattern

Position[list, pattern, {1}]  Give the positions of the elements of list that match pattern

Count[list, pattern]  Give the number of the elements of list that match pattern

Cases[list, pattern]  Give the elements of list that match pattern

Cases[list, pattern Ø value]  Apply the given transformation to the found elements
DeleteCases[list, pattern]  Delete the elements of list that match pattern

Pick[list, sel, pattern]  Pick out those elements of list for which the corresponding element of
sel matches pattern

It is useful to compare Cases with Select. Note that Select does not use patterns: It uses tests.

Select[list, test]  Select the elements of list that satisfy test

First, we generate a list of 20 tosses of a die:

SeedRandom@7D; t = RandomInteger@81, 6<, 20D

86, 1, 3, 3, 6, 4, 2, 1, 4, 5, 3, 4, 3, 2, 4, 2, 2, 6, 4, 3<

Then we search the positions of all 6’s, the number of 6’s, and the cases of 6’s. We also delete all 6’s. In
these examples, we use the degenerate pattern 6:

Position@t, 6D 881<, 85<, 818<<
Count@t, 6D 3

Cases@t, 6D 86, 6, 6<
DeleteCases@t, 6D

81, 3, 3, 4, 2, 1, 4, 5, 3, 4, 3, 2, 4, 2, 2, 4, 3<

To give an example of Pick, generate a second list:

SeedRandom@1D; u = RandomInteger@80, 1<, 20D

81, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1<

Now we pick all the elements of t for which the corresponding element in u is 1:

Pick@t, u, 1D 86, 1, 3, 1, 5, 6, 4, 3<

To use Select, we write a test to select all 6’s:

Select@t, Ò == 6 &D 86, 6, 6<

‡ Levels

Position, Count, Cases,  and DeleteCases  accept a third argument that specifies the level from which
matching objects are searched. For example, positions can be searched from given levels:

Chapter 16  •  Patterns 493



Position[expr, pattern, levspec]  Give positions at levels specified by levspec at which objects
matching pattern occur in expr

Similarly, a level specification in, for example, Cases directs the search of elements into the specified

levels. Level specifications are considered in Section 13.2.3, p. 427. Recall that

• a level specification n means all levels 1, 2, …, n;
• a level specification {n} means only the level n; and
• a level specification {n, m} means levels n through m.

If  a  level  specification  is  not  given  in Position,  the  specification  is  assumed  to  be {0, ¶},  which
means  all  levels  0,  1,  2,  and so  on.  In Count, Cases,  and DeleteCases,  the  default  level  is {1}.  As  an
example, consider the following list:

t = 88a, Sin@bD<, 8c, Sin@dD<<;

Find out all positions where the sin function appears:

Position@t, Sin@_DD 881, 2<, 82, 2<<

This means that sin appears as the second element of both the first and the second element. Note that sin
does not appear as an element of t~that is, at the first level of t:

Position@t, Sin@_D, 81<D 8<

By default, Cases searches from the first level so that no cases are found:

Cases@t, Sin@_DD 8<

If we search from the second level, some cases are found:

Cases@t, Sin@_D, 82<D 8Sin@bD, Sin@dD<

‡ Limiting the Number of Parts Searched For

Position, Cases,  and DeleteCases  also  accept  a  fourth  argument  that  limits  the  number  of  parts  to
search for. For example, we can ask for the first n positions:

Position[expr, pattern, levspec, n]  Give positions of first n parts at levels specified by
levspec at which objects matching pattern occur in expr

Position@t, Sin@_D, ¶, 1D 881, 2<<

‡ Transforming Expressions Using Patterns

expr /. pattern Ø value  Apply the transformation once to each part of expr
expr //. pattern Ø value  Apply the transformation until the result no longer changes

(The  internal  names  of /.  and //.  are ReplaceAll  and ReplaceRepeated,  respectively.)  Applying
transformation rules is a powerful way to manipulate lists. Here are some examples:

Take square roots from the second elements:

881, 10<, 82, 11<, 83, 12<< ê. 8x_, y_< Ø 8x, Sqrt@yD<

::1, 10 >, :2, 11 >, :3, 2 3 >>
Define an expression containing square roots:

494 Mathematica Navigator



t1 = Sqrt@xD + 1 ê Sqrt@xD;

If we want to transform the expression by replacing x  with y, we do not get what we want:

t1 ê. Sqrt@xD Ø y
1

x

+y

Indeed, Mathematica  uses  internally  the FullForm  in  transformation  rules.  Here  is  this  form  of  our
expression:

FullForm@t1D

Plus@Power@x, Rational@-1, 2DD, Power@x, Rational@1, 2DDD

We  see  that  whereas  the  internal  representation  of x  is x1ê2,  that  of 1í x  is  not 1 ëx1ê2  but  rather

x-1ê2,  which  does  not  match  the  pattern x1ê2.  For  this  reason,  we  have  to  transform x  and 1í x

separately:

t1 ê. 8Sqrt@xD Ø y, 1 ê Sqrt@xD Ø 1 ê y<
1

y
+y

Mathematica does not automatically expand logarithms such as logIx2M to 2 logHxL:
t2 = Log@x^2D + Log@1 ê Sqrt@yDD;

t2 êê Expand LogAx2E +LogB
1

y

F

This is because such an expansion is not always correct:

8Log@H-1L^2D, 2 Log@-1D< 80, 2 Â p<

PowerExpand does the transformation, but we have to consider the conditions under which the transfor-

mation is correct:

t2 êê PowerExpand 2 Log@xD -

Log@yD
2

The same effect can be obtained with a transformation rule:

t2 ê. Log@a_^b_D Ø b Log@aD 2 Log@xD -

Log@yD
2

ReplaceList[expr, pattern Ø value]  Find all ways expr can match pattern; apply the transfor-
mation for each way

We do a transformation in all possible ways and form a list from the results:

ReplaceList@a + b + c, x_ + y_ Ø x yD

8a Hb + cL, b Ha + cL, Ha + bL c, Ha + bL c, b Ha + cL, a Hb + cL<

With Union, we get the results that are distinct:

% êê Union 8Ha + bL c, b Ha + cL, a Hb + cL<

An application of ReplaceList can be found in Section 29.4.2, p. 994.

Chapter 16  •  Patterns 495



‡ Testing Expressions Using Patterns

MatchQ[expr, pattern]  Give True if expr matches pattern and False otherwise
FreeQ[expr, pattern]  Give True if no subexpression of expr matches pattern and False

otherwise
MemberQ[list, pattern]  Give True if an element of list matches pattern and False otherwise

MatchQ  can  be  used to  check whether a  given expression matches a  given pattern.  In the following
examples, we demonstrate that any expression matches the most general pattern _:

8MatchQ@5, _D, MatchQ@anything, _D, MatchQ@a + b x, _D<

8True, True, True<

With FreeQ we can test whether an expression is free from a pattern:

8FreeQ@a, xD, FreeQ@a + b x, xD<

8True, False<

MemberQ enables us to test whether an expression is an element of a list:

8MemberQ@84, 2, 1, 5<, 2D, MemberQ@84, 2, 1, 5<, 6D<

8True, False<

16.1.2  Patterns with Restrictions

In  Section  16.1.1,  we  introduced  the  most  general  pattern _.  Next,  we  consider  ways  to  restrict  this
pattern.  A  restriction  can  be  formed  with  heads,  tests,  and  conditions.  Note  that  whereas  a  pattern
represents  a structural  constraint,  a  restriction represents  a mathematical  constraint.  A restricted pattern
first accepts expressions that match the pattern but then does further mathematical tests.

‡ Restricting Patterns with Heads

x_head  Any expression having the head head

One type of restriction is to require that the expression must have a certain head. When we consid-

ered  heads  in Section  13.2.3, p. 426,  we  noted  that  every  expression  has  a  head,  and  we  encountered

such heads as Integer, Rational, Real, Complex, Symbol, String, List, Plus, Times,  and Power.  The
head can be asked with Head:

Head êü 84, 3 ê 5, 2.1, 4 + 5 I, a, "xyz"<

8Integer, Rational, Real, Complex, Symbol, String<
Head êü 88a, b, c<, a + b, a b, a^b<

8List, Plus, Times, Power<

The head can also be seen with FullForm:

FullForm êü 88a, b, c<, a + b, a b, a^b<

8List@a, b, cD, Plus@a, bD, Times@a, bD, Power@a, bD<

As an example, we form a function that calculates the square of an integer:

f1@n_IntegerD := n^2

496 Mathematica Navigator



8f1@3D, f1@0D, f1@-3D, f1@2.7D, f1@2 + 5 ID, f1@aD<

89, 0, 9, f1@2.7D, f1@2 + 5 ÂD, f1@aD<

As  can  be  seen,  the  function f1  is  applied  only  if  the  argument  is  an  integer.  The  following  function
picks the first element of a list:

f2@x_ListD := First@xD

8f2@81, 2, 3<D, f2@881, 2<, 83, 4<<D, f2@8D<

81, 81, 2<, f2@8D<

The expression 8 is not a list, and so f2 is not applied. Next, we find out all lists:

Cases@8a, 8b, c, d<, e, 8f, g<<, x_ListD

88b, c, d<, 8f, g<<

We could also use Select:

Select@8a, 8b, c, d<, e, 8f, g<<, ListQD

88b, c, d<, 8f, g<<

Find the positions of all integers:

Position@87, 2 + 4 I, 5 ê 3, 6, 1.78<, x_IntegerD

881<, 84<<

Count the number of complex numbers:

t = 82 + 6 I, 7, 3 - I, 2, 5 + 4 I<;

Count@t, z_ComplexD 3

Replace all integers with the corresponding prime:

t ê. n_Integer Ø Prime@nD

82 + 6 Â, 17, 3 - Â, 3, 5 + 4 Â<

Replace all complex numbers with a list of the real and imaginary parts:

t ê. z_Complex Ø 8Re@zD, Im@zD<

882, 6<, 7, 83, -1<, 2, 85, 4<<

Pick all complex numbers and replace them with a list of the real and imaginary parts:

Cases@t, z_Complex Ø 8Re@zD, Im@zD<D

882, 6<, 83, -1<, 85, 4<<

‡ Restricting Patterns with Tests

x_ ? test  Any expression giving True from test

x_head ? test  Any expression having the head head and giving True from test

(The  internal  name  of ?  is PatternTest.)  Tests  were  considered  in Section  13.3.5,  p. 431.  We  have

tests  such  as ==, !=, ===, =!=, <, £, >, , NonNegative, Positive, NumericQ, EvenQ, OddQ, VectorQ,
MatrixQ,  and OptionQ.  We  can  form more  complex  tests  with  operations  such as &&  (AND), ||  (OR),
and ! (NOT).

As an example, we program the factorial function. We require that the argument n must be a positive
integer:

Chapter 16  •  Patterns 497



fac@0D = 1;
fac@n_Integer?PositiveD := n fac@n - 1D

8fac@5D, fac@2.7D, fac@-2D<

8120, fac@2.7D, fac@-2D<

Indeed, 2.7 or -2 does not match the given pattern:

MatchQ@2.7, n_Integer?PositiveD

False

Transpose a matrix:

f3@x_?MatrixQD := Transpose@xD

8f3@881, 2<, 83, 4<<D, f3@81, 2, 3<D<

8881, 3<, 82, 4<<, f3@81, 2, 3<D<

Replace all even numbers with a string:

84, 1, 3, 5, 3, 6, 2< ê. _?EvenQ Ø "even"

8even, 1, 3, 5, 3, even, even<

Solve an equation and find all positive solutions:

Solve@49 - 22 x^2 + x^4 ã 0D

::x Ø -3 - 2 >, :x Ø 3 - 2 >, :x Ø -3 + 2 >, :x Ø 3 + 2 >>
Cases@%, 8x Ø _?Positive<D

::x Ø 3 - 2 >, :x Ø 3 + 2 >>
We could also use Select:

Select@%%, ÒP1, 2T > 0 &D

::x Ø 3 - 2 >, :x Ø 3 + 2 >>
The built-in tests can be used without an argument. If an argument is written, the test is written as a

pure  function  in  which  the  argument  is #: f3[x_?(MatrixQ[#] &)] :=  …;  note  that  parentheses  are
needed to  enclose  the  pure  function.  User-defined tests  are  normally  written as  pure  functions.  As  an
example, we require that the argument is in the interval H0, 1L:

f4@x_?H0 < Ò < 1 &LD := ArcSin@xD

8f4@0.3D, f4@1.3D<

80.304693, f4@1.3D<

Find all elements whose absolute value is less than 5:

Cases@82 + 6 I, 7, 3 - I, 2, 5 + 4 I<, _?HAbs@ÒD < 5 &LD

83 - Â, 2<

We could also use Select:

Select@82 + 6 I, 7, 3 - I, 2, 5 + 4 I<, Abs@ÒD < 5 &D

83 - Â, 2<

Require that argument is a matrix whose elements are numeric:

f4@m_?HMatrixQ@Ò, NumericQD &LD := Det@mD

498 Mathematica Navigator



f4@883, 5<, 82, 1<<D

-7

We write a program for Newton’s method and restrict the arguments with suitable heads and tests:

newton9@f_, x_Symbol, x0_?NumericQ, max_Integer?PositiveD :=
With@8df = D@f, xD<, FixedPointList@Hx - f ê dfL ê. x Ø Ò &, N@x0D, maxDD

newton9@3 x^3 - E^x, x, 2, 20D

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446, 0.952446<

The program does not accept, for example, a nonnumeric initial value:

newton9@3 x^3 - E^x, x, x0, 20D

newton9A-‰x
+ 3 x3, x, x0, 20E

‡ Restricting Patterns with Conditions

x_ /; cond  Any expression giving True from cond

x_head /; cond  Any expression having the head head and giving True from cond

x_ ? test /; cond  Any expression giving True from test and from cond

x_head ? test /; cond  Any expression having the head head and giving True from test and from
cond

(The  internal  name  of /;  is Condition.)  As  an  example,  select  all  numbers  that  are  on  a  given
interval:

Cases@84, 1, 3, 5, 3, 6, 2<, x_ ê; 2 § x § 4D

84, 3, 3, 2<

We could also use a test or Select:

Cases@84, 1, 3, 5, 3, 6, 2<, _?H2 § Ò § 4 &LD

84, 3, 3, 2<
Select@84, 1, 3, 5, 3, 6, 2<, 2 § Ò § 4 &D

84, 3, 3, 2<

Replace all big even numbers with a string:

SeedRandom@2D; t = RandomInteger@81, 20<, 20D

84, 19, 12, 11, 18, 9, 4, 9, 1, 20, 10, 15, 5, 4, 5, 13, 13, 9, 9, 19<
t ê. x_ ê; EvenQ@xD && x > 10 Ø "bigEven"

84, 19, bigEven, 11, bigEven, 9, 4, 9, 1, bigEven, 10, 15, 5, 4, 5, 13, 13, 9, 9, 19<

The  following  function  accepts  only  real  numbers  as  the  argument  since  the  imaginary  part  of  the
argument is required to be 0:

f5@x_ ê; Im@xD ã 0D := x^2

8f5@-3D, f5@Sqrt@2 - Sqrt@2DDD, f5@Sqrt@1 - Sqrt@2DDD, f5@2 + 5 ID, f5@aD<

:9, 2 - 2 , f5BÂ -1 + 2 F, f5@2 + 5 ÂD, f5@aD>

The next function requires that the argument be positive:

Chapter 16  •  Patterns 499



f6@x_ ê; Im@xD ã 0 && x > 0D := x^2

8f6@3D, f6@-7D, f6@2 + ID, f6@aD<

89, f6@-7D, f6@2 + ÂD, f6@aD<

Now we require that x is a numerical matrix:

f7@x_ ê; MatrixQ@x, NumericQDD := Det@xD

8f7@883, 2<, 85, 1<<D, f7@88a, 2<, 85, 1<<D<

8-7, f7@88a, 2<, 85, 1<<D<

Select lists with length 3:

Cases@881, 2<, 81, 2, 3<, 81, 2, 3, 4<<, x_List ê; Length@xD ã 3D

881, 2, 3<<
Select@881, 2<, 81, 2, 3<, 81, 2, 3, 4<<, ListQ@ÒD && Length@ÒD ã 3 &D

881, 2, 3<<

All  the  examples  of  tests  presented previously  can  also be  written by using conditions.  Indeed,  the
use of conditions may often be easier than the use of tests:

fac@0D = 1;
fac@n_Integer ê; n > 0D := n fac@n - 1D

8fac@5D, fac@2.7D, fac@-2D<

8120, fac@2.7D, fac@-2D<
84, 1, 3, 5, 3, 6, 2< ê. x_ ê; EvenQ@xD Ø "even"

8even, 1, 3, 5, 3, even, even<
Solve@49 - 22 x^2 + x^4 ã 0D

::x Ø -3 - 2 >, :x Ø 3 - 2 >, :x Ø -3 + 2 >, :x Ø 3 + 2 >>
Cases@%, 8x Ø x_ ê; x > 0<D

::x Ø 3 - 2 >, :x Ø 3 + 2 >>
f4@x_ ê; 0 < x < 1D := ArcSin@xD

8f4@0.3D, f4@1.3D<

80.304693, f4@1.3D<
Cases@82 + 6 I, 7, 3 - I, 2, 5 + 4 I<, x_ ê; Abs@xD < 5D

83 - Â, 2<

16.1.3  More about Patterns

‡ Variable Number of Arguments

x_  Any single expression
x__  Any sequence of one or more expressions
x___  Any sequence of zero or more expressions

Sometimes  it  is  useful  to  form  a  function  in  which  the  number  of  arguments  is  unspecified.  Such
functions  can  be  formed  with  a  double  underscore  (__)  (BlankSequence)  or  a  triple  underscore  (___)
(BlankNullSequence).

500 Mathematica Navigator



The functions f1, f2, and f3 accept one, one or more, and zero or more arguments, respectively:

f1@x_D := Apply@Plus, 8x<D
f2@x__D := Apply@Plus, 8x<D
f3@x___D := Apply@Plus, 8x<D

We try the functions for several numbers of arguments:

8f1@D, f1@aD, f1@a, bD, f1@a, b, cD< 8f1@D, a, f1@a, bD, f1@a, b, cD<
8f2@D, f2@aD, f2@a, bD, f2@a, b, cD< 8f2@D, a, a + b, a + b + c<
8f3@D, f3@aD, f3@a, bD, f3@a, b, cD< 80, a, a + b, a + b + c<

We see that f1  accepts only one argument, f2  does not accept zero arguments, and f3  accepts zero or
more arguments.

Next, we search lists of exactly one element, at least one element, and zero or more elements:

t = 883, 7<, 85<, 8<, 82, 6, 1<, 7, 8a, b<<;

Cases@t, 8x_<D 885<<
Cases@t, 8x__<D 883, 7<, 85<, 82, 6, 1<, 8a, b<<
Cases@t, 8x___<D 883, 7<, 85<, 8<, 82, 6, 1<, 8a, b<<

The  triple  underscore  is  used  especially  for  options.  In Section  18.3.4,  p. 579,  we  present  the

following example:

newton8@f_, x_, x0_, max_, opts___D := With@8df = D@f, xD<,
FixedPointList@Hx - f ê dfL ê. x Ø Ò &, N@x0D, max, optsDD

This function accepts zero or more options so that we can write, for example, the following commands:

newton8@f, x, 2, 20D

newton8@f, x, 2, 20, SameTest Ø HAbs@Ò1 - Ò2D < 10^-3 &LD

‡ Default Values

x_.  Any expression; if it does not occur explicitly, use a built-in default value
x_:v  Any expression; if it does not occur explicitly, use the default value v

x_head:v  Any expression with the head head; if it does not occur explicitly, use the default value v

(These  constructs  are  internally  formed  with Optional.)  Default  values  are  useful,  for  example,  in
such expressions as a^n_. Consider the following three examples. In the first example, we do not have a
default value for the exponent, and a or a^1 is not transformed:

8a, a^2, a^3< ê. a^n_ Ø b^H2 nL 9a, b4, b6=
In  the  following  example,  we  use  the  built-in  default  value  1  for  the  exponent,  and  now a,  too,  is
transformed:

8a, a^2, a^3< ê. a^n_. Ø b^H2 nL 9b2, b4, b6=
We can also define our own default value:

8a, a^2, a^3< ê. a^Hn_: 1L Ø b^H2 nL 9b2, b4, b6=
In general, the default value of y in x_ + y_. is 0. In x_ y_. the default value of y is 1, and in x_^y_. it

is also 1. As an example, the function coeff extracts the coefficients from a linear expression:

coeff@a_. + b_. x_, x_D := 8a, b<
coeff@a_, x_D := 8a, 0<

Chapter 16  •  Patterns 501



We try the function:

8coeff@u, zD, coeff@u + z, zD, coeff@v z, zD, coeff@u + v z, zD<

88u, 0<, 8u, 1<, 80, v<, 8u, v<<

‡ Optional Arguments

A default value such as v in x_:v may be useful in function definitions. Here is an example:

newtonSolve@f_, x_, x0_, d_: 1, n_: 20, opts___?OptionQD :=
With@8df = D@f, xD<, FixedPointList@Hx - d f ê dfL ê. x Ø Ò &, N@x0D, n, optsDD

If  we  give  only  the  first  three  arguments,  as  in newtonSolve[f, x, 3],  then  the  default  value  1  is
used for d and 20 for n. On the other hand, we can define d as in newtonSolve[f, x, 3, 2], and then 2 is
used as the damping factor. We can also define both d and n as in newtonSolve[f, x, 3, 2, 25]. In this
way, we can define and use optional arguments.

An optional  argument can sometimes be handy at  the end of the parameter list.  Another approach,
which is useful in more complicated situations, is to define the function several times for several forms

of arguments. Still another approach is to use options (see Section 17.3.4, p. 538). Options are good for

situations  in  which  the  function  has  many  adjustable  features  but  the  default  settings  of  the  features
work in most cases.

‡ Alternative Patterns

pattern1 | pattern2 | …  Represents any expression matching any of the patterns

Toss a die 10 times:

t = 82, 6, 4, 3, 3, 6, 3, 1, 6, 5<;

Find all 1’s and 6’s:

Cases@t, 1 » 6D 86, 1, 6<

We could also use Select:

Select@t, Ò == 1 »» Ò == 6 &D 86, 1, 6<

Replace all 1’s and 6’s with a string:

t ê. 1 » 6 Ø "onesix"

82, onesix, 4, 3, 3, onesix, 3, onesix, onesix, 5<

Of course, we could also write

t ê. 81 Ø "onesix", 6 Ø "onesix"<

82, onesix, 4, 3, 3, onesix, 3, onesix, onesix, 5<

Define a function with alternative arguments:

die@1 » 6D := win
die@2 » 3 » 4 » 5D := lose

die êü Range@6D

8win, lose, lose, lose, lose, win<

502 Mathematica Navigator



‡ A More Complete Definition of a Pattern with a Name

Thus far, we have considered patterns of the form x_  (added with tests and conditions). To form more
complicated patterns, the following more general definition of a pattern is useful:

x : pattern  Represents any expression matching pattern; the expression is referred to with the
name x

(The  internal  name  of  this  construct  is Pattern.)  The  pattern x_  is  a  special  case  of  this  general
definition. Indeed, x_ is equivalent to x:_, and x_head is equivalent to x:_head.

In the next example,  the argument of  the function has to be a positive integer or a positive rational
number:

f4@x : H_Integer » _RationalL ê; x > 0D := x^2

8f4@3D, f4@2 ê 3D, f4@1.6D, f4@-5D<

:9,
4

9
, f4@1.6D, f4@-5D>

‡ Repeated Patterns

pattern ..  Represents any sequence of one or more expressions, each matching pattern

pattern ...  Represents any sequence of zero or more expressions, each matching pattern

Generate random strings:

SeedRandom@1D; t = RandomChoice@8"a", "b"<, 20D

8b, b, a, b, a, a, a, b, a, b, a, a, a, a, a, a, a, b, b, b<

Split the list:

t2 = Split@%D

88b, b<, 8a<, 8b<, 8a, a, a<, 8b<, 8a<, 8b<, 8a, a, a, a, a, a, a<, 8b, b, b<<

Find all lists of one or more a’s:

Cases@t2, 8"a" ..<D

88a<, 8a, a, a<, 8a<, 8a, a, a, a, a, a, a<<

Replace all lists of one or more a’s with A:

t2 ê. 8"a" ..< Ø "A"

88b, b<, A, 8b<, A, 8b<, A, 8b<, A, 8b, b, b<<

The function f5 accepts as an argument a nonempty list of two-element lists and then transposes the
list:

f5@x : 88_, _< ..<D := Transpose@xD

f5@881, a<, 82, b<, 83, c<<D

881, 2, 3<, 8a, b, c<<

We could also write

f5a@x_?MatrixQ ê; Dimensions@xDP2T == 2D := Transpose@xD

f5a@881, a<, 82, b<, 83, c<<D

881, 2, 3<, 8a, b, c<<

Chapter 16  •  Patterns 503



With Repeated we can control in more detail the number of times a pattern is allowed to repeat.

Repeated[pattern]  A pattern repeated at least once (the same as pattern..)
Repeated[pattern, {n}]  A pattern repeated exactly n times
Repeated[pattern, max]  A pattern repeated at most max times
Repeated[pattern, {min, max}]  A pattern repeated between min and max times

Consider the list t2 generated above. Instead of the pattern "a".. we can also write Repeated["a"]:

Cases@t2, 8Repeated@"a"D<D

88a<, 8a, a, a<, 8a<, 8a, a, a, a, a, a, a<<

Find all lists with at most three a’s:

Cases@t2, 8Repeated@"a", 3D<D

88a<, 8a, a, a<, 8a<<

We could also write

Cases@t2, 8"a"< » 8"a", "a"< » 8"a", "a", "a"<D

88a<, 8a, a, a<, 8a<<

‡ Exceptions

Except[c]  A pattern matching any expression except c
Except[c, pattern]  A pattern matching pattern but not c

Toss a die 20 times:

SeedRandom@2D; t = RandomInteger@81, 6<, 20D

86, 2, 3, 3, 6, 3, 2, 6, 6, 1, 1, 5, 4, 5, 1, 2, 2, 6, 2, 6<

Pick all but 6’s or all results that are not 1’s or 6’s:

Cases@t, Except@6DD

82, 3, 3, 3, 2, 1, 1, 5, 4, 5, 1, 2, 2, 2<
Cases@t, Except@1 » 6DD

82, 3, 3, 3, 2, 5, 4, 5, 2, 2, 2<

We could also write

Cases@t, x_ ê; x 6D

82, 3, 3, 3, 2, 1, 1, 5, 4, 5, 1, 2, 2, 2<

Pick all even results that are not 6:

Cases@t, Except@6, _?EvenQDD 82, 2, 4, 2, 2, 2<

We could also write

Cases@t, x_?EvenQ ê; x 6D 82, 2, 4, 2, 2, 2<

‡ Longest and Shortest Sequences

Longest[pattern] (Ÿ6)  The longest sequence matching pattern

Shortest[pattern] (Ÿ6)  The shortest sequence matching pattern

504 Mathematica Navigator



Find the longest sequence of the digit 9 appearing in the first 1000 digits of p:

d = RealDigits@N@p, 1000DD êê First;

d ê. 8___, x : Longest@9 ..D, ___< Ø 8x<

89, 9, 9, 9, 9, 9<

Another way:

d ê. 8___, Longest@x__?HÒ == 9 &LD, ___< Ø 8x<

89, 9, 9, 9, 9, 9<

This sequence of six 9’s begins from the 763th digit:

Position@Partition@d, 6, 1D, 89, 9, 9, 9, 9, 9<D

88763<<

‡ Pattern Sequences

PatternSequence[pattern1, pattern2, …] (Ÿ6)  A sequence of objects, with the first object
matching pattern1, the second matching pattern2, …

What is the longest sequence of the digits 1 and 2 appearing in the first 1000 digits of p:

d ê. 8___, x : Longest@PatternSequence@1, 2D ..D, ___< ß 8x<

81, 2, 1, 2<

16.2  String Patterns

16.2.1  String Patterns

‡ String Patterns

Strings were considered in Section 13.3.6, p. 433. String patterns are very useful in manipulating strings.

StringPosition  (to  be  considered  soon)  is  one  of  the  commands  that  support  string  patterns.  The
simplest form of this command searches the start and end positions of an explicitly given string:

StringPosition@"mathematics", "mat"D

881, 3<, 86, 8<<

However,  we  can  also  ask  the  positions  of  a  more  complex  pattern.  Here  we  ask,  in  two  ways,  the
positions of “math” or “mati”:

StringPosition@"mathematics", 8"math", "mati"<D

881, 4<, 86, 9<<
StringPosition@"mathematics", "math" » "mati"D

881, 4<, 86, 9<<

Mathematica  has  a  built|in  English  dictionary.  With  the  following  command  we  can  search  words
from the dictionary. The search is based on string patterns.

Chapter 16  •  Patterns 505



DictionaryLookup[] (Ÿ6)  Give a list of all words in an English dictionary
DictionaryLookup[patt]  Find all words that match the string pattern patt

DictionaryLookup[patt, n]  Give only the first n words found
DictionaryLookup[patt, IgnoreCase Ø True]  Do not take the case of words into account

The dictionary contains almost 100,000 words:

DictionaryLookup@D êê Length 92 518

In Section  16.1.3,  p. 500,  we  studied  pattern  objects  such  as _, __,  and ___.  For  strings,  the  pattern

object _  represents  any  single  character, __  represents  a  sequence  of  one  or  more  characters,  and ___

represents  a  sequence  of  zero  or  more  characters.  Next,  we  search,  from the  dictionary  of  the  English
language, all palindromes~that is, words with one or more characters that are the same if read from the
end to the beginning:

Style@DictionaryLookup@x__ ê; x === StringReverse@xDD, 8D

8a, aha, aka, bib, bob, boob, bub, CFC, civic, dad, deed, deified, did, dud, DVD,
eke, ere, eve, ewe, eye, gag, gig, huh, I, kayak, kook, level, ma'am, madam, mam,

MGM, minim, mom, mum, nan, non, noon, nun, oho, pap, peep, pep, pip, poop, pop,

pup, radar, redder, refer, repaper, reviver, rotor, sagas, sees, seres, sexes,

shahs, sis, solos, SOS, stats, stets, tat, tenet, TNT, toot, tot, tut, wow, WWW<

Find all words containing one or more times the letters h, e, i, and k:

DictionaryLookup@H"h" » "e" » "i" » "k"L .., IgnoreCase Ø TrueD

8eek, eh, eke, he, hi, hie, hike, I, Ike<

‡ String Expressions

In addition to standard pattern objects such as _ or __, we can form more complex patterns by combin-

ing, with ~~,  strings and standard pattern objects. Such patterns constructs are called string expressions.
For example, next we ask

• the positions of “mat” followed by any single character;
• the positions of “mat” followed by any single character followed by “cs”; and
• the positions of “mat” followed by any single character not equal to “h”:

StringPosition@"mathematics", "mat" ~~ _D

881, 4<, 86, 9<<
StringPosition@"mathematics", "mat" ~~ _ ~~ "cs"D

886, 11<<
StringPosition@"mathematics", "mat" ~~ Hc_ ê; c "h"LD

886, 9<<

Next, we search, from the dictionary of the English language, all words starting with “x”

DictionaryLookup@"x" ~~ ___D

8xenon, xenophobe, xenophobes, xenophobia, xenophobic,
xerographic, xerography, xerox, xeroxed, xeroxes, xeroxing, xi, xis,
xylem, xylene, xylophone, xylophones, xylophonist, xylophonists<

A simpler way is the following:

506 Mathematica Navigator



DictionaryLookup@"x*"D

8xenon, xenophobe, xenophobes, xenophobia, xenophobic,
xerographic, xerography, xerox, xeroxed, xeroxes, xeroxing, xi, xis,
xylem, xylene, xylophone, xylophones, xylophonist, xylophonists<

Now we calculate the number of words beginning with a, …, z (case ignored):

freq =
Length@DictionaryLookup@Ò ~~ ___, IgnoreCase Ø TrueDD & êü CharacterRange@"a", "z"D

85305, 5510, 8726, 5647, 3607, 3757, 3096, 3466, 3569, 1017, 928, 2913, 5190,
2021, 2320, 7130, 450, 5572, 10 474, 4664, 2647, 1405, 2492, 46, 331, 224<

ListPlot@freq, Filling Ø Axis, ImageSize Ø 220,
Ticks Ø 8Transpose@8Range@26D, CharacterRange@"a", "z"D<D, Automatic<D

Here is the general syntax of a string expression:

StringExpression[s1, s2, …]  or s1 ~~ s2 ~~ …  A string expression~that is, a sequence of strings
and pattern objects

Next, we consider commands that support string expressions. Note that the following option can be
used for all the commands we will consider:

An option for commands using string patterns:

IgnoreCase  Whether lower| and uppercase letters should be treated as equivalent; possible values:
False, True

The default is that lower| and uppercase letters are not treated as equivalent.

‡ Searching Positions and Cases

Here,  we again denote by s  a  given string.  Also,  we denote by patt  a  string pattern~that  is,  a  string
expression.

StringPosition[s, patt]  Give positions of substrings of s matching patt

StringCases[s, patt]  Give a list of substrings in s that match patt

StringCases[s, patt Ø val]  Replace each case of patt with val

StringCount[s, patt]  Count how many substrings of s match patt

StringMatchQ[s, patt]  Test whether s matches the string pattern patt

StringFreeQ[s, patt]  Test whether no substring of s matches the string pattern patt

StringCases@"mathematics", "mat"D

8mat, mat<

Chapter 16  •  Patterns 507



StringCases@"mathematics", "mat" ~~ _D

8math, mati<
StringCases@"mathematics", "mat" ~~ _ ~~ "cs"D

8matics<
StringCases@"mathematics", "mat" ~~ c_ ~~ "cs" Ø "MAT" ~~ c ~~ "CS"D

8MATiCS<

Here are the frequencies of all letters (case ignored) in the built|in dictionary:

dl = DictionaryLookup@__, IgnoreCase Ø TrueD;

8Ò, StringCount@StringJoin@dlD, ÒD< & êü CharacterRange@"a", "z"D

88a, 59 823<, 8b, 14 496<, 8c, 30 209<, 8d, 28 950<, 8e, 88 302<, 8f, 10 232<, 8g, 22 567<,
8h, 17 621<, 8i, 66 782<, 8j, 1322<, 8k, 7188<, 8l, 40 655<, 8m, 20 161<,
8n, 55 210<, 8o, 47 069<, 8p, 21 188<, 8q, 1403<, 8r, 55 984<, 8s, 66 601<,
8t, 51 121<, 8u, 25 717<, 8v, 7694<, 8w, 6768<, 8x, 2078<, 8y, 12 372<, 8z, 3322<<

In place of, for example, StringCases, we can use Pick with StringMatchQ. Here, we search for all
words starting with “aa” (for StartOfString, see Special Positions):

StringCases@dl, StartOfString ~~ "aa" ~~ ___D êê Flatten

8aah, aardvark, aardvarks<
Pick@dl, StringMatchQ@dl, "aa" ~~ ___DD

8aah, aardvark, aardvarks<

An option for StringPosition, StringCases, and StringCount:

Overlaps  How to treat overlapping substrings; possible values: False (allow no overlaps; the
default for StringCases and StringCount), All (allow all overlaps), True (allow overlaps starting
at different positions; the default for StringPosition)

StringCases and StringCount do not, by default, allow overlaps. Here, we search for a sequence of
one or more characters:

StringCases@"abcd", __D

8abcd<

Next, we allow all overlaps:

StringCases@"abcd", __, Overlaps Ø AllD

8abcd, abc, ab, a, bcd, bc, b, cd, c, d<

Now we only allow overlaps at different positions:

StringCases@"abcd", __, Overlaps Ø TrueD

8abcd, bcd, cd, d<

StringPosition, by default, allows overlaps at different positions:

StringPosition@"abcd", __D

881, 4<, 82, 4<, 83, 4<, 84, 4<<

508 Mathematica Navigator



‡ Replacing

StringReplace[s, patt Ø val]  Replace every occurrence of string patt in s with val

StringReplace[{s, t, … }, patt Ø val]  Replace in each of the strings s, t …
StringReplaceList[s, patt Ø val]  Do the replacement in all possible ways

StringReplace@"aaag aabg aacg", "aa" Ø "AA"D

AAag AAbg AAcg

StringReplace@"aaag aabg aacg", "aa" ~~ _ Ø "AA"D

AAg AAg AAg

StringReplace@8"aaag", "aabg", "aacg"<, "aa" ~~ _ Ø "AA"D

8AAg, AAg, AAg<

16.2.2  More about String Patterns

‡ Splitting

StringSplit[s]  Split s into sublists at every whitespace (space, newline, tab)
StringSplit[s, patt]  Split s into sublists at every delimiter matching patt

StringSplit[s, {patt1, patt2, …}]  Split at points matching any of the patterns
StringSplit[s, patt Ø val]  Insert val at the position of each delimiter

Note that the delimiters (whitespace, etc.) are dropped from the splitted string.

StringSplit@"Here is a hat"D

8Here, is, a, hat<
StringSplit@"aababaaaabba", "b"D

8aa, a, aaaa, , a<
StringSplit@"aababaaaabba", "b" Ø "b"D

8aa, b, a, b, aaaa, b, , b, a<

Generate a random sequence of letters a and b. Then split the sequence such that every occurrence of
“ayya”, where “y” can be any character, is picked and colored red:

SeedRandom@1D; s = StringJoin@RandomChoice@8"a", "b", "c"<, 50DD

babbaaabaaaacabcaabbaabacabbccabababaacaccabcbcaaa

StringSplit@s, x : H"a" ~~ y_ ~~ y_ ~~ "a"L ß Style@x, RedDD

8b, abba, aab, aaaa, cabca, abba, abacabbccabababaac, acca, bcbcaaa<

‡ Special Patterns

NumberString  A number in a string form
DigitCharacter  A digit character (0-9)
LetterCharacter  A letter character
WordCharacter  A letter or a digit character
Whitespace  A sequence of space, newline, or tab characters
WhitespaceCharacter  A single space, newline, or tab character
Except[c]  Represents any character except ones matching c

Chapter 16  •  Patterns 509



Replace every sequence of one or more digits with “D”:

StringReplace@"ab123cde45f", DigitCharacter .. Ø "D"D

abDcdeDf

Replace every sequence of one or more characters that are not digits with “D”:

StringReplace@"ab123cde45f", Except@DigitCharacterD .. Ø "D"D

D123D45D

Bertrand Russell has defined mathematics as

t = "The subject in which we never know what we
are talking about nor whether what we are saying is true." ;

(See http://mathworld.wolfram.com/Mathematics.html .)  Search  all  words,  sort  the  list,  split  the
resulting list, and calculate the length of each run. Lastly, calculate how many words we have that occur
once, twice, thrice, …:

words = ToLowerCase@StringCases@t, WordCharacter ..DD

8the, subject, in, which, we, never, know, what, we, are,
talking, about, nor, whether, what, we, are, saying, is, true<
words êê Sort êê Split

88about<, 8are, are<, 8in<, 8is<, 8know<, 8never<, 8nor<, 8saying<, 8subject<,
8talking<, 8the<, 8true<, 8we, we, we<, 8what, what<, 8whether<, 8which<<

Length êü % 81, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 3, 2, 1, 1<
% êê Tally 881, 13<, 82, 2<, 83, 1<<

‡ Special Positions

StartOfString, EndOfString  The start/end of string
StartOfLine, EndOfLine  The start/end of a line
WordBoundary  The boundary between word characters and others
Except[StartOfString]  Anywhere except at the start of the string, etc.

Change the first character of each word to uppercase:

StringReplace@"Here is a hat", WordBoundary ~~ x_ Ø ToUpperCase@xDD

Here Is A Hat

‡ Regular Expressions

RegularExpression[s]  The generalized regular expression specified by s

String  patterns  can  be  defined,  besides  with  string  expressions  and patterns  objects,  with  a  pattern
notation called regular expression. We give only one example here. We can write

StringReplace@"aaebf cadbb", "a" » "b" » "c" Ø "C"D

CCeCf CCdCC

but we can also use a regular expression:

StringReplace@"aaebf cadbb", RegularExpression@"@abcD"D Ø "C"D

CCeCf CCdCC

510 Mathematica Navigator



17
Functions

Introduction 511

17.1  User|Defined Functions 512

17.1.1  Defining a Function 512 :=, SyntaxInformation, InverseFunction, Identity, etc.

17.1.2  Piecewise|Defined Functions 516 Piecewise, PiecewiseExpand

17.1.3  Implicit Functions 518 ContourPlot

17.1.4  Pure Functions and Scoping Constructs 520 Function, Module, With, Block

17.2  More about Functions 523

17.2.1  Tracing 523 Trace, On, Off

17.2.2  Debugging 524

17.2.3  Compiling 528 Compile

17.2.4  Attributes 530 Attributes, SetAttributes, ClearAttributes

17.3  Contexts and Packages 531

17.3.1  What Is a Context? 531 $ContextPath, $Context, Context, Contexts, Names

17.3.2  Forgetting to Load: Once Again 533

17.3.3  Writing a Package 535 BeginPackage, EndPackage, Begin, End, (* *)

17.3.4  Handling Options and Messages 538 Options, OptionsPattern, FilterRules, Message, etc.

Introduction

Teacher: ”If Tom gave you three apples and Bill gave you two apples, how many
 apples would you have then?“ Mary: ”Seven apples, teacher.“ Teacher: ”Wrong,

 Mary, 3 + 2 = 5.“ Mary: ”I know that, teacher, but I have two apples already.“

A function defined by f[x_] := expr is usually not needed to do calculations with expressions. Instead,
give a name for the expression, such as f = expr, and use this name. On the other hand, the syntax of a
function is needed to write more complex functions, such as recursive functions or programs. Recursive
and periodic functions are addressed in Chapter 18 in the context of recursive programming.

Pure functions  are important in Mathematica,  however odd they may seem at first sight. With tracing,
we  can  see  how  a  calculation  proceeds  inside Mathematica;  this  may  be  useful  to  correct  programs.
Mathematica  6 has a special debugger  to detect errors in programs. By compiling  a function, we can get a
more efficient function and save computing time. We can also assign some attributes to a function and so
give it some desired properties.

Functions  are  used in  programming,  and a  collection  of  related  functions  can  be  gathered  together
into a package. To understand the structure of a package, we have to consider contexts.

Sections 17.1.1 and 17.1.4 are the most important ones in this chapter.



17.1  User|Defined Functions

17.1.1  Defining a Function

‡ A Name or a Function?

Suppose we want to consider the function x Cos[x]. We want to calculate its value at some points and
to differentiate, integrate, and plot it. To avoid having to write the expression again and again or use %,
%%, %%% , and so on, we can either give a name to the expression or define a function:

1. Naming the expression 2. Defining a Function

f = x Cos@xD f@x_D := x Cos@xD

f ê. x Ø 2 f@2D

Table@f, 8x, 0, 1, .1<D Table@f@xD, 8x, 0, 1, .1<D

D@f, xD f'@xD

Integrate@f, xD Integrate@f@xD, xD

Plot@f, 8x, 0, Pi<D Plot@f@xD, 8x, 0, Pi<D

The first method is often the most appropriate. With it,  we give a name to the expression, and later
we need only type this name. The second method is  often not  needed to perform calculations with an
expression.  However,  function  definitions  are  used  to  define  more  complicated  functions  and  also
programs.

‡ Functions

f[x_] := expr  A function of one variable
f[x_, y_] := expr  A function of two variables

?f  Show the context and definition of f
Definition[f]  Show the definition of f

Clear[f]  Clear all definitions for f
Remove[f]  Remove f completely

Functions  are  defined  with :=,  and  each  argument  is  followed  by  the  underscore  (_)  (named
“blank”). For example,

f1@x_D := x Sin@xD

f1@Pi ê 3D
p

2 3

Definition@f1D

f1@x_D := x Sin@xD
? f1

Global`f1

f1@x_D := x Sin@xD

512 Mathematica Navigator



(The  full  name  of f1  is Global`f1,  where Global`  is  the  context  of  all  user|defined  symbols.)  If  you
forget the underscore, the function does not work: Mathematica  knows the value of the function only for
the argument you have used in the definition and not for any other argument:

f2@xD := x Cos@xD

f2@xD x Cos@xD
f2@PiD f2@pD

Here is a function with two arguments:

charpoly@m_, x_D := Det@m - x IdentityMatrix@Length@mDDD

charpoly@882, 5<, 86, 1<<, xD -28 -3 x +x2

One or more arguments can be used to index a function:

f3@n_, x_D := Hn - 1L x^n

Table@f3@n, yD, 8n, 4<D 90, y2, 2 y3, 3 y4=
‡ Details

At this point, there are two things that require explanation: the underscore and the colon.

The  underscore  in x_  makes  the  argument  a pattern.  The  pattern x_  is  matched  with anything:  The
value  of  the  function  is  calculated  using  whatever  you  give  as  an  argument.  Indeed,  this  is  what  we
want of  a  function.  Patterns were considered in more detail  in Chapter 16.  As we previously stated, if
we  define  a  function  such  as f2  without  the  underscore,  the  definition  is  nearly  useless  because  the
value  of  the  function  is  known  only  for  the  argument  given  in  the  definition  and  not  for  any  other
argument. Thus, the crucial point to remember when defining a function is to write the underscore.

Recall  that  assigning  values  can  be  done  as  follows: f = x Sin[x].  This  means  that  the  value  of
x Sin[x] is immediately  calculated and then assigned to f (if x happens to have a value when you define
f, then f gets the corresponding special value of x Sin[x]). If you define a function f[x_] := x Sin[x],
the  value  of  the  right-hand  side  is  not  evaluated until  you  ask  for  the  value  of  the  function  with  a
specific argument. Indeed, the effect of the colon in :=  is only to delay  the evaluation of the right-hand
side. This may seem somewhat unimportant now, but later you will encounter more complex functions
in which the right-hand side simply cannot be evaluated or its value is extremely complex and useless
unless  the  argument  has  a  numerical  value.  Hence,  it  makes  sense  to  routinely  use :=  in  function
definitions (although = could work for simpler functions).

‡ Example 1

We try to use = in the definition of a function:

g1@x_D = NIntegrate@Sin@t^2D, 8t, 0, x<D

NIntegrate::nlim : t = x is not a valid limit of integration. à

NIntegrate::nlim : t = x is not a valid limit of integration. à

NIntegrateASinAt2E, 8t, 0, x<E
Mathematica  immediately  tries  to  evaluate  the  right-hand  side  of g1,  but  it  cannot  be  evaluated:  In
NIntegrate,  the  limits  of  integration  must  be  numerical  (and  not x,  for  example),  and  so  we  get  the
error messages. However, we can calculate the value of g1 at a point:

g1@2D 0.804776

Then we use := in the definition:

Chapter 17  •  Functions 513



g2@x_D := NIntegrate@Sin@t^2D, 8t, 0, x<D

Now the right-hand side is not evaluated until a specific value of x is given:

g2@2D 0.804776

‡ Example 2

In  this  example,  we  demonstrate  why  it  may  be  dangerous  not  to  use  the  colon.  Suppose  we  have
defined a value for a variable x and then we define, without the colon, a function using this variable:

x = 3;

g3@x_D = x + 10 13

The value of the variable x  was immediately used. From the definition of g3,  we see that our function
does not work because its value is 13 for all arguments:

Definition@g3D g3@x_D = 13

If we instead use the colon, we get a working function:

g4@x_D := x + 10

Definition@g4D g4@x_D := x + 10

x =.

‡ Example 3

Sometimes we have to use = and not :=. For example, we define the following:

g5@x_D = D@x Sin@xD, xD x Cos@xD +Sin@xD
The  important  point  is  that  the  derivative  was  calculated  immediately  because  we  did  not  write  the
colon. Now g5 contains the derivative, and we can calculate its value:

g5@2.D 0.0770038

Let us then try := in the definition:

g6@x_D := D@x Sin@xD, xD

g6@2.D

General::ivar : 2.` is not a valid variable. à

2.1.81859

We got an error message. The right-hand side of g6 was not evaluated when g6 was defined, and when
we then asked for the value at 2, we ended up with the impossible expression D[1.81859, 2.]; clearly,
we cannot differentiate with respect to 2. Therefore, in this example, we should not use the colon in the
definition of the function.

‡ Example 4

Sometimes we may want  to  define  a  function from the result  of  a  computation.  For  example,  we may
have calculated the following:

D@x Sin@xD + Sinh@xD, xD x Cos@xD +Cosh@xD +Sin@xD
Now we want to define this result as the value of a function g7  at x.  This is another case in which we
have to use = and not :=:

g7@x_D = % x Cos@xD +Cosh@xD +Sin@xD

514 Mathematica Navigator



g7@1D Cos@1D +Cosh@1D +Sin@1D

‡ A Tip

When you define a function, you often need to do some experimenting to get the correct and best form.
During the experimenting,  it  is  possible  that  the definition of  the function will  not  remain in the form
you really want, and you may get odd or erroneous results. To keep the definition in the desired form,
ask frequently, during the experimenting, for the definition of the function with ?f or Definition[f]. If
the  definition  is  not  what  you  want,  remove  it  with Remove[f]  and  redefine.  You  can  also  simply
develop the habit of removing the old definition with Remove[f] every time you modify the definition.

Before the next section, we remove all of our current definitions:

Remove@"Global`*"D

‡ Syntax Coloring

SyntaxInformation[f] (Ÿ6)  Define syntax information for f used in syntax coloring

Syntax coloring is used with the built-in functions to show that the number of arguments is wrong:

8Sin@D, Sin@xD, Sin@x, yD<

To  get  similar  colorings  for  user-defined  functions,  use SyntaxInformation.  In  the  next  example,  we
define that g8 is a function of two arguments:

SyntaxInformation@g8D = 8"ArgumentsPattern" Ø 8_, _<<

8ArgumentsPattern Ø 8_, _<<
If  we  write g8  with  less  than two or  more  than two arguments,  we  get  colored information about  the
wrong number of arguments:

8g8@D, g8@xD, g8@x, yD, g8@x, y, zD<

‡ Some Special Functions

Identity[x]  Identity function
InverseFunction[f][x]  Inverse function
Composition[f, g][x]  or f[g[x]]  Composite function

Here are some examples of inverse functions:

8InverseFunction@fD@xD, InverseFunction@SinD@xD< 9fI-1M@xD, ArcSin@xD=
If Solve uses inverse functions, it gives a warning:

Solve@h@xD ã 2, xD

InverseFunction::ifun :

Inverse functions are being used. Values may be lost for multivalued inverses. à

99x Ø hI-1M@2D==
Values of composite functions can be calculated naturally by writing f[g[x]]:

f@x_D := Sin@xD
g@x_D := x^2

8f@g@aDD, g@f@aDD< 9SinAa2E, Sin@aD2=
Remove@"Global`*"D

Chapter 17  •  Functions 515



17.1.2  Piecewise|Defined Functions

‡ Piecewise|Defined Functions

Piecewise[{{val1, cond1}, {val2, cond2}, … }]  A piecewise function with values vali in regions
defined by conditions condi

Piecewise[{{val1, cond1}, {val2, cond2}, … }, val]  Use value val if none of the condi apply;
the default of val is 0

Mathematica  has advanced functionality for piecewise|defined functions. Such functions can be used
in many kinds of computations, such as differentiating, integrating, minimizing, and solving differential
equations. Here is an example:

f = Piecewise@881 + x, -1 < x § 0<, 81 - x, 0 < x § 1<<D

1 + x -1 < x § 0

1 - x 0 < x § 1

Mathematica  shows piecewise-defined functions in a form that is familiar from traditional mathematical
notation.

Note  that  it  is  not  necessary  to  define  the  value  of  the  function  when x § -1  or x > 1  because
Mathematica  assumes  that  the  value  of  a  piecewise|defined  function  at  points  that  are  not  explicitly
included in the definition of the function is zero; this default value suits us in this example.

Piecewise functions can also be written as follows. First, type ÂpwÂ to get . Then type ‚Î,Ï to get
Ñ Ñ

Ñ Ñ
.  Then  fill  in  the  boxes.  If  you  want  more  rows,  type ‚÷Á.  In  this  way,  we  get  the  following

definition:

f =
1 + x -1 < x § 0

1 - x 0 < x § 1

‡ Example 1

The function defined previously is the triangular probability density function (PDF):

Plot@f, 8x, -1.5, 1.5<, Ticks Ø 88-1, 1<, 81<<, AspectRatio Ø AutomaticD

-1 1

1

Check that the integral of the PDF is 1:

Integrate@f, 8x, -¶, ¶<D 1

To calculate the cumulative distribution function (CDF) FHxL = Ÿ-¶
x

f HtL „ t, we could try the following:

F = Integrate@f ê. x Ø t, 8t, -¶, x<D

‡
-¶

x 1 + t -1 < t § 0

1 - t 0 < t § 1
„t

This did not succeed. We have to declare that x is real:

516 Mathematica Navigator



F = Integrate@f ê. x Ø t, 8t, -¶, x<, Assumptions Ø x œ RealsD

1 x > 1

1

2
I1 + 2 x - x2M 0 < x § 1

1

2
I1 + 2 x + x2M -1 < x § 0

Note  that Mathematica  did  not  explicitly  show  the  value  of  the  CDF  when x § -1;  in  this  interval,  the
value of the CDF is the default value 0. Plot the CDF:

Plot@F, 8x, -1.5, 1.5<, Ticks Ø 88-1, 1<, 81<<, AspectRatio Ø AutomaticD

-1 1

1

Check that F£HxL = f HxL:

D@F, xD êê Simplify

1 x ã 0

1 - x 0 < x < 1

1 + x -1 < x < 0

Again, Mathematica  did not explicitly show the regions x § -1 and x ¥ 1 where the value of the deriva-

tive is the default value 0.

Note that Mathematica has the triangular distribution:

PDF@TriangularDistribution@8-1, 1<D, xD

1 + x -1 § x § 0

1 - x 0 < x § 1

‡ Example 2

Define another PDF:

f2 =

x

a b
0 < x § b

1

a
b < x § a

a+b-x

a b
a < x § a + b

;

Plot@f2 ê. 8b Ø 2, a Ø 4<, 8x, 0, 6<D

1 2 3 4 5 6

0.05

0.10

0.15

0.20

0.25

This is the PDF of the random variable X + Y when X is uniform on H0, aL, Y is uniform on H0, bL, X and Y
are independent, and a > b. Check that the integral is 1:

Integrate@f2, 8x, -¶, ¶<, Assumptions Ø 8a > 0, b > 0, a > b<D 1

To calculate the CDF, the following, which worked in Example 1, now gives a very complex, useless
result (we do not show the output here):

Chapter 17  •  Functions 517



F2 = Integrate@f2 ê. x Ø t, 8t, -¶, x<, Assumptions Ø 8a > 0, b > 0, a > b, x œ Reals<D

Instead, do as follows. Here we calculate, with Map or /@, the integral separately for each interval:

F2 = Piecewise@
8Integrate@f2 ê. x Ø t, 8t, -¶, x<, Assumptions Ø 8a > 0, b > 0, a > b, Ò<D, Ò< & êü
8x § 0, 0 < x § b, b < x § a, a < x § a + b, x > a + b<D

0 x § 0

x2

2 a b
0 < x § b

-b+2 x

2 a
b < x § a

-a2-b2+2 a x+2 b x-x2

2 a b
a < x § a + b

1 x > a + b

‡ Expanding Piecewise Functions

PiecewiseExpand[expr]  Expand nested piecewise functions in expr to give a single piecewise
function

PiecewiseExpand[expr, ass]  Use assumptions ass

We may have a function consisting of nested piecewise functions, such as the following:

1 0 < x < 1

2 1 < x < 2
0 < x < 2

3 2 < x < 3

;

With PiecewiseExpand we get a single piecewise function:

% êê PiecewiseExpand

1 0 < x < 1

2 1 < x < 2

3 2 < x < 3

Some  functions  are  implicitly  piecewise.  They  can  also  be  expanded  into  one  explicit  piecewise
function:

PiecewiseExpand@Abs@xD, x œ RealsD

-x x < 0

x True

PiecewiseExpand@Max@x, yDD

x x - y ¥ 0

y True

PiecewiseExpand@If@x < 0, Cos@xD, Sin@xDDD

Cos@xD x < 0

Sin@xD True

Here, the condition True is used to express the “otherwise” situation.

17.1.3  Implicit Functions

Implicit  functions  are  defined  via  equations:  The  solution  of  an  equation  defines  the  value  of  the
function. For example, the equation x3 - y4 + x y3 - y + 1 = 0 implicitly defines a function y of x. Calculat-

ing derivatives  of  an  implicit  function is  considered in Section 19.1.4,  p. 622.  Implicit  functions  can be

plotted with ContourPlot, as shown in Section 5.2.3, p. 134. Here are two additional examples.

518 Mathematica Navigator



‡  Example 1

Consider the following polynomial expression:

expr = x^3 - y^4 + x y^3 - y + 1;

In using ContourPlot  to plot an implicit function defined by expr ã 0,  we ask only for the contour in
which expr takes on the value 0:

ContourPlot@expr ã 0, 8x, -2, 2<, 8y, -2, 2<,
Frame Ø False, Axes Ø True, AspectRatio Ø AutomaticD

-2 -1 1 2

-2

-1

1

2

We can find values of y for a fixed x with NSolve:

Cases@y ê. NSolve@expr ã 0 ê. x Ø 0, yD, _RealD

8-1.22074, 0.724492<

‡ Example 2

The  implicit  function  can  be  quite  complex,  as  in Ÿ0
2sinIsinIx y tMM „ t = 1,  and  we  can  still  succeed  in

plotting it (we drop some messages by Off):

Off@NIntegrate::inumrD
ContourPlot@NIntegrate@Sin@Sin@x y tDD, 8t, 0, 2<D ã 1, 8x, 0, 4<, 8y, 0, 3<,
Frame Ø False, Axes Ø True, AspectRatio Ø Automatic, Ticks Ø 881, 2, 3, 4<, 81, 2, 3<<D

1 2 3 4

1

2

3

To calculate values of y for a fixed x, we can define a function:

f@x_, y0_, y1_D :=
y ê. FindRoot@NIntegrate@Sin@Sin@x y tDD, 8t, 0, 2<D ã 1, 8y, y0, y1<D

Here, y0  and y1  are  the  starting  values  for  the  iterative  method  used  by FindRoot.  Giving  different
starting values may result in different values if the function has multiple values. We ask for the value of
y when x is 1. First, we start from 0.5 and 1, and then from 1 and 2 (we get a warning message but the
result is correct):

8f@1, 0.5, 1D, f@1, 1, 2D< êê Quiet

80.622871, 1.73409<
Remove@"Global`*"D

Chapter 17  •  Functions 519



17.1.4  Pure Functions and Scoping Constructs

‡ Introduction

We already encountered pure functions in Sections 2.2.2, p. 38 (when considering Map), 14.1.5, p. 452 (when

considering Sort), 14.1.7,  p. 457  (the  selecting  criterion  of Select  was  a  pure  function), 14.2.1,  p. 459

(when considering Map  once again), 14.2.3,  p. 463 (when considering Sequence),  and 16.1.2,  p. 497 (whe

considering tests in patterns).

Mathematica  has  a  number  of scoping  constructs,  in  which  certain  names  are  made  local.  The  most
important  of  these  constructs  is Module,  but  we  also  have With  and Block.  We  have  already  used
Module several times in this book.

‡ Pure Functions

We illustrate pure functions using Select. First, we generate a table of 100 random numbers:

SeedRandom@2D; ran = RandomReal@1, 8100<D;

Suppose  we  are  interested  in  picking  the  numbers  that  are  either  less  than  0.02  or  greater  than  0.98.
Select[list, test] is the appropriate command. It selects from list all the elements for which test

gives True. One possibility is to define a function to this end:

f@x_D := x < 0.02 »» x > 0.98

The value of this function is True if x < 0.02 or x > 0.98 and False otherwise. For example,

8f@0.01D, f@0.03D<

8True, False<
Then we can use this function in Select:

Select@ran, fD

80.00984124, 0.0154057, 0.986939, 0.986734, 0.0113432<
This works fine. However, we used the function f  only once, and it seems too ceremonious to define a
function  for  such  a  temporary  use.  Pure  functions  are  handy  for  temporary  use.  They  need  not  be
defined  beforehand but  instead  only  exactly  where  they  are  used.  In  our  example,  we  can  use  a  pure
function as follows:

Select@ran, Function@x, x < 0.02 »» x > 0.98DD

80.00984124, 0.0154057, 0.986939, 0.986734, 0.0113432<
There is even a simpler construction in which # means the argument and the ampersand & is the mark of
a pure function:

Select@ran, Ò < 0.02 »» Ò > 0.98 &D

80.00984124, 0.0154057, 0.986939, 0.986734, 0.0113432<
In general,  there are two ways of writing a pure function to perform a sequence body  of commands

for the arguments:

Function[x, body]  A pure function with the argument x
Function[{x, y, … }, body]  A pure function with the arguments x, y, …

body &  A pure function with the argument # or with the arguments #1, #2, ... (## means the
sequence of all arguments supplied to a pure function)

520 Mathematica Navigator



Additional  examples  of  pure  functions  are  presented  in  Section  20.3  (Nest, FixedPoint, Fold)  and
throughout the following chapters.

‡ Module: Local Variables

Often the definition of a function consists of a sequence of operations. One possibility is to separate the
steps with semicolons. Consider the following example, in which we calculate the sum and product of
integers 1, 2, …, n:

f1@n_D := Hs = 0; p = 1; Do@s = s + i; p = i p, 8i, n<D; 8s, p<L

f1@7D 828, 5040<
One drawback is that the temporary variables s and p retain their values outside of the function:

8s, p< 828, 5040<
Remove@s, pD

This  can  cause  confusion  later.  It  would  be  useful  if  the  variables s  and d  were  local  to  the  function:
Outside the function they had no values. This can be achieved with a module.

f[x_] := Module[{local variables}, body]

Note that

• local variables are separated by commas;
• initial values can be given for the local variables (the initial values cannot depend on each other);
• commands in the body are separated by semicolons;
• the result of the last command of the module is printed automatically; and
• to print intermediate values (even graphics), use Print.

The preceding example is now as follows:

f2@n_D := Module@8s = 0, p = 1<,
Do@s = s + i; p = i p, 8i, n<D;
8s, p<D

As  we  see,  initial  values  of  the  local  variables  can  be  given  at  the  same  time  as  they  are  made  local.
Often,  each  command  in  the  module  is  written  in  its  own  row  to  make  the  module  more  readable.
Before we use f2, we give some values for s and p:

s = -1; p = -2;

f2@7D 828, 5040<
Now s and p have their old values:

8s, p< 8-1, -2<
This means that s  and p  in the module are not the same as s  and p  outside the module (indeed, inside
the module Mathematica  uses names of the form s$nnn and p$nnn, where nnn is increased incrementally
by 1 every time we use the module).

The  result  of  the  last  command  of  the  module  is  automatically  printed;  in  the  example,  the  last
command  was {s, p}.  If  we  want  to  print  some  intermediate  results,  we  can  use Print  (see Section

18.2.3, p. 562).

Chapter 17  •  Functions 521



Programming  with Mathematica  is  essentially  done  by  writing  functions,  often  with Module.  The
programs can use all the commands of Mathematica. In Chapter 18, we consider some styles of program-

ming and some special commands that are useful in these styles. You will encounter modules frequently
in this book.

‡ With: Local Constants

f[x_] := With[{x = x0, y = y0, … }, body]

The With construction is formally similar to a Module but is actually more restricted: With is used to
define local constants;  these constants cannot be changed later within the With construction. Note that a
Module contains local variables, and their values can be changed in the module. With can be used inside
a Module to define local constants. For example,

f3@n_D := With@8c = Range@6D<,
8RandomChoice@c, nD, RandomSample@c, nD<D

f3@6D 881, 6, 6, 5, 6, 3<, 81, 4, 3, 6, 5, 2<<

‡ Block: Local Values of Variables

Block[{x = x0, y = y0, … }, body]

In a Block, the variables within curly braces have only local values. In Section 18.5, when we consider
recursive programming, we will show how to use Block to give temporary values for $RecursionLimit
and $IterationLimit.

Blocks are also important because iteration commands such as Table, Sum, Product,  and Do  localize
the values of the iterators with Block. For example,

i = 10; Sum@2^i, 8i, 3<D; i 10

We see that i still has its original value of 10.

However,  there  is  still  a  possibility  of  confusion  with  iterator  commands.  Consider  the  following
function:

i =.

f5@x_, n_D := Sum@x^i, 8i, n<D

f5@x, 3D x +x2 +x3

If we ask for f5[i, 3], we do not get the desired result:

f5@i, 3D 32

We get  the number 11 + 22 + 33  instead of i1 + i2 + i3.  We can see this  with Trace  (see Section 17.2.1,  p.

523):

Trace@f5@i, 3D, TraceDepth Ø 1D

:f5@i, 3D, ‚
i=1

3

ii, 32>

For this reason, it is safe to use a module to localize the iterator i:

f6@x_, n_D := Module@8i<, Sum@x^i, 8i, n<DD

f6@i, 3D i +i2 +i3

522 Mathematica Navigator



17.2  More about Functions

17.2.1  Tracing

‡ Tracing Expressions

If  we  are  interested  in  seeing  in  detail  how Mathematica  calculates  an  expression,  we  can  use  tracing.
When we write our own functions or programs, tracing may be useful for detecting coding errors and
for making a function effective. Here, we present a short introduction to tracing; for more information,
see tutorialêTracingEvaluation.

Trace[expr]  Generate a list of all expressions used in the evaluation of expr
Trace[expr, TraceDepth Ø n]  Ignore steps that lead to lists nested more than n levels deep

For example,

Trace@5 H3 + 1L - 4D

8883 + 1, 4<, 5 μ 4, 20<, 20 - 4, 16<
We see that Mathematica  starts the calculation from 3 + 1, gets 4, forms the product 5 4, gets 20, forms
the difference 20 | 4, and finally gets 16. As another example, consider the following function:

f@x_D := Module@8c = 2 x<, Cos@cDD

f@2. PiD

1.

Let us see how Mathematica got the result 1.:

f@2. PiD êê Trace êê Column

82. p, 6.28319<
f@6.28319D
Module@8c = 2 μ 6.28319<, Cos@cDD
82 μ 6.28319, 12.5664<
8c$127 = 12.5664, 12.5664<
88c$127, 12.5664<, Cos@12.5664D, 1.<
1.

Here we see how Mathematica used a local variable c$nnn.

‡ Tracing Assignments

Trace[expr, var = _]  Trace assignments to var

Trace[expr, _ = _]  Trace all assignments

Often, it is useful to see all assignments to variables to check that they are done correctly. Remember
that  the  underscore (_)  means  anything in Mathematica  and so,  for  example, var = _  means  all  assign-

ments to var and _ = _ means all assignments to all variables.

Here is a procedural program for calculating a factorial:

g@n_D := Module@8fac, i<, For@fac = 1; i = 1, i § n, ++i, fac = fac iD; facD

We trace all assignments for fac:

Chapter 17  •  Functions 523



Trace@g@3D, fac = _D

88888fac$224 = 1<<, 8fac$224 = 1<, 8fac$224 = 2<, 8fac$224 = 6<<<<

‡ Tracing Functions

Trace[expr, f]  Trace all calls to function f

Trace[expr, f[_]]  Give a list of intermediate expressions of the form f[_]

Trace[expr, f[_], TraceForward Ø True]  Also show the values of the function
Trace[expr, f[x_] Ø x]  Give a list of all values of the argument of f

On[f]  Switch tracing on for the symbol f
Off[f]  Switch tracing off for the symbol f

Here  is  a  function  for  calculating  Fibonacci  numbers  (we  do  not  use  dynamic  programming;  see

Section 18.5.1, p. 597):

fib@1D = 1;
fib@2D = 1;
fib@n_D := fib@n - 1D + fib@n - 2D

It is convenient to turn tracing on and off, particularly for recursive functions:

On@fibD

fib@3D

fib::trace : fib@3D --> fib@3 - 1D + fib@3 - 2D.
fib::trace : fib@3 - 1D --> fib@2D.
fib::trace : fib@2D --> 1.

fib::trace : fib@3 - 2D --> fib@1D.
fib::trace : fib@1D --> 1.

2

Off@fibD

Then we trace all calls to fib:

Trace@fib@3D, fibD

8fib@3D, fib@3 - 1D + fib@3 - 2D, 8fib@2D, 1<, 8fib@1D, 1<<
Remove@"Global`*"D

17.2.2  Debugging

‡ Introduction

In  debugging programs,  tracing can be  useful.  However,  we also have a  special Debugger.  The idea of
the debugger is that we select, from the program, a set of breakpoints~that is, points where the program
stops so that we can see the current status of the computation. In this way, we can see, step by step, how
the values of variables used in the program change, and this can help us in debugging the program.

‡ An Example

As an example,  we write  a  procedural  program that,  from a given set a,  chooses a  given number n  of
elements without replacement:

524 Mathematica Navigator



SWOR@a_List, n_IntegerD ê; 0 < n § Length@aD :=
Module@8aa = a, b = Length@aD, pos, sample = 8<<,
Do@pos = Random@Integer, 81, b<D;
sample = 8sample, aa@@posDD<;
aa = Delete@aa, posD;
b = b - 1, 8n<D;

Sort@Flatten@sampleDDD

Here,  we  wrote  a Do  loop  to  pick  the  elements  in  turn.  The  variable aa  contains  the  list  of  currently
available  elements  and b  its  length.  At  each  step,  we  choose  a  random  position  from  the  remaining
elements,  add  the  corresponding  element  to  the  sample  (which  initially  is  an  empty  list),  delete  this
element from the list of available elements, and subtract one from the length of this list. After doing this
loop, we output the sample as a flattened and sorted list.

For example, from the numbers 0, 1, …, 9, we choose, without replacement, five numbers:

SeedRandom@1D;
SWOR@Range@0, 9D, 5D 82, 4, 6, 7, 8<

‡ The Debugger Palette

Next,  we  use  the Debugger  to  see  how  the  program  proceeds.  We  select Evaluation @ Debugger.  The
following palette appears:

This palette can be used to debug the program. Our program is already debugged, but we can use the
Debugger  to see how the program works. First, we define the breakpoints. To set a breakpoint, select an
expression  from the  program and,  on the  palette,  click Break  at  Selection.  In  our  example,  we  select  all
four commands of the Do loop as breakpoints. The breakpoints appear, in the program code, inside red
frames:

Chapter 17  •  Functions 525



From the palette, we can click the Show Breakpoints to get a list of current breakpoints:

From this list, we can delete, enable, and disable breakpoints.

‡ Debugging a Program

Now, execute the program code again and ask a sample from a set:

SeedRandom@1D;
SWOR@Range@0, 9D, 5D

We  do  not  get  a  result  since  the  program  stopped  on  the  first  breakpoint.  The  program  code  now
appears as follows:

We can see, on a green background, the expression at which the program broke. Click on the Show Stack
button on the palette. The following window appears:

526 Mathematica Navigator



Here we can see the current status of  the program. First,  we see the command we executed and its
local variables a and n. Then we see program code and~the most important part~the current values of
local variables. Thus far, the program has not executed commands in the Do loop so that the variable pos

does not yet have a value. At the bottom of the window we see various parts of the program. They are
hyperlinks to the program, and in this way we can easily correct a part of the program.

To  advance  the  program  to  the  next  breakpoints,  repeatedly  click  on  the Continue  button  on  the
palette.  Observe,  from  the  stack  window,  how  the  value  of  a  variable  changes  each  time  you  click
Continue: First pos gets the value 8, then sample the value {{}, 7}, aa the value 80, 1, 2, 3, 4, 5, 6, 8, 9< (the
element  7  has  been  removed),  and b  the  value  9.  Now  a  step  of  the Do  loop  is  ready.  By  repeatedly
clicking the Continue  button, we could see how the program proceeds until completion. In this way, we
can easily see how the program works and then easily correct possible problem points.

‡ More about the Debugger

In the Debugger palette, we have the following buttons:

Break at Selection:  make the selected expression to a breakpoint
Halt:  interrupt the debugger and display the evaluation stack
Continue:  resume debugging from one breakpoint to the next breakpoint
Run to Selection:  continue until reaching selected expression
Step:  stop at the beginning of the next expression
Step In:  stop at the next possible stopping point
Step In to Body:  step over arguments into body of function
Step Out:  stop after exiting current stack frame
Finish:  run through the entire evaluation, ignoring any breakpoints
Abort:  exit evaluation without finishing
Show/Hide Breakpoints:  toggles the breakpoints window on and off
Show/Hide Stack:  toggles the stack window on and off

Note that with Evaluation @ Debugger Controls, we can do most of these tasks.

At the bottom of the Debugger palette, we can ask to break at all messages. In the Breakpoints window,
we also have the possibility to ask the program to stop at specific messages.

Chapter 17  •  Functions 527



17.2.3  Compiling

‡ Defining a Compiled Function

With  compiling,  we  can  speed  up  functions  and programs.  Normally, Mathematica  must  handle  many
different  kinds  of  arguments  for  functions  (e.g.,  numbers,  symbols,  lists,  and  more  complex  expres-

sions),  and  this  makes  the  evaluation  process  slower  than  in  a  situation  in  which Mathematica  can
assume that all arguments are numbers. In compiled functions, the arguments are, by default, assumed
to be real numbers, and this simplifies the evaluation process and speeds it up.

f = Compile[{x, y, … }, expr]  Create a compiled function f to evaluate expr for numerical values
of the real variables x, y, …

Here is a simple compiled function:

f1 = Compile@8x<, x + 7.D

CompiledFunction@8x<, x + 7., -CompiledCode-D
The  result  of  compiling  is  an  object  called CompiledFunction.  The  compiled  code  is  not  shown;
-CompiledCode- represents it. We try the compiled function:

f1@10D 17.

With InputForm, we can see the compiled code:

f1 êê InputForm

CompiledFunction[{_Real},
 {{3, 0, 0}, {3, 0, 2}}, {0, 0, 3, 0, 0},
 {{1, 5}, {8, 7., 1}, {18, 0, 1, 2},
 {2}}, Function[{x}, x + 7.], Evaluate]

The code is  not readable for us,  but for Mathematica  it  gives clear instructions about how to effectively
calculate  the  value  of  the  function.  For  example,  the  instructions  specify  the  types  of  arguments;  the
version of the compiler; the numbers of needed logical, integer, real, complex, and tensor registers; and
what to load into these registers when the calculation proceeds. Thus, Mathematica compiles the function
to form a kind of pseudocode that contains simple instructions for evaluating the compiled function. At
the end of the code, we see the function as a pure function. This pure function is used if for some reason
the compiled code cannot be used.

As another example, suppose that we have to calculate the value of the seventh Chebyshev polyno-

mial many times. To speed up the computations, we form a compiled function:

ch = Compile@8x<, ChebyshevT@7, xD êê EvaluateD

CompiledFunctionA8x<, -7 x + 56 x3 - 112 x5 + 64 x7, -CompiledCode-E
To  get  the  explicit  expression,  we  needed Evaluate.  By  comparing  execution  times,  we  see  that  the
compilation really speeds up the computation:

Do@ch@3.D, 810^5<D êê Timing 80.471302, Null<
Do@ChebyshevT@7, 3.D, 810^5<D êê Timing 81.56084, Null<
Compile handles numerical functions, list manipulation functions, matrix operations, procedural and

functional  programming  constructs,  and  so  on.  Compiling  is  primarily  designed  for  heavy  numerical
computations with machine|precision numbers.

528 Mathematica Navigator



Note,  however,  that  with compiled code we generally cannot obtain commands that are faster than
the built|in commands of Mathematica. Also, a compiled code does not handle numerical precision in the
same  way  as  ordinary Mathematica  code  and  may  use  somewhat  restricted  algorithms.  Thus,  use  the
built|in  commands  as  much  as  possible,  but  remember  compilation  as  a  way  to  speed  up  your  own
heavy numerical programs.

Note  that  many  built|in Mathematica  commands,  such  as NIntegrate  or NDSolve,  automatically
compile the function to be processed. If we do not want to compile the function, we can set Compiled Ø

False.

‡ Integer, Complex, and Logical Arguments

The default  is  that  all  arguments  of  compiled functions are real  numbers.  We can also specify integer,
complex, and logical arguments.

f = Compile[{{x1, t1}, {x2, t2}, … }, expr]  Arguments x1, x2, … are of types t1, t2, …; allowed
types: _Integer, _Real, _Complex, True|False

The  basic  compiled  function Compile[{x, y, … }, expr]  considered  previously  is  the  same  as  the
following:

Compile@88x, _Real<, 8y, _Real<, … <, exprD

Here is a compiled function with one real and one integer argument (the default real type need not
be declared):

f2 = Compile@8x, 8n, _Integer<<, x^nD

CompiledFunctionA8x, n<, xn, -CompiledCode-E
Table@f2@1.5, nD, 8n, 4<D

81.5, 2.25, 3.375, 5.0625<
What if the value of n was 1751?

f2@1.5, 1751D

CompiledFunction::cfn :

Numerical error encountered at instruction 2; proceeding with uncompiled evaluation. à

2.166679161861306 μ 10308

We  got  an  error  message  because  the  number  exceeded  the  limit  allowed  for  machine|precision
numbers. The maximum machine|precision number is shown here:

$MaxMachineNumber 1.79769 μ 10308

The value of the function was thus calculated with the usual uncompiled methods.

‡ Tensor Arguments

f = Compile[{{x1, t1, r1}, {x2, t2, r2}, … }, expr]  Arguments x1, x2, … are tensors, having
elements of type t1, t2, … and ranks r1, r2, …

If an argument of a compiled function is a list, matrix, or, in general, a tensor, we define the type of
its  elements  and  also  its  rank.  The  rank  of  a  tensor  is  the  number  of  indices  needed  to  specify  each
element. So the rank of a vector is 1 and that of a matrix is 2.

We write a compiled function to calculate the product of a matrix and a vector:

Chapter 17  •  Functions 529



prod = Compile@88a, _Real, 2<, 8b, _Real, 1<<, a.bD

CompiledFunction@8a, b<, a.b, -CompiledCode-D
prod@886, 8, 3<, 85, 1, 7<, 84, 2, 9<<, 82, 3, 1<D

839., 20., 23.<

‡ Types of Subexpressions

f = Compile[vars, expr, {{s1, t1}, {s2, t2}, … }]  Subexpressions that match s1, s2, … are of
type t1, t2, …

Mathematica  knows  the  type  of  result  from  a  calculation  if  the  calculation  only  contains  standard
arithmetic operations. Thus, the result of 2 + 3 is an integer, and the result of 2.0 + 3 is a real number. If
we use other functions, Mathematica  may not know the type of an intermediate result and has to assume
that  the  result  is  a  real  number.  If  we  know  that  the  result  is  not  a  real  number,  we  can  give  this
information at the end of the definition of the compiled function.

In  the  following  example,  the  compiled  code  is  not  even  used  unless  we  declare  that  the  result  of
Eigenvalues[_] is a complex tensor of rank 1 (i.e., a complex vector):

f3 = Compile@88a, _Real, 2<<, Eigenvalues@a.aD, 88Eigenvalues@_D, _Complex, 1<<D;

f3@881., 2<, 8-4, 1<<D

8-7. + 5.65685 Â, -7. - 5.65685 Â<

17.2.4  Attributes

Sometimes we may want a function to have a special property, such as being able to accept a list as an
argument and calculate the value of the function for each element of that list. We have observed that the
built|in functions have this property. For example,

Sin@8-2, -1, 0, 1<D 8-Sin@2D, -Sin@1D, 0, Sin@1D<
For this reason, the function Sin is said to have the Listable property or attribute. This can also be seen
by asking for the attributes of Sin:

Attributes@SinD

8Listable, NumericFunction, Protected<
If  you  form  your  own  function,  it  may  not  necessarily  be  listable.  The  function f  in  the  following

example is not listable:

f@x_D := If@x < 0, Cos@xD, Sin@xDD

f@8-2, -1, 0, 1<D

If@8-2, -1, 0, 1< < 0, Cos@8-2, -1, 0, 1<D, Sin@8-2, -1, 0, 1<DD
One possibility for overcoming this problem is to use Map:

Map@f, 8-2, -1, 0, 1<D 8Cos@2D, Cos@1D, 0, Sin@1D<
We can also assign the Listable attribute to f:

SetAttributes@f, ListableD

Now we can give a list as an argument:

f@8-2, -1, 0, 1<D 8Cos@2D, Cos@1D, 0, Sin@1D<

530 Mathematica Navigator



Attributes[f]  Give the attributes of f
SetAttributes[f, attr]  Add attr to the attributes of f
ClearAttributes[f, attr]  Remove attr from the attributes of f

The  different  attributes  of  the  built|in  commands  are  as  follows  (in  addition,  we  have  the Stub

attribute):

Attributes êü Names@"*"D êê Flatten êê Union

8Constant, Flat, HoldAll, HoldAllComplete, HoldFirst, HoldRest,
Listable, Locked, NHoldAll, NHoldFirst, NHoldRest, NumericFunction,
OneIdentity, Orderless, Protected, ReadProtected, SequenceHold, Temporary<

We do not explain all of the attributes; for more information, read tutorialêAttributes. We explain only
the HoldAll attribute. Many plotting commands have this attribute:

Select@Names@"*Plot*"D, MemberQ@Attributes@ÒD, HoldAllD &D

8ContourPlot, ContourPlot3D, DensityPlot, LogLinearPlot,
LogLogPlot, LogPlot, ParametricPlot, ParametricPlot3D, Plot, Plot3D,
PolarPlot, RegionPlot, RegionPlot3D, RevolutionPlot3D, SphericalPlot3D<

This  means  that  the  expression  to  be  plotted  is  not  evaluated  first  but  only  at  specific  numerical
sampling points  as  the plotting proceeds.  On the other hand,  we can force the expression to be evalu-

ated first by enclosing the expression with Evaluate.

The HoldAll  attribute  is  also  a  property  of  numerical  commands  such  as FindMinimum, FindRoot,
and NIntegrate,  and  so  the  expression  is  not  evaluated  first  but  only  at  the  sampling  points.  In
addition,  iteration commands such as Product, NProduct, Sum, NSum, Table,  and Do  have the HoldAll

attribute. This again means that the expression to be processed is evaluated only at the specific values of
the iteration variable.

17.3  Contexts and Packages

17.3.1  What Is a Context?

‡ Four Basic Contexts

Simply  stated,  contexts  are  like  directories.  They  enable  us  to  arrange  material  hierarchically  and  to
keep content from blending. Normally, we do not need to concern ourselves with contexts; Mathematica
takes  care  of  them.  However,  in  some  cases  contexts  help  us  understand  the  way Mathematica  works.
Also, in writing packages, we need contexts.

We start a new session and ask what contexts we have right now:

$ContextPath

8PacletManager`, WebServices`, System`, Global`<
The System` context contains Mathematica’s built|in definitions and the Global` context contains our own
definitions; in addition, we have the PacletManager`  and WebServices`  contexts. Here are the numbers of
symbols these contexts contain:

Length@ÒD & êü 8Names@"System`*"D,
Names@"PacletManager`*"D, Names@"WebServices`*"D, Names@"Global`*"D<

82964, 37, 9, 0<
The Global` context currently contains no symbols because thus far we have defined no symbols.

Chapter 17  •  Functions 531



‡ Complete Names

We define some symbols:

a = 5; b = 8;

Now the Global` context contains these symbols:

Names@"Global`*"D 8a, b<
We can ask for information about a:

? a

Global`a

a = 5

We see the context where a is defined and we also see its value. In fact, we see the complete name of the
symbol a, which is Global`a. In this way, all symbols have complete names that indicate the contexts in
which they are defined. We can use the complete names if we want:

8Global`a, System`Exp@1D< 85, ‰<
However, this is normally not necessary.

‡ Adding Contexts

Then we load a package:

<< PhysicalConstants`

The list of contexts is now as follows:

$ContextPath

8PhysicalConstants`, Units`, PacletManager`, WebServices`, System`, Global`<
(Typically,  new  contexts  are  added  to  the  beginning  of  the  list  of  contexts.)  Basically,  packages  have
their  own  contexts:  We  have  the  new PhysicalConstants`  context  and,  in  addition,  the Units`  context.
Indeed, a package may need some other packages, and so they are also loaded. The package of physical
constants contains 51 symbols:

Names@"PhysicalConstants`*"D êê Short

8AccelerationDueToGravity, á49à, We … gle<
We can ask for the context of a particular name:

8Context@IntegrateD, Context@aD, Context@IcePointD<

8System`, Global`, PhysicalConstants`<

‡ Commands Relating to Contexts

$ContextPath  Give a list of all currently existing contexts
$Context  Give the current context
Context[name]  Give the context of name

Contexts[]  Give a list of all contexts in Mathematica
Contexts["string"]  Give a list of contexts that match the given string

532 Mathematica Navigator



Names[]  Give a list of all symbols in all contexts of Mathematica
Names["*"]  Give a list of all symbols in all currently existing contexts
Names["cont`*"]  Give a list of all symbols in context cont
?cont`*  Give a table of all symbols in context cont

Remove["Global`*"]  Remove all user|defined symbols

‡ Searching for a Name in the Contexts

Mathematica  always has a current context. This is the context in which we are currently working and in
which all new names are stored. Normally, it is Global`:

$Context Global`

Within a package, the current context changes, as we will see in Section 17.3.3, p. 535.

When  we  have  entered  a  short  name  (i.e.,  a  name  without  the  context), Mathematica  searches  the
name  from  the  contexts  in  the  list $ContextPath  from  left  to  right,  but  first  from  the  current  context
$Context.  If  the  entered  name  is  found,  its  value  or  definition  is  used.  If  the  name  is  not  found,  the
name is created in the current context. (If you enter a complete name~that is, a name with the context~
then Mathematica searches for the name only in the given context.)

For example, write the following:

sin@pD sin@pD
Mathematica  could not find the name sin anywhere and so creates it. From now on, the name sin stays
in the Global` context:

Names@"Global`*"D 8a, b, sin<
You  did  not  intend  to  create  a  new  name sin,  but Mathematica  had  no  other  choice.  If  you  want  to
remove sin,  you  can  write Remove[sin].  If  you  want  to  remove  all  user|defined  symbols,  write  the
following:

Remove@"Global`*"D

‡ Notebook-Specific Contexts

If  we  work  simultaneously  with  several  notebooks,  we  may  want  to  use  the  same  symbols  in  several
notebooks.  For  example,  suppose  we would like  to  define a = 1  in  the  first  notebook and a = 2  in  the
second notebook. Normally, each symbol has the value most recently defined. Thus, if we first execute a

= 1 and then a = 2, the variable a also has the value 2 if we do a calculation in the first notebook.

With Evaluation @ Notebook’s  Default  Context @ Unique  to  This  Notebook  we  can  ask  to  use  a
unique  default  context  for  a  notebook.  If  we  do  this  for  all  open  notebooks,  we  can  use  the  same
symbols in the notebooks, and the values of the symbols are notebook-specific. Thus, a  has the value 1

only in the first notebook and the value 2 in the second notebook.

17.3.2  Forgetting to Load: Once Again

‡ Problem

What to do when you forget to load a package was addressed in Section 4.1.2, p. 96, but let us now see

what  actually  happens.  We  start  a  new  session,  and  we  want  to  ask  the  value  of IcePoint  but  have
forgotten to load the PhysicalConstants` package:

Chapter 17  •  Functions 533



IcePoint IcePoint

Mathematica  searched the name IcePoint from all contexts, could not find such a name, and so created
the name in the context Global`:

Names@"Global`*"D 8IcePoint<
Next we load the package in the hope that we can use the command:

<< PhysicalConstants`

IcePoint::shdw :

Symbol IcePoint appears in multiple contexts 8PhysicalConstants ,̀ Global`<; definitions in

context PhysicalConstants` may shadow or be shadowed by other definitions. à

We get a warning message and IcePoint becomes red.

‡ Shadowing

The previous message warns about multiple IcePoint: We have an IcePoint in the PhysicalConstants`

context and another in the Global` context:

Names@"*`IcePoint"D 8Global`IcePoint, IcePoint<
One of the multiple names shadows the other, which means that Mathematica  has to use one of the names
and disregard the other. Indeed, the name in the PhysicalConstants`  context seems to shadow the name
in  the Global`  context  (in  earlier  versions  of Mathematica,  the  situation  was  the  reverse)  because
IcePoint now, after loading the package, works:

IcePoint 273.15 Kelvin

However, the red color stays with IcePoint. To resolve the situation, we remove our own, uninten-

tionally created symbol:

Remove@Global`IcePointD

Now the red color changes to the normal black color and shadowing has disappeared.

‡ Summary

Let us now discuss how to proceed if we forget to load a package. We again start a new session and try
to ask the value of IcePoint:

IcePoint IcePoint

We observe that we have forgotten to load the package. Now we simply remove our own IcePoint:

Remove@IcePointD

(Now we do not need to write Remove[Global`IcePoint]  because we have only one IcePoint.) Then
we load the package and use IcePoint:

<< PhysicalConstants`

IcePoint 273.15 Kelvin

Here is a summary:

If you forget to load a package before using one of its commands,
• remove the name you have tried to use;
• load the package; and
• use the command of the package again.

534 Mathematica Navigator



However, note that even without removing the name, the package works. The two minor drawbacks
of  not  removing  the  name  are  that  the  loading  of  the  package  generates  a  warning  message  and  the
name remains red.

Another solution is to quit the kernel from Evaluation @ Quit Kernel and then restart the kernel from
Evaluation @ Start  Kernel  (or  simply  by  executing  a  command),  but  then  you  may  need  to  do  some
calculations again. Loading packages was considered in Section 4.1.

17.3.3  Writing a Package

‡ Forming a Simple Package

You may have developed some useful functions or programs that you may need later. A simple way to
reuse them is to open the notebook that contains them and execute the cells that contain the definitions
of  the programs.  Another  way is  to  save the useful  programs as  a  package;  to use the programs later,
you only need to load in the package. To create a package, do as follows:

• Select File @ New @ Package. In the package file, write useful functions that you intend to use later.
These  cells  automatically  are  so|called initialization  cells.  You  can  also  copy,  from  an  existing
notebook, useful functions and paste them into the package file. If you copy the content of a cell (by
selecting  the  content  with  the  mouse),  then  the  cell  created  by  pasting  will  automatically  be  an
initialization cell. On the other hand, if you copy a whole cell (by selecting the cell bracket), then set
the  pasted  cell,  in  the  package  file,  as  an  initialization  cell  by  choosing  the  cell  bracket  and  then
choosing Cell @ Cell Properties @ Initialization Cell.

• Save the document as a Mathematica  package by choosing File @ Save As…. In the opening dialog,
give the file a suitable name that ends with .m and choose a location you prefer. Install the package
in the correct location by choosing File @ Install….  A dialog opens. Set Type of Item to Install  to be
Package;  in Source,  select  the  package  you  saved;  in Install  Name,  give  a  suitable  name  for  the
package; and click Finish.

Suppose the name of the notebook saved is programs.m.  To load the package and use the functions
defined in it, write <<programs`. In this way, you can create notebooks that you can use like packages.

What is an initialization cell? This is a cell that, when the file is read in, is automatically executed. In
this way, the definitions of the programs in the package are automatically executed when the package is
loaded.

The  procedure  previously  described creates  a  file  that  can be used like  a  package.  However,  a  true
package has a special structure that we now begin to study.

‡ An Example of a Package

A package has a special structure in which contexts play a key role. In a package, we use the following
commands:

BeginPackage["packageName"]  Begin a package
Begin["`Private`"]  Begin the code of a package after usage messages
End[]  End the code of a package
EndPackage[]  End the package

To give an elementary example, we have written the following code in a new notebook:

Chapter 17  •  Functions 535



BeginPackage@"Own`newton`"D

newton::usage = "newton@f,x,x0,nD calculates a
zero of f starting from x0 and using at most n iterations"

Begin@"`Private`"D
H* one step *L
newtonStep@f_, df_, x_, xi_D := Hx - f ê dfL ê. x Ø N@xiD
H* iterate the step *L
newton@f_, x_, x0_, n_D :=
With@8df = D@f, xD<, FixedPointList@newtonStep@f, df, x, ÒD &, N@x0D, nDD

End@D

EndPackage@D

This is  a  single cell  that  we have set  as  an initialization cell  (Cell @ Cell Properties @ Initialization
Cell),  and we have  saved the  notebook,  by File @ Save As,  with  the  name newton.m  as  a Mathematica
package (select this from “Format” in the save dialog) into a new folder called Own  in the Mathematica
Applications folder. To try the package, we first load it:

<< Own`newton`

If we have already forgotten how newton is used, we can ask for information:

? newton

newton@f,x,x0,nD calculates a zero of f starting from x0 and using at most n iterations

We calculate a zero of an expression, starting from point 2:

newton@3 x^3 - E^x, x, 2, 20D

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446, 0.952446<

‡ The Structure of a Package

The definition of the package begins with BeginPackage, in which the package name is the argument. If
the  package  needs  other  packages,  these  packages  can  also  be  mentioned  as  arguments  of
BeginPackage (an example is given later).

Also coming into play are the usage messages. These messages give information about the usage of
the various functions. This information is displayed when the user writes ?name, where name is a name
defined in the package. The user of the package can only use the names for which a usage message exists. In this
way,  you can restrict  the set  of  names available  for  use.  In the previous example,  we did not  define a
usage message for the function newtonStep, and so this function cannot be used (it is used only within
the package).

The  program begins  with  the  command Begin["`Private`"]  and  ends  with  the  command End[].
Note  that Mathematica  commands  can  be  annotated  by  inserting  comments  into  the  code.  A  comment
starts with (* and ends with *); a comment can be placed anywhere. Comments are especially useful in
packages and in other longer codes to help with the reading of the code. The whole package ends with
the command EndPackage[].

The  commands BeginPackage, Begin, End,  and EndPackage  affect  the  contexts.  This  topic  is
discussed next.

536 Mathematica Navigator



‡ Contexts in Packages

Packages  are normally loaded or  read in by <<  in  one step,  and we do not  see what  actually  happens
during  the  loading.  Let  us  now  investigate  what  happens  when  we  load  a  package.  We  specifically
discuss how the context changes during the reading. We start a new session and first load a package:

<< ComputerArithmetic`

Then we consider what happens when we load the following package:

BeginPackage@"Own`newton`", "NumericalCalculus`"D
newton::usage = "newton@f,x,x0,nD calculates a

zero of f starting from x0 and using at most n iterations"
Begin@"`Private`"D
newtonStep@f_, df_, x_, xi_D := Hx - f ê dfL ê. x Ø N@xiD
newton@f_, x_, x0_, n_D :=
With@8df = D@f, xD<, FixedPointList@newtonStep@f, df, x, ÒD &, N@x0D, nDD

End@D
EndPackage@D

This  is  almost  the same example as before.  Now, however,  we only assumed that  we also need the
package NumericalCalculus`  (although  we  actually  do  not  need  it),  so  this  package  is  mentioned  in
BeginPackage.  We  proceed  step  by  step  and  observe  how $Context  (the  current  context)  and
$ContextPath  (a  list  of  contexts  from  which  information  is  searched)  change  from  the  initial  state
(before loading the package) to the state after loading. The current context and context path change after
the commands BeginPackage, Begin, End, and EndPackage:

8$Context, $ContextPath<

8Global`, 8ComputerArithmetic`, PacletManager`, WebServices`, System`, Global`<<
BeginPackage@"Own`newton`", "NumericalCalculus`"D;
8$Context, $ContextPath<
8Own`newton`, 8Own`newton`, NumericalCalculus`, System`<<
Begin@"`Private`"D;
8$Context, $ContextPath<
8Own`newton`Private`, 8Own`newton`, NumericalCalculus`, System`<<
End@D;
8$Context, $ContextPath<
8Own`newton`, 8Own`newton`, NumericalCalculus`, System`<<
EndPackage@D;
8$Context, $ContextPath<
8Global`, 8Own`newton`, NumericalCalculus`,

ComputerArithmetic`, PacletManager`, WebServices`, System`, Global`<<
With regard to the current context, initially it  is the usual Global`,  where all user|defined names are

stored.  When the  reading  of  the  package  begins,  the  context  changes  to Own`newton`.  Thus,  all  names
defined in the package are stored in this context.  In particular,  the names with a usage message are in
this  context.  When  the  ordinary  program  begins,  the  current  context  gets  a  subcontext  called Private`.
Names defined in this context without usage messages are not available to the user. After the program
ends, the current context changes back to Own`newton`; when the whole package is read in, we are again
in the Global` context.

From  the  context  paths,  we  see  that  several  things  happens  when BeginPackage  is  read.  First,  the
ComputerArithmetic`  package that  was loaded before Own`newton`  disappears and thus is  not  available
for  the  package.  Consequently,  a  package  can  only  use  the  packages  declared  in BeginPackage.  The
PacletManager` context also disappears from the context path.

Chapter 17  •  Functions 537



Second, the Global` context disappears from the context path; this means that the names in Global` are
not available in the package. This is safe: We cannot accidentally use or change, within the package, the
values of names in Global`.  In fact,  we can have the same names in Global`  as we have in the package.
After loading the package, the names in Global`  still have their old values and not the values defined in
the package.

Third,  the Own`newton`  and NumericalCalculus`  contexts  are  added  to  the  context  path  so  that  new
definitions made in the package are placed in the former context and the latter context makes available
the commands in the corresponding package.

After EndPackage, we have access to the contexts that were available before reading the package and
to the contexts Own`newton` and NumericalCalculus`.

Maeder (1997) is an excellent source of information about programming and package development.

17.3.4  Handling Options and Messages

‡ Handling Options

Now  we  want  to  add  some  options  to  the newton  program  presented  in  Section  19.3.3.  Let  the  new
program be newton2. For example, we want to be able to call this program as follows:

newton2@x^3, x, 2, 20, dampingConstant Ø 3D

To write such a program, we can use the following commands:

Options[progr] = {opt1 Ø val1, opt2 Ø val2, …}  Define that the options of program or function
progr are opt1, opt2, … with default values val1, val2, …

OptionsPattern[] (Ÿ6)  Represents a collection of options given as rules; the values of the options
can be accessed using OptionValue

OptionValue[opt] (Ÿ6)  Give the value of option opt in options represented by OptionsPattern

In the following package, we have used these commands:

BeginPackage@"Own`newton2`"D
newton2::usage = "newton2@f,x,x0,n,optsD calculates

a zero of f starting from x0 and using at most n iterations."
dampingConstant::usage = "dampingConstant -> d is an option for newton2 that

gives the damping factor. Default value: 1. For example, if the zero is of
multiplicity 2, define dampingConstant -> 2 to accelerate the convergence."

stoppingCriterion::usage = "stoppingCriterion -> Hpure functionL is an option
for newton2 that gives the stopping criterion for the iteration. Default
value: HÒ1 === Ò2&L. Examples of values: HAbs@Ò1 - Ò2D < 10^-8 &L, HAbs@f ê.
x->Ò2D < 10^-6 &L. Here Ò1 is the next to last point and Ò2 the last point."

Begin@"`Private`"D
Options@newton2D = 8dampingConstant Ø 1, stoppingCriterion Ø HÒ1 === Ò2 &L<
newtonStep2@f_, df_, x_, d_, xi_D := Hx - d f ê dfL ê. x Ø N@xiD
newton2@f_, x_, x0_?NumericQ, n_Integer, OptionsPattern@DD :=
Module@8df = D@f, xD<,
FixedPointList@newtonStep2@f, df, x, OptionValue@dampingConstantD, ÒD &,
N@x0D, n, SameTest Ø OptionValue@stoppingCriterionDDD

End@D
EndPackage@D

Here, we used the three commands declared previously:

538 Mathematica Navigator



• We defined,  with Options,  that  the function newton2  has the two options dampingConstant  and
stoppingCriterion, with the default values 1 and (#1 === #2 &), respectively.

• The last argument of newton2 is OptionsPattern[]. This allows us to call the function with some
options.

•  Inside newton2,  we  use  the  values  of  the  options  with OptionValue[dampingConstant]  and
OptionValue[stoppingCriterion].

‡ Example

We  defined  the  single  cell  containing  the  program newton2  to  be  an  initialization  cell  (Cell @ Cell
Properties @ Initialization  Cell).  Then  we  saved  the  notebook,  by File @ Save  As,  with  the  name
newton2.m  as  a Mathematica  Package  (we  selected  this  from “Format”  in  the  save dialog)  into  a  folder
Own in the Mathematica Applications  folder. To try the package, we start a new session and first load the
package:

<< Own`newton2`

We can ask for information about the package:

Names@"Own`newton2`*"D

8dampingConstant, newton2, stoppingCriterion<
? dampingConstant

dampingConstant -> d is an option for newton2 that

gives the damping factor. Default value: 1. For example, if the zero is of

multiplicity 2, define dampingConstant -> 2 to accelerate the convergence.

We can use newton2 with no options, with one option, or with two options:

newton2@x^2, x, 2, 10D

82., 1., 0.5, 0.25, 0.125, 0.0625,
0.03125, 0.015625, 0.0078125, 0.00390625, 0.00195313<
newton2@x^2, x, 2, 10, dampingConstant Ø 2D

82., 0, 0<
newton2@x^2, x, 2, 10, dampingConstant Ø 3,
stoppingCriterion Ø HAbs@Ò1 - Ò2D < 10^-6 &LD

82., -1., 0.5, -0.25, 0.125, -0.0625,
0.03125, -0.015625, 0.0078125, -0.00390625, 0.00195313<

If  we  call  the  program  with  arguments  that  do  not  satisfy  the  given  restrictions  (e.g., n  has  to  be  an
integer), the program does nothing:

newton2@3 x^3 - E^x, x, 2, 20.D

newton2A-‰x + 3 x3, x, 2, 20.E
‡ Filtering Options

In a program, you may use several commands with options. The question then arises as to how to pick
the suitable options for the various commands. This can be done with FilterRules.

FilterRules[opts, Options[command]] (Ÿ6)  From options opts, pick options of command

For  example,  suppose  your  program  uses FindRoot  and Plot.  Let opts  contain  all  of  the  options
given by the user of your program; suppose that

Chapter 17  •  Functions 539



opts = 8DampingFactor Ø 2, AspectRatio Ø Automatic<;

From  this  list,  you  can  pick  the  options  belonging  to FindRoot  and  the  options  belonging  to Plot  by
entering the following:

frOpts = FilterRules@opts, Options@FindRootDD

8DampingFactor Ø 2<
plOpts = FilterRules@opts, Options@PlotDD

8AspectRatio Ø Automatic<
In your program you could then write, for example,

FindRoot@x^2, 8x, 1<, Evaluate@frOptsDD

8x Ø 0.<
Plot@Sin@xD, 8x, 0, 2 Pi<, Evaluate@plOptsDD

1 2 3 4 5 6

-1.0
-0.5

0.5
1.0

‡ Handling Messages

A  well|designed  package  prints  messages  if  problems  are  encountered  during  the  execution  of  the

functions  in  the  package.  Messages can be  printed with Print  (see Section 18.2.3,  p. 562),  but  the use 

Message is a better method.

program::messageName = " … `1` … `2` … "  For program, define a message with the name
messageName as a string that possibly contains slots for the values of some variables

Message[program::messageName, val1, val2, …]  Print the given message of program, inserting
the given values into the slots of the message

Quiet[expr] (Ÿ6)  Do not print any messages possibly generated during the evaluation of expr
Check[expr, failexpr]  Evaluate and return expr, unless messages were generated, in which case

evaluate and return failexpr

Suppose an algorithm does not converge for the given values of maxit and eps. For this situation, the
package contains, after the usage messages, the following message template:

myPackage::nonconv =
"The algorithm did not converge with maxit = `1` and eps = `2`"

The program also has, in the correct place, this command:

Message@myPackage::nonconv, maxit, epsD

The result is a message such as the following (if maxit and eps are 50 and 0.0001):

myPackage::nonconv : The algorithm did not converge with maxit = 50

and eps = 0.0001`

540 Mathematica Navigator



18
Programs

Introduction 541

18.1  Simple Programming 542

18.1.1  Numerical Methods 542

18.1.2  List Manipulation 547

18.1.3  String Manipulation 550

18.1.4  Mathematical Formulas 551

18.2  Procedural Programming 553

18.2.1  Doing 553 Do, While, For

18.2.2  Branching 556 If, Which, Switch, Piecewise

18.2.3  Communicating 562 Print, Monitor, PrintTemporary, Sow, Reap, Input

18.2.4  Controlling 565 Continue, Break, Return, GoTo

18.3  Functional Programming 568

18.3.1  Introduction 568

18.3.2  List Manipulation 570 Apply, Map

18.3.3  Iterating a Mapping 575 NestList, Nest

18.3.4  Iterating until Convergence 578 FixedPointList, FixedPoint, Throw, Catch

18.3.5  More General Testing of Convergence 581 NestWhileList, NestWhile

18.3.6  Iterating with a Resource 582 FoldList, Fold

18.4  Rule-Based Programming 584

18.4.1  Rules 584 =, :=, ->, :>, ^=, ^:=, Dispatch

18.4.2  Examples of Rule-Based Programming 589

18.5  Recursive Programming 596

18.5.1  Indexed Recursive Formulas 596 $RecursionLimit

18.5.2  Nonindexed Recursive Formulas 606

18.5.3  Recursive List Manipulation 609 $IterationLimit

Introduction

There is a square room of side twenty feet with a pure mathematician in one corner and an applied
mathematician in the opposite corner. In a third corner is a delicious apple. The mathematicians are
allowed to approach the apple in bounces along the sides of the square, the first bounce a maximum

of ten feet and every subsequent bounce a maximum of half the previous bounce. The pure
mathematician, well versed in limits, quickly calculates that no matter how many bounces he takes

he can never reach the apple, so he doesn’t even begin to bounce. The applied mathematician sets off
at once because he realizes that after five or six bounces he will be close enough to take the apple.



Although Mathematica  has  a  great  many  ready-to-use  commands  for  almost  all  kinds  of  mathematical
problems,  occasionally  in  this  book  we  present  some  short  programs  for  doing  calculations  we  find
interesting, pedagogically worthwhile, or sometimes even practically useful. The same reasons may give
you motivation to study programming with Mathematica.  Although Mathematica  is a kind of interactive
calculator that does calculations step by step, by combining the steps into one or a few logical blocks, a
program may make the calculation vastly more effective and even simpler.

Mathematica  supports  many  styles  of  programming,  such  as procedural, functional, rule-based,  and
recursive.  In  addition,  the  use  of  graphics  primitives  and  directives  leads  us  to graphics  programming
(see Chapter 6). Even object-oriented  programming can be approached with Mathematica.  Functional and
rule-based programming make up the heart of programming in Mathematica. Let us briefly introduce the
main programming styles.

Programs  built  with  traditional  programming  languages  such  as  Fortran  and  C  are  called  proce-

dures, and from here comes the term procedural programming. Mathematica also has similar commands,
such  as For, While,  and If,  as  are  used  in  procedural  programming,  and  so  we  can  program  in  the
procedural style with Mathematica.

With  functional  programming,  we  apply  functions  to  arguments.  The  functions  can  be  built-in
functions  or  functions  we  have  defined,  and  they  can  be  applied  in  a  nested  way.  The  functions  are
applied  to  the  arguments  by  special  powerful  commands,  such as Map, Apply, Nest, FixedPoint,  and
Fold. Functional programming is effective especially in list manipulations and iterative calculations.

Rule-based programming uses rules  and patterns. A function definition f[x_] := expr is an example
of a global rule: Whenever f is encountered with a specified argument, for example, a, this rule replaces
f[a] with the value of expr, where x is replaced with a. In expr /. x Ø a we apply a local rule:  When-

ever x  is  encountered  in expr,  replace  it  with a.  The  argument x_  of  a  function  is  an  example  of  a
pattern. The pattern x_ is very general and is, in fact, matched by anything; the name of the pattern is x.
We  can  form  more  restrictive  patterns  in  many  ways.  Generally,  in  rule-based  programming  we  give
several rules for the same function. These rules cover several different situations or several patterns of
argument.

Recursive  programming  naturally  arises  by  programming  recursive  mathematical  formulas:  The
program  calls  itself  with  another  argument.  Many  list  manipulation  tasks  can  also  be  programmed
recursively: A transformation is made for the list until the list no longer changes.

However, before discussing procedural, functional, rule-based, and recursive programming, we first
present examples of simple programs where we do not need any special programming commands but
use  familiar  commands  such  as Table, N, /.,  and  the  many  list  manipulation  commands.  Remember
also that with Manipulate and Dynamic we can get interactive applications (see Chapters 12 and 13).

For more information about programming, see Gray (1997), Maeder (1997), Trott (2004b), and Wellin,
Gaylord, and Kamin (2005).

18.1  Simple Programming

18.1.1  Numerical Methods

Before discussing various special programming styles, let us present some examples of simple programs
in which we do not use any special programming commands but, rather, familiar commands such as /.

(see Section 13.1.2,  p. 416), Table  (see Section 14.1.1,  p. 445),  and various list manipulation commands.

First, we consider examples from numerical analysis.

542 Mathematica Navigator



‡  Approximating a Derivative

Because the derivative f £HaL is defined to be limhØ0 A f Ha + hL - f HaLE ëh, an approximation of the derivative

is A f Ha + hL - f HaLE ëh for a small h. We write a program for this approximation:

der@f_, x_, a_, h_D := HN@f ê. x Ø a + hD - N@f ê. x Ø aDL ê h

Note that we have used N  to calculate the decimal value of the approximation because in numerical
calculations  we  are  not  interested  in  “exact  approximations.”  Furthermore,  the  results  obtained  when
calculating  with  exact  quantities  grow  easily  to  huge  expressions,  in  iterative  calculations  especially,
and  the  computation  time  may  become  very  long.  Thus,  use  decimal  numbers  from  the  start  in  a
numerical program.

We try the program and also calculate the true derivative:

f = x Sin@xD;

8der@f, x, 1, 10^-4D, df = D@f, xD ê. x Ø 1.<

81.38179, 1.38177<

The approximation is quite good.

Next, we use several values of h and investigate the error:

t1 = Table@8h = 10.^-n, d = der@f, x, 1, hD, Abs@d - dfD<, 8n, 1, 15<D;

TableForm@t1,
TableHeadings Ø 8None, 8"h", "approx.", "error"<<, TableSpacing Ø 81, 3<D

h approx. error

0.1 1.38857 0.00679782

0.01 1.38292 0.00114453

0.001 1.38189 0.000119056

0.0001 1.38179 0.0000119516

0.00001 1.38177 1.19562 μ 10-6

1. μ 10-6 1.38177 1.1946 μ 10-7

1. μ 10-7 1.38177 1.28788 μ 10-8

1. μ 10-8 1.38177 5.995 μ 10-9

1. μ 10-9 1.38177 7.17206 μ 10-8

1. μ 10-10 1.38177 2.93765 μ 10-7

1. μ 10-11 1.38177 8.16458 μ 10-7

1. μ 10-12 1.38189 0.000121308

1. μ 10-13 1.38001 0.00176607

1. μ 10-14 1.38778 0.00600549

1. μ 10-15 1.55431 0.172539

The error is smallest when h = 10-8;  after that, the error grows due to increasing rounding errors.

We plot the der as a function of h for small h:

Chapter 18  •  Programs 543



Plot@der@f, x, 1, hD, 8h, 10^-15, 2 μ 10^-7<, PlotPoints Ø 2000, ImageSize Ø 200,
PlotRange Ø 81.381773255`10, 1.381773335`10<, AxesOrigin Ø 80, 1.381773255`10<,
Ticks Ø 880, 2. μ 10^-7<, 81.38177327`9, 1.38177330`9, 1.38177333`9<<D

0 2.μ10-7

1.38177327

1.38177330

1.38177333

The  plot  shows  the  increasing  difficulties  seen  when  calculating  the  approximation  as h  becomes
smaller:  The  values  of der  vary  wildly.  The  usual  fixed-precision  decimal  numbers  simply  cannot  do
better.

If  we  use  arbitrary-precision  numbers,  we  have  no  problems  (a  similar  example  was  presented  in

Section 12.2.3, p. 407):

der2@f_, x_, a_, h_D := HN@f ê. x Ø a + h, 20D - N@f ê. x Ø a, 20DL ê h

Plot@der2@f, x, 1, SetPrecision@h, 20DD, 8h, 10^-15, 2 μ 10^-7<, ImageSize Ø 200,
PlotRange Ø 81.381773255`10, 1.381773335`10<, AxesOrigin Ø 80, 1.381773255`10<,
Ticks Ø 880, 2. μ 10^-7<, 81.38177327`9, 1.38177330`9, 1.38177333`9<<D

0 2.μ10-7

1.38177327

1.38177330

1.38177333

‡ Approximating an Integral

The trapezoidal rule to approximate an integral is as follows:

‡
a

b

f HxL „x >
h

2
f HaL + 2‚

i=1

n-1

f Ha + i hL + f HbL .

Here, h = Hb - aL ên. We write a program for this rule:

trapez@f_, x_, a_, b_, n_D := WithB:h =
b - a

n
>,

h

2
N@f ê. x Ø aD + 2‚

i=1

n-1

N@f ê. x Ø a + i hD + N@f ê. x Ø bD F

Using the With scoping construct, we made h a local constant (see Section 17.1.4, p. 522). For example,

f = x Sin@xD;

544 Mathematica Navigator



8trapez@f, x, 0, 2, 50D, int = Integrate@f, 8x, 0., 2<D<

81.7416, 1.74159<

The following table shows how the error depends on the number of steps:

t2 = Table@810^n, InputForm@i = trapez@f, x, 0, 2, 10^nDD, Abs@i - intD<, 8n, 1, 4<D;

TableForm@t2,
TableHeadings Ø 8None, 8"n", "approx.", "error"<<, TableSpacing Ø 81, 3<D

n approx. error

10 1.741851999412873 0.000260899

100 1.7415936671330097 2.56721 μ 10-6

1000 1.7415911255879262 2.5668 μ 10-8

10 000 1.7415911001766418 2.56675 μ 10-10

h =.

‡ Approximating a Zero

Newton’s method for solving an equation f HxL = 0 uses the following recursion formula by starting from

a given point x0:

xi+1 = xi -
f IxiM
f £IxiM

, i = 0, 1, …

A program for it is as follows:

newton@f_, x_, x0_, n_D := ModuleB:newx = x -
f

D@f, xD
, xi = x0>,

Table@xi = N@newx ê. x Ø xiD, 8n<DF

The  scoping  construct Module  makes newx  and xi  local  variables  (see Section  17.1.4,  p. 521).  The

starting values of newx and xi are the right-hand side of the recursion formula and the starting point x0.
Table then does the iteration n times and stores the results in a list. At each iteration, the new value of
xi  is  computed by inserting the old value of xi  into newx.  In  this  way, Table  can be  used in iterative
methods,  although  we  have  more powerful  functional  iteration  commands  such  as FixedPoint.  For
example, define the following function:

g = 3 x^3 - E^x;

Plot@g, 8x, -1, 2<D

-1.0 -0.5 0.5 1.0 1.5 2.0

5

10

15

One zero seems to be near x = 1. We start from x = 2 and do seven iterations:

zero = newton@g, x, 2, 7D

81.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446<

Chapter 18  •  Programs 545



(Note  that  the starting point  2  is  lacking from the list.)  The function is  zero very accurately at  the last
point:

g ê. x Ø Last@zeroD 4.44089 μ 10-16

We investigate  how the  error  in  the  zero  and in  the  value  of  the  function evolve as  we do increas-

ingly more iterations. As can be seen from the following table, Newton’s method converges quickly:

t3 = 8Range@7D, zero, Abs@zero - Last@zeroDD, g ê. x Ø zero<¨;

TableForm@t3,
TableHeadings Ø 8None, 8"n", "zero", "error", "g@zeroD"<<, TableSpacing Ø 81, 3<D

n zero error g@zeroD

1 1.41942 0.466974 4.44462

2 1.1019 0.149457 1.00387

3 0.975117 0.0226711 0.1301

4 0.953089 0.000643299 0.00358769

5 0.952446 5.39696 μ 10-7 3.00737 μ 10-6

6 0.952446 3.80362 μ 10-13 2.11964 μ 10-12

7 0.952446 0. 4.44089 μ 10-16

‡ Approximating the Solution of a Differential Equation

Consider  solving,  with  Euler’s  method,  a  differential  equation y£HxL = f Ax, yHxLE  with  the  initial  value

yHx0L = y0. The recursive formulas are as follows:

xn+1 = xn + h,
yn+1 = yn + h f Ixn, ynM.

Here, h is a given step size. We again use Table to do the iterations:

euler@f_, x_, y_, x0_, y0_, x1_, n_D :=
Module@8xi = x0, yi = y0, h = N@Hx1 - x0L ê nD<,
Prepend@Table@8xi, yi< = N@8x + h, y + h f< ê. 8x Ø xi, y Ø yi<D, 8n<D, 8x0, y0<DD

The solution is calculated from x0 to x1 using n steps. With Prepend, we add the starting point to the
list. As an example, we solve the equation y£ = x - y2, yH0L = 1 in the interval @0, 1D using 10 steps:

eu = euler@x - y^2, x, y, 0, 1, 1, 10D

880, 1<, 80.1, 0.9<, 80.2, 0.829<, 80.3, 0.780276<, 80.4, 0.749393<, 80.5, 0.733234<,
80.6, 0.729471<, 80.7, 0.736258<, 80.8, 0.75205<, 80.9, 0.775492<, 81., 0.805354<<

ListLinePlot@eu, Mesh Ø AllD

0.2 0.4 0.6 0.8 1.0

0.80

0.85

0.90

0.95

1.00

The following is a very accurate value of the solution at x = 1:

soln = y@1D ê. NDSolve@8y'@xD ã x - y@xD^2, y@0D ã 1<, y, 8x, 0, 1<,
WorkingPrecision Ø 25, PrecisionGoal Ø 20, AccuracyGoal Ø 20DP1T

0.833383391464354468327539

We compare this value with various Euler approximations:

546 Mathematica Navigator



t4 = Table@810^n,
eu = Last@euler@x - y^2, x, y, 0, 1, 1, 10^nDDP2T, Abs@eu - solnD<, 8n, 1, 4<D;

TableForm@t4,
TableHeadings Ø 8None, 8"n", "approx.", "error"<<, TableSpacing Ø 81, 3<D
n approx. error

10 0.805354 0.0280298

100 0.830746 0.0026377

1000 0.833121 0.000262254

10 000 0.833357 0.0000262104

The number of steps n has to be very large or the step size h has to be very small to get good precision
with Euler’s method. In fact, this method has almost only pedagogical value.

18.1.2  List Manipulation

Mathematica  has  very  powerful  list  manipulation  commands  (see  Chapter  14).  They  enable  us  to  do
complicated calculations without any special programming commands. Programming where manipula-

tion of lists is central is sometimes called list-based programming.

‡ Interleaving Lists

Suppose  we  want  to  interleave  two  lists  of  the  same  length.  For  example,  from  the  lists 81, 2, 3<  and
8a, b, c<,  we would like to get the list 81, a, 2, b, 3, c<.  This is easy. First, transpose the matrix having the
two lists as rows:

881, 2, 3<, 8a, b, c<<¨ 881, a<, 82, b<, 83, c<<

(Here, the transpose  can be written as ÂtrÂ.) Then flatten this list:

% êê Flatten 81, a, 2, b, 3, c<

Thus, a program is as follows:

interleave@list1_, list2_D := FlattenA8list1, list2<¨E

An example:

interleave@81, 2, 3<, 8a, b, c<D 81, a, 2, b, 3, c<

Note that we also have a ready-to-use command:

Riffle@81, 2, 3<, 8a, b, c<D 81, a, 2, b, 3, c<

‡ Hamming Distance

Consider two lists of the same length containing only zeros and ones. The Hamming distance between
them is the number of element positions having nonmatching elements (see Wellin et al., 2005, p. 107).
For example, the Hamming distance between the lists 81, 0, 0, 1< and 80, 1, 0, 1< is 2 because at positions
1 and 2 we have nonmatching elements. First, we form the pairs of elements:

881, 0, 0, 1<, 80, 1, 0, 1<<¨ 881, 0<, 80, 1<, 80, 0<, 81, 1<<

Then we count the number of pairs that are either 80, 1< or 81, 0<:
Count@%, 80, 1< » 81, 0<D 2

Chapter 18  •  Programs 547



(With |  we  can  express  alternative  expressions;  see Section  16.1.3,  p. 502.)  Thus,  we  can  write  the

following program:

hamming1@list1_, list2_D := CountA8list1, list2<¨, 80, 1< » 81, 0<E

hamming1@81, 0, 0, 1<, 80, 1, 0, 1<D 2

The following is a different approach. First, add the two lists:

81, 0, 0, 1< + 80, 1, 0, 1< 81, 1, 0, 2<

Then divide each element of the sum by 2 and consider the remainder:

Mod@%, 2D 81, 1, 0, 0<

We  see  that  the  remainder  is  1  if  and  only  if  the  corresponding  elements  are  nonmatching,  and  the
remainder  is  0  if  the corresponding elements  are matching.  It  then suffices  to  calculate  the sum of  the
remainders:

hamming2@list1_, list2_D := Total@Mod@list1 + list2, 2DD

hamming2@81, 0, 0, 1<, 80, 1, 0, 1<D 2

To  investigate  the  speed  of  the  two  programs,  generate  two  random  lists  of 106  elements  and
calculate the Hamming distance with both programs:

SeedRandom@1D;
list1 = RandomInteger@80, 1<, 10^6D;
list2 = RandomInteger@80, 1<, 10^6D;

hamming1@list1, list2D êê Timing 81.97515, 500 821<

hamming2@list1, list2D êê Timing 80.106975, 500 821<

The speed of the first program is approximately 17 times slower than the speed of the second program.

‡ Finding a Subsequence

Let us write a program that searches, from a given list of digits, a given sequence of digits. For example,
consider the digits of a decimal representation of the number p:

N@p, 30D 3.14159265358979323846264338328

We would like to check whether the sequence 626 appears somewhere within the decimals. First, extract
the digits:

RealDigits@%D

883, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8,
9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 8<, 1<

Here we have a list of the digits together with the number of digits to the left of the decimal point. Pick
the list:

seq = %P1T

83, 1, 4, 1, 5, 9, 2, 6, 5, 3, 5, 8, 9, 7, 9, 3, 2, 3, 8, 4, 6, 2, 6, 4, 3, 3, 8, 3, 2, 8<

Define the subsequence we are interested in:

subseq = 86, 2, 6<;

To  search  the  subsequence,  partition  the  list  of  digits  into  sublists  having  the  same  length  as  the
subsequence. Each sublist moves one element to the right (the offset is 1):

548 Mathematica Navigator



partitionedSeq = Partition@seq, 3, 1D

883, 1, 4<, 81, 4, 1<, 84, 1, 5<, 81, 5, 9<, 85, 9, 2<, 89, 2, 6<, 82, 6, 5<,
86, 5, 3<, 85, 3, 5<, 83, 5, 8<, 85, 8, 9<, 88, 9, 7<, 89, 7, 9<, 87, 9, 3<,
89, 3, 2<, 83, 2, 3<, 82, 3, 8<, 83, 8, 4<, 88, 4, 6<, 84, 6, 2<, 86, 2, 6<,
82, 6, 4<, 86, 4, 3<, 84, 3, 3<, 83, 3, 8<, 83, 8, 3<, 88, 3, 2<, 83, 2, 8<<

Now we are ready to check whether the given subsequence is one of these subsequences:

Position@partitionedSeq, subseqD 8821<<

We found one hit. It begins from the 21st digit of p:

Take@seq, 821, 23<D 86, 2, 6<

Let us then collapse this calculation into a program:

subsequence@seq_, subseq_D :=
Position@Partition@seq, Length@subseqD, 1D, subseqD

Check that the program works:

subsequence@seq, subseqD 8821<<

As a more advanced example, let us check whether the sequence of digits 314159 appears somewhere
else within the first 200,000 digits of p besides at the beginning of the digits of p:

seq = First@RealDigits@N@p, 200 000DDD;

subsequence@seq, 83, 1, 4, 1, 5, 9<D 881<, 8176 452<<

We found a second hit! It begins from the 176,452nd digit of p:

Take@seq, 8176 452, 176 457<D 83, 1, 4, 1, 5, 9<

‡ Perfect Numbers

A positive integer is a perfect number if it is equal to the sum of its proper divisors. A proper divisor is a
divisor  that  is  not  the  number  itself.  For  example,  because 6 = 1μ 2μ 3  and 6 = 1 + 2 + 3,  6  is  a  perfect
number. We would like to develop a program to search perfect numbers.

Mathematica has the Divisors command to calculate the divisors:

Divisors@6D 81, 2, 3, 6<

The command also gives the number itself.  Thus, we can say that a number is perfect if the sum of all
divisors is equal to two times the number. The following function tests whether a number is perfect:

perfectQ@n_D := Total@Divisors@nDD == 2 n

For example, 6 is perfect but 7 is not:

8perfectQ@6D, perfectQ@7D< 8True, False<

Then we write a program to find perfect numbers from integers being at most a given number:

findPerfect@n_D := Select@Range@nD, perfectQ@ÒD &D

For example, here are the perfect numbers among the first 10,000 integers:

findPerfect@10 000D 86, 28, 496, 8128<

Chapter 18  •  Programs 549



Other perfect numbers are very large. Here is the next:

perfectQ@33 550 336D True

Note that with DivisorSigma we can also easily find perfect numbers (see Section 12.1.1, p. 396):

Select@Range@10 000D, DivisorSigma@1, ÒD ã 2 Ò &D

86, 28, 496, 8128<

18.1.3  String Manipulation

Mathematica  has advanced string manipulation commands;  see Sections 13.3.6,  p. 433,  and 16.2,  p. 505.

As examples, we consider palindromes and simple cryptography.

‡ Palindromes

A palindrome is a word or sentence that is the same whether the characters are read from the beginning
to the end or from the end to the beginning. For example, “reviver” is a palindrome. We would like to
write a program to test whether a word or a sentence is a palindrome.

In a palindrome, we do not distinguish between lowercase and uppercase letters.  So,  we change all
letters to lowercase:

ToLowerCase@"A man, a plan, a canal~Panama!"D

a man, a plan, a canal~panama!

Also, we do not take care of spaces and other special characters~that is, we are only interested in letter
characters. With StringCases we can pick up all letters:

StringCases@%, LetterCharacterD

8a, m, a, n, a, p, l, a, n, a, c, a, n, a, l, p, a, n, a, m, a<

We have a palindrome if these characters are the same as the reversed characters:

% == Reverse@%D True

Thus, we arrive at the following test:

palindromeQ@string_D :=
With@8c = StringCases@ToLowerCase@stringD, LetterCharacterD<,
c ã Reverse@cDD

An example:

palindromeQ@"A man, a plan, a canal~Panama!"D True

Here is a Finnish palindrome I have discovered:

palindromeQ@"Leseidolin iski niksin ilo: diesel!"D True

(The sentence in English is approximately as follows: “An idol of bran was hit by the joy of a gimmick:
diesel!”)

‡ Cryptography

A  simple  cryptographic  method  is  to  replace  each  character  by  another  character.  Here,  we  consider
only letters. The usual alphabet of lowercase letters is as follows:

550 Mathematica Navigator



alphabet = CharacterRange@"a", "z"D

8a, b, c, d, e, f, g, h, i, j, k, l, m, n, o, p, q, r, s, t, u, v, w, x, y, z<

We create a new alphabet by forming a random permutation of the usual alphabet:

<< Combinatorica`

newAlphabet = RandomPermutation@alphabetD

8j, h, x, o, f, s, c, p, q, v, i, g, b, m, u, n, k, d, t, r, z, y, a, l, w, e<

A message is encrypted by replacing the original characters with the corresponding characters of the
new alphabet~that is, by applying the following rules:

encryptRules = Thread@alphabet Ø newAlphabetD

8a Ø j, b Ø h, c Ø x, d Ø o, e Ø f, f Ø s, g Ø c, h Ø p, i Ø q, j Ø v, k Ø i, l Ø g, m Ø b,
n Ø m, o Ø u, p Ø n, q Ø k, r Ø d, s Ø t, t Ø r, u Ø z, v Ø y, w Ø a, x Ø l, y Ø w, z Ø e<

An encrypted message is decrypted with the reverse transformation:

decryptRules = Thread@newAlphabet Ø alphabetD

8j Ø a, h Ø b, x Ø c, o Ø d, f Ø e, s Ø f, c Ø g, p Ø h, q Ø i, v Ø j, i Ø k, g Ø l, b Ø m,
m Ø n, u Ø o, n Ø p, k Ø q, d Ø r, t Ø s, r Ø t, z Ø u, y Ø v, a Ø w, l Ø x, w Ø y, e Ø z<

As an example, we encrypt the word “mathematics”:

Characters@"mathematics"D 8m, a, t, h, e, m, a, t, i, c, s<

% ê. encryptRules 8b, j, r, p, f, b, j, r, q, x, t<

% êê StringJoin bjrpfbjrqxt

A program for encryption could be as follows:

encrypt@string_D := StringJoin@Characters@stringD ê. encryptRulesD

m = encrypt@"mathematics"D bjrpfbjrqxt

Similarly, a program for decryption could be as follows:

decrypt@string_D := StringJoin@Characters@stringD ê. decryptRulesD

decrypt@mD mathematics

18.1.4  Mathematical Formulas

Mathematical  formulas  are  often  easy  to  transform  into Mathematica  code  because Mathematica  has
almost  all  the  traditional  mathematical  notations  and  we  can  write  a  formula  into  a  2D  form  with

palettes or by direct typing. Two examples are presented here. In Section 14.2.3,  p. 463,  we considered

mathematical  formulas  where  we  needed Apply  to  form  multiple  iteration  specifications.  In Section

18.5.1, p. 596, we consider recursive mathematical formulas.

‡ Day of Week

Consider a date such as 12.25.2010. What day of week may this be? Let m = 12, d = 25, and y = 2010 be

the  month,  day,  and  year  of  the  date,  respectively.  The  day  of  week  can  be  computed  as  follows  (see
Trott, 2006a, p. 1065). Let

Chapter 18  •  Programs 551



a =
23 m

9
+ d + y + 4 +

z

4
-

z

100
+

z

400
- d,

where

z =
y - 1 if m < 3

y otherwise
, d =

2 if m ¥ 3

0 otherwise
.

Let b = Ha mod 7L + 1. The day of week is the bth element of the list {Sunday, Monday, Tuesday, Wednes-

day, Thursday, Friday, Saturday}. These formulas are easy to transform into a Mathematica program:

dayOfWeek@m_, d_, y_D :=

ModuleB8d = If@m ¥ 3, 2, 0D, z = If@m < 3, y - 1, yD, a,

days = 8Sunday, Monday, Tuesday, Wednesday, Thursday, Friday, Saturday<<,

a =
23 m

9
+ d + y + 4 +

z

4
-

z

100
+

z

400
- d;

daysPMod@a, 7D + 1TF

The floor function d t can be written with ÂlfÂ and ÂrfÂ. For example,

dayOfWeek@12, 25, 2010D Saturday

‡ Number of Primes

The number of primes at most x can be calculated from the following formula (see Trott, 2006a, p. 1068):

pHxL = - ‚
k=1

elog2HxLu

mHkL ‚
n=2

ex1êku

mHnLWHnL x1ëk

n
.

Here, WHnL  is  the  number  of  prime  factors  of n,  and mHnL  is  the  Möbius m  function: mHnL = 1  if n  is  the
product of an even number of distinct primes, mHnL = -1 if n is the product of an odd number of distinct
primes, and mHnL = 0 if n has a multiple prime factor.

This formula is easy to program. First, we write the WHnL function. As an example, here are the factors
of 1120:

FactorInteger@1120D 882, 5<, 85, 1<, 87, 1<<

Now WH1120L is the number of factors: 5 + 1 + 1 = 7. These numbers can be extracted as follows:

%PAll, 2T 85, 1, 1<

Thus, we can write the following:

W@n_D := Total@FactorInteger@nDPAll, 2TD

W@1120D 7

Mathematica has the Möbius m function but we define a shorter name for this function:

m@n_D := MoebiusMu@nD

The formula for pHxL is now as follows:

552 Mathematica Navigator



primePi@x_D := - ‚
k=1

dLog@2,xDt
m@kD ‚

n=2

fx1ëkv

m@nD W@nD
x1ëk

n

Here, d and t can be written as ÂlfÂ and ÂrfÂ. As an example, we calculate the number of primes at
most 100,000:

primePi@100 000D 9592

This is the same result we get with the built-in PrimePi:

PrimePi@100 000D 9592

18.2  Procedural Programming

18.2.1  Doing

‡ Procedural Programming

The  procedural  style  is  familiar  from  ordinary  programming  languages  such  as  Fortran  and  C.  You
probably know such structures as For, While, and If; they all exist in Mathematica, too. However, as you
study other styles of programming in Mathematica, you will find that they are often more effective than
the procedural style. A large procedural program may be rewritten in a few lines of code of functional
or rule-based programming. Thus, before you begin to code your problem, study in detail whether you
can use functional or rule-based programming. Of course, these styles first require serious study, but the
time you spend on them is very interesting and saves you time as you progress.

‡ Commands for Doing

Do[body, {i, min, max}]  Do body while i goes from min to max

While[test, body]  Check test, then repeat body until test fails to give True
For[start, test, incr, body]  Do start; do test, body, and incr until test fails to give True

The iteration specification in Do can have all of the same forms as the one in Table (see Section 14.1.1,

p. 445). Thus, the specification can also be of the forms {n} (body is done n times); {i, max} (i goes from

1 to max); and {i, min, max, step}.  In addition, multiple specifications such as {i, imax}, {j, jmax}

can be used.

If body, test, start, or incr consists of a sequence of commands, they are separated by semicolons.
An index i can be incremented with ++i; it is equivalent to i = i + 1.

Note that Do, While, and For do not print anything as an answer; they only do what they are asked to
do. Thus, after the calculation, remember to ask for the value of the variable in which you are interested.
A prototype Do calculation could be as follows:

Chapter 18  •  Programs 553



x = init (*give an initial value for x*)
Do[body, {i, max}] (*do something for x*)
x (*ask the final value of x*)

‡ Simple Examples

As an example, we calculate the sum of the first 10 integers with all three commands:

s = 0; Do@s = s + i, 8i, 10<D; s 55

s = 0; i = 1; While@i § 10, s = s + i; i = i + 1D; s 55

For@s = 0; i = 1, i § 10, i = i + 1, s = s + iD; s 55

However, the following are better ways to calculate the sum:

Sum@i, 8i, 10<D 55

Total@Range@10DD 55

Do  and Table  are  very  similar  commands;  both  do  what  we  ask,  but  whereas Do  does  not  print
anything, Table gathers the results into a list and prints it. For example,

s = 0; Table@s = s + i, 8i, 10<D

81, 3, 6, 10, 15, 21, 28, 36, 45, 55<

‡ Example: Newton’s Method

In Section 18.1.1, p. 545, we used Table to implement Newton’s method. Now we simply replace Table

with Do and add the command xi at the end of the code:

newton2@f_, x_, x0_, n_D := Module@8newx = x - f ê D@f, xD, xi = x0<,
Do@xi = N@newx ê. x Ø xiD, 8n<D;
xiD

newton2@3 x^3 - E^x, x, 2, 4D 0.953089

Next, we use While and For:

newton3@f_, x_, x0_, eps_D := Module@8newx = x - f ê D@f, xD, xi = x0<,
While@Abs@f ê. x Ø xiD > eps, xi = N@newx ê. x Ø xiDD;
xiD

newton3@3 x^3 - E^x, x, 2, 10^-2D 0.953089

newton4@f_, x_, x0_, eps_D := Module@8newx = x - f ê D@f, xD, xi<,
For@xi = x0,
Abs@f ê. x Ø xiD > eps,
xi = N@newx ê. x Ø xiDD;
xiD

newton4@3 x^3 - E^x, x, 2, 10^-2D 0.953089

‡ Example: Sampling without Replacement

We would like to take a sample of n  elements from a given set. The sampling is done without replace-

ment (so n must be at most the number of elements of the set). As an example, let the set be the integers
1, 2, …, 10. We have a ready-to-use command:

RandomSample@Range@10D, 4D 86, 4, 7, 1<

554 Mathematica Navigator



However, now we would like to write a procedural program for taking a sample without replacement.

Let us gather the sample into the variable sample, and let its initial value be the empty list {}. After
each new sample element, for example, c,  we update the sample with sample = {sample, c}.  Suppose
we have already sampled the elements 7, 4, and 8. The list of elements still available, its length, and the
current sample are thus as follows:

a = 81, 2, 3, 5, 6, 9, 10<;
b = 7;
sample = 8888<, 7<, 4<, 8<;

To  take  the  next  random  element,  choose  a  random  integer  from  1,  …,  7,  add  the  corresponding
element to the sample, delete the element from the list of available elements, and decrease the length of
the list by one:

pos = RandomInteger@81, b<D 6

sample = 8sample, aPposT< 88888<, 7<, 4<, 8<, 9<

a = Delete@a, posD 81, 2, 3, 5, 6, 10<

b = b - 1 6

In this way, we arrive at the following program:

SWOR@list_, n_D := Module@8a = list, b = Length@listD, pos, sample = 8<<,
Do@pos = RandomInteger@81, b<D;
sample = 8sample, aPposT<;
a = Delete@a, posD;
b = b - 1, 8n<D;
Sort@Flatten@sampleDDD

At the end of the program, we remove all unnecessary braces by flattening the sample. We also sort
the sample. For example,

SWOR@Range@10D, 4D 83, 4, 7, 9<

‡ Example: Sieve of Eratosthenes

A very old method to find all primes at most n is the sieve of Eratosthenes (ca. 276|194 BC; see Wellin et
al.,  2005,  p.  142).  First,  write  down  the  integers  1,  2,  …, n.  Let  the  initial  value  of p  be  2.  Repeat  the

following  until p > n :  Cross  out  all  integer  multiples  of p  on  the  interval A2 p, nE  and  increase  the

value of p by 1.

Suppose we would like to find all primes at most 20:

p = 2; list = Range@20D

81, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20<

Write down all integer multiples of 2:

Range@2 p, 20, pD 84, 6, 8, 10, 12, 14, 16, 18, 20<

Instead of crossing out, we mark integers to be deleted by 1:

listP%T = 1;

The list of integers is now

list 81, 2, 3, 1, 5, 1, 7, 1, 9, 1, 11, 1, 13, 1, 15, 1, 17, 1, 19, 1<

Chapter 18  •  Programs 555



Increase the value of p:

p = 3;

Write down all integer multiples of 3:

Range@2 p, 20, pD 86, 9, 12, 15, 18<

Set these integers to 1:

listP%T = 1;

The list of integers is now

list 81, 2, 3, 1, 5, 1, 7, 1, 1, 1, 11, 1, 13, 1, 1, 1, 17, 1, 19, 1<

We see that two iterations suffice in our example. Indeed, deleting all 1’s, we get the list of primes:

DeleteCases@list, 1D 82, 3, 5, 7, 11, 13, 17, 19<

In the following program, we use While to do the iteration.

eratosthenes@n_D := Module@8list = Range@nD, p = 2<,
While@p § Sqrt@nD,
listPRange@2 p, n, pDT = 1;
p++D;
DeleteCases@list, 1DD

An example:

eratosthenes@100D

82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

To check the result, use Prime:

Table@Prime@iD, 8i, 25<D

82, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31,
37, 41, 43, 47, 53, 59, 61, 67, 71, 73, 79, 83, 89, 97<

18.2.2  Branching

‡ Commands for Branching

If[test, then, else, otherwise]  If test gives True, do then; else, if test gives False, do else;
otherwise (if test is neither True nor False), do otherwise.

Which[test1, then1, test2, then2, … , True, otherwise]  Evaluate each of the testi in turn and
do the theni corresponding to the first test giving True. If all testi give False, do otherwise. If,
in searching the first test giving True, a test is encountered giving neither True nor False, the
searching is stopped and the Which command is returned with the remaining arguments unevalu-

ated.

Switch[expr, form1, value1, form2, value2, … , _, otherwise]  Compare expr with each of the
formi in turn and return the valuei corresponding to the first match. If no matches are found,
return otherwise.

The box contains the most complete forms of the three commands; shorter forms exist. Regarding If,
it also accepts the following form:

556 Mathematica Navigator



If@test, then, elseD

Then the If  command is  returned as such if test  gives neither True  nor False.  Here is  a  still  shorter
form:

If@test, thenD

This does nothing (meaning that the value of the command is Null) if test gives False and returns the
If command if test gives neither True nor False.

The Which command has the following shorter form:

Which@test1, then1, test2, then2, … D

Now nothing is done (meaning that the value of the command is Null) if all tests give False.

The Switch command has the following shorter form:

Switch@expr, form1, value1, form2, value2, … D

Now the Switch command is returned if no matches are found. In the complete form, remember that _

means anything (see Section 16.1.1, p. 491) so that it matches all expressions.

The complete forms are safe to use because you have specified what to do in all possible cases (with
the exception that in Which we cannot define what to do if a test is encountered that gives neither True
nor False).

In  the  tests,  we  can  apply  operators  such  as ==, !=, <, £, >,  and ;  use  tests  such  as IntegerQ  and
OddQ;  and  form  more  complex  logical  expressions  with &&  (AND), ||  (OR),  and !  (NOT)  (see Section

13.3.5, p. 431).

‡ Simple Examples

Here are some examples of If:

8If@2 < 3, YesD, If@4 < 3, YesD, If@x < 3, YesD<

8Yes, Null, If@x < 3, YesD<

In the second example, the test 4 < 3 gives False,  so nothing is  done. In the third example, we cannot
say whether x < 3 or not, so the test gives x < 3, which is neither True nor False and, consequently, the
If command is returned as such.

The following function gives the integral of xn for each n:

f@n_D := If@n ã -1, Log@xD, x^Hn + 1L ê Hn + 1LD

Examples:

8f@-2D, f@-1D, f@0D, f@1D<

:-
1

x
, Log@xD, x,

x2

2
>

Next, we use Which:

g@n_D := Which@
n ã -1, Log@xD,
True, x^Hn + 1L ê Hn + 1LD

Examples:

Chapter 18  •  Programs 557



8g@-2D, g@-1D, g@0D, g@1D<

:-
1

x
, Log@xD, x,

x2

2
>

We could also write n != -1 in place of True. Here is an example of Switch:

volume@name_D := Switch@name,
cylinder, Pi r^2 h,
sphere, 4 Pi r^3 ê 3,
ellipsoid, 4 Pi a b c ê 3,
_, unknownD

Examples:

8volume@cylinderD, volume@sphereD, volume@coneD<

:h p r2,
4 p r3

3
, unknown>

‡ Piecewise Functions

Remember that in Section 17.1.2, p. 516, we considered piecewise-defined functions:

Piecewise[{{val1, cond1}, {val2, cond2}, …}]  A piecewise function with values vali in regions
defined by conditions condi

Piecewise[{{val1, cond1}, {val2, cond2}, …}, val]  Use value val if none of the condi apply;
the default of val is 0

This is the preferred method to form functions defined piecewise. Previously, we defined, with If  and
Which, a function to give the integral of xn for each n. Such a function could also be defined as follows:

h@n_D = Piecewise@88x^Hn + 1L ê Hn + 1L, n -1<, 8Log@xD, n ã 1<<D

x1+n

1+n
n -1

Log@xD True

With PiecewiseExpand  we  can  develop  expressions  containing If  and Which  into  a  piecewise
expression:

PiecewiseExpand@f@nDD

x1+n

1+n
n -1

Log@xD True

‡ Example: Collatz Sequences

A Collatz sequence starts  from a given positive integer n  and proceeds iteratively.  At  each step,  if  the
current value n is even, the next value is n ê 2; if the current value n is odd, the next value is 3 n + 1. The
hypothesis  has  been  presented  that  all  Collatz  sequences  sooner  or  later  get  the  value  1.  Here  is  a
program to generate a Collatz sequence:

collatzSequence@n_D := Module@8a = n, seq = 8n<<,
While@a 1, a = If@EvenQ@aD, a ê 2, 3 a + 1D; seq = 8seq, a<D;
Flatten@seqDD

558 Mathematica Navigator



Table@collatzSequence@nD, 8n, 1, 10<D êê Column

81<
82, 1<
83, 10, 5, 16, 8, 4, 2, 1<
84, 2, 1<
85, 16, 8, 4, 2, 1<
86, 3, 10, 5, 16, 8, 4, 2, 1<
87, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<
88, 4, 2, 1<
89, 28, 14, 7, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<
810, 5, 16, 8, 4, 2, 1<

‡ Example: Switching Fleas

Two dogs, A and B, share n fleas (see Trott, 2006a, p. 1064). Initially, m fleas are on dog A and n - m fleas
on dog B.  Consider  an iteration,  where in each step a  random flea  switches its  dog.  We would like  to
write a program that gives the number of fleas on dog A during t iterations.

Let the initial value of the list containing the number of fleas on dog A be 8m<. Let the current number
of fleas on dog A be a (initially a = m). In each step, choose a random integer from the set 1, 2, …, n.  If
this integer is larger than a, this corresponds to the situation in which a flea on dog B switches to dog A,
but if the integer is at most a, this corresponds to the situation in which a flea on dog A switches to dog
B.

fleas@n_, m_, t_D := Module@8a = m, iters = 8m<<,
Do@If@RandomInteger@81, n<D > a, a = a + 1, a = a - 1D;
iters = 8iters, a<, 8t<D;
Flatten@itersDD

Assume that we have 100 fleas. Initially, they are all on dog B. We do 500 steps:

ListLinePlot@fleas@100, 0, 500D, PlotRange Ø All, Epilog Ø Line@880, 50<, 8500, 50<<DD

100 200 300 400 500

10

20

30

40

50

60

The number of fleas on dog A seems to settle down near 50 in approximately 100-200 steps. Next, we
do 51,000 steps, drop the first 1000 steps, and plot the frequencies of the rest of the steps:

ListPlot@Tally@Drop@fleas@100, 0, 51 000D, 1000DDD

40 45 50 55 60 65

1000

2000

3000

4000

In the long range, the number of fleas seems to be, with high probability, from 40 to 60.

Chapter 18  •  Programs 559



‡ Example: Coding Lotto Results

In the lotto game in Finland, each player guesses seven numbers from the numbers 1,  2,  …, 39.  Let us
study  the  frequencies  of  results  having  a  variable  number  of  consecutive  numbers.  First,  we  write  a
program  that  codes  lotto  results  in  the  following  way.  If  the  result  has,  for  example,  five  consecutive
numbers,  the  result  of  the  program  is  5.  If  the  result  contains  five  consecutive  numbers  and  also  two
consecutive numbers, the result is 52. The set of possible results is as follows: 7, 6, 52, 5, 43, 42, 4, 322, 33,
32, 3, 222, 22, 22, 2, and 1 (the last result means that the result does not have consecutive numbers). The
following program codes a lotto result. The program assumes that the lotto result is sorted in ascending
order.

lottoCodes@8a_, b_, c_, d_, e_, f_, g_<D := Which@
Hg ã a + 6L, 7,
Hf ã a + 5 »» g ã b + 5L, 6,
He ã a + 4 && g ã f + 1L »» Hb ã a + 1 && g ã c + 4L, 52,
He ã a + 4 »» f ã b + 4 »» g ã c + 4L, 5,
Hd ã a + 3 && g ã e + 2L »» Hc ã a + 2 && g ã d + 3L, 43,
Hd ã a + 3 && f ã e + 1L »» Hd ã a + 3 && g ã f + 1L »» He ã b + 3 && g ã f + 1L »»
Hb ã a + 1 && f ã c + 3L »» Hb ã a + 1 && g ã d + 3L »» Hc ã b + 1 && g ã d + 3L, 42,

Hd ã a + 3 »» e ã b + 3 »» f ã c + 3 »» g ã d + 3L, 4,
Hc ã a + 2 && e ã d + 1 && g ã f + 1L »»
Hb ã a + 1 && e ã c + 2 && g ã f + 1L »» Hb ã a + 1 && d ã c + 1 && g ã e + 2L, 322,

Hc ã a + 2 && f ã d + 2L »» Hc ã a + 2 && g ã e + 2L »» Hd ã b + 2 && g ã e + 2L, 33,
Hc ã a + 2 && e ã d + 1L »» Hc ã a + 2 && f ã e + 1L »» Hc ã a + 2 && g ã f + 1L »»
Hd ã b + 2 && f ã e + 1L »» Hd ã b + 2 && g ã f + 1L »»
Hb ã a + 1 && e ã c + 2L »» He ã c + 2 && g ã f + 1L »»
Hb ã a + 1 && f ã d + 2L »» Hc ã b + 1 && f ã d + 2L »» Hb ã a + 1 && g ã e + 2L »»
Hc ã b + 1 && g ã e + 2L »» Hd ã c + 1 && g ã e + 2L, 32,

Hc ã a + 2 »» d ã b + 2 »» e ã c + 2 »» f ã d + 2 »» g ã e + 2L, 3,
Hb ã a + 1 && d ã c + 1 && f ã e + 1L »» Hb ã a + 1 && d ã c + 1 && g ã f + 1L »»
Hb ã a + 1 && e ã d + 1 && g ã f + 1L »» Hc ã b + 1 && e ã d + 1 && g ã f + 1L, 222,

Hb ã a + 1 && d ã c + 1L »» Hb ã a + 1 && e ã d + 1L »»
Hb ã a + 1 && f ã e + 1L »» Hb ã a + 1 && g ã f + 1L »»
Hc ã b + 1 && e ã d + 1L »» Hc ã b + 1 && f ã e + 1L »» Hc ã b + 1 && g ã f + 1L »»
Hd ã c + 1 && f ã e + 1L »» Hd ã c + 1 && g ã f + 1L »» He ã d + 1 && g ã f + 1L, 22,

Hb ã a + 1 »» c ã b + 1 »» d ã c + 1 »» e ã d + 1 »» f ã e + 1 »» g ã f + 1L, 2,
True, 1D

The  program  is  based  on  the  assumption  that  the  lotto  result  is  sorted  in  ascending  order.  For

example, in order for 9a, b, c, d, e, f , g=  to have seven consecutive numbers, it  suffices that g = a + 6. To

get  five  and  two  consecutive  numbers,  it  suffices  that  either e = a + 4  and g = f + 1  or b = a + 1  and

g = c + 4.  Note  that  here  we need not  explicitly  exclude  the  cases  of  seven or  six  consecutive  numbers

because  if  one  of  these  is  the  case,  the  program  codes  the  result  correctly  as  these  cases  are  covered
earlier in the program.

To test the program, we give here a set of 25 artificial lotto results:

lottoResults = 881, 2, 3, 4, 5, 6, 7<, 81, 2, 3, 4, 5, 6, 11<,
81, 11, 12, 13, 14, 15, 16<, 81, 2, 11, 12, 13, 14, 15<, 81, 2, 3, 4, 5, 11, 12<,
81, 2, 3, 4, 5, 11, 21<, 81, 11, 12, 13, 14, 15, 21<, 81, 11, 21, 22, 23, 24, 25<,
81, 2, 3, 11, 12, 13, 14<, 81, 2, 3, 4, 11, 12, 13<, 81, 2, 11, 12, 13, 14, 21<,
81, 2, 11, 21, 22, 23, 24<, 81, 2, 3, 4, 11, 12, 21<, 81, 2, 3, 4, 11, 21, 31<,
81, 11, 12, 13, 14, 21, 31<, 81, 11, 21, 22, 23, 24, 31<,
81, 11, 21, 31, 32, 33, 34<, 81, 2, 11, 12, 21, 22, 23<, 81, 11, 12, 13, 21, 22, 23<,
81, 11, 12, 21, 31, 32, 33<, 81, 11, 12, 13, 21, 31, 39<, 81, 2, 11, 12, 21, 22, 31<,
81, 5, 6, 11, 12, 21, 31<, 81, 5, 6, 11, 21, 31, 39<, 81, 3, 5, 7, 9, 11, 13<<;

560 Mathematica Navigator



Here, the first result has seven consecutive numbers, the next two have six consecutive numbers, and so
on. Now we code the results:

lottoCodes êü lottoResults

87, 6, 6, 52, 52, 5, 5, 5, 43, 43, 42, 42, 42, 4, 4, 4, 4, 322, 33, 32, 3, 222, 22, 2, 1<

‡ Example: A Lotto Simulation

We continue the preceding example and calculate approximative probabilities of lotto results. First, we
generate a  set  of  lotto  results.  Use RandomSample  to  sample without  replacement seven numbers  from
the integers 1, …, 39 and sort the results:

RandomSample@Range@39D, 7D êê Sort 86, 16, 17, 20, 24, 31, 39<

Generate 1 million sorted lotto results:

SeedRandom@1D;
lottoResults = Table@RandomSample@Range@39D, 7D êê Sort, 810^6<D;

First code the results:

Hc = lottoCodes êü lottoResults;L êê Timing

8288.415, Null<

The coding may take some minutes. Then calculate the frequencies:

Tally@cD

883, 77 127<, 82, 431 162<, 822, 154 770<, 81, 278 198<,
832, 31 921<, 84, 10 591<, 842, 2124<, 8222, 10 634<, 8322, 1067<,
833, 1119<, 85, 1086<, 852, 61<, 843, 61<, 86, 78<, 87, 1<<

Sort the frequencies in descending order:

fr = ReverseüSortBy@%, LastD

882, 431 162<, 81, 278 198<, 822, 154 770<, 83, 77 127<,
832, 31 921<, 8222, 10 634<, 84, 10 591<, 842, 2124<, 833, 1119<,
85, 1086<, 8322, 1067<, 86, 78<, 852, 61<, 843, 61<, 87, 1<<

Check that the sum of the frequencies is 1 million:

Total@frPAll, 2TD 1 000 000

Then form a table from the results:

Grid@Prepend@fr, 8"Case", "Frequency"<D, Spacings Ø 80.7, 0.2<,
Dividers Ø 8False, 8False, True<<, Alignment Ø 88Left, Right<<D

Case Frequency
2 431 162
1 278 198
22 154 770
3 77 127
32 31 921
222 10 634
4 10 591
42 2124
33 1119
5 1086
322 1067
6 78
52 61
43 61
7 1

Chapter 18  •  Programs 561



Approximate  probabilities  are  obtained  by  dividing  the  frequencies  by  1  million.  Thus,  the  most
probable event is that the lotto result has one times two consecutive numbers (and no other consecutive
numbers); an example of this kind of result is {4, 11, 12, 19, 25, 31, 35}. The probability of such an event is
approximately 0.43.  Thus,  almost  every other lotto result  has one times two consecutive numbers. The
second largest  probability,  approximately  0.28,  is  with the case of  no consecutive numbers.  Two times
two  consecutive  numbers  occur  with  a  probability  of  approximately  0.15;  an  example  of  this  kind  of
result is {4, 11, 12, 19, 25, 26, 35}. It is highly unlikely to get seven consecutive numbers as in {1, 2, 3, 4, 5,

6,  7}.  The  simulation  gives  for  this  kind  of  event  only  an  approximate  probability  of 1.μ 10-6  (this

happens to be quite the same as the exact probability, 33ì 39

7
).

In Section 18.4.2, p. 592, we use rule-based programming to calculate the frequencies of lotto results.

18.2.3  Communicating

‡ Printing Values

Print[expr1, expr2, … ]  Print the values of the expressions

Often, it suffices that we only get the final result when all the computations have been completed. In
the following example,  we calculate the number of  different factors of 2n - 1 for  some values of n.  We
get the result once all the numbers have been factored:

Table@Length@FactorInteger@2^n - 1DD, 8n, 135, 145<D

810, 10, 2, 8, 2, 15, 6, 6, 6, 17, 5<

In  long  calculations,  it  may  be  useful  to  see  in  real  time  how the  calculations  proceed.  This  can  be
done by printing intermediate results as soon as they become complete or by printing the current value
of an iterator:

Table@fi = Length@FactorInteger@2^n - 1DD; Print@fiD; fi, 8n, 135, 140<D

10

10

2

8

2

15

810, 10, 2, 8, 2, 15<

Table@Print@nD; Length@FactorInteger@2^n - 1DD, 8n, 135, 140<D

135

136

137

138

139

140

810, 10, 2, 8, 2, 15<

562 Mathematica Navigator



As we noted in Section 17.1.4, p. 521, a module automatically prints the result of its last statement. If

we  want  to  print  some  intermediate  results,  we  can  use Print,  although Message  is  the  preferred

command (see Section 17.3.4, p. 540).

Print is useful for debugging a larger program. You can print the values of some variables that play
a  central  role  in  a  susceptible  block  of  the  program.  This  may  help  you  to  infer  what  the  program
actually does, and then you can more easily correct the code. However, remember that we also have a

special debugger (see Section 17.2.2, p. 524).

Another  way  to  print  intermediate  results  is  with  the  use  of Monitor  or PrintTemporary,  as  is
explained next.

‡ Monitoring Values

Monitor[expr, mon] (Ÿ6)  Show, in a temporary cell, the current value of mon during the evaluation
of expr

Monitor[expr, ProgressIndicator[var, {min, max}]]  Show, in a temporary cell, the progress of
the computation of expr as var takes values from min to max

PrintTemporary[expr] (Ÿ6)  Print, in a series of temporary cells, the value of expr during the
execution of the current command

These  commands  print  the  value  of  a  variable  of  interest  into  temporary  cells.  The  cells  disappear
once the computations are complete.

When we execute the following command, we get  a  temporary cell  showing the current value of n.
The  cell  disappears  when  the  computation  becomes  ready  so  that  we  cannot  show the  temporary  cell
here:

Monitor@Table@Length@FactorInteger@2^n - 1DD, 8n, 135, 145<D, nD

810, 10, 2, 8, 2, 15, 6, 6, 6, 17, 5<

During the execution of the following command, we get a temporary progress indicator showing the
growth  of  the  value  of n  during  the  computation.  The  cell  again  disappears  when  the  computation
becomes ready so that we cannot show the temporary cell here:

Monitor@Table@Length@FactorInteger@2^n - 1DD, 8n, 135, 145<D,
ProgressIndicator@n, 8135, 145<DD

810, 10, 2, 8, 2, 15, 6, 6, 6, 17, 5<

In the following way, we can show a permanent progress indicator:

ProgressIndicator@Dynamic@nD, 8135, 145<D

Table@Hn = k; Length@FactorInteger@2^n - 1DDL, 8k, 135, 145<D

810, 10, 2, 8, 2, 15, 6, 6, 6, 17, 5<

The following command creates a series of temporary cells showing the current value of n:

Table@Length@PrintTemporary@nD; FactorInteger@2^n - 1DD, 8n, 135, 145<D

810, 10, 2, 8, 2, 15, 6, 6, 6, 17, 5<

Chapter 18  •  Programs 563



‡ Sowing and Reaping Values

Sow[val]  Sow val for the nearest enclosing Reap

Reap[expr]  Evaluate expr; return a list of values sown by Sow

During  a  calculation,  we  often  would  like  to  collect  some  values  into  a  list.  As  an  example,  in  the
following calculation we collect all values of n for which the number of factors of 2n - 1 is one:

Table@fi = Length@FactorInteger@2^n - 1DD; If@fi ã 1, Print@nDD; fi, 8n, 2, 10<D

2

3

5

7

81, 1, 2, 1, 2, 1, 3, 2, 3<

We can also gather the interesting values into a list:

a = 8<;
Table@fi = Length@FactorInteger@2^n - 1DD; If@fi ã 1, a = 8a, n<D; fi, 8n, 2, 10<D
81, 1, 2, 1, 2, 1, 3, 2, 3<

Flatten@aD 82, 3, 5, 7<

However, a simpler way is to use Sow and Reap:

Reap@Table@fi = Length@FactorInteger@2^n - 1DD; If@fi ã 1, Sow@nDD; fi, 8n, 2, 10<DD

881, 1, 2, 1, 2, 1, 3, 2, 3<, 882, 3, 5, 7<<<

The result first shows the value of the expression inside Reap and then a list of values sown by Sow.

In Section 12.3.2, p. 411, we presented the following example:

iters = 8<;
FindRoot@Exp@-xD - x^2, 8x, -1<, StepMonitor ß AppendTo@iters, xDD
8x Ø 0.703467<

iters

81.39221, 0.835088, 0.709834, 0.703483, 0.703467, 0.703467<

The StepMonitor option defines a command executed after each step so that we get in the list iters the
value of x after each step. Again, it is simpler to use Sow and Reap:

Reap@FindRoot@Exp@-xD - x^2, 8x, -1<, StepMonitor ß Sow@xDDD

88x Ø 0.703467<, 881.39221, 0.835088, 0.709834, 0.703483, 0.703467, 0.703467<<<

‡ Inputting Values

x = Input["prompt"]  Print the prompt; then read an expression as a value for x

With Input  we  can  build  an  interactive  program  that  asks  for  some  values.  As  an  example,  the
function div  asks  for  an  integer  and  then  prints  its  divisors.  This  is  continued  until  the  integer  is
negative:

div := Module@8n, cont = True<,
While@cont ã True, n = Input@"Give an integer"D;
If@n ¥ 0, Print@"The divisors of ", n, " are ", Divisors@nDD, cont = FalseDDD

564 Mathematica Navigator



div

The divisors of 1111 are 81, 11, 101, 1111<

The divisors of 11 111 are 81, 41, 271, 11 111<

The divisors of 111 111 are
81, 3, 7, 11, 13, 21, 33, 37, 39, 77, 91, 111, 143, 231, 259, 273, 407, 429, 481, 777,
1001, 1221, 1443, 2849, 3003, 3367, 5291, 8547, 10 101, 15 873, 37 037, 111 111<

When div  is  entered, a  new window appears in which we can enter the requested input. The result is
then printed in the notebook.

18.2.4  Controlling

‡ Commands for Controlling

Continue[]  Go to the next step in the current loop of Do, While, or For
Break[]  Exit the nearest enclosing loop of Do, While, or For
Return[expr]  Return expr, exiting all procedures and loops in a function
Goto[name]  Go to Label[name]

These  commands  are  used  to  perform  an  exceptional  operation.  As  an  example,  we  program  the
tossing of an n-face die until the result is 1 or n. The following program is very clumsy:

die@n_D := Module@8r, i = 1<,
Label@startD;
r = RandomInteger@81, n<D;
If@r ã 1 »» r ã n,
Print@"We got ", r, " after ", i, " tosses"D; Goto@finishD,
++i; Goto@startDD;
Label@finishD;D

An example:

die@6D

We got 6 after 4 tosses

We write a better program (here we assume that we get 1 or n in at most 100 tosses):

die2@n_D := Module@8r, i = 1<,
Do@r = RandomInteger@81, n<D;
If@r ã 1 »» r ã n, Return@8r, i<D, ++iD, 8100<DD

An example:

die2@6D 86, 3<

Here is a still better program:

die3@n_D := Module@8r = 0, i = 0<,
While@r != 1 && r != n, r = RandomInteger@81, n<D; ++iD;
8r, i<D

An example:

die3@6D 81, 4<

Chapter 18  •  Programs 565



‡ Example: Newton’s Method

When we programmed Newton’s method in Section 18.2.1, p. 554, with Do,  we did a fixed, sufficiently

large number of iterations to obtain the zero. Normally, the convergence is controlled with the program:
Iterations are stopped once the present approximation to the solution is accurate enough. The following
module checks the convergence:

newton5@f_, x_, x0_, eps_, max_D :=
Module@8xi = x0, fi, df = D@f, xD, dfi, iters = 8x0<<,
Do@8fi, dfi< = N@8f, df< ê. x Ø xiD;
If@Abs@fiD ¥ eps, xi = xi - fi ê dfi; iters = 8iters, xi<,
Return@Flatten@itersDDD, 8max<DD

The starting value is x0. If the value of the function is at least eps, iterations are continued; otherwise,
iterations  are  stopped  and  the  program  returns  the  flattened  list  of  iterations.  However,  iterations  are
done at most max times (since we have written Do[ … , {max}]). For example,

f = 3 x^3 - E^x;

newton5@f, x, 2, 10^-14, 20D

82, 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446<

f ê. x Ø Last@%D 4.44089 μ 10-16

We see that the value of the function is, in fact, less than 10-14 at the last point. We can also find complex
zeros if we start at a complex point:

newton5@f, x, -0.5 + 0.5 I, 10^-14, 20D

8-0.5 + 0.5 Â, -0.400328 + 0.465629 Â, -0.384087 + 0.473305 Â,
-0.38428 + 0.473739 Â, -0.38428 + 0.473739 Â, -0.38428 + 0.473739 Â<

Remove@"Global`*"D

In Section 22.3.4, p. 739, we write a similar program for the secant method.

Next, we present some questions regarding the previous program.

‡ Some Questions

1. Why  have  we  written iters = {iters, xi}  and  not AppendTo[iters, xi]?  The  latter  command
would directly give a list of the simple form 8x0, x1, x2, …<  so that at the end of the program we could

simply write iters (flattening would not be needed).

The answer is  that AppendTo[iters, xi]  is  slower  than iters = {iters, xi},  even when we take
into account the time required for the flattening:

Use iters = {iters, xi} and lastly Flatten[iters] instead of AppendTo[iters, xi].

The time saved may not be noticeable in the small iteration of newton5, but for longer iterations it may
be considerable.  If  each iteration gives two numbers {xi, yi},  we can in the same way write iters =

{iters, {xi, yi}} and lastly Flatten[iters], but if the result must consist of the pairs {xi, yi}, the
last step is Partition[Flatten[iters], 2].

2. Instead  of iters = {iters, xi},  could  we  write iters = {iters, %},  as xi  is  calculated  in  the
preceding command?

The answer is no:

We cannot use % in programs.

566 Mathematica Navigator



The symbol % is intended to be used only in interactive calculations.

3. Why have we introduced the variable xi  in the program and given it  the starting value x0? Why
have we not directly used the variable x0 containing the starting value?

An important point to note is the following:

The arguments of a program cannot be changed inside the program.

We might assume that we do not need the variable xi and instead write directly x0 = x0 - fi/dfi. This
does not work, however, because when we use the program, x0 has a specific numerical value such as 2,
and  we  cannot  make  an  assignment  such  as 2 = …  .  We  would  obtain  an  error  message  such  as  the
following:

Set::setraw : Cannot assign to raw object 2. à

Thus, x0 can be used only as the starting value, and the iterations have to be stored in another variable;
we have used xi.

4. In  defining  the  starting  value  of iters,  we  have  written iters = {x0}.  Could  we  write iters =

{xi}? Remember that we previously defined that xi = x0.

Note the following:

In giving starting values for local variables in a module, previously defined local variables cannot be used.

If we write iters = {xi}, we get the following result:

8xi, 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446<

We see that the starting value xi of iters was unknown to Mathematica.

‡ Example: Removing Repetitive Elements

We  write  a  procedural  program  that,  from a  given  list,  removes  all  elements  that  are  the  same as  the
preceding element. For example, the list 80, 1, 1, 2, 2, 2, 1, 1< becomes 80, 1, 2, 1<.

removeRepetitions@list_D :=
Module@8result = 8First@listD<, current = First@listD, next<,
Do@next = listPiT;
If@next ã current, Continue@D,
result = 8result, next<; current = nextD,

8i, 2, Length@listD<D;
Flatten@resultDD

Here,  we  proceed  element  by  element.  If  the  next  element  is  the  same  as  the  current  element,  we
continue to the next step. If the next element is different than the current element, it is added to the list
to be outputted.

removeRepetitions@80, 1, 1, 2, 2, 2, 1, 1<D

80, 1, 2, 1<

Note  that  we  can  write  a  much  better  and  simpler  program  using  high-level  list  manipulation
commands:

removeRepetitions2@list_D := First êü Split@listD

To understand this program, consider an example:

Chapter 18  •  Programs 567



Split@80, 1, 1, 2, 2, 2, 1, 1<D

880<, 81, 1<, 82, 2, 2<, 81, 1<<

First êü % 80, 1, 2, 1<

To compare the computing times of the two programs, generate a list of 100,000 random 0’s and 1’s
and then remove repetitions with both programs:

list = RandomInteger@80, 1<, 100 000D;

removeRepetitions@listD; êê Timing 81.54165, Null<

removeRepetitions2@listD; êê Timing 80.143988, Null<

The procedural program is approximately 10 times slower than the list-based program.

The  two  programs  describe  the  properties  of  procedural  and  list-based/functional  programs  in
general:

•  Procedural  programs  apply  an  element-by-element  approach,  whereas  list-based/functional
programs use high-level commands to avoid explicit treatment of each element.

•  Procedural  programs  typically  have  longer  code  and  slower  speed  than  list-based/functional
programs.

18.3  Functional Programming

18.3.1  Introduction

Functional programming may be the most important programming style in Mathematica. It is suitable in
many problems in which we manipulate lists or iterate functions. In both types of tasks, we apply functions

to arguments. The functions are often written as pure functions (see Section 17.1.4, p. 520).

In  list  manipulation,  we  typically  modify  the  elements  by  applying  a  function  to  them  so  that,  for

example,  we  transform  the  list 8a, b, c<  into 9 f HaL, f HbL, f HcL=  with Map  or  into f Ha, b, cL  with Apply.  In

iterations, we start from a given value and then iterate it with a function so that, for example, from the

starting value x0  we get new values with the iteration formula xi+1 = f IxiM;  this can be done with Nest.

Next, we consider list manipulation and function iteration in more detail.

‡ List Manipulation

For list manipulation, the most important functional style programming commands are Map and Apply,
but Map  also  has  the  variations MapAt, MapAll, MapIndexed,  and MapThread;  we  also  have Thread,

Inner, and Outer. All these commands were considered in Section 14.2, p. 459. We could have consid-

ered  these  commands  here  in  the  context  of  programming,  but  we  believed  it  was  more  suitable  to
consider them as one group of list manipulation commands because they~or at least Map  and Apply~

are very useful in everyday calculations with Mathematica, not only in ordinary programs.

The key in functional  list  manipulation is  that  we do not explicitly  treat  each element  of  a  list  sepa-

rately; we only indicate what we want do with the elements. Of course, ultimately Mathematica has to do
the operations for each element,  but the essential point is that the list manipulation routines inside the
kernel of Mathematica are much faster than any code we are able to write with Mathematica.

For example, to calculate the sum of the elements of a list, we do not use Sum:

568 Mathematica Navigator



t = 8a, b, c<;
Sum@tPiT, 8i, 1, 3<D a +b +c

A still worse way is the use of Do:

s = 0; Do@s = s + tPiT, 8i, 1, 3<D; s a +b +c

Instead, the command is simply the following:

Total@tD a +b +c

Alternatively, we can use the following:

Apply@Plus, tD a +b +c

To square the elements, we do not use Table:

Table@tPiT^2, 8i, 1, 3<D 9a2, b2, c2=

Instead, we enter the following simple command:

t^2 9a2, b2, c2=

To calculate the row sums of a matrix, we do not use Table and Sum:

m = 881, 2, 3<, 8a, b, c<, 8A, B, C<<;
Table@Sum@mPi, jT, 8j, 1, 3<D, 8i, 1, 3<D
86, a + b + c, A + B + C<

Instead, we write the following:

Map@Total, mD 86, a + b + c, A + B + C<

Alternatively, we can use the following:

Apply@Plus, m, 1D 86, a + b + c, A + B + C<

The functional list manipulation commands have two advantages. First, once you have learned them,
they are short to write and thus shorten the code needed to do a calculation. Second, they are fast. As an
example, we calculate the row sums of a 1000μ 1000 matrix by three methods:

n = 1000; r = RandomReal@80, 1<, 8n, n<D;

Table@s = 0; Do@s = s + rPi, jT, 8j, 1, n<D; s, 8i, n<D; êê Timing

86.65994, Null<

Table@Sum@rPi, jT, 8j, n<D, 8i, n<D; êê Timing

80.746879, Null<

Map@Total, rD; êê Timing

80.030034, Null<

‡ Function Iteration

Many  mathematical  methods  are  iterative  or  recursive,  having  the  typical  form xi+1 = f IxiM.  Examples

are  several  iterative  numerical  methods  for  nonlinear  equations,  nonlinear  optimization,  and differen-

tial,  partial  differential,  and  difference  equations. Mathematica  has  special  functional  type  commands
such as Nest, FixedPoint, and Fold for iterative calculations.

Nest is the basic iterating command, which does the iteration xi+1 = f IxiM a fixed number of times:

Nest@f, x0, 3D f@f@f@x0DDD

Chapter 18  •  Programs 569



FixedPoint  does  the  iteration  until  the  result  does  not  change  (the  stopping  criterion  can  be  given).
Fold  also iterates a function, but now the function has two variables and, at each iteration, it takes one
element  from  a  given  list  as  the  second  argument.  We  also  have  the  commands NestList,
FixedPointList, and FoldList, which also print all intermediate steps.

For example, Newton’s method can be written as follows:

newton@f_, x_, x0_, max_, opts___D := With@8df = D@f, xD<,
FixedPointList@Hx - f ê dfL ê. x Ø Ò &, N@x0D, max, optsDD

Here is an application of it:

newton@3 x^3 - E^x, x, 2, 20, SameTest Ø HAbs@Ò1 - Ò2D < 10^-6 &LD

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446<

The  first  advantage  of  function  iteration  commands  is  that  they  shorten  the  code  compared  with
procedural  programming.  Compare  the newton  program  discussed  here  with  the newton5  program

discussed  in Section  18.2.4,  p. 566.  Indeed,  in newton  we  do  not  need  to  be  concerned  with  setting

suitable initial values for variables, implementing the stopping of the iteration according to the result of
the stopping criterion, or adding iteration counters. We simply input the three or four items needed in
the  iteration:  the  function to  be  iterated,  the starting point,  the maximum number of  steps,  and (if  the
default stopping criterion is not suitable) a stopping criterion (as a pure function).

The second advantage is that the function iteration commands are fast. As an example, we compare
two programs:

x = 1.; Do@x = Cos@xD + RandomReal@D, 8500 000<D êê Timing

83.71337, Null<

Nest@Cos@ÒD + RandomReal@D &, 1., 500 000D; êê Timing

80.417417, Null<

The  time  needed  by  the  procedural  program  is  approximately  10  times  the  time  needed  by  the  func-

tional program.

In Sections 18.3.2-18.3.6, we study functional list manipulation and function iteration.

x =.

18.3.2  List Manipulation

‡ Useful Commands

Recall  from Section 14.2,  p. 459,  the two most useful functional list  manipulation commands~Map  and

Apply.

Map[f[#]&, list]  or f[#]& /@ list  Apply f to each element at the first level of list

An example:

Map@Ò^2 &, 8a, b, c<D 9a2, b2, c2=

Apply[head, list]  or head @@ list  Replace the head List of list with head

Apply[head, list, {1}]  or head @@@ list  Replace the head at level 1

Recall that the head of a list is List and that with Apply we can change the head:

570 Mathematica Navigator



8a, b, c< êê FullForm List@a, b, cD

Apply@Plus, 8a, b, c<D a +b +c

% êê FullForm Plus@a, b, cD

Next, we present some examples of programs that use these commands.

‡ Harmonic Numbers

The sum of the first n terms of the harmonic series 1 +
1
2
+
1
3
+ … is the nth harmonic number. We have a

ready-to-use command for it:

HarmonicNumber@10D
7381

2520

To build a program for the harmonic number, we could use Sum:

Sum@1 ê i, 8i, 10<D
7381

2520

However,  in  functional  programming  we  try  to  not  calculate  with  the  elements  of  lists.  A  better
program  can  be  obtained  by  first  observing  that  the  first,  for  example,  10  terms  of  the  series  can  be
calculated as follows:

1 ê Range@10D :1,
1

2
,
1

3
,
1

4
,
1

5
,
1

6
,
1

7
,
1

8
,
1

9
,

1

10
>

This is due to the fact that Mathematica automatically performs calculations with lists term by term. Now
we only have to sum these terms with Total:

harmonicNumber@n_D := Total@1 ê Range@nDD

harmonicNumber@10D
7381

2520

‡ Harmonic and Geometric Means

The harmonic mean of numbers x1, …, xn is ní J 1
x1

+ … +
1
xn
N. Again, we could use Sum:

x = 8a, b, c, d<;

Length@xD ê Sum@1 ê xPiT, 8i, Length@xD<D

4

1

a
+

1

b
+

1

c
+

1

d

However, we do otherwise:

harmonicMean@x_D := Length@xD ê Total@1 ê xD

harmonicMean@xD

4

1

a
+

1

b
+

1

c
+

1

d

The geometric mean of numbers x1, …, xn is Hx1 ÿ ÿ ÿ xnL1ên. We could use Product:

Chapter 18  •  Programs 571



Product@xPiT, 8i, Length@xD<D^H1 ê Length@xDL

Ha b c dL1ë4

However, we again do otherwise:

geometricMean@x_D := Apply@Times, xD^H1 ê Length@xDL

geometricMean@xD Ha b c dL1ë4

Note that we have the built-in HarmonicMean and GeometricMean.

‡ Constructing a Number from the Factors

In Section 11.1.1, we considered the factorization of integers. Here is an example:

fa = FactorInteger@3 361 743D 883, 4<, 87, 3<, 811, 2<<

This means that 3,361,734 can be written as

3^4 μ 7^3 μ 11^2 3 361 743

Suppose that the result of the factorization is as follows:

factors = 88f1, p1<, 8f2, p2<, 8f3, p3<<;

The head of the lists {fi, pi} is List:

% êê FullForm

List@List@f1, p1D, List@f2, p2D, List@f3, p3DD

The head of a power is Power:

fi^p1 êê FullForm Power@fi, p1D

Thus, we change, with Apply, the head List at the level 1 of fa to the head Power:

Apply@Power, factors, 81<D 9f1p1, f2p2, f3p3=

Then we form the product of the elements of this list:

Apply@Times, %D f1p1 f2p2 f3p3

Now we can write the following program:

numberFromFactors@factors_D := Apply@Times, Apply@Power, factors, 81<DD

numberFromFactors@faD 3 361 743

The program can also be written in the shorter form

numberFromFactors2@factors_D := Times üü Power üüü factors

‡ Frequencies

We use Tally for frequencies:

SeedRandom@2D; u = RandomInteger@81, 6<, 820<D

86, 2, 3, 3, 6, 3, 2, 6, 6, 1, 1, 5, 4, 5, 1, 2, 2, 6, 2, 6<

572 Mathematica Navigator



Tally@uD êê Sort

881, 3<, 82, 5<, 83, 3<, 84, 1<, 85, 2<, 86, 6<<

To write a program for frequencies, note that if we know that the elements of the list are from the set
8m, m + 1 …, n<, we can write the following (remember that Map can also be written as /@):

frequencies1@u_, m_, n_D := 8Ò, Count@u, ÒD< & êü Range@m, nD

frequencies1@u, 1, 6D

881, 3<, 82, 5<, 83, 3<, 84, 1<, 85, 2<, 86, 6<<

This  program has the advantage that  it  also shows possible  zero frequencies.  If  we do not know from
what set the elements derive, we can write

frequencies2@u_D := 8Ò, Count@u, ÒD< & êü Union@uD

frequencies2@uD

881, 3<, 82, 5<, 83, 3<, 84, 1<, 85, 2<, 86, 6<<

‡ Frequencies of Characters

Mathematica contains a dictionary of nearly 100,000 English words (see Section 16.2.1, p. 505):

words = DictionaryLookup@D;

words êê Length 92 518

We would like to calculate the frequencies of letters in this dictionary. As an example, take the first five
words:

Take@words, 5D 8a, Aachen, aah, Aaliyah, aardvark<

In  counting  the  frequencies,  we  do  not  distinguish  between  lower-  and  uppercase  letters,  and  so  we
change all words to lowercase:

ToLowerCase@%D 8a, aachen, aah, aaliyah, aardvark<

Then we extract the characters of the words:

Characters@%D

88a<, 8a, a, c, h, e, n<, 8a, a, h<, 8a, a, l, i, y, a, h<, 8a, a, r, d, v, a, r, k<<

Once flattened, we get a list from which we can calculate the frequencies. Thus, we write the following:

chars = Flatten@Characters@ToLowerCase@wordsDDD;

chars êê Length 776 570

The frequencies of the characters of the usual English alphabet are as follows:

fr = 8Count@chars, ÒD, Ò< & êü CharacterRange@"a", "z"D

8860 670, a<, 815 303, b<, 831 145, c<, 829 423, d<, 888 677, e<, 810 556, f<, 823 047, g<,
818 143, h<, 867 014, i<, 81630, j<, 87550, k<, 841 195, l<, 821 179, m<,
855 550, n<, 847 311, o<, 821 777, p<, 81448, q<, 856 424, r<, 867 506, s<,
851 649, t<, 825 806, u<, 87900, v<, 87062, w<, 82108, x<, 812 457, y<, 83410, z<<

Plot the frequencies in decreasing order as a bar chart:

<< BarCharts`

Chapter 18  •  Programs 573



BarChart@Reverse@Sort@frDD, ImageSize Ø 300D

‡ Run|Length Encoding and Decoding

Consider the following list:

SeedRandom@1D; u = RandomInteger@1, 820<D

81, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1<

Split it into runs of identical elements:

Split@uD

881, 1<, 80<, 81<, 80, 0, 0<, 81<, 80<, 81<, 80, 0, 0, 0, 0, 0, 0<, 81, 1, 1<<

Then form the run|length encoding of u by forming a list of pairs of numbers where the first number is
the element of the run in consideration and the second number the length of the run:

en = 8First@ÒD, Length@ÒD< & êü %

881, 2<, 80, 1<, 81, 1<, 80, 3<, 81, 1<, 80, 1<, 81, 1<, 80, 7<, 81, 3<<

One way to do the decoding is to use Map as follows:

ConstantArray@ÒP1T, ÒP2TD & êü en

881, 1<, 80<, 81<, 80, 0, 0<, 81<, 80<, 81<, 80, 0, 0, 0, 0, 0, 0<, 81, 1, 1<<

This list can then be flattened. A simpler way is to apply ConstantArray at the first level:

Apply@ConstantArray@ÒÒD &, en, 81<D

881, 1<, 80<, 81<, 80, 0, 0<, 81<, 80<, 81<, 80, 0, 0, 0, 0, 0, 0<, 81, 1, 1<<

An even simpler way is to write

ConstantArray üüü en

881, 1<, 80<, 81<, 80, 0, 0<, 81<, 80<, 81<, 80, 0, 0, 0, 0, 0, 0<, 81, 1, 1<<

runLengthEncoding@u_D := 8First@ÒD, Length@ÒD< & êü Split@uD
runLengthDecoding@u_D := Flatten@ConstantArray üüü uD

runLengthEncoding@uD

881, 2<, 80, 1<, 81, 1<, 80, 3<, 81, 1<, 80, 1<, 81, 1<, 80, 7<, 81, 3<<

runLengthDecoding@%D

81, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1<

574 Mathematica Navigator



18.3.3  Iterating a Mapping

NestList[f, x0, n]  Do n times the iteration xi+1 = f IxiM, starting from x0; give all iterations

Nest[f, x0, n]  Give only the last iteration

NestList  gives  the starting point x0  and all  the iterations (thus,  a  list  of n + 1 elements). Nest  only

gives  the final  result.  The function to be iterated is  most naturally written as a  pure function.  With an
unspecified function, we see a general result:

NestList@f@ÒD &, x0, 3D 8x0, f@x0D, f@f@x0DD, f@f@f@x0DDD<

Nest@f@ÒD &, x0, 3D f@f@f@x0DDD

Note that ComposeList does not iterate the same function but possibly a different function each time:

ComposeList@8f, g, h<, x0D 8x0, f@x0D, g@f@x0DD, h@g@f@x0DDD<

‡ Simple Examples

We do the iteration xi+1 = cosIxiM four times by starting from x0 = 1:

NestList@Cos@ÒD &, 1, 4D

81, Cos@1D, Cos@Cos@1DD, Cos@Cos@Cos@1DDD, Cos@Cos@Cos@Cos@1DDDD<

NestList@Cos@ÒD &, 1., 4D

81., 0.540302, 0.857553, 0.65429, 0.79348<

Next, we calculate continued fractions xi+1 =
1
1+xi

:

NestList@1 ê H1 + ÒL &, x, 4D

:x,
1

1 + x
,

1

1 +
1

1+x

,
1

1 +
1

1+
1

1+x

,
1

1 +
1

1+
1

1+
1

1+x

>

If the starting value is numerical, with HoldForm we can get the unsimplified results:

NestList@1 ê H1 + ÒL &, 3, 4D

:3,
1

4
,
4

5
,
5

9
,

9

14
>

NestList@HoldForm@1 ê H1 + ÒLD &, 3, 4D

:3,
1

1 + 3
,

1

1 +
1

1+3

,
1

1 +
1

1+
1

1+3

,
1

1 +
1

1+
1

1+
1

1+3

>

Then  we  calculate  successive  derivatives  of 2x
2

 by  applying  the  iteration  formula fi+1HxL  = x fiHxL,
f0HxL = 2x

2
:

NestList@D@Ò, xD &, 2^Hx^2L, 3D êê Simplify

:2x2
, 21+x2

x Log@2D, 21+x2
Log@2D I1 + x2 Log@4DM, 22+x2

x Log@2D2 I3 + x2 Log@4DM>

We use Differences to calculate differences:

Chapter 18  •  Programs 575



Table@Differences@8a, b, c, d<, nD, 8n, 4<D

88-a + b, -b + c, -c + d<, 8a - 2 b + c, b - 2 c + d<, 8-a + 3 b - 3 c + d<, 8<<

The same can also be done with NestList:

NestList@Rest@ÒD - Most@ÒD &, 8a, b, c, d<, 4D

88a, b, c, d<, 8-a + b, -b + c, -c + d<, 8a - 2 b + c, b - 2 c + d<, 8-a + 3 b - 3 c + d<, 8<<

‡ Newton’s Method

newton6@f_, x_, x0_, n_D := With@8df = D@f, xD<,
NestList@Hx - f ê dfL ê. x Ø Ò &, N@x0D, nDD

newton6@f@xD, x, x0, 2D

:x0, x0 -
f@x0D

f£@x0D
, x0 -

f@x0D

f£@x0D
-

fBx0 -
f@x0D

f£@x0D
F

f£Bx0 -
f@x0D

f£@x0D
F
>

newton6@3 x^3 - E^x, x, 2, 7D

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446<

We can also define a separate function for a single step of Newton’s method.

newtonStep7@f_, df_, x_, xi_D := Hx - f ê dfL ê. x Ø N@xiD
newton7@f_, x_, x0_, n_D := With@8df = D@f, xD<,

NestList@newtonStep7@f, df, x, ÒD &, N@x0D, nDD

Here, newtonStep7 gives the operation performed in a single step, and newton7 nests this operation
n times starting from x0. The function newtonStep7 has several arguments, and so we have to express,
in newton7, the argument with respect to which the iterations are to be done: This argument is # in the
pure function. This method of defining separately a single step and the nesting of this step is often used
in later chapters. Here are some examples:

newton7@f@xD, x, x0, 2D

:x0, x0 -
f@x0D

f£@x0D
, x0 -

1. f@x0D

f£@x0D
-

fBx0 -
1. f@x0D

f£@x0D
F

f£Bx0 -
1. f@x0D

f£@x0D
F
>

newton7@3 x^3 - E^x, x, 2, 7D

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446<

‡ Euler’s Method

eulerStep2@f_, x_, y_, 8xi_, yi_<, h_D := 8x + h, y + h f< ê. 8x Ø xi, y Ø yi<
euler2@f_, x_, y_, x0_, y0_, h_, n_D :=
NestList@eulerStep2@f, x, y, Ò, hD &, N@8x0, y0<D, nD

Note that because the pure function in NestList  has to have only one argument (the #), we have to
group the variables xi  and yi  into a list {xi, yi}  in eulerStep2.  We check euler2  with the problem

y£ = f Ix, yM, yHx0L = y0:

euler2@f@x, yD, x, y, x0, y0, h, 2D êê Column

8x0, y0<
8h + x0, y0 + h f@x0, y0D<
82 h + x0, y0 + h f@x0, y0D + h f@h + x0, y0 + h f@x0, y0DD<

576 Mathematica Navigator



Here are some numerical values:

euler2@x - y^2, x, y, 0, 1, 0.1, 10D

880., 1.<, 80.1, 0.9<, 80.2, 0.829<, 80.3, 0.780276<,
80.4, 0.749393<, 80.5, 0.733234<, 80.6, 0.729471<,
80.7, 0.736258<, 80.8, 0.75205<, 80.9, 0.775492<, 81., 0.805354<<

‡ Sampling without Replacement

In Section 18.2.1,  p. 554,  we  presented  a  procedural  program for  sampling without  replacement.  Now

we apply the functional programming style. First, we write a function to delete a random element from
a given set:

del@list_D := Delete@list, RandomInteger@81, Length@listD<DD

If we then iterate this function, we get a set, from which random elements are removed:

Nest@del, Range@10D, 4D 81, 2, 3, 6, 9, 10<

However, we are interested in the removed elements so that lastly we take a complement:

Complement@Range@10D, %D 84, 5, 7, 8<

SWOR2@list_, n_D := Complement@list, Nest@del, list, nDD

SWOR2@Range@10D, 4D 81, 4, 7, 9<

‡ Josephus Problem

We have n persons in a queue. We do the following operation repeatedly: The first person of the current
queue moves  to  the  end and the  next  person leaves  the  queue.  After  a  number  of  iterations,  only one
person  is  left;  let  us  call  him  or  her  the  winner.  Who  is  the  winner?  This  is  the  so-called  Josephus
problem (see Wellin et al., 2005, p. 109). Suppose, for example, that we have the queue 8a, b, c, d<, with a
being  the  first  person.  After  the  first  step  we  have  the  queue 8c, d, a<,  after  the  second  step  the  queue
8a, c<, and after the third step the queue 8a<. In this example, the person a is the winner. We would like to
write a program that, for a given queue, reveals the winner.

Suppose,  as  above,  that  the  initial  queue  is 8a, b, c, d<.  To  move  the  first  person  to  the  end,  use
RotateLeft:

RotateLeft@8a, b, c, d<D 8b, c, d, a<

Then drop the first person of this queue:

Rest@%D 8c, d, a<

We do this operation repeatedly with Nest:

josephus@list_D := Nest@Rest@RotateLeft@ÒDD &, list, Length@listD - 1DP1T

josephus@8a, b, c, d<D a

Next, we denote people by 1, 2, … and calculate the winning person for various lengths of the queue:

t = Table@8n, josephus@Range@nDD<, 8n, 1, 15<D

881, 1<, 82, 1<, 83, 3<, 84, 1<, 85, 3<, 86, 5<, 87, 7<, 88, 1<,
89, 3<, 810, 5<, 811, 7<, 812, 9<, 813, 11<, 814, 13<, 815, 15<<

Chapter 18  •  Programs 577



18.3.4  Iterating until Convergence

FixedPointList[f, x0]  Do the iteration xi+1 = f IxiM, starting from x0, until convergence; give all

iterations
FixedPoint[f, x0]  Give only the last iteration
FixedPointList[f, x0, max]  Iterate until convergence but at most max times
FixedPoint[f, x0, max]  Give only the last iteration

An option:
SameTest  The test used as the stopping criterion; examples of values: Automatic (means (#1 === #2

&)), (Abs[#1 - #2] < 10^-10 &), (Abs[f /. x Ø #2] < 10^-5 &)

FixedPoint  is similar to Nest,  but it  applies the given function iteratively until the result no longer
changes. In particular, FixedPoint[f, x0, max] is similar to Nest[f, x0, n], although FixedPoint can
stop  before max  iterations  are  done.  If  both max  and  a  stopping  criterion  are  given,  then  iterations  are
stopped as  soon as  the criterion gives True,  but  in all  cases  at  most max  iterations are done.  The third
argument max prevents infinite calculations.

With an unspecified function, we see a general result:

FixedPointList@f@ÒD &, x0, 3D 8x0, f@x0D, f@f@x0DD, f@f@f@x0DDD<

FixedPoint@f@ÒD &, x0, 3D f@f@f@x0DDD

The stopping criterion is a pure function of the last two iterations; the next-to-last iteration is denoted
by #1 and the last iteration by #2. The default stopping criterion is (SameQ[#1, #2] &)~that is, (#1 ===

#2 &). This means that the last two iterations are the same to 16-digit precision (in most computers) (see

Section 13.3.5, p. 432). This is a tight condition, but we can formulate milder criteria.

‡ The Fixed-Point Method

If we have a nonlinear equation of the form x = f HxL, one possibility to solve the equation is to apply the

fixed-point  method  by  doing  the  iterations xi+1 = f IxiM. FixedPoint  does  exactly  the  iterations  of  this

method. The method converges at least when … f £HxL … < 1 near the solution. We try to solve the equation

x = cosHxL:
t = FixedPointList@Cos@ÒD &, 0.05D;

The  last  point  and  the  difference  of  the  left-  and  right-hand  sides  of  the  equation  at  this  point  are  as
follows:

8Last@tD, x - Cos@xD ê. x Ø Last@tD<

80.739085, 0.<

The iterations proceed as follows:

ListLinePlotA8Range@0, Length@tD - 1D, t<¨,

PlotRange Ø 80, 1.05<, AspectRatio Ø 0.15, ImageSize Ø 350E

0 20 40 60 80

0.2
0.4
0.6
0.8
1.0

578 Mathematica Navigator



In approximately 15 iterations, we are already near the solution. However, to get it to the last decimal,
we still need approximately 75 iterations. Next, we use a custom stopping criterion:

FixedPointList@Cos@ÒD &, 0.05, SameTest Ø HAbs@Ò1 - Ò2D < 10^-2 &LD

80.05, 0.99875, 0.541354, 0.857012, 0.654699, 0.793231,
0.701546, 0.763845, 0.722182, 0.750365, 0.73144, 0.744213, 0.735621<

With the following program, we can illustrate the search of a fixed point (see also Sections 28.1.3, p.

932, and 28.2.1, p. 939):

cobwebPlot@f_, x_, x0_, n_, a_, b_, opts___D := Module@8xi = x0, t<,
t = Table@88xi, xi = f ê. x Ø xi<, 8xi, xi<<, 8n<D;
Plot@8x, f<, 8x, a, b<, Epilog Ø Line@Prepend@Flatten@t, 1D, 8x0, 0<DD, optsDD;

cobwebPlot@Cos@xD, x, 0.05, 12, 0, 1.03, AspectRatio Ø AutomaticD

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

‡ Newton’s Method

newton8@f_, x_, x0_, max_, opts___D := With@8df = D@f, xD<,
FixedPointList@Hx - f ê dfL ê. x Ø Ò &, N@x0D, max, optsDD

This  formula  is  the  same  as  that  for newton6  in Section  18.3.3,  p. 576,  except  that  we  now  use

FixedPointList  instead  of NestList  and  we  have  also  added  the  possibility  of  writing  a  stopping
criterion  as  an  option.  The  three  underscores  (___)  after opts  mean zero  or  more  options  (see Section

16.1.3, p. 500). Here is an application:

f = 3 x^3 - E^x;

newton8@f, x, 2, 20D

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446, 0.952446<

The last two iterations are as follows:

Take@%, -2D êê InputForm

{0.9524456794271664, 0.9524456794271663}

They are considered to be the same. Next, we use a loose stopping criterion:

newton8@f, x, 2, 20, SameTest Ø HAbs@Ò1 - Ò2D < 10^-3 &LD

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446<

Now we require that  the value of  the function at  the root should be sufficiently small at the last point
calculated:

newton8@f, x, 2, 20, SameTest Ø HAbs@f ê. x Ø Ò2D < 10^-6 &LD

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446<

Chapter 18  •  Programs 579



A modification of newton8  is  also considered in Section 22.3.4,  p. 737.  There,  we also generalize the

function to simultaneous nonlinear equations.

f =.

‡ Collatz Sequences

In Section  18.2.2,  p. 558,  we  wrote  a  procedural  program  to  calculate  Collatz  sequences.  Now  we  use

FixedPointList:

collatz2@n_D := If@EvenQ@nD, n ê 2, 3 n + 1D
collatzSequence2@n_D := FixedPointList@collatz2, n, SameTest Ø HÒ2 == 1 &LD

We stop the iteration once we get the value 1. For example,

ListLinePlot@collatzSequence2@27D, PlotRange Ø All, ImageSize -> 210D

20 40 60 80 100

2000

4000

6000

8000

‡ Stopping Computation

Throw[val]  Stop computation and return val as the value of the nearest enclosing Catch

Catch[expr]  Return the argument of the first Throw generated in the evaluation of expr

Once a Throw  is  encountered,  the current calculation is stopped and Catch  returns the argument of
Throw;  the  computation  continues  after Catch.  In  this  way,  we  are  able  to  stop  a  whole  sequence  of
nested functions in the case of an error, for example. Recall that Return only stops the current Do, While,
or For loop.

For  example,  if  we  do  the  recursion xi+1 = ‰xi , x0 = 1,  and  want  the  calculation  to  stop  if  the  result

goes over 100, we can use If:

x = 1; res = 81<;
Do@AppendTo@res, x = Exp@xDD; If@x > 100, Return@resDD, 810<D
91, ‰, ‰‰, ‰‰‰=

We can also use Throw and Catch:

x = 1; res = 81<;
Catch@Do@AppendTo@res, x = Exp@xDD; If@x > 100, Throw@resDD, 810<DD
91, ‰, ‰‰, ‰‰‰=

However, in procedural programming the use of Return is often easier than the use of Throw and Catch.

In functional programming Throw and Catch may have some use. For example, if we use NestList,
we can stop the iteration at the point we want:

Catch@NestList@If@Ò > 100, Throw@ÒD, Exp@ÒDD &, 1, 50DD ‰‰‰

580 Mathematica Navigator



However,  now we only get  the last  iteration,  not  all  the iterations.  If  we use FixedPointList,  we can
use the SameTest option, and in this way we get all the iterations:

FixedPointList@Exp@ÒD &, 1, 50, SameTest Ø HÒ2 > 100 &LD 91, ‰, ‰‰, ‰‰‰=

18.3.5  More General Testing of Convergence

NestWhile[f, x0, test]  While test gives True, do the iteration xi+1 = f IxiM, starting from x0; give

the first xi, i = 0, 1, …, for which test does not give True

NestWhile[f, x0, test, m]  Use the most recent m results as arguments to test

NestWhile[f, x0, test, All]  Use all results so far as arguments to test

NestWhile[f, x0, UnsameQ, All]  Iterate until a previous result appears the second time

NestWhile[f, x0, test, m, max]  Do at most max iterations

NestWhile[f, x0, test, m, max, n]  Apply f an additional n times after test fails or max iterations
have already been done

NestWhile[f, x0, test, m, max, -n]  Give the result found when f had been applied n fewer times
NestWhile[f, x0, test, m, ¶, -1]  Give the last result for which test gives True

We also have NestWhileList, which gives all iterations. NestWhile is similar to FixedPoint, but the
tests  used in  these  commands are  opposites  of  each other:  Iterations  stop in FixedPoint  once  the test
(the default of SameTest is SameQ) gives True, whereas in NestWhile, they stop when the test no longer
gives True. Indeed, the following commands are equivalent:

FixedPoint@f, x0, maxD

NestWhile@f, x0, UnsameQ, 2, maxD

‡ Simple Examples

We do the same calculation in two ways:

FixedPointList@Cos@ÒD &, 0.05, 10, SameTest Ø HAbs@Ò1 - Ò2D < 0.1 &LD

80.05, 0.99875, 0.541354, 0.857012, 0.654699, 0.793231, 0.701546<

NestWhileList@Cos@ÒD &, 0.05, Abs@Ò1 - Ò2D ¥ 0.1 &, 2, 10D

80.05, 0.99875, 0.541354, 0.857012, 0.654699, 0.793231, 0.701546<

Newton’s method can be written as follows:

newton9@f_, x_, x0_, max_, test_D := With@8df = D@f, xD<,
NestWhileList@Hx - f ê dfL ê. x Ø Ò &, N@x0D, test, 2, maxDD

newton9@3 x^3 - E^x, x, 2, 20, UnsameQD

82., 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446, 0.952446, 0.952446<

NestWhile is useful in finding numbers of given properties. We find the first integer n that is prime
and also n - 2 and n - 6 are primes:

NestWhile@Ò + 1 &, 1, ! HPrimeQ@Ò1D && PrimeQ@Ò5D && PrimeQ@Ò7DL &, 7D

13

Thus,  the  number  is  13;  indeed,  13,  11,  and  7  are  all  primes.  Note  that  above #7  represents  the  last
iteration, #5 the third-to-last iteration, and #1 the seventh-to-last iteration.

Chapter 18  •  Programs 581



‡  Tossing a Die

If  we  want  to  use  more  than  the  last  two  iterations  in  the  test,  then NestWhile  is  very  useful.  As  an
example, we toss a die until we get a result the second time:

SeedRandom@3D; NestWhileList@RandomInteger@81, 6<D &, 0, UnsameQ, AllD êê Rest

84, 6, 1, 2, 3, 1<

Here,  we  use  all  iterations  so  far  as  arguments  to  the  test;  remember  that UnsameQ  accepts  several
arguments.  In  place  of UnsameQ,  we  could  also  have  written  the  more  complete  pure  function
UnsameQ[##]&, where ## represents the whole sequence of results thus far computed.

‡ Power Sum of Digits

In the next example, we calculate the sum of the third powers of the digits of a number. To the result we
apply the same operation; this is continued until we get a result for the second time.

powerSumOfDigits@n_D := NestWhileList@Total@IntegerDigits@ÒD^3D &, n, UnsameQ, AllD

Table@powerSumOfDigits@iD, 8i, 1, 10<D êê Column

81, 1<
82, 8, 512, 134, 92, 737, 713, 371, 371<
83, 27, 351, 153, 153<
84, 64, 280, 520, 133, 55, 250, 133<
85, 125, 134, 92, 737, 713, 371, 371<
86, 216, 225, 141, 66, 432, 99, 1458, 702, 351, 153, 153<
87, 343, 118, 514, 190, 730, 370, 370<
88, 512, 134, 92, 737, 713, 371, 371<
89, 729, 1080, 513, 153, 153<
810, 1, 1<

We see that either a single number begins to repeat or we end up with a cycle of several numbers. We
could  find  that,  for  example,  numbers  1,  153,  370,  371,  and  407  repeat  themselves  and  sequences  of
numbers 855, 250, 133<, 8136, 244<, 8160, 217, 352<, 8919, 1459< form cycles.

18.3.6  Iterating with a Resource

FoldList[f, x0, {y1, y2, …, yn}]  Do the iteration xi+1 = f Ixi, yi+1M, i = 0, …, n - 1, starting from

x0, and give xn; give all iterations

Fold[f, x0, {y1, y2, …, yn}]  Give only the last iteration

Fold is similar to Nest, but whereas Nest uses a function of one variable, Fold uses a function of two
variables.  The  second argument  of Fold  is  the  starting  value.  The  third  argument  is  a  list  from which
one element at a time is fed in as the second argument of the function. The list  can be considered as a
resource from which a new element is drawn at each iteration. With an unspecified function, we see a
general result:

FoldList@f@Ò1, Ò2D &, x0, 8y1, y2, y3<D

8x0, f@x0, y1D, f@f@x0, y1D, y2D, f@f@f@x0, y1D, y2D, y3D<

Fold@f@Ò1, Ò2D &, x0, 8y1, y2, y3<D

f@f@f@x0, y1D, y2D, y3D

582 Mathematica Navigator



‡ Cumulative Sums, Products, and Maximums

Consider the following list:

t = 8a, b, c<;

To calculate the cumulative sums of the elements of this list, we have Accumulate:

Accumulate@tD 8a, a + b, a + b + c<

As an exercise, we also use FoldList:

FoldList@Plus@Ò1, Ò2D &, 0, tD 80, a, a + b, a + b + c<

With Rest we can drop the starting value 0:

% êê Rest 8a, a + b, a + b + c<

The arguments in the pure function Plus[#1, #2] & are not necessary, and so we can simply write

FoldList@Plus, 0, tD êê Rest 8a, a + b, a + b + c<

In this example, FoldList works as follows:

8x0 = 0, x1 = Plus@x0, aD, x2 = Plus@x1, bD, x3 = Plus@x2, cD<

80, a, a + b, a + b + c<

Similarly, we can calculate cumulative products and maximums:

FoldList[Plus, 0, {a, b, c, … }] //Rest  Compute the cumulative sums
FoldList[Times, 1, {a, b, c, … }] //Rest  Compute the cumulative products
FoldList[Max, 0, {a, b, c, … }] //Rest  Compute the cumulative maximums

Here are the first few factorials:

FoldList@Times, 1, Range@8DD êê Rest

81, 2, 6, 24, 120, 720, 5040, 40 320<

Next, we compute cumulative maximums~that is, record values:

FoldList@Max, 0,
816, 12, 8, 14, 5, 10, 3, 2, 17, 7, 15, 18, 6, 1, 20, 13, 9, 11, 4, 19<D êê Rest

816, 16, 16, 16, 16, 16, 16, 16, 17, 17, 17, 18, 18, 18, 20, 20, 20, 20, 20, 20<

The different record values are

% êê Union 816, 17, 18, 20<

‡ Other Examples

Construct a number from given digits:

FoldList@10 Ò1 + Ò2 &, 0, 82, 9, 3, 6, 1, 5<D

80, 2, 29, 293, 2936, 29 361, 293 615<

Write a third-degree polynomial a x3 + b x 2 + c x + d in Horner form:

FoldList@Ò2 + Ò1 x &, 0, 8a, b, c, d<D

80, a, b + a x, c + x Hb + a xL, d + x Hc + x Hb + a xLL<

Write a continued fraction:

Chapter 18  •  Programs 583



FoldList@1 ê HÒ2 + Ò1L &, x, 8a, b, c<D

:x,
1

a + x
,

1

b +
1

a+x

,
1

c +
1

b+
1

a+x

>

18.4  Rule-Based Programming

18.4.1  Rules

‡ Rule-Based Programming

Thus far, we have encountered operations such as the following:

Grid@88Text@"Operation" D, Text@"Meaning"D, Text@"Example"D<,
8Style@"=", BoldD, Text@"assign a value"D, Style@"x = 3", BoldD<,
8Style@":=", BoldD, Text@"define a function"D,
Style@"f@x_D := x Sin@xD", BoldD<, 8Style@"Ø", BoldD,
Text@"make a transformation"D, Style@"a x + b ê. x Ø 3", BoldD<<,

Alignment Ø Left, Dividers Ø 8False, 2 Ø True <, Spacings Ø 81.5, 0.5<D

Operation Meaning Example

= assign a value x = 3

:= define a function f@x_D := x Sin@xD

Ø make a transformation a x + b ê. x Ø 3

All of these operations can be seen as rules.  For example, x = 3  is  the rule that whenever x  appears (in
any  expression  during  the  rest  of  the  current  session),  it  will  be  replaced with  3.  The  rule f[x_] := x

Sin[x]  tells Mathematica  that  whenever f[anything]  occurs  during  the  rest  of  the  current  session,  it
should  be  replaced  with anything Sin[anything].  The  rule a + b x /. x Ø 3  asks  that  wherever x

appears in the expression a + b x (and only in this particular occurrence of the expression), it should be
replaced with 3. Rule-based programming uses such rules.

In addition, an important concept in rule-based programming is a pattern. For example, in f[x_], the
argument is given in the form of a pattern: x_  matches anything, and so this is a very general pattern.
We can form a more restrictive pattern such as the one in f[x_^y_] :=  …, in which the argument of f
can be anything in the form x^y.

Thus, central in rule-based programming are minor symbols such as Ø and _ that relate to rules and
patterns.  In  addition  to  these,  rule-based  programming  does  not  introduce  any  new  programming
commands.

Here, we consider rules; the treatment is short because we have already studied most rules. Patterns,
on the other hand, were considered in Chapter 16. Thus, we already have in our hands the tools of rule-
based  programming.  Accordingly,  in  Section  18.4.2  we  can  concentrate  on  examples  of  rule-based
programming.

‡ Global and Local Rules

Global rules Local rules

Evaluate the right|hand side = HSet L Ø HRule L
Delay the evaluation of the right|hand side := HSetDelayed L ¶ HRuleDelayed L

584 Mathematica Navigator



These are the four most common rules.  Some rules evaluate the right-hand side,  whereas others do
not; the latter delay the evaluation until the rule is actually applied. Global rules are applied whenever
the left-hand side is encountered. Local rules are applied only to the given expression.

We have already considered =, Ø,  and :=  in Sections 13.1.1,  p. 414, 13.1.2,  p. 416,  and 17.1.1,  p. 512.

These are the most important rules.  The delayed local rule :>  is  quite seldom used. Some examples of
rules follow.

‡ Examples

With the rule f = Integrate[1 + x, x], the right-hand side is evaluated so that f gets the value x +
1
2

x2.

The rule is global: The value x +
1
2

x2 is used for f whenever f is encountered in the current session.

With  the  rule g[y_, x_] := Integrate[y, x],  the  right-hand side  is  not  evaluated at  the  time g  is
defined; it is evaluated only when we ask for the value of g for specific y and x. This rule, too, is a global
rule and is used whenever g is encountered.

We then consider local rules. Here is an example:

a + b x ê. x Ø Integrate@Sin@xD, 8x, 0, Pi<D

a + 2 b

The integral of the right-hand side of the rule is evaluated and gives 2, and this value is then substituted
for x in a + b x. The rule x Ø … is local and is applied only to the present occurrence of the expression a

+ b x.

To see the effect of a delayed rule :> (which Mathematica  transforms to the form ß), we consider the
following more complex examples:

1 + f@a + 2 b xD ê. f@y_D Ø f@Integrate@y, xDD

1 + f@x Ha + 2 b xLD

1 + f@a + 2 b xD ê. f@y_D ß f@Integrate@y, xDD

1 + fAa x + b x2E

In these examples, our aim is to replace the arguments of all functions f[…] with their integrals. The
first example seems not to work. The reason is that the right-hand side f[Integrate[y, x]] of the rule
is evaluated and gives f[x y], and when f[anything] is replaced with f[x anything] in 1 + f[a + 2 b

x], we get the result shown.

On the other hand, the second example works because the right-hand side of the rule is not evaluated
until  the  rule  is  first  applied.  Thus,  we  first  get 1 + f[Integrate[a + 2 b x, x]]  and  then  the  result
shown.

The following is another example:

8a, a< ê. a Ø RandomReal@D 80.192013, 0.192013<

8a, a< ê. a ß RandomReal@D 80.153438, 0.351603<

In the first  case,  the right-hand side RandomReal[]  of  the rule  is  first  computed and then this value is
substituted  for a  in {a, a}.  Thus,  we  get  the  same  random  number  twice.  In  the  second  case,
RandomReal[]  is  first  substituted for a  in {a, a}  and then the resulting expression is  evaluated. Thus,
we get two different random numbers.

Chapter 18  •  Programs 585



‡ Giving Several Rules

When  defining  a  function,  we  often  have  to  consider  several  special  cases.  As  an  example,  here  is  a
function to define an absolute value:

abs@x_D := Which@
! NumericQ@xD, x,
x œ Complexes, Sqrt@Re@xD^2 + Im@xD^2D,
x < 0, -x,
x = 0, 0,
x > 0, xD

abs êü 84, -3, 0, 2 + 3 I, a<

:4, 3, 0, 13 , a>

Another  way  to  define  the  same  function  is  to  write  a  separate  definition  or  rule  for  each  case  by

using conditions with /; (see Section 16.1.2, p. 499):

abs2@x_ ê; ! NumericQ@xDD := x
abs2@x_ ê; x œ ComplexesD := Sqrt@Re@xD^2 + Im@xD^2D
abs2@x_ ê; x < 0D := -x
abs2@0D := 0
abs2@x_ ê; x > 0D := x

abs2 êü 84, -3, 2 + 3 I, a<

:4, 3, 13 , a>

When we call abs2, Mathematica will check through the rules to find a rule whose pattern allows the use
of the given argument.

A  condition  is  often  written  next  to  a  variable.  A  condition  can  also  be  written  in  other  places,  for
example, at the end of the rule. The function int gives the integral of sinHm xL cosHn xL from 0 to p:

int@m_Integer, n_IntegerD := 0 ê; EvenQ@m + nD
int@m_Integer, n_IntegerD := 2 m ê Hm^2 - n^2L ê; OddQ@m + nD

In this case, the conditions depend on both argument m and argument n, and in such a case a condition
cannot be written next to a variable; a condition has to be written after the left-hand side or at the end of
the rule. Here are some examples:

8int@0, 1D, int@1, 0D, int@1, 1D, int@1, 2D<

:0, 2, 0, -
2

3
>

‡ Rule Base

For a given symbol, Mathematica  maintains a rule base that contains all the rules defined for the symbol.
With a question mark we can ask Mathematica to show the rule base:

586 Mathematica Navigator



? abs2

Global`abs2

abs2@0D := 0

abs2@x_ ê; ! NumericQ@xDD := x

abs2@x_ ê; x œ ComplexesD := Re@xD2
+ Im@xD2

abs2@x_ ê; x > 0D := x

abs2@x_ ê; x < 0D := -x

When  we  compare  the  original  definition  of abs2  with  the  rule  base  of abs2,  we  can  find  some
differences  in  the  order  of  the  rules.  Indeed, Mathematica  will  order  the  rules  according  to  a  certain
principle.  The  principle  is  that  more  specific  rules  should  appear  earlier  in  the  rule  base  than  more
general  rules;  that  is, Mathematica  tries  to  order  the  rules from  more  specific  to  more  general.  Regarding
abs2,  we  can  see  that  the  special  rule  for abs2[0]  is  at  the  beginning  of  the  rule  base.  Whenever  the
appropriate ordering is not clear, Mathematica stores rules in the order we give them.

When we write rules for a symbol, often we try to give an exhaustive set of rules so that in all cases
we can find a suitable rule to apply. In this case, the last rule of the rule base can be written without any
conditions because if the earlier rules have not been suitable, the last rule has to be suitable. Thus, in the
rules defining abs2, we can leave out the condition x < 0:

abs3@x_ ê; ! NumericQ@xDD := x
abs3@x_ ê; x œ ComplexesD := Sqrt@Re@xD^2 + Im@xD^2D
abs3@x_D := -x
abs3@0D := 0
abs3@x_ ê; x > 0D := x

abs3 êü 84, -3, 2 + 3 I, a<

:4, 3, 13 , a>

In rare cases, it may happen that the rules are not in appropriate order in the rule base. We can then
change the order. For example, if we would like the rules of abs2  for the cases x < 0 and x > 0 to be in
the opposite order in the rule base, we could write as follows:

DownValues@abs2D = DownValues@abs2DP81, 2, 3, 5, 4<T

:HoldPattern@abs2@0DD ß 0, HoldPattern@abs2@x_ ê; ! NumericQ@xDDD ß x,

HoldPattern@abs2@x_ ê; x œ ComplexesDD ß Re@xD2
+ Im@xD2 ,

HoldPattern@abs2@x_ ê; x < 0DD ß -x, HoldPattern@abs2@x_ ê; x > 0DD ß x>

Now, the order of the two rules has changed:

Chapter 18  •  Programs 587



? abs2

Global`abs2

abs2@0D := 0

abs2@x_ ê; ! NumericQ@xDD := x

abs2@x_ ê; x œ ComplexesD := Re@xD2
+ Im@xD2

abs2@x_ ê; x < 0D := -x

abs2@x_ ê; x > 0D := x

‡ Downvalues and Upvalues

Downvalues Upvalues

Evaluate the right|hand side = HSet L ^= HUpSet L
Delay the evaluation of the right|hand side := HSetDelayed L ^:= HUpSetDelayed L
Setting a value such as x = 3 is also called defining a downvalue  for x. Similarly, a function definition

such as f[x_] := x Sin[x] defines a downvalue for f. We also have upvalues.

In  the  following  example,  we  consider  objects sin, cos,  and tan  and  associate  two  properties  or
upvalues with each object, namely its derivative and integral:

der@sinD ^= cos; int@sinD ^= -cos;
der@cosD ^= -sin; int@cosD ^= sin;
der@tanD ^= sec^2; int@tanD ^= -ln@cosD;

For example, we can ask information about the tan object:

? tan

Global`tan

der@tanD ^= sec2

int@tanD ^= -ln@cosD

Upvalues can also be defined with /: (TagSet):

sin ê: der@sinD = cos;
sin ê: int@sinD = -cos;
cos ê: der@cosD = -sin;
cos ê: int@cosD = sin;
tan ê: der@tanD = sec^2;
tan ê: int@tanD = -ln@cosD;

This is a brief example of object-oriented programming. For more information about object-oriented
programming, see Gray (1997) or Maeder (1994).

‡ Dispatching

dispatchrules = Dispatch[rules]  Generate an optimized dispatch table representation of a list of
rules

expr /. dispatchrules  Apply the dispatch rules

588 Mathematica Navigator



Dispatching  allows /.  to  “dispatch”  to  potentially  applicable  rules  immediately  rather  than testing
all  of  the  rules  in  turn.  If  the  list  of  rules  is  long,  this  may  save  a  significant  amount  of  time.  As  an
example, we form a list of rules and dispatch them:

rules = Table@f@iD Ø i^2, 8i, 3000<D;

dispatchrules = Dispatch@rulesD;

Then we do the same calculation with both sets of rules:

Do@f@iD ê. rules, 8i, 3000<D êê Timing

81.76769, Null<

Do@f@iD ê. dispatchrules, 8i, 3000<D êê Timing

80.015387, Null<

18.4.2  Examples of Rule-Based Programming

‡ Collatz Sequences

In Section 18.2.2,  p. 558,  we presented a procedural program to calculate Collatz sequences.  In Section

18.3.4, p. 580, we wrote the following functional program:

collatz2@n_D := If@EvenQ@nD, n ê 2, 3 n + 1D
collatzSequence2@n_D := FixedPointList@collatz2, n, SameTest Ø HÒ2 == 1 &LD

Now we slightly change this program in that we write separate rules for even and odd n:

collatz3@n_?EvenQD := n ê 2
collatz3@n_?OddQD := 3 n + 1
collatzSequence3@n_Integer?PositiveD :=
FixedPointList@collatz3, n, SameTest Ø HÒ2 ã 1 &LD

collatzSequence3@19D

819, 58, 29, 88, 44, 22, 11, 34, 17, 52, 26, 13, 40, 20, 10, 5, 16, 8, 4, 2, 1<

‡ Interchanging Two Elements

We have a list for which we would like to change the order of the first two elements. One approach is
the following:

interchange@x_List ê; Length@xD > 1D := Join@8xP2T, xP1T<, Drop@x, 2DD
interchange@x_List ê; Length@xD § 1D := x

Thus,  if  the  list  is  empty  or  only  has  one  element,  then  return  the  list  as  such;  otherwise,  change  the
order of the first two elements. Try the program:

8interchange@8<D, interchange@81<D, interchange@81, 2, 3, 4<D<

88<, 81<, 82, 1, 3, 4<<

Check the rule base:

Chapter 18  •  Programs 589



? interchange

Global`interchange

interchange@x_List ê; Length@xD > 1D := Join@8xP2T, xP1T<, Drop@x, 2DD

interchange@x_List ê; Length@xD § 1D := x

As noted in Section 18.4.1,  p. 586,  if  the rules defined for a  function cover all  cases exhaustively,  in

the last rule we do not need any conditions, because it is used if other rules are not applicable. Thus, we
could also write the following:

interchange2@x_List ê; Length@xD > 1D := Join@8xP2T, xP1T<, Drop@x, 2DD
interchange2@x_ListD := x

8interchange2@8<D, interchange2@81<D, interchange2@81, 2, 3, 4<D<

88<, 81<, 82, 1, 3, 4<<

Another, simpler approach is the following:

interchange3@8a_, b_, c___<D := 8b, a, c<
interchange3@x_ListD := x

The  first  rule  again  covers  the  cases  in  which  the  list  has  two  or  more  elements.  The  second  rule  is
applied if the list is empty or only has one element. The rule base is as follows:

? interchange2

Global`interchange2

interchange2@x_List ê; Length@xD > 1D := Join@8xP2T, xP1T<, Drop@x, 2DD

interchange2@x_ListD := x

Again, in the second rule we do not need any conditions. Try the program:

8interchange3@8<D, interchange3@81<D, interchange3@81, 2, 3, 4<D<

88<, 81<, 82, 1, 3, 4<<

‡ Classifying Poker Hands 1

We would like to write a function that classifies hands of poker. A hand contains five cards. Each card
has one of the values 2,  3,  …, 10,  J,  Q, K, and A. Each card belongs to one of the four suits~spades ´,
clubs ®, hearts ™, and diamonds ©. We use the following terminology:

• A hand containing one value four times is four of a kind.
• A hand containing one value three times and another value two times is full house.
• A hand containing one value three times is three of a kind.
• A hand containing one value two times and another value two times is two pair.
• A hand containing one value two times is one pair.
• A hand containing five consecutive values is straight.
• Other hands are called nothing.

We  assume  that  the  hands  are  in  ascending  order  according  to  the  value.  One  way  to  classify  poker
hands is to write down all the cases that can appear:

590 Mathematica Navigator



poker@8a_, a_, a_, a_, b_<D := "Four of a kind"
poker@8a_, b_, b_, b_, b_<D := "Four of a kind"
poker@8a_, a_, a_, b_, b_<D := "Full house"
poker@8a_, a_, b_, b_, b_<D := "Full house"
poker@8a_, a_, a_, b_, c_<D := "Three of a kind"
poker@8a_, b_, b_, b_, c_<D := "Three of a kind"
poker@8a_, b_, c_, c_, c_<D := "Three of a kind"
poker@8a_, a_, b_, b_, c_<D := "Two pair"
poker@8a_, a_, b_, c_, c_<D := "Two pair"
poker@8a_, b_, b_, c_, c_<D := "Two pair"
poker@8a_, a_, b_, c_, d_<D := "Pair"
poker@8a_, b_, b_, c_, d_<D := "Pair"
poker@8a_, b_, c_, c_, d_<D := "Pair"
poker@8a_, b_, c_, d_, d_<D := "Pair"
poker@hand_ ê; MemberQ@straights, handDD := "Straight"
poker@hand_D := "Nothing"
straights = Partition@Join@Range@2, 10D, 8J, Q, K, A<D, 5, 1D;

For example, in poker[{a_, a_, a_, b_, c_}] we have three times the same value in succession and
two other  values.  Note  that  we do not  need to constrain a, b,  and c  to  be  different  because if  some of
these  values  are  the  same,  a  previously  presented  case  of poker  applies.  Indeed,  we  could  see  with
?poker that Mathematica applies the rules in the same order that we have presented them here. Thus, the
order in which we write the previous rules is significant.

To check whether we have a straight, we have, in the previous box, formed a list of all straights:

straights = Partition@Join@Range@2, 10D, 8J, Q, K, A<D, 5, 1D

882, 3, 4, 5, 6<, 83, 4, 5, 6, 7<, 84, 5, 6, 7, 8<, 85, 6, 7, 8, 9<, 86, 7, 8, 9, 10<,
87, 8, 9, 10, J<, 88, 9, 10, J, Q<, 89, 10, J, Q, K<, 810, J, Q, K, A<<

Here is test material containing 16 artificial poker hands:

hands = 882, 2, 2, 2, 3<, 82, 3, 3, 3, 3<,
82, 2, 3, 3, 3<, 82, 2, 2, 3, 3<,
82, 2, 2, 3, 4<, 82, 3, 3, 3, 4<, 82, 3, 4, 4, 4<,
82, 2, 3, 3, 4<, 82, 2, 3, 4, 4<, 82, 3, 3, 4, 4<,
82, 2, 3, 4, 5<, 82, 3, 3, 4, 5<, 82, 3, 4, 4, 5<, 82, 3, 4, 5, 5<,
82, 3, 4, 5, 6<,
82, 4, 5, 6, 7<<;

These hands contain the following numbers of various hands: four of a kind, 2; full house, 2; three of a
kind, 3; two pair, 3; pair, 4; straight, 1; and nothing, 1. We then ask our program to classify the hands:

poker êü hands

8Four of a kind, Four of a kind, Full house, Full house,
Three of a kind, Three of a kind, Three of a kind, Two pair,
Two pair, Two pair, Pair, Pair, Pair, Pair, Straight, Nothing<

‡ Classifying Poker Hands 2

Now we use another approach to classify poker hands. In four of a kind, require four cards of the same
value and allow zero or more cards at the beginning and end:

MatchQ@Ò, 8___, a_, a_, a_, a_, ___<D & êü 882, 2, 2, 2, 3<, 82, 3, 3, 3, 3<<

8True, True<

In full house, we have two possibilities:

MatchQ@Ò, 8a_, a_, b_, b_, b_< » 8a_, a_, a_, b_, b_<D & êü
882, 2, 3, 3, 3<, 82, 2, 2, 3, 3<<

8True, True<

Chapter 18  •  Programs 591



Here, | is a pattern meaning alternatives. In three of a kind, require three cards of the same value:

MatchQ@Ò, 8a___, b_, b_, b_, c___<D & êü
882, 2, 2, 3, 4<, 82, 3, 3, 3, 4<, 82, 3, 4, 4, 4<<

8True, True, True<

In a two pair, require that we have two times two cards of the same value:

MatchQ@Ò, 8a___, b_, b_, c___, d_, d_, e___<D & êü
882, 2, 3, 3, 4<, 82, 2, 3, 4, 4<, 82, 3, 3, 4, 4<<

8True, True, True<

In one pair, require that we have two cards of the same value:

MatchQ@Ò, 8a___, b_, b_, c___<D & êü
882, 2, 3, 4, 5<, 82, 3, 3, 4, 5<, 82, 3, 4, 4, 5<, 82, 3, 4, 5, 5<<

8True, True, True, True<

To treat the case of a straight, we use the same list of all straights formed previously:

straights = Partition@Join@Range@2, 10D, 8J, Q, K, A<D, 5, 1D;

Then we can ask whether a given hand is a straight:

MemberQ@straights, 82, 3, 4, 5, 6<D

True

Now we form a program that classifies a given poker hand:

poker2@h_?VectorQ ê; Length@hD ã 5 && OrderedQ@hDD :=
With@8straights = Partition@Join@Range@2, 10D, 8J, Q, K, A<D, 5, 1D<,
Switch@h,
8___, a_, a_, a_, a_, ___<, "Four of a kind",
8a_, a_, b_, b_, b_< » 8a_, a_, a_, b_, b_<, "Full house",
8a___, b_, b_, b_, c___<, "Three of a kind",
8a___, b_, b_, c___, d_, d_, e___<, "Two pair",
8a___, b_, b_, c___<, "Pair",
hand_ ê; MemberQ@straights, handD, "Straight",
_, "Nothing"DD

We use the same test material presented previously:

poker2 êü hands

8Four of a kind, Four of a kind, Full house, Full house,
Three of a kind, Three of a kind, Three of a kind, Two pair,
Two pair, Two pair, Pair, Pair, Pair, Pair, Straight, Nothing<

Again note that, for example, in {a___, b_, b_, b_, c___},  representing three of a kind, we do not
need to constrain a, b,  and c  to be different because if some of these values are the same, a previously
presented case applies. Thus, the order in which we write the cases in Switch is significant.

‡ Consecutive Numbers in Lotto

In an example in Section 18.2.2, p. 560, we considered the lotto game with procedural programming. Let

us  now  try  rule-based  programming.  Recall  that  in  the  lotto  game  in  Finland,  each  player  guesses  7
numbers  from  the  numbers  1,  2,  …,  39.  We  would  like  to  study  the  frequencies  of  results  having  a
variable number of consecutive numbers. To test our procedures, we give here a set of 25 artificial lotto
results:

592 Mathematica Navigator



lottoResults = 881, 2, 3, 4, 5, 6, 7<, 81, 2, 3, 4, 5, 6, 11<,
81, 11, 12, 13, 14, 15, 16<, 81, 2, 3, 4, 5, 11, 21<, 81, 11, 12, 13, 14, 15, 21<,
81, 11, 21, 22, 23, 24, 25<, 81, 2, 11, 12, 13, 14, 15<, 81, 2, 3, 4, 5, 11, 12<,
81, 2, 3, 4, 11, 21, 31<, 81, 11, 12, 13, 14, 21, 31<, 81, 11, 21, 22, 23, 24, 31<,
81, 11, 21, 31, 32, 33, 34<, 81, 2, 11, 12, 13, 14, 21<, 81, 2, 11, 21, 22, 23, 24<,
81, 2, 3, 4, 11, 12, 21<, 81, 2, 3, 11, 12, 13, 14<, 81, 2, 3, 4, 11, 12, 13<,
81, 11, 12, 13, 21, 31, 39<, 81, 11, 12, 21, 31, 32, 33<,
81, 2, 11, 12, 21, 22, 23<, 81, 11, 12, 13, 21, 22, 23<, 81, 5, 6, 11, 21, 31, 39<,
81, 5, 6, 11, 12, 21, 31<, 81, 2, 11, 12, 21, 22, 31<, 81, 3, 5, 7, 9, 11, 13<<;

Here, the first result has seven consecutive numbers, the next two have six consecutive numbers, and so
on. As for the previous test material, we assume that all lotto results have been ordered into ascending
order.

We proceed in two phases. In the first phase, we only code the lotto results in a suitable way. In the
second phase, we then calculate the frequencies.

First, we mark all sequences having seven consecutive numbers with a string:

Take@l2 = lottoResults ê. 8a_, b_, c_, d_, e_, f_, g_< ê; g ã a + 6 Ø 8"seven"<, 2D

88seven<, 81, 2, 3, 4, 5, 6, 11<<

Later, we will count all results containing, for example, “seven”. Next, we mark all sequences having six
consecutive numbers:

Take@l3 = l2 ê. 8a___, b_, c_, d_, e_, f_, g_, h___< ê; g ã b + 5 Ø 8a, "six", h<, 4D

88seven<, 8six, 11<, 81, six<, 81, 2, 3, 4, 5, 11, 21<<

We can continue in this way:

Take@l4 = l3 ê. 8a___, b_, c_, d_, e_, f_, g___< ê; f ã b + 4 Ø 8a, "five", g<, 9D

88seven<, 8six, 11<, 81, six<, 8five, 11, 21<, 81, five, 21<,
81, 11, five<, 81, 2, five<, 8five, 11, 12<, 81, 2, 3, 4, 11, 21, 31<<

Take@l5 = l4 ê. 8a___, b_, c_, d_, e_, f___< ê; e ã b + 3 Ø 8a, "four", f<, 18D

88seven<, 8six, 11<, 81, six<, 8five, 11, 21<, 81, five, 21<, 81, 11, five<,
81, 2, five<, 8five, 11, 12<, 8four, 11, 21, 31<, 81, four, 21, 31<,
81, 11, four, 31<, 81, 11, 21, four<, 81, 2, four, 21<, 81, 2, 11, four<,
8four, 11, 12, 21<, 81, 2, 3, four<, 8four, 11, 12, 13<, 81, 11, 12, 13, 21, 31, 39<<

l6 = l5 ê. 8a___, b_, c_, d_, e___< ê; d ã b + 2 Ø 8a, "three", e<

88seven<, 8six, 11<, 81, six<, 8five, 11, 21<, 81, five, 21<, 81, 11, five<,
81, 2, five<, 8five, 11, 12<, 8four, 11, 21, 31<, 81, four, 21, 31<, 81, 11, four, 31<,
81, 11, 21, four<, 81, 2, four, 21<, 81, 2, 11, four<, 8four, 11, 12, 21<,
8three, four<, 8four, three<, 81, three, 21, 31, 39<, 81, 11, 12, 21, three<,
81, 2, 11, 12, three<, 81, three, 21, 22, 23<, 81, 5, 6, 11, 21, 31, 39<,
81, 5, 6, 11, 12, 21, 31<, 81, 2, 11, 12, 21, 22, 31<, 81, 3, 5, 7, 9, 11, 13<<

Now we observe that in the fifth result from the end, we have another sequence with three consecutive
numbers. Thus, we have to make the same transformation again, or we can use the repeated transforma-

tion //.:

l6 = l5 êê. 8a___, b_, c_, d_, e___< ê; d ã b + 2 Ø 8a, "three", e<

88seven<, 8six, 11<, 81, six<, 8five, 11, 21<, 81, five, 21<, 81, 11, five<,
81, 2, five<, 8five, 11, 12<, 8four, 11, 21, 31<, 81, four, 21, 31<, 81, 11, four, 31<,
81, 11, 21, four<, 81, 2, four, 21<, 81, 2, 11, four<, 8four, 11, 12, 21<,
8three, four<, 8four, three<, 81, three, 21, 31, 39<, 81, 11, 12, 21, three<,
81, 2, 11, 12, three<, 81, three, three<, 81, 5, 6, 11, 21, 31, 39<,
81, 5, 6, 11, 12, 21, 31<, 81, 2, 11, 12, 21, 22, 31<, 81, 3, 5, 7, 9, 11, 13<<

Similarly, we also apply the repeated transformation in the last case:

Chapter 18  •  Programs 593



l6 êê. 8a___, b_, c_, d___< ê; c ã b + 1 Ø 8a, "two", d<

88seven<, 8six, 11<, 81, six<, 8five, 11, 21<, 81, five, 21<, 81, 11, five<,
8two, five<, 8five, two<, 8four, 11, 21, 31<, 81, four, 21, 31<,
81, 11, four, 31<, 81, 11, 21, four<, 8two, four, 21<, 8two, 11, four<,
8four, two, 21<, 8three, four<, 8four, three<, 81, three, 21, 31, 39<,
81, two, 21, three<, 8two, two, three<, 81, three, three<, 81, two, 11, 21, 31, 39<,
81, two, two, 21, 31<, 8two, two, two, 31<, 81, 3, 5, 7, 9, 11, 13<<

Now we have coded all  the test  results.  We put the commands into a program that codes one lotto
result:

lottoCodes@l_?VectorQD := Block@8a, b, c, d, e, f, g, h<, l ê.
8a_, b_, c_, d_, e_, f_, g_< ê; g ã a + 6 Ø 8"seven"< ê.

8a___, b_, c_, d_, e_, f_, g_, h___< ê; g ã b + 5 Ø 8a, "six", h< ê.
8a___, b_, c_, d_, e_, f_, g___< ê; f ã b + 4 Ø 8a, "five", g< ê.

8a___, b_, c_, d_, e_, f___< ê; e ã b + 3 Ø 8a, "four", f< êê.
8a___, b_, c_, d_, e___< ê; d ã b + 2 Ø 8a, "three", e< êê.

8a___, b_, c_, d___< ê; c ã b + 1 Ø 8a, "two", d<D

With Map (or /@) we can code several lotto results:

c = lottoCodes êü lottoResults

88seven<, 8six, 11<, 81, six<, 8five, 11, 21<, 81, five, 21<, 81, 11, five<,
8two, five<, 8five, two<, 8four, 11, 21, 31<, 81, four, 21, 31<,
81, 11, four, 31<, 81, 11, 21, four<, 8two, four, 21<, 8two, 11, four<,
8four, two, 21<, 8three, four<, 8four, three<, 81, three, 21, 31, 39<,
81, two, 21, three<, 8two, two, three<, 81, three, three<, 81, two, 11, 21, 31, 39<,
81, two, two, 21, 31<, 8two, two, two, 31<, 81, 3, 5, 7, 9, 11, 13<<

‡ Frequencies of Coded Lotto Results

We continue the preceding lotto example in which we coded the lotto results in a special way. Now we
count  the  coded  results  with,  for  example,  the  code  “seven”  (meaning  seven  consecutive  numbers)  or
the code “six”. Consider the following program.

lottoFrequencies@c_ListD := With@8alt = Alternatives, per = Permutations<,
887, Count@c, 8"seven"<D<,
86, Count@c, 8"six", _< » 8_, "six"<D<,
852, Count@c, alt üü per@8"five", "two"<DD<,
85, Count@c, alt üü per@8"five", _, _<DD<,
843, Count@c, alt üü per@8"four", "three"<DD<,
842, Count@c, alt üü per@8"four", "two", _<DD<,
84, Count@c, alt üü per@8"four", _, _, _<DD<,
8322, Count@c, alt üü per@8"three", "two", "two"<DD<,
833, Count@c, alt üü per@8"three", "three", _<DD<,
832, Count@c, alt üü per@8"three", "two", _, _<DD<,
83, Count@c, alt üü per@8"three", _, _, _, _<DD<,
8222, Count@c, alt üü per@8"two", "two", "two", _<DD<,
822, Count@c, alt üü per@8"two", "two", _, _, _<DD<,
82, Count@c, alt üü per@8"two", _, _, _, _, _<DD<,
81, Count@c, 8_, _, _, _, _, _, _<D<<D

Here are the frequencies of our test example:

lottoFrequencies@cD

887, 1<, 86, 2<, 852, 2<, 85, 3<, 843, 2<, 842, 3<, 84, 4<,
8322, 1<, 833, 1<, 832, 1<, 83, 1<, 8222, 1<, 822, 1<, 82, 1<, 81, 1<<

594 Mathematica Navigator



The  program  takes  a  list  of  coded  lotto  results  as  an  input  and  gives  a  matrix  as  the  output.  The
second element of each row of the output is the frequency of a result type, and the first element is a code
for the result type. For example, the code 52 means a result with five and two consecutive numbers and
the code 5 a result with only five consecutive numbers.

Note that we could compute the number of results having, for example, the code “five” as follows:

Count@c, 8"five", _, _< » 8_, "five", _< » 8_, _, "five"<D

3

This kind of an alternative pattern can also be formed by first forming all permutations,

Permutations@8"five", _, _<D

88five, _, _<, 8_, five, _<, 8_, _, five<<

and then changing, with Apply or @@, the head List into the head Alternatives:

Alternatives üü %

8five, _, _< » 8_, five, _< » 8_, _, five<

Thus, we can simply write

Count@c, Alternatives üü Permutations@8"five", _, _<DD

3

‡ A Lotto Simulation

To calculate approximative probabilities of lotto results, first generate a set of 1 million lotto results:

SeedRandom@1D; lottoResults = Table@RandomSample@Range@39D, 7D êê Sort, 810^6<D;

Code the results:

c = lottoCodes êü lottoResults; êê Timing

8651.003, Null<

The  coding  takes  more  than  twice  the  amount  of  time  than  the  procedural  program  of  Section  18.2.2
required. Then calculate the frequencies:

Hfr = lottoFrequencies@cDL êê Timing

834.1913, 887, 1<, 86, 78<, 852, 61<, 85, 1086<, 843, 61<,
842, 2124<, 84, 10 591<, 8322, 1067<, 833, 1119<, 832, 31 921<,
83, 77 127<, 8222, 10 634<, 822, 154 770<, 82, 431 162<, 81, 278 198<<<

Check that the sum of the frequencies is 1 million:

Total@frPAll, 2TD 1 000 000

Sort the frequencies into descending order:

fr2 = ReverseüSortBy@fr, LastD

882, 431 162<, 81, 278 198<, 822, 154 770<, 83, 77 127<,
832, 31 921<, 8222, 10 634<, 84, 10 591<, 842, 2124<, 833, 1119<,
85, 1086<, 8322, 1067<, 86, 78<, 852, 61<, 843, 61<, 87, 1<<

Then form a table from the results:

Chapter 18  •  Programs 595



Grid@Prepend@fr2, 8"Case", "Frequency"<D, Spacings Ø 80.7, 0.2<,
Dividers Ø 8False, 8False, True<<, Alignment Ø 88Left, Right<<D

Case Frequency
2 431 162
1 278 198
22 154 770
3 77 127
32 31 921
222 10 634
4 10 591
42 2124
33 1119
5 1086
322 1067
6 78
52 61
43 61
7 1

18.5  Recursive Programming

18.5.1  Indexed Recursive Formulas

‡ An Introduction to Recursive Programming

Now we proceed to a programming technique called recursive programming.  In this programming style,
we can distinguish two methods: the use of recursive functions and the use of recursive transformations.

Recursive function: The function repeatedly calls itself until the result no longer changes:
f[expr1_] := ... f[expr2] ...

Recursive transformation rule: A rule is repeatedly applied until the result no longer changes:
expr //. pattern ß value

Recursive functions apply global rules, whereas recursive transformation rules apply local rules.

We can distinguish two types of recursive functions: indexed and nonindexed recursive functions.

Many mathematical  formulas are expressed with indexed recursive functions.  Often,  an object  with
an  index n  is  calculated  by  using  objects  with  indices n - 1, n - 2,  ….  An  example  is  the  formulas
defining  a  Fibonacci  sequence.  Some  numerical  methods  are  also  expressed  as  indexed  recursive
formulas.  Such  recursive  formulas  are  very  easy  to  program  in Mathematica:  Just  write  the  formulas
almost as such.

The  calculation  of  some  mathematical  objects  can  be  written  as  nonindexed  recursive  formulas.  In
such a formula, the value of a function with an argument is an expression containing the same function
with a simpler argument. Such recursive calls are continued until the new expression no longer contains
a  call  of  the  function.  Examples  are  formulas  for  the  calculation  of  derivatives,  integrals,  and
determinants.

Recursive  transformation  rules  can  in  particular  be  applied  for  list  manipulation,  although  the
computation time often becomes large.

We will first consider examples of indexed recursive formulas. Additional examples can be found in

Section 23.5.2, p. 780, where we consider an optimization method called dynamic programming.

596 Mathematica Navigator



‡ Indexed Recursive Formulas

Many  mathematical  formulas  are  of  the  recursive  form x0 = a, xn = f Hxn-1L, n  =  1,  2,  ….  Also,  many

objects whose basic definitions are not recursive can also be calculated recursively. For example, if f HnL
is the factorial of n, we can calculate f HnL from the recursive formulas f H0L = 1, f HnL = n f Hn - 1L, n = 1, 2,

…. Although we can calculate factorials with Factorial[n] or n!, we can also write our own program:

f@0D = 1;
f@n_D := n f@n - 1D

f@4D 24

Let us study, with Trace, how the computation proceeds:

f@4D êê Trace

8f@4D, 4 f@4 - 1D,
884 - 1, 3<, f@3D, 3 f@3 - 1D, 883 - 1, 2<, f@2D, 2 f@2 - 1D, 882 - 1, 1<, f@1D,

1 f@1 - 1D, 881 - 1, 0<, f@0D, 1<, 1 μ 1, 1<, 2 μ 1, 2<, 3 μ 2, 6<, 4 μ 6, 24<

Thus, Mathematica observes that

f H4L = 4 f H3L, where

f H3L = 3 f H2L, where

f H2L = 2 f H1L, where

f H1L = 1 f H0L, where

f H0L = 1.

Now, f H1L = 1μ 1 = 1, f H2L = 2μ 1 = 2, f H3L = 3μ 2 = 6,  and f H4L = 4μ 6 = 24.  Thus, f H4L  is  first  reduced

back to f H0L whose value we know. Then we go forward and calculate values of f HiL, i = 1, 2, … until we

have the value of f H4L.
Let us check what Mathematica knows about the f function:

? f

Global`f

f@0D = 1

f@n_D := n f@n - 1D

The rule base contains our definitions as such.

If we now would like to calculate, for example, 5!, we have to again calculate 1!, 2!, 3!, and 4! that we
actually calculated when we computed f H4L. So we observe that it would be useful if we could store the

values of the recursive function into the memory of the computer so that they need not be recalculated.
Dynamic programming is a technique that enables us to store the values of indexed recursive functions.

‡ Dynamic Programming

We write a new version of our factorial function:

g@0D = 1;
g@n_D := Hg@nD = n g@n - 1DL

Chapter 18  •  Programs 597



(Here, the parentheses ( ) are not necessary.) The difference with the f function is that we have added
g[n] = into the definition of g. Now, when we call this function with an argument, the command g[n] =

n g[n - 1]  causes the value of g[n]  to  be  stored into memory.  With Trace  we can again check to  see
how the computation proceeds:

g@4D êê Trace

8g@4D, g@4D = 4 g@4 - 1D,
8884 - 1, 3<, g@3D, g@3D = 3 g@3 - 1D, 8883 - 1, 2<, g@2D, g@2D = 2 g@2 - 1D,

8882 - 1, 1<, g@1D, g@1D = 1 g@1 - 1D, 8881 - 1, 0<, g@0D, 1<, 1 μ 1, 1<, g@1D = 1, 1<,
2 μ 1, 2<, g@2D = 2, 2<, 3 μ 2, 6<, g@3D = 6, 6<, 4 μ 6, 24<, g@4D = 24, 24<

Mathematica  again observes that gH4L = 4 gH3L, where gH3L = 3 gH2L, where gH2L = 2 gH1L, where gH1L = 1 gH0L,
where gH0L = 1.  Now gH1L = 1μ 1 = 1,  and  this  value  is  stored.  Furthermore, gH2L = 2μ 1 = 2,  and gH2L  is

again  stored.  In  the  same  way,  the  values gH3L = 3μ 2 = 6  and gH4L = 4μ 6 = 24  are  stored.  Let  us  now

check what Mathematica knows about the g function:

? g

Global`g

g@0D = 1

g@1D = 1

g@2D = 2

g@3D = 6

g@4D = 24

g@n_D := g@nD = n g@n - 1D

We  see  that  the  rule  base  contains,  in  addition  to  our  original  definition,  all  the  values  we  actually
computed while computing gH4L.

Let us see how Mathematica calculates gH5L:
g@5D êê Trace

8g@5D, g@5D = 5 g@5 - 1D, 8885 - 1, 4<, g@4D, 24<, 5 μ 24, 120<, g@5D = 120, 120<

From the rule base, Mathematica  observed that gH4L = 24 so that it sufficed to compute 5 gH4L.  There was

no need to calculate the values gH1L, gH2L, gH3L, and gH4L anew. In this way, the g function saves comput-

ing time when comparing with the f function. When we calculated gH5L, this value was again stored into

the rule base of g.

The technique we used with g  is known as dynamic programming.  This terminology derives from the
fact  that  the  rule  base  is  updated  during  the  computation~that  is,  dynamically.  In  the  next  box,  we
present a general formulation of dynamic programming.

Dynamic programming: The function repeatedly calls itself and all values of the function are stored
into the rule base: f[n_] := f[n] = ... f[n - 1] ...

Saving the values of the function with f[n_] := f[n] = ... is also known as caching.

Remove@f, gD

598 Mathematica Navigator



‡  Fibonacci Numbers

Fibonacci numbers are defined with the formulas F1 = 1, F2 = 1, Fn = Fn-1 + Fn-2, n  = 3,  4,  …. Although

we have  the  ready-to-use  command Fibonacci,  we  now present  our  own function.  The  function uses
dynamic programming:

fib@1D = 1;
fib@2D = 1;
fib@n_D := fib@nD = fib@n - 1D + fib@n - 2D

fib@30D 832 040

‡ Legendre Polynomials

Legendre  orthogonal  polynomials  are  defined  with  the  formulas P0HxL = 1, P1HxL = x,

PnHxL = 1
n
@H2 n - 1L x Pn-1HxL - Hn - 1L Pn-2HxLD, n  =  3,  4,  … Although we have LegendreP[n, x],  we write

our own program:

leg@0, x_D := 1
leg@1, x_D := x
leg@n_, x_D := leg@n, xD = Simplify@HH2 n - 1L x leg@n - 1, xD - Hn - 1L leg@n - 2, xDL ê nD

leg@6, xD
1

16
I-5 + 105 x2 - 315 x4 + 231 x6M

‡ A Prime-Generating Recurrence

Rowland (2008) has proved that if aHnL = aHn - 1L + gcdHn, aHn - 1LL with the initial condition aH1L = 7, then

for  all n,  the  difference aHnL - aHn - 1L  is  either  1  or  a  prime;  see  also
http://demonstrations.wolfram.com/PrimeGeneratingRecurrence/ .  First,  define  the  recurrence
formula by using dynamic programming:

a@1D = 7;
a@n_D := a@nD = a@n - 1D + GCD@n, a@n - 1DD

Calculate 2 million values:

aa = Table@a@nD, 8n, 2 μ 10^6<D; êê Timing

860.4718, Null<

The first 50 values are the following:

Take@aa, 50D

87, 8, 9, 10, 15, 18, 19, 20, 21, 22, 33, 36, 37, 38, 39, 40, 41,
42, 43, 44, 45, 46, 69, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82,
83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 141, 144, 145, 150<

Then, calculate the differences:

d = Differences@aaD;

The first 50 of these are the following:

Take@d, 50D

81, 1, 1, 5, 3, 1, 1, 1, 1, 11, 3, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 23, 3, 1,
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 47, 3, 1, 5, 3<

Chapter 18  •  Programs 599



Delete all the uninteresting 1’s:

dd = DeleteCases@d, 1D

85, 3, 11, 3, 23, 3, 47, 3, 5, 3, 101, 3, 7, 11, 3, 13, 233, 3, 467, 3, 5, 3, 941, 3,
7, 1889, 3, 3779, 3, 7559, 3, 13, 15 131, 3, 53, 3, 7, 30 323, 3, 60 647, 3, 5,
3, 101, 3, 121 403, 3, 242 807, 3, 5, 3, 19, 7, 5, 3, 47, 3, 37, 5, 3, 17, 3, 199,
53, 3, 29, 3, 486 041, 3, 7, 421, 23, 3, 972 533, 3, 577, 7, 1 945 649, 3, 163, 7<

Prepare a logarithmic plot for these numbers:

ListLogPlot@dd, Filling Ø Axis, FillingStyle Ø Black,
AxesOrigin Ø 80, 0<, PlotRange Ø All, ImageSize Ø 250D

20 40 60 80

10

100

1000

104

105

106

The different numbers in dd are the following:

Union@ddD

83, 5, 7, 11, 13, 17, 19, 23, 29, 37, 47, 53, 101, 163, 199, 233, 421, 467, 577, 941,
1889, 3779, 7559, 15 131, 30 323, 60 647, 121 403, 242 807, 486 041, 972 533, 1 945 649<

As Rowland has proved, they are all primes:

Union@PrimeQ@%DD 8True<

‡ Pascal’s Triangle

Pascal’s triangle is easy to form by using the binomial coefficient:

Column@Table@Binomial@n, kD, 8n, 0, 4<, 8k, 0, n<D, CenterD

81<
81, 1<

81, 2, 1<
81, 3, 3, 1<

81, 4, 6, 4, 1<

The elements of one row of the triangle can also be obtained by pairwise adding the elements of the
previous row (1 + 3 = 4, 3 + 3 = 6, 3 + 1 = 4) and adding 1’s at the ends of the new row. We would like to
write this kind of recursive function to calculate rows of Pascal’s triangle.

We number the rows as 0, 1,  2,  …; thus, row 0 is 81<.  To calculate, for example, the fourth row, first
partition the third row to sublists of two elements, then calculate the pairwise sums, and lastly add 1’s at
the ends:

Partition@81, 3, 3, 1<, 2, 1D 881, 3<, 83, 3<, 83, 1<<

Total êü % 84, 6, 4<

Join@81<, %, 81<D 81, 4, 6, 4, 1<

600 Mathematica Navigator



pascal@0D := 81<
pascal@n_D := pascal@nD = Join@81<, Total êü Partition@pascal@n - 1D, 2, 1D, 81<D

Column@Table@pascal@nD, 8n, 0, 6<D, CenterD

81<
81, 1<

81, 2, 1<
81, 3, 3, 1<

81, 4, 6, 4, 1<
81, 5, 10, 10, 5, 1<

81, 6, 15, 20, 15, 6, 1<

‡ Newton’s Method

We would like to find a zero of the following function:

h@x_D := 3 x^3 - E^x;

Newton’s method uses the recursive formula xi+1 = xi -
f IxiM

f £IxiM
, i = 0, 1, …, by starting from a given value

x0. We write this method as a recursive function:

Remove@xD;
x@0D = 2;
x@n_D := x@nD = N@x@n - 1D - h@x@n - 1DD ê h'@x@n - 1DDD

At  the  beginning,  we  have  written Remove[x]  because  if  we  change  the  initial  value,  the  previously
calculated values have first to be removed; otherwise, the old stored values are used. For example,

Table@x@nD, 8n, 0, 6<D

82, 1.41942, 1.1019, 0.975117, 0.953089, 0.952446, 0.952446<

‡ Euler’s Method

Euler’s method to solve a differential equation y£HxL = f Ax, yHxLE with the initial value yHx0L = y0  uses the

following recursive formulas:

xn+1 = xn + h,
yn+1 = yn + h f Ixn, ynM.

Here, h is the step size. In Section 18.1.1, p. 546, we used Table to program Euler’s method. Now we use

a  recursive  function.  We  would  like  to  solve  the  problem y£ = x - y2, yH0L = 1  on  the  interval @0, 1D  by

using 10 steps:

v@x_, y_D := x - y^2

Remove@x, yD;
x@0D = 0; y@0D = 1; h = 0.1;
x@n_D := x@nD = N@x@n - 1D + hD
y@n_D := y@nD = N@y@n - 1D + h v@x@n - 1D, y@n - 1DDD

Table@8x@nD, y@nD<, 8n, 0, 10<D

880, 1<, 80.1, 0.9<, 80.2, 0.829<, 80.3, 0.780276<, 80.4, 0.749393<, 80.5, 0.733234<,
80.6, 0.729471<, 80.7, 0.736258<, 80.8, 0.75205<, 80.9, 0.775492<, 81., 0.805354<<

Chapter 18  •  Programs 601



‡ Periodic Functions

We can define  a  periodic  function very  simply.  If,  for  example,  the  function has  a  period of  2,  simply
define, with If or Which, the function in a basic interval, for example, @0, 2D, and add the condition that
the function is f Hx - 2L for x > 2:

f@x_D := If@0 § x § 2, x^2, f@x - 2DD

The value  of  the  function at  a  given point  is  calculated by  using the  recursion f HxL = f Hx - 2L  until  the

argument x - 2 reduces onto the interval 0 § x § 2. For example, f H5L = f H3L = f H1L = 12 = 1. Here is a plot:

Plot@f@xD, 8x, 0, 10<D

2 4 6 8 10

1

2

3

4

Note  that  calculus  with  this  function  is  very  limited.  If  you  want  to  do  calculus  with  a  periodic
function, then it may be useful to generate the function as an explicit piecewise function for a specific set
of intervals:

f2@x_D = Piecewise@Table@8Hx - aL^2, a < x < a + 2<, 8a, 0, 8, 2<DD

x2 0 < x < 2

H-2 + xL2 2 < x < 4

H-4 + xL2 4 < x < 6

H-6 + xL2 6 < x < 8

H-8 + xL2 8 < x < 10

Plot@f2@xD, 8x, 0, 10<D

2 4 6 8 10

1

2

3

4

‡ Continuous Convolutions

Let X1, X2,  …,  be  independent,  identically  distributed,  continuous  random  variables,  with  a  common
probability  density  function  (PDF) f HxL.  Consider  the  sum Sn = X1 + … + Xn  of  the  variables,  and  let

fSnHxL be its PDF. It can be shown that fS2HxL = Ÿ-¶¶ f HvL f Hx - vL „v. This integral is also called a convolution

of the PDF f HxL. Furthermore, it can be shown that fS3HxL = Ÿ-¶¶ fS2HvL f Hx - vL „v; this is called the twofold

convolution.  Generally, fSnHxL = Ÿ-¶¶ fSn-1HvL f Hx - vL „v.  This  formula  is  easily  written  using  dynamic

programming:

convolution@1D = f@xD;
convolution@n_D :=
convolution@nD = Integrate@Hconvolution@n - 1D ê. x Ø vL f@x - vD, 8v, -¶, ¶<D

602 Mathematica Navigator



As an example, let the variables Xi have the uniform density on H-1, 1L:
f@x_D = PDF@UniformDistribution@80, 1<D, xD

μ 1 0 § x § 1

Calculate the PDFs of S2, S3, and S4:

Table@convolution@nD, 8n, 2, 4<D êê FullSimplify

:
2 - x 1 < x < 2

x 0 < x § 1
,

1

2
x ã 2

x2

2
0 < x § 1

-
3

2
- H-3 + xL x 1 < x < 2

1

2
H-3 + xL2 2 < x < 3

,

1

6
x ã 3

2

3
x ã 2

x3

6
0 < x § 1

2

3
-

1

2
H-2 + xL2 x 1 < x < 2

-
1

6
H-4 + xL3 3 < x < 4

-
22

3
+

1

2
x H20 + H-8 + xL xL 2 < x < 3

>

According  to  the  central  limit  theorem,  the  sum  of  independent,  identically  distributed  random
variables converges in distribution to the normal disribution. Let us compare the previous densities to
the densities of the corresponding normal disributions. The mean and variance of the uniform distribu-

tion are

8m, s2< = Ò@UniformDistribution@80, 1<DD & êü 8Mean, Variance<

:
1

2
,

1

12
>

Thus,  the  mean  and  variance  of  the  sum  of n  such  independent  random  variables  are  0  and n ê 3,
respectively. Therefore, we use the following normal densities:

fn@n_D := PDF@NormalDistribution@n m, Sqrt@n s2DD, xD

Next,  we  plot  the  true  densities  of S2, S3,  and S4  and  compare  them  with  the  corresponding  normal

densities:

Table@Plot@8convolution@nD, fn@nD<, 8x, 0, n<, Exclusions Ø NoneD, 8n, 2, 4<D

:

0.5 1.0 1.5 2.0

0.2

0.4

0.6

0.8

1.0

,

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

,

1 2 3 4

0.1

0.2

0.3

0.4

0.5

0.6

0.7

>

We can see that, in this example, the convergence to the normal distribution is fast: The density of S4  is
already very near to the corresponding normal density.

‡ Discrete Convolutions

Let X1, X2,  …,  be  independent,  identically  distributed,  discrete  random  variables,  with  a  common
probability mass function (PMF) pHxL. Consider the sum Sn = X1 + … + Xn  of the variables, and let pSnHkL
be its PMF. It can be shown that pS2HkL =⁄i pHiL pHk - iL.  This sum is also called a convolution of the PMF

pHkL.  Furthermore,  it  can  be  shown  that pS3HkL =⁄i pS2HiL pHk - iL;  this  is  called  the  twofold  convolution.

Generally, pSnHxL =⁄i pSn-1HiL pHk - iL. This formula is easily written using dynamic programming:

Chapter 18  •  Programs 603



convolution2@1, k_D := p@kD;
convolution2@n_, k_D :=
convolution2@n, kD = Sum@Hconvolution2@n - 1, iDL p@k - iD, 8i, 0, 100<D

As an example, let the variables Xi have the discrete uniform density on 81, 2, 3, 4, 5, 6< (i.e., we toss a

die):

p@1 » 2 » 3 » 4 » 5 » 6D = 1 ê 6;
p@k_D = 0;

Calculate the PMFs of S2, S3, and S4:

c@2D = Table@8k, convolution2@2, kD<, 8k, 2, 12<D

::2,
1

36
>, :3,

1

18
>, :4,

1

12
>, :5,

1

9
>, :6,

5

36
>,

:7,
1

6
>, :8,

5

36
>, :9,

1

9
>, :10,

1

12
>, :11,

1

18
>, :12,

1

36
>>

c@3D = Table@8k, convolution2@3, kD<, 8k, 3, 18<D

::3,
1

216
>, :4,

1

72
>, :5,

1

36
>, :6,

5

108
>, :7,

5

72
>, :8,

7

72
>, :9,

25

216
>, :10,

1

8
>,

:11,
1

8
>, :12,

25

216
>, :13,

7

72
>, :14,

5

72
>, :15,

5

108
>, :16,

1

36
>, :17,

1

72
>, :18,

1

216
>>

c@4D = Table@8k, convolution2@4, kD<, 8k, 4, 24<D

::4,
1

1296
>, :5,

1

324
>, :6,

5

648
>, :7,

5

324
>, :8,

35

1296
>, :9,

7

162
>, :10,

5

81
>,

:11,
13

162
>, :12,

125

1296
>, :13,

35

324
>, :14,

73

648
>, :15,

35

324
>, :16,

125

1296
>, :17,

13

162
>,

:18,
5

81
>, :19,

7

162
>, :20,

35

1296
>, :21,

5

324
>, :22,

5

648
>, :23,

1

324
>, :24,

1

1296
>>

According  to  the  central  limit  theorem,  the  sum  of  independent,  identically  distributed  random
variables converges in distribution to the normal disribution. Let us compare the previous PMFs to the
densities of the corresponding normal disributions. The mean and variance of the uniform distribution
are

8m, s2< = Ò@DiscreteUniformDistribution@81, 6<DD & êü 8Mean, Variance<

:
7

2
,
35

12
>

Thus, the mean and variance of the sum of n such independent random variables are 7 n ê 2 and 35 n ê 12,
respectively. Therefore, we use the following normal densities:

fn@n_D := PDF@NormalDistribution@n m, Sqrt@n s2DD, xD

Next,  we  plot  the  true  PMFs  of S2, S3,  and S4  and  compare  them  with  the  corresponding  normal

densities:

604 Mathematica Navigator



Table@Show@ListPlot@c@nD, AxesOrigin Ø 8n, 0<D, Plot@fn@nD, 8x, n, 6 n<DD, 8n, 2, 4<D

:

4 6 8 10 12

0.05

0.10

0.15

,

4 6 8 10 12 14 16 18

0.02
0.04
0.06
0.08
0.10
0.12

,

5 10 15 20

0.02

0.04

0.06

0.08

0.10

0.12

>

We can  see  that,  in  this  example,  the  convergence  to  the  normal  distribution is  fast:  The  PMF of S4  is
already very near the corresponding normal density.

‡ Recursion Limit

Consider the following recursive function to calculate the sum of the first n positive integers:

s@0D = 0;
s@n_D := s@n - 1D + n

Here is the sH254L:
s@254D 32 385

However, we do not get a complete result for sH255L:
s@255D

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

$RecursionLimit::reclim : Recursion depth of 256 exceeded. à

32 640 + Hold@Hold@s@1 - 1DDD

We  got  the  message  that  the  default  value  256  of  the $RecursionLimit  constant  has  been  exceeded.
Indeed, Mathematica  uses  this  constant  to  prevent  infinite  recursion.  Mostly,  infinite  recursion  is  the
result of improper programming. However, in running correct recursive programs we can also reach the
recursion limit.

To check the value of the limit, write

$RecursionLimit 256

If  a  program  calls  itself  more  than  this,  the  computation  is  interrupted  and  a  message  is  shown.
However, we can continue the computation with ReleaseHold:

%% êê ReleaseHold 32 640 +Hold@s@1 - 1DD

% êê ReleaseHold 32 640

$RecursionLimit  The largest allowed number of levels of recursion during one computation

‡ Adjusting the Recursion Limit

We can give the $RecursionLimit constant the value we want (also the value ¶):

$RecursionLimit = 500 500

Now we calculate the value of our function up to n = 498:

s@498D 124 251

Chapter 18  •  Programs 605



We go back to the default value:

$RecursionLimit = 256;

A better way to adjust the value of the constant is the use of a Block construct:

Block[{$RecursionLimit = n}, ...]  Temporarily change the value of the recursion limit

The advantage of  this  construct  is  that  after  the computation the constant  again has the default  value.
Let us try:

Block@8$RecursionLimit = 500<, s@497DD 123 753

Note that if we use dynamic programming, we get speedier code but we may also sometimes avoid
the  recursion  limit  by  computing  in  suitable  pieces.  To  calculate  the  value  of,  for  example, sH500L,
calculate first, say, sH250L and then sH500L:

Remove@sD
s@0D = 0;
s@n_D := s@nD = s@n - 1D + n

s@250D 31 375

s@500D 125 250

We did not get a message about recursion limit. Indeed, when we calculated sH500L,  we could start the
calculation from the value sH250L since this value is in the memory.

18.5.2  Nonindexed Recursive Formulas

‡ Logarithms

To expand some expressions containing the logarithm function, we need some special commands:

8FunctionExpand@Log@3 aDD, FullSimplify@Log@a^3D, a > 0D<

8Log@3D + Log@aD, 3 Log@aD<

PowerExpand also makes these kinds of expansions (without checking their validity):

8PowerExpand@Log@3 aDD, PowerExpand@Log@a^3DD<

8Log@3D + Log@aD, 3 Log@aD<

Now we write our own logarithm function that automatically expands products and powers:

loga@x_ y_D := loga@xD + loga@yD
loga@x_^y_D := y loga@xD

In the first definition, the argument has to be in a product form, whereas the second definition applies
for  arguments  of  a  power form.  The definitions are recursive in that  they call  themselves.  When these
definitions are done, then,  every time loga  appears  in an expression,  the given rules are applied until
the result no longer changes. Here is a simple example:

loga@a b c^2D êê Trace

9logaAa b c2E, loga@aD + logaAb c2E,

9logaAb c2E, loga@bD + logaAc2E, 9logaAc2E, 2 loga@cD=, loga@bD + 2 loga@cD=,

loga@aD + Hloga@bD + 2 loga@cDL, loga@aD + loga@bD + 2 loga@cD=

A more advanced example:

606 Mathematica Navigator



loga@a^2 b^3 Sqrt@cD ê d^4D

2 loga@aD + 3 loga@bD +
loga@cD

2
- 4 loga@dD

‡ Derivatives

Mathematica knows all the rules of differentiating:

D@Ò, xD & êü 8f@xD + g@xD, f@xD g@xD, f@xD^g@xD<

:f£@xD + g£@xD, g@xD f£@xD + f@xD g£@xD, f@xDg@xD
g@xD f£@xD

f@xD
+ Log@f@xDD g£@xD >

Next, we write a recursive function that calculates derivatives of rational expressions:

der@a_, x_D := 0 ê; FreeQ@a, xD
der@x_, x_D := 1
der@a_ f_, x_D := a der@f, xD ê; FreeQ@a, xD
der@f_ + g_, x_D := der@f, xD + der@g, xD
der@f_ g_, x_D := der@f, xD g + f der@g, xD
der@f_^a_, x_D := a f^Ha - 1L der@f, xD ê; FreeQ@a, xD
der@f_^g_, x_D := f^g Hder@f, xD g ê f + der@g, xD Log@fDL

For the derivative of a quotient, we do not need a special rule because Mathematica  writes quotients
as products of powers:

FullForm@f@xD ê g@xDD

Times@f@xD, Power@g@xD, -1DD

An example:

der@H1 + a ê Hb + xLL^H2 + x^2L, xD

1 +
a

b + x

2+x2

-

a I2 + x2M

Hb + xL2 J1 +
a

b+x
N

+ 2 x LogB1 +
a

b + x
F

The D command gives the same result:

D@H1 + a ê Hb + xLL^H2 + x^2L, xD

1 +
a

b + x

2+x2

-

a I2 + x2M

Hb + xL2 J1 +
a

b+x
N

+ 2 x LogB1 +
a

b + x
F

‡ Integrals

From the Documentation Center, we can find the following recursive function that calculates indefinite
integrals;  see tutorialêAnExampleDefiningYourOwnIntegrationFunction.  The  function  covers  simple  rational
and exponential expressions.

Chapter 18  •  Programs 607



int@a_, x_D := a x ê; FreeQ@a, xD
int@a_ f_, x_D := a int@f, xD ê; FreeQ@a, xD
int@f_ + g_, x_D := int@f, xD + int@g, xD
int@x_^a_., x_D := x^Ha + 1L ê Ha + 1L ê; FreeQ@a, xD && a != -1
int@1 ê Ha_. x_ + b_.L, x_D := Log@a x + bD ê a ê; FreeQ@8a, b<, xD
int@Exp@a_. x_ + b_.D, x_D := Exp@a x + bD ê a ê; FreeQ@8a, b<, xD

int@a x^2 + Exp@-bxD + c ê Hd - e xL, xD

‰-bx x +
a x3

3
-
c Log@d - e xD

e

Integrate@a x^2 + Exp@-bxD + c ê Hd - e xL, xD

‰-bx x +
a x3

3
-
c Log@d - e xD

e

‡ Determinants

Consider an HnμnL matrix whose Ii, jMth element is mi j. The determinant of the matrix can be computed

recursively from the formula ⁄j=1n H-1Lj+1 m1 j cj, where cj is the determinant of the matrix that is obtained

by deleting the first row and jth column. The determinant of a matrix consisting of only one element is

the element itself.

Consider the matrix

m = 88a, b, c<, 8d, e, f<, 8g, h, i<<;

To delete the first row, write

Rest@mD 88d, e, f<, 8g, h, i<<

To delete, for example, the first column, write

Drop@%, 8<, 81<D 88e, f<, 8h, i<<

To test  whether an Hn1 μn2L  matrix  is  a  square  matrix,  change,  with Apply  or @@,  the head List  of  the
dimensions to the head Equal:

Equal üü 8n1, n2< n1 ã n2

Thus, we can write the following program:

deter@88m_<<D := m
deter@m_?MatrixQD ê; Equal üü Dimensions@mD := deter@mD
= Sum@H-1L^H1 + jL mP1, jT deter@Drop@Rest@mD, 8<, 8j<DD, 8j, Length@mD<D

To speed up the program, we have used dynamic programming. An example:

m = RandomReal@80, 1<, 815, 15<D;

8deter@mD êê Timing, Det@mD êê Timing<

8812.9303, 0.136651<, 80.000115, 0.136651<<

Our program is very slow for larger matrices.

608 Mathematica Navigator



18.5.3  Recursive List Manipulation

‡ Removing Zeros: Built-in Commands

From a given vector,  we would like to remove all  zeros.  We will  apply built-in commands and proce-

dural,  functional,  and  rule-based  programming  to  solve  this  problem.  First,  we  take  a  sample  with
replacement from the set 8-1, 0, 1<:

t = RandomChoice@8-1, 0, 1<, 10^5D;

In solving a problem, we should first investigate if we have ready-to-use commands because they are
fast. In our example, we have Cases:

Cases@t, -1 » 1D; êê Timing 80.086028, Null<

Cases@t, x_ ê; x 0D; êê Timing 80.203768, Null<

Cases@t, x_ ê; x == -1 »» x == 1D; êê Timing 80.461625, Null<

We also have Select:

Select@t, Ò 0 &D; êê Timing 80.255259, Null<

Select@t, Ò == -1 »» Ò == 1 &D; êê Timing 80.524612, Null<

‡ Removing Zeros: Functional Programming

Functional programming also often gives fast code. In our example, we can use Fold:

removeZeros1@x_?VectorQD := Fold@If@Ò2 ã 0, Ò1, 8Ò1, Ò2<D &, 8<, xD êê Flatten

Here, the starting point is the empty list. From the x  list we take one element at a time. With #1  we
denote the list to be outputted and with #2 the next element of x. If the next element is zero, we do not
change #1.  If  the next  element  is  not  zero,  we add the element  at  the end of  the output list  with {#1,

#2}; thus, the output list will be a nested list so that at the end we flatten the list. We try our program:

removeZeros1@tD; êê Timing 80.554869, Null<

The program is fast.

‡ Removing Zeros: Procedural Programming

A  procedural  program  is  often  easy  to  write  and  the  code  is  frequently  quite  fast.  In  the  following
program, we test whether the next element is nonzero. If so, we add it at the end of the output list.

removeZeros2@x_?VectorQD := Module@8nonzero = 8<, next<,
Do@If@Hnext = xPiTL 0, nonzero = 8nonzero, next<D, 8i, Length@xD<D;
Flatten@nonzeroDD

removeZeros2@tD; êê Timing 80.873215, Null<

The program is fast. Note that we have written nonzero = {nonzero, next}. Indeed, we should not
use AppendTo[nonzero, next]. To demonstrate why, write a second version of the program, now using
AppendTo:

removeZeros3@x_?VectorQD := Module@8nonzero = 8<, next<,
Do@If@Hnext = xPiTL 0, AppendTo@nonzero, nextDD, 8i, Length@xD<D; nonzeroD

Chapter 18  •  Programs 609



Now we do not need Flatten at the end of the program. An example:

removeZeros3@tD; êê Timing 867.1121, Null<

Thus, the program using AppendTo is very slow.

‡ Removing Zeros: Recursive Function

To remove zero elements with a recursive function, write the following definition:

removeZeros4@8a___, 0, b___<D := removeZeros4@8a, b<D

Here, if a zero is found somewhere in the given list, it is removed and the same function is called again
with the resulting vector as the argument. An example:

removeZeros4@8-1, 0, -1, 1, 1, 0, 1, 0<D

removeZeros4@8-1, -1, 1, 1, 1<D

We see  that  the  program works,  but  to  get  the result,  we need a  definition that  simply gives  its  argu-

ment as such:

removeZeros4@x_D := x

Now the function works:

removeZeros4@8-1, 0, -1, 1, 1, 0, 1, 0<D

8-1, -1, 1, 1, 1<

The program also works with an empty list:

removeZeros4@8<D 8<

Thus, we can write the following function:

removeZeros4@8a___, 0, b___<D := removeZeros4@8a, b<D
removeZeros4@x_D := x

This recursive program is so slow that we have to try it to a smaller vector:

t0 = RandomChoice@8-1, 0, 1<, 7 μ 10^3D;

removeZeros4@t0D; êê Timing 81.5609, Null<

The slowness  of  recursive  functions in list  manipulation is  typical.  Thus,  resort  to  other  programming
styles to get fast code.

Why  is  the  program  so  slow?  To  find  a  zero  from  the  given  list,  elements  are  tested  from  the
beginning until a zero is found; it is removed. Then, elements are again tested from the beginning until a
zero is found. Thus, each time a zero is found, the search for a zero starts from the beginning of the list
instead of starting after the last found zero. Accordingly, much time is spent in testing the elements.

‡ Removing Zeros: Recursive Transformation Rule

The idea of the preceding program can also be applied with a recursive transformation rule:

removeZeros5@x_D := x êê. 8a___, 0, c___< ß 8a, c<

Recall that //. applies a rule until the result no longer changes. We try this program for the smaller
test example:

removeZeros5@t0D; êê Timing 81.55814, Null<

610 Mathematica Navigator



The computing time is the same as with the preceding program. Note that in the previous program we
used ß (write is as :>), not Ø (or ->). The arrow ß means that transformation is delayed: The evaluation
of the right-hand side {a, c} is delayed until the rule is applied. In this way, the program works even if
a or c happens to have some values.

‡ Record Values: Functional and Procedural Programs

In Section 18.3.6, p. 582, we calculated cumulative maximums or record values with FoldList. Now we

write the procedure as a program:

records1@x_?VectorQD := Union@Rest@FoldList@Max, 0, xDDD

To try the program, generate a random permutation of the integers 1, 2, …, 20:

SeedRandom@1D; t = RandomSample@Range@20D, 20D

86, 1, 8, 19, 2, 17, 13, 16, 11, 9, 4, 15, 20, 18, 12, 14, 7, 5, 10, 3<

records1@tD 86, 8, 19, 20<

Next, we write a procedural program.

records2@x_?VectorQD := Module@8result = 8First@xD<, rec = First@xD, next<,
Do@If@Hnext = xPiTL > rec, result = 8result, next<; rec = nextD,
8i, 2, Length@xD<D;

Flatten@resultDD
records2@8<D := 8<

records2@tD 86, 8, 19, 20<

‡ Record Values: Recursive Programs

A wholly different approach is the use of a recursive transformation rule (see Trott, 2004b, p. 634).

records3@x_?VectorQD := x êê. 8a___, b_, c_, d___< ê; c § b ß 8a, b, d<

In the program, we repeatedly remove one element from the list; this element is denoted by c.  If a c  is
found  that  is  at  most  the  preceding  element b,  then c  is  deleted  because  it  cannot  be  a  record  value.
Before b and after c there can be zero or more elements.

records3@tD 86, 8, 19, 20<

In the following program, we use a recursive function:

records4@8a___, b_, c_, d___<D ê; c § b := records4@8a, b, d<D
records4@x_D := x

records4@tD 86, 8, 19, 20<

To test the speed of the programs, generate a random permutation of the first 4000 integers:

SeedRandom@1D; t = RandomSample@Range@4000D, 4000D;

records1@tD êê Timing

80.013578, 83349, 3810, 3858, 3924, 3967, 3998, 4000<<

records2@tD êê Timing

80.029646, 83349, 3810, 3858, 3924, 3967, 3998, 4000<<

Chapter 18  •  Programs 611



records3@tD êê Timing

81.31727, 83349, 3810, 3858, 3924, 3967, 3998, 4000<<

records4@tD êê Timing

81.37323, 83349, 3810, 3858, 3924, 3967, 3998, 4000<<

The functional and procedural programs are fast, whereas the recursive programs are quite slow.

‡ Record Values: Faster Recursive Programs

By careful design, we can get faster recursive programs for finding record values; see Wellin et al. (2005,
pp. 184, 191). Here is the first faster program:

records5@8a_, b___<D := Join@8a<, Select@records5@8b<D, Ò > a &DD
records5@8<D := 8<

Block@8$RecursionLimit = 4004<, records5@tDD êê Timing

80.757501, 83349, 3810, 3858, 3924, 3967, 3998, 4000<<

In the previous program, we first set the first element, a,  as the first record value. Then we find the
record values from among the rest of the elements, b, and select the record values that are greater than
the first element, a.

A still faster recursive function is as follows:

records6@x_ListD := records6@First@xD, Rest@xDD
records6@a_, 8b_, c___<D ê; a ¥ b := records6@a, 8c<D
records6@a_, 8b_, c___<D ê; a < b := Join@8a<, records6@b, 8c<DD
records6@a_, 8<D := 8a<
records6@8<D := 8<

records6@tD êê Timing

80.455719, 83349, 3810, 3858, 3924, 3967, 3998, 4000<<

The idea of the program is to use two arguments for the function: The first is the current record value
and the second a list of all remaining elements. The second rule given previously states that if the first
element, b, of the remaining elements is at most the current record value, a, then b is not a record value
so that we can call the function with arguments where b is dropped. The third rule applies in the other
case: b is larger than a so that b is a new record value; in this case, we save a and call the function with b

as the new current record value. The first rule is only used at the beginning: The first element must be
the first record value. The last two rules cover some special cases.

‡ Iteration Limit

Consider again records4:

records4@8a___, b_, c_, d___<D ê; c § b := records4@8a, b, d<D
records4@x_D := x

We try to find the record values from a list of length 5000:

SeedRandom@1D; t = RandomSample@Range@5000D, 5000D;

records4@tD;

$IterationLimit::itlim : Iteration limit of 4096 exceeded. à

The procedure stopped because an internal limit of iterations, 4096, had been exceeded.

612 Mathematica Navigator



$IterationLimit  The maximum allowed amount of iterations during one computation: at most
this number of times Mathematica tries to simplify an expression

We can ask for the current value of this constant:

$IterationLimit 4096

Similarly  as  for $RecursionLimit  (see Section  18.5.1,  p. 605),  a  good  way  to  temporarily  change  the

value of $IterationLimit is with the use of Block:

Block@8$IterationLimit = 4992<, records4@tDD

8449, 1073, 4053, 4345, 4403, 4902, 4965, 4994, 4999, 5000<

‡ Sorting

The following recursive program sorts the elements of a list into the standard order:

sort@x_?VectorQD := x êê. 8a___, b_, c_, d___< ê; ! OrderedQ@8b, c<D ß 8a, c, b, d<

The  program  repeatedly  finds  pairs  of  elements 8b, c<  that  are  not  in  standard  order  and then  puts
them into order. The program is very slow.

sort@83, b, 5, a, c, 2<D 82, 3, 5, a, b, c<

‡ Run|Length Encoding and Decoding

In Section 18.3.2, p. 574, we presented the following programs for run|length encoding and decoding:

runLengthEncoding@x_?VectorQD := 8First@ÒD, Length@ÒD< & êü Split@xD
runLengthDecoding@x_?MatrixQD := Flatten@ConstantArray üüü xD

u = 81, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1<;

runLengthEncoding@uD

881, 1<, 80, 1<, 81, 1<, 80, 1<, 81, 1<, 80, 2<, 81, 4<<

runLengthDecoding@%D

81, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1<

Here are recursive programs (Trott, 2004b, p. 630):

runLengthEncoding2@x_?VectorQD :=
x ê. 8a_Integer ß 8a, 1<< êê. 8a___, 8b_, i_<, 8b_, j_<, c___< ß 8a, 8b, i + j<, c<
runLengthDecoding2@x_?MatrixQD :=
x êê. 8y___, 8a_, k_<, z___< ß Join@8y<, ConstantArray@a, kD, 8z<D

runLengthEncoding2@uD

881, 1<, 80, 1<, 81, 1<, 80, 1<, 81, 1<, 80, 2<, 81, 4<<

runLengthDecoding2@%D

81, 0, 1, 0, 1, 0, 0, 1, 1, 1, 1<

In encoding, we replace all elements a with pairs 8a, 1<. Then we repeatedly find pairs 8b, i< and 9b, j=
having  the  same  first  element.  Such  two  pairs  are  replaced  with 9b, i + j=.  In  decoding,  we  repeatedly

find pairs 8a, k<. They are replaced with a list having k times the element a. The programs are very slow.

Chapter 18  •  Programs 613



614 Mathematica Navigator

This page intentionally left blank



19
Differential Calculus

Introduction 615

19.1  Derivatives 615

19.1.1  Partial Derivatives 615 D, Derivative

19.1.2  Vector Analysis 619 Grad, Laplacian, Div, Curl, Cylindrical, JacobianDeterminant, etc.

19.1.3  Numerical Derivatives 621 ND

19.1.4  Total Derivatives 622 Dt

19.2  Taylor Series 624

19.2.1  Taylor Series and Polynomials 624 Series, Normal, InverseSeries, ComposeSeries, Residue

19.2.2  Coefficients 627 SeriesCoefficient, CoefficientList

19.2.3  Equations 629 LogicalExpand

19.3  Limits 630

19.3.1  Symbolic Limits 630 Limit

19.3.2  Numerical Limits 632 NLimit

Introduction

Analysis takes back with one hand what it gives with the other. I recoil with fear and
 loathing from that deplorable evil, continuous functions with no derivatives.~Hermite

Traditional  differential  calculus  includes  derivatives,  Taylor  series,  and  limits;  the  corresponding
Mathematica  commands  are D, Series,  and Limit.  Later,  derivatives  play  a  central  role  when  we,  for
example,  solve  nonlinear  equations  by  numerical  methods  (Chapter  22)  and  solve  optimization
problems  (Chapter  23).  Of  course,  derivatives  are  essential  in  differential  and  partial  differential
equations (Chapters 26 and 27).

Because  this  chapter  begins  the  mathematical  part  of  the  book,  we  note  that
http://mathworld.wolfram.com  is  a  place  to  find  information  about  mathematical  topics  such  as
calculus, algebra, applied mathematics, discrete mathematics, and probability and statistics.

19.1  Derivatives

19.1.1  Partial Derivatives

In the following box are some examples of calculating partial derivatives:



D@f, xD f ë x

D@f, x, xD 2 f ë x2

D@f, x, x, xD 3 f ë x3

D@f, x, yD 2 f ë I x yM
D@f, x, y, y, yD 4 f ë I x y3M
D@f, x, y, zD 3 f ë I x y zM

You can write in D the whole expression to be differentiated, as in D[a + b x, x], or you can first give
a name to the expression, such as h = a + b x, and then use that name, such as in the expression D[h, x].
Functions such as f[x] can be differentiated simply by f'[x] (this is considered in more detail later).

Another way to calculate partial derivatives is to use the buttons Ñ‡ and Ñ,Ñ‡ of the BasicMathIn-

put palette. Alternatively, you can do it yourself: Write  as ÂpdÂ, go to a subscript by pressing ‚Î-Ï,
write  the  variable,  go  out  of  the  subscript  position  with ‚ÎâÏ  (â  means  the  space  key),  and  write  the

expression (see Section 3.3.3, p. 76):

xHa + b xL b

The command D  also  has  another  form in  which the  order  of  differentiation is  expressed explicitly.
For example, instead of D[f, x], D[f, x, x], and D[f, x, y, y, y], we can write as follows:

D[f, {x, 1}], D[f, {x, 2}], D[f, {x, 1}, {y, 3}]

‡ Example 1: Tangent

Consider the following function:

f = Hx + 2L Hx^2 + 1L x Hx - 1L Hx - 2L;

We  calculate  and  plot  a  tangent  for  it  at x = 1.6.  First,  we  calculate  the  corresponding  values  of  the
function and its derivative:

x1 = 1.6;

f1 = f ê. x Ø x1 -4.92134

df1 = D@f, xD ê. x Ø x1 -4.76544

Then we form the tangent and plot it together with the function:

tangent = f1 + df1 Hx - x1L -4.92134 -4.76544 H-1.6 + xL
Plot@8f, tangent<, 8x, 0, 2.1<, PlotStyle Ø 88<, Blue<,

Epilog Ø 8PointSize@MediumD, Red, Point@8x1, f1<D<D

0.5 1.0 1.5 2.0

-6

-4

-2

2

4

‡ Example 2: Critical Points

Let us now examine the critical points of the function we considered in Example 1:

616 Mathematica Navigator



p = Plot@f, 8x, -2.05, 2.1<D

-2 -1 1 2

-20

-15

-10

-5

5

Critical  points  are  characterized  by  the  property  that  the  first  derivative  is  zero  at  these  points.
Critical points contain points of local maximum and minimum values and saddle points. Our function
seems to have three critical points. To find them, we calculate the derivative and its zeros:

df = D@f, xD êê Simplify

4 - 8 x + 9 x2 - 12 x3 - 5 x4 + 6 x5

c = NSolve@df ã 0, xD

88x Ø -1.55135<, 8x Ø 0.065021 - 0.666791 Â<,
8x Ø 0.065021 + 0.666791 Â<, 8x Ø 0.567487<, 8x Ø 1.68715<<

We are interested only in real critical points, and so we select such points:

crit = cP81, 4, 5<T

88x Ø -1.55135<, 8x Ø 0.567487<, 8x Ø 1.68715<<

Then we form the corresponding points on the curve:

points = 8x, f< ê. crit

88-1.55135, -21.4839<, 80.567487, 1.19346<, 81.68715, -5.14393<<

Lastly, we show the points on the curve:

Show@p, Epilog Ø 8PointSize@MediumD, Red, Point@pointsD<D

-2 -1 1 2

-20

-15

-10

-5

5

Remove@"Global`*"D

‡ Derivatives of Functions of One Variable

If  you  have  defined  a  function f[x]  of  one  variable,  derivatives  can  be  calculated  with  primes  (this
resembles the usual mathematical notation).

f'[x], f''[x], f'''[x], … The first, second, third, … derivative of a function f at x

Consider, for example, the following function:

f@x_D := a + b x + c x^2

The first, second, and third derivatives are as follows:

8f'@xD, f''@xD, f'''@xD< 8b + 2 c x, 2 c, 0<

Note that we can at the same time also specify the point at which the derivative is calculated:

Chapter 19  •  Differential Calculus 617



f'@3D b +6 c

However, if the function has several arguments, such as g in this example,

g@x_, y_D := Sin@xD Cos@yD

then derivatives are again calculated with D (or Derivative):

D@g@x, yD, yD -Sin@xD Sin@yD

For  some  special  functions,  we  do  not  get  an  explicit  expression  for  the  derivative  but  we  can  ask
numerical values:

8Zeta'@xD, Zeta'@2.D< 8Zeta£@xD, -0.937548<

‡ Derivatives of Functions of Several Variables

Consider the function g defined previously. If we want to calculate the value of its derivative at a point,
we first have to calculate its derivative and then ask its value at the point:

D@g@x, yD, x, x, yD ê. 8x Ø 4, y Ø 5< Sin@4D Sin@5D

However, Mathematica  still  has  one  way  to  represent  derivatives,  which  is Derivative,  and  with  this
command we can specify the orders and the point at the same time:

Derivative@2, 1D@gD@4, 5D Sin@4D Sin@5D

Derivative[m, n, … ][f][a, b, … ]  Differentiate function f[x, y , … ] m times with respect to x, n

times with respect to y, … and evaluate the derivative at the point x = a, y = b, …

When differentiating unspecified functions, Mathematica shows primes for functions of one variable:

D@r@s@xDD, xD r£@s@xDD s£@xD

Superscripts are used for functions of several variables:

D@r@x, yD, x, x, yD rI2,1M@x, yD
However, in internal representations, Mathematica uses Derivative:

D@r@s@xDD, xD êê InputForm

Derivative[1][r][s[x]]*Derivative[1][s][x]

D@r@x, yD, x, x, yD êê InputForm

Derivative[2, 1][r][x, y]

‡ NonConstants

If  a  variable depends on another variable,  it  is  simple to explicitly denote the dependency.  In the next
example, both r and a depend on x:

D@a@xD r@xD, xD

r@xD a£@xD + a@xD r£@xD

Another way to express the dependency is to use the NonConstants option:

D@a r@xD, x, NonConstants Ø aD

D@a, x, NonConstants Ø 8a<D r@xD + a r£@xD

D[f, x, NonConstants Ø {a, b, … }]  Declare that a, b, … depend on x

618 Mathematica Navigator



19.1.2  Vector Analysis

‡ Gradient, Hessian, Jacobian, and More

For a scalar-valued function of several variables, we may want to calculate

the gradient vector (vector of the first derivatives);
the Hessian matrix (matrix of the pure and mixed second derivatives); and
the Laplacian scalar (sum of the unmixed second derivatives).

For a vector-valued function of several variables, we may want to calculate

the Jacobian matrix (the ith row is the gradient of the ith function); and
the divergence scalar (sum in which the ith term is the derivative of the ith function with respect to the

ith variable).

These can be calculated as given in the following box. Here, f is a scalar-valued and fs a vector-valued
function, and vars is a list of variables.

D[f, {vars}]  The gradient of f with respect to vars

D[f, {vars, 2}]  The Hessian of f with respect to vars

Inner[D, D[f, {vars}], vars]  The Laplacian of f with respect to vars

D[fs, {vars}]  The Jacobian of fs with respect to vars

Inner[D, fs, vars]  The divergence of fs with respect to vars

Note that in calculating a gradient, Hessian, or Jacobian, the variables are within double braces such
as in {{x, y, z}} or {{x, y, z}, 2}. In calculating the Laplacian and divergence, we used Inner (see

Section 14.2.4, p. 465). Here is a general example of this command:

Inner@f, 8a, b, c<, 8A, B, C<D

f@a, AD + f@b, BD + f@c, CD

As an example, here is a gradient:

vars = 8x, y, z<; p = f@x, y, zD;

D@p, 8vars<D

9fI1,0,0M@x, y, zD, fI0,1,0M@x, y, zD, fI0,0,1M@x, y, zD=
Next, we calculate a Hessian:

D@p, 8vars, 2<D êê MatrixForm

fI2,0,0M@x, y, zD fI1,1,0M@x, y, zD fI1,0,1M@x, y, zD
fI1,1,0M@x, y, zD fI0,2,0M@x, y, zD fI0,1,1M@x, y, zD
fI1,0,1M@x, y, zD fI0,1,1M@x, y, zD fI0,0,2M@x, y, zD

Here is a Laplacian:

Inner@D, D@p, 8vars<D, varsD

fI0,0,2M@x, y, zD + fI0,2,0M@x, y, zD + fI2,0,0M@x, y, zD
Calculate the Jacobian of a vector-valued function:

fs = 8f@x, y, zD, g@x, y, zD, h@x, y, zD<;

Chapter 19  •  Differential Calculus 619



D@fs, 8vars<D êê MatrixForm

fI1,0,0M@x, y, zD fI0,1,0M@x, y, zD fI0,0,1M@x, y, zD
gI1,0,0M@x, y, zD gI0,1,0M@x, y, zD gI0,0,1M@x, y, zD
hI1,0,0M@x, y, zD hI0,1,0M@x, y, zD hI0,0,1M@x, y, zD

Lastly, calculate a divergence:

Inner@D, fs, varsD

hI0,0,1M@x, y, zD + gI0,1,0M@x, y, zD + fI1,0,0M@x, y, zD
Here are more specific examples of a gradient, Hessian, and Jacobian:

f = x^2 + x y^2 + x y z^2; g = Exp@x y zD; h = Sin@x y zD;

D@f, 88x, y, z<<D

92 x + y2 + y z2, 2 x y + x z2, 2 x y z=
D@f, 88x, y, z<, 2<D

992, 2 y + z2, 2 y z=, 92 y + z2, 2 x, 2 x z=, 82 y z, 2 x z, 2 x y<=
D@8f, g, h<, 88x, y, z<<D

992 x + y2 + y z2, 2 x y + x z2, 2 x y z=,
9‰x y z y z, ‰x y z x z, ‰x y z x y=, 8y z Cos@x y zD, x z Cos@x y zD, x y Cos@x y zD<=

‡ A Package for Vector Analysis

In the VectorAnalysis`  package, there are many more commands for vector analysis. With this package,
we can do calculations in various 3D coordinate systems.  We will  not  give a thorough presentation of
this  package  but,  rather,  a  quick  overview.  For  details,  see VectorAnalysisêtutorialêVectorAnalysis.  First,
load the package:

<< VectorAnalysis`

Then we can look at the names of this package with the following command:

? VectorAnalysis`*

The  resulting  table  of  47  names  is  not  presented  here.  We  can  use  14  coordinate  systems  (e.g.,
Cartesian, Cylindrical,  and Spherical)  and  calculate Grad, Laplacian, Biharmonic, Div, Curl,
DotProduct, CrossProduct, and ScalarTripleProduct, among others.

Let  us  use  some  of  the  commands.  First,  we  ask  for  the  current  coordinate  system and the  default
coordinates:

8CoordinateSystem, Coordinates@D< 8Cartesian, 8Xx, Yy, Zz<<

Now we can calculate, for example, the gradient of a function:

Grad@Xx + Sin@Yy ZzDD 81, Zz Cos@Yy ZzD, Yy Cos@Yy ZzD<

We can set the coordinates:

SetCoordinates@Cartesian@x, y, zDD Cartesian@x, y, zD

Now we can use x, y, and z:

Div@8x y, x y z, Sin@x y zD<D y +x z +x y Cos@x y zD

Let us then move to spherical coordinates and ask for some information about this system:

SetCoordinates@Spherical@r, q, fDD Spherical@r, q, fD

620 Mathematica Navigator



CoordinateRanges@D 80 § r < ¶, 0 § q § p, -p < f § p<
CoordinatesToCartesian@8r, q, f<D

8r Cos@fD Sin@qD, r Sin@qD Sin@fD, r Cos@qD<

jdet = JacobianDeterminant@D r2 Sin@qD
As an application, we calculate the area and volume of a sphere of radius R:

Integrate@jdet, 8q, 0, Pi<, 8f, -Pi, Pi<D ê. r Ø R 4 p R2

Integrate@jdet, 8q, 0, Pi<, 8f, -Pi, Pi<, 8r, 0, R<D
4 p R3

3

19.1.3  Numerical Derivatives

‡ Numerical Derivatives of Functions

Sometimes it may be too difficult or impossible to calculate a derivative symbolically. You can then use

ND from a package (or the program we presented in Section 18.1.1, p. 543).

In the NumericalCalculus` package:

ND[f, x, a]  First derivative of f with respect to x at a

ND[f, {x, n}, a] nth derivative of f with respect to x at a

Options:
WorkingPrecision  Precision used in internal computations; examples of values:

MachinePrecision, 20

Method  Extrapolation method; possible values: EulerSum, NIntegrate

Scale  Initial step size (EulerSum) or the radius of the circle of integration (NIntegrate); default
value: 1

Terms  Number of divided differences calculated (EulerSum); default value: 7

ND  has  two  methods.  If EulerSum  is  used,  then ND  forms  a  sequence  of  divided  differences  with
successively smaller step sizes and then extrapolates to the limit by calculating a numerical limit of the
divided differences. The initial step size is Scale, and a total of Terms difference quotients is calculated
by successively halving the previous step size. If NIntegrate is used, then ND applies Cauchy’s integral
formula, and Scale is the radius of the circle of integration.

As an example, we calculate the first, second, and third derivatives of an expression numerically with
ND using both methods and compare the results with the numerical values of the exact derivatives given
by D. The approximations are very good, particularly with the NIntegrate method:

<< NumericalCalculus`

f = Exp@-x^2D;
a1 = Table@ND@f, 8x, i<, 1, Method Ø EulerSumD, 8i, 3<D;
a2 = Table@ND@f, 8x, i<, 1, Method Ø NIntegrateD, 8i, 3<D;
b = Table@D@f, 8x, i<D, 8i, 3<D ê. x Ø 1.;

8a1 - b, a2 - b< êê Chop

991.76167 μ 10-9, 7.28006 μ 10-7, -0.0000482498=, 80, 0, 0<=
Remove@"Global`*"D

Chapter 19  •  Differential Calculus 621



‡ Numerical Derivatives of Data

If  we  have  values  of  a  function  only  at  some  given  points,  we  can  still  calculate  approximations  to
derivatives at most of the points. As an example, here are two different kinds of approximations to the
first derivative:

data = 8a, b, c, d, e<;

Differences@data, 1D ê h

:
-a + b

h
,

-b + c

h
,

-c + d

h
,

-d + e

h
>

HdataP3 ;;T -dataP ;; -3TL ê H2 hL

:
-a + c

2 h
,

-b + d

2 h
,

-c + e

2 h
>

Here, h is the step size between the points. In the first case, we did not get the approximation at the last
point and in the second case at the first and last points. Remember that, for example, dataP3;;T  takes
elements from the third to the end and dataP;;-3]] from the first to the third last (see Section 14.1.2, p.

448).

To calculate an approximation to the second derivative, do as follows:

Differences@data, 2D ê h^2

:
a - 2 b + c

h2
,
b - 2 c + d

h2
,
c - 2 d + e

h2
>

Here, we did not get the approximation at the first and last points. Note that all these calculations rely
on the fact that Mathematica automatically does all calculations with lists component by component.

To  calculate  finite  difference  approximations  of  derivatives,  we  present  an  advanced  command,

NDSolve`FiniteDifferenceDerivative, in Section 27.3.2, p. 914.

19.1.4  Total Derivatives

Dt  calculates total derivatives in which all  variables in the expression are assumed to depend on all of
the variables with respect to which the total derivative is calculated. The form of Dt  is the same as the
form of D. Here are some examples:

Dt[f, x], Dt[f, x, x], Dt[f, x, y]

We can also use forms such as Dt[f, {x, 2}]. Here are two examples of total derivatives:

Dt@x y, xD y +x Dt@y, xD
Dt@x y, x, xD 2 Dt@y, xD +x Dt@y, 8x, 2<D

‡ Example: Differentiating an Implicit Function

We define a function of two variables:

f = x^2 + 3 y^2 - x y - 1;

Then we define an equation in which this function is equal to zero:

eqn = f ã 0 -1 +x2 -x y +3 y2 ã 0

622 Mathematica Navigator



The equation eqn  implicitly defines a function yHxL.  We considered the plotting of implicit functions in

Section 17.1.3, p. 518:

p1 = ContourPlot@f == 0, 8x, -1.1, 1.1<, 8y, -0.7, 0.7<,
Frame Ø False, Axes Ø True, AspectRatio Ø AutomaticD

-1.0 -0.5 0.5 1.0

-0.6

-0.4

-0.2

0.2

0.4

0.6

Now we calculate an equation for the derivative of the implicitly defined function:

deqn = Dt@eqn, xD 2 x -y -x Dt@y, xD +6 y Dt@y, xD ã 0

Solving Dt[y, x] from here, we get the derivative y£HxL, and we give it the name dy:

Solve@deqn, Dt@y, xDD ::Dt@y, xD Ø
2 x - y

x - 6 y
>>

dy = Dt@y, xD ê. %P1T
2 x - y

x - 6 y

Another way to calculate the derivative is to use a result of analysis:

-D@f, xD ê D@f, yD
-2 x + y

-x + 6 y

Let us consider the derivative for x = 0.5. First, we solve the corresponding values of y:

x1 = 0.5;

y1 = y ê. Solve@eqn ê. x Ø x1, yD 8-0.423564, 0.59023<

Then we calculate the corresponding values of the derivative:

dy1 = dy ê. 8x Ø x1, y Ø y1< 80.468065, -0.134731<

Next, we form the tangents at these points:

tan1 = y1 + dy1 Hx - x1L

8-0.423564 + 0.468065 H-0.5 + xL, 0.59023 - 0.134731 H-0.5 + xL<

(Note how easily we obtained both of the tangents with one command: Mathematica  automatically does
vector operations component by component.) Lastly, we show the function, the tangents, and the points:

p2 = Plot@tan1, 8x, -1.1, 1.1<D;

Show@p1, p2, Epilog Ø 8Point@8x1, y1P1T<D, Point@8x1, y1P2T<D<D

-1.0 -0.5 0.5 1.0

-0.6

-0.4

-0.2

0.2

0.4

0.6

Chapter 19  •  Differential Calculus 623



‡ Constants

Dt[f, x, Constants Ø {a, b, … }]  Declare that a, b, … do not depend on x

In  this  way,  we  can  tell  that  some  symbols  are  treated  as  constants  when  we  calculate  a  total
derivative. For example,

Dt@a x^m, x, Constants Ø 8a, m<D a m x-1+m

If  we  want  to  define  some  symbols  permanently  as  constants,  we  can  give  them  the  attribute

Constant (see Section 17.2.4, p. 530):

SetAttributes@8a, m<, ConstantD

Now a and m are treated as constants:

Dt@a x^m, xD a m x-1+m

The attribute can be removed by writing Remove[a, m].

We can define a certain derivative of a given symbol as having a certain value:

n ê: Dt@n, xD = 0 0

This defines n as having the property that it does not depend on x. Now we get the following:

Dt@b x^n, xD b n x-1+n +xn Dt@b, xD
The property Dt[n, x] = 0 can be removed by writing Remove[n].

‡ Total Differentials

Dt[f] Total differential of f

Dt@x^2 y^2D 2 x y2 Dt@xD +2 x2 y Dt@yD
Remove@"Global`*"D

19.2  Taylor Series

19.2.1  Taylor Series and Polynomials

‡ Taylor Series

Series[f, {x, a, n}] Taylor series of f with respect to x about the point a with terms up to the nth
power of x - a

Series@Exp@c xD, 8x, 1, 2<D

‰c + c ‰c Hx - 1L +
1

2
c2 ‰c Hx - 1L2 + O@x - 1D3

The remainder is in the form of a capital O. In normal mathematical notation, the remainder here would

be written as OIHx - 1L3M, indicating terms where the power of x - 1 is at least 3. Here is another example:

624 Mathematica Navigator



t = Series@1 ê Sqrt@1 + xD, 8x, 0, 4<D

1 -
x

2
+
3 x2

8
-
5 x3

16
+
35 x4

128
+ O@xD5

We can calculate with a Taylor series expansion:

t^2 1 - x + x2 - x3 + x4 + O@xD5

Here,  all  terms  of  an  order  higher  than  four  are  gathered  in  the  remainder.  We  can  also  calculate
derivatives and integrals (note the change in the remainder):

D@t, xD -
1

2
+
3 x

4
-
15 x2

16
+
35 x3

32
+ O@xD4

Integrate@t, xD x -
x2

4
+
x3

8
-
5 x4

64
+
7 x5

128
+ O@xD6

Additional functions are automatically expanded if they occur together with a series:

t + Sin@c xD 1 + -
1

2
+ c x +

3 x2

8
+ -

5

16
-
c3

6
x3 +

35 x4

128
+ O@xD5

A series expansion is calculated automatically if we add a remainder:

Sin@c xD + O@xD^7 c x -
c3 x3

6
+
c5 x5

120
+ O@xD7

Internally, power series are SeriesData objects:

t êê InputForm

SeriesData[x, 0, {1, -1/2, 3/8, -5/16, 35/128}, 0, 5, 1]

‡ Taylor Polynomial

Normal[series]  Delete the remainder from the Taylor series

If we remove the remainder, we get the Taylor polynomial:

Normal@tD 1 -
x

2
+
3 x2

8
-
5 x3

16
+
35 x4

128

The result  is  an ordinary expression, and now all  calculations are done as with usual expressions. The
following animation shows Taylor polynomials of BesselJH5, xL at x = 10 up to degree 15:

Animate@Plot@Evaluate@8BesselJ@5, xD, Normal@Series@BesselJ@5, xD, 8x, 10, n<DD<D,
8x, 0, 20<, PlotRange Ø 8-0.41, 0.41<, ImageSize Ø 200D,

8n, 0, 15, 1<, AnimationRunning Ø FalseD

Chapter 19  •  Differential Calculus 625



‡  Special Power Series

Series can also calculate power series that contain negative and fractional powers:

Series@1 ê Sin@xD^3, 8x, 0, 6<D

1

x3
+

1

2 x
+
17 x

120
+
457 x3

15 120
+
3287 x5

604 800
+ O@xD7

Series@Sin@Sqrt@xDD, 8x, 0, 4<D

x -
x3ë2

6
+
x5ë2

120
-

x7ë2

5040
+ O@xD9ë2

Sometimes an essential singularity is encountered, and the series cannot be calculated:

Series@Sin@1 ê xD, 8x, 0, 3<D SinB
1

x
F

However, this series can be calculated about infinity:

Series@Sin@1 ê xD, 8x, ¶, 8<D

1

x
-
1

6

1

x

3

+
1

120

1

x

5

-

J 1

x
N7

5040
+ OB

1

x
F

9

Unspecified functions are treated correctly:

Series@h@xD, 8x, 0, 4<D

h@0D + h£@0D x +
1

2
h££@0D x2 +

1

6
hI3M@0D x3 +

1

24
hI4M@0D x4 + O@xD5

By  default,  it  is  assumed  that  unspecified  functions  are  analytic.  With  an  option,  we  can  tell  that
analyticity is not assumed:

Series@h@xD Exp@xD, 8x, 0, 2<D

h@0D + Hh@0D + h£@0DL x +
1

2
Hh@0D + 2 h£@0D + h££@0DL x2 + O@xD3

Series@h@xD Exp@xD, 8x, 0, 2<, Analytic Ø FalseD

h@xD 1 + x +
x2

2
+ O@xD3

‡ More about Power Series

If  we want to develop a function of several variables into a series, we give the information about each
variable in turn:

Series[f, {x, a, m}, {y, b, n}]

Series@Sin@xD Cos@yD, 8x, 0, 5<, 8y, 0, 5<D

1 -
y2

2
+
y4

24
+ O@yD6 x + -

1

6
+
y2

12
-

y4

144
+ O@yD6 x3 +

1

120
-

y2

240
+

y4

2880
+ O@yD6 x5 + O@xD6

InverseSeries[series, x]  Find the inverse series of series

ComposeSeries[series1, series2]  Replace the variable in series1 with series2

Residue[f, {x, a}]  Residue of f when x equals a

626 Mathematica Navigator



If sIyM  is  a  series  expansion  of f IyM,  then InverseSeries[s, x]  gives  the  series  expansion  of  the

inverse  function  of f IyM~that  is,  for y  such  that f IyM = x.  Calculate  the  inverse  series  of  a  general

function:

InverseSeries@Series@f@yD, 8y, a, 2<D, xD

a +
x - f@aD
f£@aD

-
f££@aD Hx - f@aDL2

2 f£@aD3
+ O@x - f@aDD3

This is a series expansion of y such that f IyM = x. Thus, if we give x the value 0, we get a series expansion

of y such that f IyM = 0~that is, a series expansion for a zero of f IyM:
Normal@%D ê. x Ø 0

a -
f@aD
f£@aD

-
f@aD2 f££@aD

2 f£@aD3

Here,  the  first  two terms correspond with  Newton’s  method.  Taking more terms,  we get  higher-order
methods.

With NSeries from the NumericalCalculus`  package, we can calculate a numerical approximation to a
power  series  expansion,  and  with NResidue  from  the  same  package  we  can  calculate  a  numerical
approximation to a residue.

19.2.2  Coefficients

SeriesCoefficient[series, n]  Give the coefficient of the nth-order term of series

SeriesCoefficient[f, {x, a, n}]  Give the coefficient of the nth-order term of the series expan-

sion of f (here, n can be symbolic)
CoefficientList[poly, var]  Give a list of coefficients of powers of var in poly, starting with

power 0

‡ Specific Coefficients

Form a series expansion:

s = Series@Log@1 + xD, 8x, 1, 4<D

Log@2D +
x - 1

2
-
1

8
Hx - 1L2 +

1

24
Hx - 1L3 -

1

64
Hx - 1L4 + O@x - 1D5

Find the coefficients:

Table@SeriesCoefficient@s, nD, 8n, 0, 4<D

:Log@2D,
1

2
, -

1

8
,

1

24
, -

1

64
>

The list of coefficients of powers of x is found from the expanded expression:

CoefficientList@s, xD

:-
131

192
+ Log@2D,

15

16
, -

11

32
,

5

48
, -

1

64
>

ExpandüNormalüs

-
131

192
+
15 x

16
-
11 x2

32
+
5 x3

48
-
x4

64
+ Log@2D

Chapter 19  •  Differential Calculus 627



‡  General Coefficients

Now we ask for the general nth-order coefficient:

SeriesCoefficient@Log@1 + xD, 8x, 1, n<D

IfBn ã 0, Log@2D,
IfB-1 + n ¥ 0, J- 1

2
N-1+n

, 0F

2 n
F

Table@%, 8n, 0, 4<D

:Log@2D,
1

2
, -

1

8
,

1

24
, -

1

64
>

As another example, consider the following series:

Series@1 ê H1 + x^4L, 8x, 0, 16<D

1 - x4 + x8 - x12 + x16 + O@xD17

In this example, it is quite easy to write a general formula for the coefficients, but we try the command:

SeriesCoefficient@1 ê H1 + x^4L, 8x, 0, n<D

1

4
H-1Lnë4 I1 + H-1Ln + Ân + Â3 nM

Table@%, 8n, 0, 16<D

81, 0, 0, 0, -1, 0, 0, 0, 1, 0, 0, 0, -1, 0, 0, 0, 1<

‡ Generating Functions

The probability-generating function of a discrete random variable X is defined to be GHzL = EIzXM. Thus,

GHzL  can be calculated from GHzL =⁄n PHX = nL zn.  Inversely,  if  we know a closed-form expression for  a

probability generating function GHzL, then PHX = nL can be calculated as the coefficient of zn  in the power
series expansion of GHzL. As an example, if GHzL = ‰lHz-1L, the coefficient of zn is

SeriesCoefficient@Exp@l Hz - 1LD, 8z, 0, n<D
‰-l ln

n!

This is the probability function of a Poisson random variable.

Toss a die n  times. Let Xi  be the ith result and Sn  the sum of the results. The probability-generating

function  of Xi  is GXiHzL =⁄k=16 1
6

zk,  and  that  of Sn  is GSnHzL =¤i=1
n GXiHzL.  Thus, GSnHzL = 1

6n
I⁄k=16 zkMn.  We

can now get the probabilities of Sn from the power series expansion of GSnHzL. For example,

GS@n_D := Sum@z^k, 8k, 1, 6<D^n ê 6^n

CoefficientList@GS@3D, zD

:0, 0, 0,
1

216
,

1

72
,

1

36
,

5

108
,

5

72
,

7

72
,

25

216
,
1

8
,
1

8
,

25

216
,

7

72
,

5

72
,

5

108
,

1

36
,

1

72
,

1

216
>

ListPlot@%, Filling Ø AxisD

628 Mathematica Navigator



It is known that if PnHxL is the nth Legendre polynomial, then ⁄n=0¶ PnHxL tn = 1ì 1 - 2 t x + t2 . Thus,

SeriesCoefficient@1 ê Sqrt@1 - 2 t x + t^2D, 8t, 0, n<D

LegendreP@n, xD

With special values of n we get explicit polynomials:

SeriesCoefficient@1 ê Sqrt@1 - 2 t x + t^2D, 8t, 0, 5<D

1

8
I15 x - 70 x3 + 63 x5M

LegendreP@5, xD
1

8
I15 x - 70 x3 + 63 x5M

19.2.3  Equations

Sometimes  we  want  to  determine  conditions  under  which  two  power  series  are  equivalent.  For
example, consider the following series:

s = Series@y@xD, 8x, 0, 4<D ê. y@0D Ø 1

1 + y£@0D x +
1

2
y££@0D x2 +

1

6
yI3M@0D x3 +

1

24
yI4M@0D x4 + O@xD5

We want conditions for the derivatives of y  at 0 under which the following equation is true (up to the

remainder):

eqn = D@s, xD + s ã Exp@xD

H1 + y£@0DL + Hy£@0D + y££@0DL x +

y££@0D
2

+
1

2
yI3M@0D x2 +

1

6
yI3M@0D +

1

6
yI4M@0D x3 + O@xD4 ã ‰x

The expansion of ‰x is as follows:

Series@Exp@xD, 8x, 0, 3<D 1 + x +
x2

2
+
x3

6
+ O@xD4

We see that for the equation eqn to be true, we must have 1 + y£H0L = 1, and so on. With LogicalExpand,

we can easily form such conditions.

LogicalExpand[series1 ã series2] Find conditions that make the equation true

We try this command with the preceding example:

LogicalExpand@eqnD

y£@0D ã 0 && -1 + y£@0D + y££@0D ã 0 &&

-
1

2
+
y££@0D
2

+
1

2
yI3M@0D ã 0 && -

1

6
+
1

6
yI3M@0D +

1

6
yI4M@0D ã 0

Now we can solve the equations:

sol = Solve@%D

99y£@0D Ø 0, y££@0D Ø 1, yI3M@0D Ø 0, yI4M@0D Ø 1==
We can also directly apply Solve to the equation eqn (without first using LogicalExpand):

Chapter 19  •  Differential Calculus 629



Solve@eqnD

99y£@0D Ø 0, y££@0D Ø 1, yI3M@0D Ø 0, yI4M@0D Ø 1==
If we now insert these values into s, we get, in fact, a (crude) series solution for the differential equation
y£HxL + yHxL = ‰x with the initial value yH0L = 1:

s ê. solP1T êê Normal 1 +
x2

2
+
x4

24

The exact solution of the equation is

DSolve@8y'@xD + y@xD == Exp@xD, y@0D == 1<, y@xD, xD

::y@xD Ø
1

2
‰-x I1 + ‰2 xM>>

with a series expansion

Series@y@xD ê. %P1T, 8x, 0, 4<D 1 +
x2

2
+
x4

24
+ O@xD5

For more information about series solutions of differential equations, see Section 26.2.2, p. 843.

19.3  Limits

19.3.1  Symbolic Limits

Limit[f, x Ø a]  Limit of f as x approaches a

Options:
Direction  Direction from which a is approached; possible values: Automatic (usually means -1),

-1 (from above), 1 (from below)
Assumptions  Assumptions for parameters; examples of values: $Assumptions, a > 0

Analytic  Whether unknown functions are treated as analytic; possible values: False, True

Write  the  arrow  as ->  (Mathematica  then  replaces  it  with  a  true  arrow Ø).  The  default  value
Automatic  for Direction  means Direction Ø -1  (i.e.,  from  above  or  from  larger  values)  except  for
limits at infinity, where it means Direction Ø 1. For example,

Limit@HCos@xD - 1L ê x^2, x Ø 0D -
1

2

Limit@H1 + c ê xL^x, x Ø ¶D ‰c

Limit@x^y, x Ø ¶, Assumptions Ø y < 0D 0

The following limit is not unique, and we get a whole interval:

Limit@Sin@1 ê xD, x Ø 0D Interval@8-1, 1<D

‡ Derivatives

By definition, derivatives are obtained from limits:

Limit@HSin@x + hD - Sin@xDL ê h, h Ø 0D Cos@xD

If we have an expression containing unknown functions, the default is that Limit does not assume that
they are analytic and, consequently, the limit is not calculated:

630 Mathematica Navigator



Limit@Hf@x + hD - f@xDL ê h, h Ø 0D

LimitB
-f@xD + f@h + xD

h
, h Ø 0F

Assuming that f is analytic, we get a result:

Limit@Hf@x + hD - f@xDL ê h, h Ø 0, Analytic Ø TrueD f£@xD
Limit@Hf@x + 2 hD - 2 f@x + hD + f@xDL ê h^2, h Ø 0, Analytic Ø TrueD f££@xD

‡ Integrals

By definition, integrals are obtained from the limit of a Riemann sum.

riemannSum@f_, x_, a_, b_, n_D := With@8h = Hb - aL ê n<,
h Sum@f ê. x Ø a + h k, 8k, 0, n - 1<DD

Calculate a Riemann sum and compare its limit with the corresponding integral:

riemannSum@1 + x + x^2, x, 0, 1, nD
1 - 6 n + 11 n2

6 n2

Limit@%, n Ø ¶D
11

6

Integrate@1 + x + x^2, 8x, 0, 1<D
11

6

‡ Direction

Consider the following discontinuous function:

g = 1 ê H2^H1 ê xL + 1L;

Plot@g, 8x, -3, 3<D

-3 -2 -1 1 2 3

0.2

0.4

0.6

0.8

1.0

We see that  the function has two different limits~1 and 0~at x = 0. Mathematica  gives,  by default,  the
limit from above:

Limit@g, x Ø 0D 0

If we suspect that the limit may be different depending on the direction, we can also calculate the limit
from below:

Limit@g, x Ø 0, Direction Ø 1D 1

Chapter 19  •  Differential Calculus 631



19.3.2  Numerical Limits

In the NumericalCalculus` package:

NLimit[f, x Ø a]  Numerical limit of f as x approaches a

Options:
Direction  Direction from which a is approached; possible values: Automatic (usually means -1),

-1 (from above), 1 (from below)
WorkingPrecision  Precision used in internal computations; examples of values:

MachinePrecision, 20

Scale  Initial step size; default value: 1

Terms  Number of values calculated; default value: 7

Method  Extrapolation method; possible values: EulerSum, SequenceLimit

WynnDegree  Degree to use in SequenceLimit; default value: 1

NLimit  works  by  calculating  a  sequence  of  values  for  the  function  with  successively  smaller  step
sizes and then extrapolating to the limit. The initial step size is Scale (default is 1), and a total of Terms

(default is 7) values is calculated by successively dividing the previous step size by 10. The sequence of
values is then extrapolated by applying either a generalized Euler transformation (Method Ø EulerSum;
this is the default) or Wynn’s e-algorithm (Method Ø SequenceLimit).

It turns out that the default method does not calculate the limit of the first example in Section 19.3.1,

p. 630, but the other method works:

<< NumericalCalculus`

NLimit@HCos@xD - 1L ê x^2, x Ø 0, Method Ø SequenceLimitD

-0.5

632 Mathematica Navigator



20
Integral Calculus

Introduction 633

20.1  Integration 634

20.1.1  Indefinite Integration 634 Integrate

20.1.2  More about Indefinite Integration 637

20.1.3  Definite Integration 638 Integrate

20.1.4  Integration over Regions 642 Boole

20.2  Numerical Quadrature 644

20.2.1  Introduction 644 NIntegrate

20.2.2  Strategies and Rules 647

20.2.3  General Adaptive Strategies 648 "GlobalAdaptive", "LocalAdaptive"

20.2.4  Quadrature Rules 652 "GaussKronrodRule", "MultiDimensionalRule", etc.

20.2.5  Singular Integrands 655 IMT, "DoubleExponential", "DuffyCoordinates"

20.2.6  Oscillatory Integrands 658 "ClenshawCurtisRule", "ExtrapolatingOscillatory", etc.

20.2.7  Symbolic Preprocessing 660 "SymbolicPiecewiseSubdivision", "EvenOddSubdivision", etc.

20.2.8  Monte Carlo Methods 662 "MonteCarlo", "AdaptiveMonteCarlo", etc.

20.2.9  More about Quadrature 664 NewtonCotesWeights, GaussianQuadratureWeights, etc.

20.3  Sums and Products 666

20.3.1  Exact Sums 666 Sum

20.3.2  Numerical Sums 667 NSum

20.3.3  Products 670 Product, NProduct

20.4  Transforms 670

20.4.1  Laplace Transforms 670 LaplaceTransform, InverseLaplaceTransform

20.4.2 Z-Transforms 672 ZTransform, InverseZTransform

20.4.3  Fourier Transforms and Series 672 FourierTransform, FourierTrigSeries, etc.

20.4.4  Discrete Fourier Transforms 675 Fourier, InverseFourier, FourierDST, FourierDCT

Introduction

Riemann consulted a doctor about his diet. He was told to reduce the amount of food he
 ate at each meal but to increase the number of meals. He proceeded to do so and ultimately

 ate infinitesimal amount infinitely often, and he found that his weight did not change.
 Shortly after this, he gave a precise definition of a definite integral.

Mathematica’s  symbolic  integration  methods  have  such  power  and  knowledge  that  in  the  Documenta-
tion  Center  it  is  said  that Integrate  can  evaluate  essentially  all  indefinite  integrals  and most  definite
integrals listed in standard books of tables.



In the case in which we do not get an exact answer for a definite integral, we can resort to numerical
methods (numerical quadrature) and get an approximate answer with NIntegrate.

Mathematica  has  excellent  adaptive  methods  for  numerical  integration.  The  default  methods  often
work very  well,  but  we also  have  extensive  possibilities  to  choose a  method we think should suit  our
problem.  We  can  choose  between  global  and  local  adaptive integration  strategy  and  between  many
particular integration rules. For a detailed account of numerical integration, see tutorialêNIntegrateOverview.

In this chapter, we also consider sums, products,  and transforms. Many transforms of functions are
based on integrals or sums. The best-known transform is the Laplace transform. Solving differential and

partial  differential  equations  with  this  transform is  considered in Sections  26.2.1,  p. 841,  and 27.1.2,  p.

891. In Section 28.1.3, p. 932, we demonstrate how to use the Z-transform to solve difference equations.

In Section 30.6.2, p. 1045, we use the discrete Fourier transform to smooth data.

20.1  Integration

20.1.1  Indefinite Integration

Integrate[f, x] Indefinite integral of f with respect to x

Note that the constant of integration is not shown:

Integrate@x ê Ha + b xL, xD

x

b
-

a Log@a + b xD
b2

If the derivative of the integral is the same as the integrand, this supports the correctness of the integral:

D@%, xD êê Simplify
x

a + b x

Remember that integrals can also be entered with the aid of the BasicMathInput  palette (see Section

1.4.1,  p. 15).  Still  another  way  to  enter  integrals  is  to  write  2D  input  directly  with  the  keyboard  (see

Section  3.3.3,  p. 76):  The  integral  sign Ÿ  can  be  written  as ÂintÂ,  and  the „  appearing  before  the

variable of the integration is entered as ÂddÂ:

‡ Ha + x Exp@xDL „x ‰
x H-1 + xL +a x

Derivative can also be used to calculate integrals: Derivative[-n][f][x] gives the nth antideriva-

tive (or indefinite integral) of f at x (recall from Section 19.1.1, p. 618, that Derivative[n][f][x] gives

the nth derivative of f at x). For example,

f@x_D := 1

Table@Derivative@-nD@fD@xD, 8n, 0, 3<D

:1, x,
x2

2
,
x3

6
>

634 Mathematica Navigator



‡ Special Values of Parameters

An important point is that Mathematica  assumes that all parameters in the integrand have generic values.
For  example,  the  first  integral  given  previously  is  correct  only  if b is  not  0.  If b = 0,  the  integral  is,  of

course, x2 ë H2 aL. Mathematica  does  not  tell  you  for  what  values  the  result  holds;  you  have  to  check

special cases directly. Here is another example:

Integrate@Log@xD^n ê x, xD
Log@xD1+n

1 + n

This holds for a generic n~that is, for an n not equal to -1. If n = -1, the result is different:

Integrate@Log@xD^H-1L ê x, xD Log@Log@xDD
However,  for definite  integrals, Mathematica  can  give  conditions under which the integral  converges

(see Section 20.1.3, p. 639).

‡ Special Functions

Many functions do not  have integrals  in terms of  elementary functions.  However,  the integral  may be
representable in terms of some special functions:

Integrate@Exp@-x^2D, xD
1

2
p Erf@xD

The result of the following integral contains an elliptic integral:

Integrate@1 ê Sqrt@1 + x^3D, xD

1

31ë4 1 + x3

2 H-1L1ë6
-H-1L1ë6 JH-1L2ë3

+ xN

1 + H-1L1ë3 x + H-1L2ë3 x2 EllipticFBArcSinB -H-1L5ë6 H1 + xL
31ë4

F, H-1L1ë3F

‡ Piecewise Functions

Piecewise functions can also be integrated:

g@x_D = Piecewise@88Sin@xD, x^2 < 1<, 8Cos@xD, x^2 ¥ 1<<D

Sin@xD x2 < 1

Cos@xD x2 ¥ 1

Integrate@g@xD, xD

Sin@xD x § -1

Cos@1D - Cos@xD - Sin@1D -1 < x § 1

-2 Sin@1D + Sin@xD True

Integrals containing absolute value are not done unless the variable is real:

Integrate@Abs@xD x, xD

‡ x Abs@xD „x

Integrate@Abs@xD x, x, Assumptions Ø x œ RealsD

-
x3

3
x § 0

x3

3
True

Chapter 20  •  Integral Calculus 635



‡  Root Sums

In integrating rational functions, we often get an explicit result:

int = Integrate@1 ê H2 + 3 x - x^3L, xD

1

9
-

3

1 + x
- Log@-2 + xD + Log@1 + xD

Often, the result also contains a RootSum object:

int = Integrate@1 ê H2 + 2 x - x^3L, xD

-RootSumB-2 - 2 Ò1 + Ò13 &,
Log@x - Ò1D
-2 + 3 Ò12

&F

Thus,  the  integral  is -⁄i=13 logIx - riM ë I-2 + 3 ri
2M,  where r1, r2,  and r3  are  the  roots  of -2 - 2 x + x3.  We

can see the sum with Normal:

int êê Normal

-

LogAx - RootA-2 - 2 Ò1 + Ò13 &, 1EE
-2 + 3 RootA-2 - 2 Ò1 + Ò13 &, 1E2

-

LogAx - RootA-2 - 2 Ò1 + Ò13 &, 2EE
-2 + 3 RootA-2 - 2 Ò1 + Ò13 &, 2E2

-

LogAx - RootA-2 - 2 Ò1 + Ò13 &, 3EE
-2 + 3 RootA-2 - 2 Ò1 + Ò13 &, 3E2

We can also ask for the explicit expression to be shown:

int êê ToRadicals

-

LogB- 1

3
J27 - 3 57 N1ë3

-

9+ 57
1ë3

32ë3
+ xF

-2 + 3
1

3
J27 - 3 57 N1ë3

+

9+ 57
1ë3

32ë3

2
-

LogB 1

6
J1 + Â 3 N J27 - 3 57 N1ë3

+

1-Â 3 9+ 57
1ë3

2 32ë3
+ xF

-2 + 3 -
1

6
J1 + Â 3 N J27 - 3 57 N1ë3

-

1-Â 3 9+ 57
1ë3

2 32ë3

2
-

LogB 1

6
J1 - Â 3 N J27 - 3 57 N1ë3

+

1+Â 3 9+ 57
1ë3

2 32ë3
+ xF

-2 + 3 -
1

6
J1 - Â 3 N J27 - 3 57 N1ë3

-

1+Â 3 9+ 57
1ë3

2 32ë3

2

Thus,  when  asking  the  value  of  the  integral, Mathematica  decided  not  to  show  the  explicit  expression
because it is quite involved. Anyway, we can do usual calculations with root sums:

636 Mathematica Navigator



Plot@int, 8x, 2, 10<D

4 6 8 10

0.02

0.04

0.06

0.08

0.10

D@int, xD êê Simplify
1

2 + 2 x - x3

20.1.2  More about Indefinite Integration

‡ Difficult Integrals

If Mathematica  does  not  do  the  integration,  there  are  two  possibilities:  The  integral  really  cannot  be
calculated in terms of any of the built-in elementary and special functions of Mathematica, or the integral
can  be  calculated  but Mathematica  did  not  succeed  at  doing  so.  If  you  think  the  integral  could  be
calculated, try helping Mathematica. For example, try special values for the parameters.

If Mathematica cannot calculate the integral, it simply writes the given command as such:

Integrate@Log@x^xD^n, xD ‡ LogAxxEn
„x

Mathematica can calculate this integral for any given positive integer value of n. For example,

Integrate@Log@x^xD^2, xD êê Simplify

1

54
x J4 x2

+ 18 x2 Log@xD2
+ 3 x Log@xD I5 x - 18 LogAxxEM - 27 x LogAxxE + 54 LogAxxE2N

You  can  also  try  to  write  the  integrand  in  another  form  (e.g.,  with Apart  you  get  partial  fraction
expansions),  or  try  integration  by  parts  or  change  of  variable.  If  you  have  a  definite  integral,  you can
also try numerical quadrature (see Section 20.2).

If the integrand contains unknown functions, Mathematica may not be able to calculate the integral:

Integrate@p@xD p''@xD, xD ‡ p@xD p££@xD „x

However, sometimes it succeeds:

Integrate@2 p@xD p'@xD, xD p@xD2

It is always good to check the result given by Mathematica. For an indefinite integral, we can differenti-
ate  the  result.  For  a  definite  integral,  we  can  also  use  numerical  quadrature  (for  specific  values  of  the
parameters) and compare the results.

‡ Integration by Parts

Mathematica can do the following integral:

Integrate@Log@xD x^n, xD
x1+n H-1 + H1 + nL Log@xDL

H1 + nL2

However, let us try integration by parts; our example is from Wrede and Spiegel (2002, p. 106). The rule
can be written as follows:

Chapter 20  •  Integral Calculus 637



Integrate@u dv, xD = u v - Integrate@v du, xD

Here, du and dv are derivatives of u and v. Define u and dv:

u = Log@xD; dv = x^n;

Then calculate the derivative of u and the integral of dv:

8du = D@u, xD, v = Integrate@dv, xD< :1
x
,

x1+n

1 + n
>

The original integral is then as follows:

u v - Integrate@v du, xD -
x1+n

H1 + nL2
+

x1+n Log@xD
1 + n

‡ Change of Variable

Let us integrate, by change of variable, the following function:

f = a^Sqrt@b + c xD;

This example is a generalization of an example in Wrede and Spiegel (2002, p. 107). Denote y = b + c x

and express this as an equation:

eqn = y ã Sqrt@b + c xD y ã b + c x

Solve this for x:

xx = x ê. Solve@eqn, xDP1T
-b + y2

c

Insert this into the integrand and into the differential:

g = PowerExpand@Hf ê. x Ø xxL D@xx, yDD
2 ay y

c

(Here, we used PowerExpand to simplify y2  to y, which is true if y ¥ 0.) Let us now try integration:

iy = Integrate@g, yD
2 ay H-1 + y Log@aDL

c Log@aD2

Lastly, we go back to the variable x:

ix = iy ê. ToRules@eqnD
2 a b+c x J-1 + b + c x Log@aDN

c Log@aD2

(Here, ToRules[eqn] writes the equation eqn as the rule {y Ø Sqrt[b + c x]}.) By the way, Mathematica
does this integral, too:

Integrate@f, xD
2 a b+c x J-1 + b + c x Log@aDN

c Log@aD2

20.1.3  Definite Integration

Integrate[f, {x, a, b}]  Definite integral of f when x varies from a to b

638 Mathematica Navigator



Integrate@Exp@-x^2D, 8x, -¶, ¶<D p

(Recall that ¶  can be written as ÂinfÂ.) Definite integrals can also be calculated by the BasicMathIn-

put palette, or you can write 2D input directly with the keyboard (see Section 3.3.3, p. 76). For example,

consider the following integral:

‡
0

p

HSin@xD + Log@xDL „x

To write this expression, type ÂintÂ‚Î-Ï0‚Î%ÏÂpÂ‚ÎâÏ(Sin[x]+Log[x])ÂddÂx.

If a definite integral is not calculated, we can ask for a numerical value (see Section 20.2.1, p. 644):

Integrate@Sin@Sin@xDD, 8x, 0, p ê 3<D ‡
0

p

3
Sin@Sin@xDD „x

% êê N 0.466185

‡ Simplifying the Result

Let  us  try  to  derive  formula  18.26  in Spiegel  (1999,  p.  107).  This  formula  states  that  the  integral  of
sinHm xL sinHn xL (m and n  are integers) over H0, pL  is zero unless m = n,  in which case the integral is p ê 2.
First, we compute the integral with the general m and n:

int = Integrate@Sin@m xD Sin@n xD, 8x, 0, p<D

n Cos@n pD Sin@m pD - m Cos@m pD Sin@n pD
m2 - n2

Then we assume that m and n are integers:

Simplify@int, 8m, n< œ IntegersD 0

However,  the  result  obtained is  a  generic  result  that  is  valid  only for  most  values  of m  and n.  Specifi-
cally, it does not hold for the case m = n. We calculate and simplify this integral separately:

int2 = Integrate@Sin@m xD^2, 8x, 0, p<D
p

2
-
Sin@2 m pD

4 m

Simplify@int2, m œ IntegersD
p

2

‡ Conditions of Convergence

For  definite  integrals, Mathematica  can  give  conditions  under  which  the  integral  converges.  The
following integral converges only if the real part of a is positive:

Integrate@Exp@-x ê aD, 8x, 0, ¶<D

IfBRe@aD > 0, a, IntegrateB‰-
x

a, 8x, 0, ¶<, Assumptions Ø Re@aD § 0FF
Here is another example (the definition of the beta function):

Integrate@t^Ha - 1L H1 - tL^Hb - 1L, 8t, 0, 1<D

IfBRe@aD > 0 && Re@bD > 0,
p Csc@b pD Gamma@aD

Gamma@1 - bD Gamma@a + bD, IntegrateA

H1 - tL-1+b t-1+a, 8t, 0, 1<, Assumptions Ø Re@aD § 0 »» HRe@aD > 0 && Re@bD § 0LEF
The integral converges only if the real parts of a  and b  are positive. Actually, we did not get the usual
form GHaL GHbL êGHa + bL for the beta function, but we can show that the result given is correct:

Chapter 20  •  Integral Calculus 639



p Csc@b pD Gamma@aD

Gamma@1 - bD Gamma@a + bD
-
Gamma@aD Gamma@bD

Gamma@a + bD
êê FullSimplify

0

Here is a third example:

Integrate@1 ê x^2, 8x, a, 1<, Assumptions Ø a œ RealsD

IfBa > 1 »» 0 < a < 1, -1 +
1

a
, IntegrateB 1

x2
, 8x, a, 1<, Assumptions Ø a § 0 »» a ã 1FF

Thus, a should be positive (the result -1 +
1
a
 actually also holds for a = 1).

‡ Options

Options of Integrate in definite integration:

Assumptions  Assumptions about parameters; examples of values: $Assumptions, n > 0, n œ

Integers, n > 0 && n œ Integers

GenerateConditions  Whether to generate answers containing conditions for the parameters;
possible values: Automatic (usually means True), True, False

PrincipalValue  Whether to find the Cauchy principal value; possible values: False, True

The assumptions can be equations, inequalities, and domain specifications (see Section 13.2.1, p. 420,

for  various domains)  and their  logical  combinations.  An assumption could be,  for  example, x œ Reals

(write œ as ÂelemÂ). The default value Automatic for GenerateConditions essentially means True.

We try some assumptions for the integrals we calculated previously in Conditions of Convergence:

Integrate@Exp@-x ê aD, 8x, 0, ¶<, Assumptions Ø a > 0D a

Integrate@t^Ha - 1L H1 - tL^Hb - 1L, 8t, 0, 1<, Assumptions Ø a > 0 && b > 0D

p Csc@b pD Gamma@aD
Gamma@1 - bD Gamma@a + bD

We can ask not to print conditions of convergence:

Integrate@Exp@-x ê aD, 8x, 0, ¶<, GenerateConditions Ø FalseD a

Some  integrals  that  do  not  have  a  finite  value  in  the  usual  (Riemannian)  sense  over  intervals
containing a point of singularity may have a finite Cauchy principal value. This value for the integral is
obtained  by  deleting  a  small  interval  centered  at  the  singular  point  and  then  taking  the  limit  of  the
integral as the length of the interval goes to zero.

‡ Advanced Integrals

The integrand may contain unknown functions:

Integrate@f@x, tD, 8x, a@tD, b@tD<D ‡
a@tD

b@tD
f@x, tD „x

We can calculate the derivative of this with respect to t:

D@%, tD ‡
a@tD

b@tD
fI0,1M@x, tD „x -f@a@tD, tD a£@tD +f@b@tD, tD b£@tD

Here, f H0,1L@x, tD means derivative with respect to t.

The integrand may contain such functions as Abs, Sign, UnitStep, Min, and Max:

640 Mathematica Navigator



Integrate@Abs@xD + Sign@xD + Min@1 ê 2, Sin@xDD, 8x, -1, 1<D

1

12
18 - 6 3 - p + 12 Cos@1D

Piecewise defined functions are also integrated:

Integrate@Piecewise@88x^2, x^2 > x^3 - x<, 8x^3 - 1, True<<D, 8x, 0, 3<D

1

24
421 + 11 5

Integrate@Which@x^2 > x^3 - x, x^2, True, x^3 - 1D, 8x, 0, 3<D

1

24
421 + 11 5

Integrate@If@x^2 > x^3 - x, x^2, x^3 - 1D, 8x, 0, 3<D

1

24
421 + 11 5

Integrate@Max@x, Cos@xDD, 8x, 0, p<D
p2

2

‡ Change of Variable

Let us calculate the integral of the following function over (0, p):

f = x Sin@xD ê H1 + Cos@xD^2L;

According  to Wrede  and  Spiegel  (2002,  p.  108),  the  integral  has  the  value p2 ë4.  For  this  integral,

Mathematica  gives  a  long  expression  of  approximately  1  page  containing ArcCos, ArcTan, Log,  and
PolyLog (we do not show the result here):

int = Integrate@f, 8x, 0, p<D; êê Timing

8221.194, Null<
The simplified result is correct:

int êê FullSimplify
p2

4

Let us try the same technique as Spiegel used to directly obtain the simple result p2 ë4. Do a change

of variable y = p - x:

g = Hf ê. x Ø p - yL D@p - y, yD -

Hp - yL Sin@yD
1 + Cos@yD2

Expand this expression:

g = Expand@gD -

p Sin@yD
1 + Cos@yD2

+

y Sin@yD
1 + Cos@yD2

The last term is in the same form as the original function. If the original integral is int, then the integral
of the last term is -int because the integration with respect to y goes from p to 0. Integrate the first term:

i1 = Integrate@First@gD, 8y, p, 0<D
p2

2

We now have the equation int ã i1 - int. Solving the equation for int, we get p2ë4.

Chapter 20  •  Integral Calculus 641



20.1.4  Integration over Regions

‡ Basic Multiple Integrals

Consider the following multiple integral:

‡
a

b

‡
x

x+1

12 x y „y „x

-3 a2
- 4 a3

+ 3 b2
+ 4 b3

This can also be calculated with nested Integrate commands:

Integrate@Integrate@12 x y, 8y, x, x + 1<D, 8x, a, b<D

-3 a2
- 4 a3

+ 3 b2
+ 4 b3

However, Integrate also has special forms for multiple integrals:

Integrate[g, {x, a, b}, {y, c, d}]  Calculate ŸabJŸcdg „yN „x

Integrate[g, {x, a, b}, {y, c, d}, {z, e, f}]  Calculate ŸabBŸcdJŸe f g „zN „yF „x

In the first command, the integral is first calculated with respect to y and then with respect to x. The
end points c and d may be functions of x. For example,

Integrate@12 x y, 8x, a, b<, 8y, x, x + 1<D

-3 a2
- 4 a3

+ b2 H3 + 4 bL
‡ Advanced Multiple Integrals

Recall  that Boole[ineqs]  is  the characteristic function of the set defined by inequalities ineqs;  that is,
Boole[True] is 1 and Boole[False] is 0. With Boole we can integrate over various regions.

Integrate[f Boole[cond], {x, a, b}, {y, c, d}]  Integrate f over the region where cond is True

In the first example, we integrate the function 1 over a circle, that is, we calculate the area of the circle:

Integrate@Boole@x^2 + y^2 § r^2D, 8x, -¶, ¶<, 8y, -¶, ¶<, Assumptions Ø r > 0D

p r2

Calculate then the volume of a sphere:

Integrate@Boole@x^2 + y^2 + z^2 § r^2D,
8x, -¶, ¶<, 8y, -¶, ¶<, 8z, -¶, ¶<, Assumptions Ø r > 0D
4 p r3

3

Define two inequalities that determine the area of integration:

ineqs = x^2 + y^2 < 1 && Hx - 1 ê 2L^2 + Hy - 1 ê 2L^2 > 1 ê 30

x2
+ y2

< 1 && -
1

2
+ x

2

+ -
1

2
+ y

2

>
1

30

642 Mathematica Navigator



RegionPlot@ineqs , 8x, 0, 1<, 8y, 0, 1<D

Now, integrate x3 + y3 over this region. First, define and plot the function:

f = Hx^3 + y^3L Boole@ineqsD;

Plot3D@f, 8x, 0, 1<, 8y, 0, 1<, Ticks Ø NoneD

Then calculate the integral:

Integrate@f, 8x, 0, 1<, 8y, 0, 1<D êê FullSimplify êê Timing

:51.2201, 4

15
-
11 p

1200
>

In the following example, we get different results for different values of the parameter a:

f = Hx^3 + y^3L Boole@x^2 + y^2 < aD;

Integrate@f, 8x, 0, 1<, 8y, 0, 1<D

1

2
a ¥ 2

4 a5ë2

15
0 < a § 1

1

30
J3 + 12 -1 + a - 10 a - 4 -1 + a a + 15 a2 - 8 -1 + a a2N 1 < a < 2

‡ A Probability Example

Suppose that the joint probability density function (PDF) of random variables X and Y is a constant c in
the triangular region defined by the inequalities 0 § x § 1, 0 § y § 1, and x + y § 1. What is the value of

c? Integrate the density function over the region:

Integrate@c Boole@x + y § 1D, 8x, 0, 1<, 8y, 0, 1<D
c

2

Because this has to be equal to 1, we get that c = 2. What is the cumulative distribution function (CDF) of
the  random  variable Z = Y - X?  The  CDF  is FZHzL = PHZ § zL = PHY § X + zL.  This  probability  can  be
computed by integrating the PDF over the region y § x + z:

Chapter 20  •  Integral Calculus 643



cdf = Integrate@2 Boole@x + y § 1 && y § x + zD, 8x, 0, 1<, 8y, 0, 1<D

1 z > 1

1

2
I1 + 2 z - z2M 0 < z § 1

1

2
I1 + 2 z + z2M -1 < z § 0

The corresponding PDF is

pdf = D@cdf, zD êê Simplify

1 z ã 0

1 - z 0 < z < 1

1 + z -1 < z < 0

8Plot@cdf, 8z, -1, 1<D, Plot@pdf, 8z, -1, 1<D<

:

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

,

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

>

20.2  Numerical Quadrature

20.2.1  Introduction

‡ Numerical Integration

If Integrate  does  not  calculate  your  definite  integral,  apply  numerical  integration.  You  can  first  try
exact integration, and if a result is not obtained, ask for a numerical value.

Integrate[f, {x, a, b}]  Try exact integration
% // N  If exact integration did not succeed, use numerical methods

We try the following integral:

i = Integrate@Exp@x^xD, 8x, 0, 1<D ‡
0

1

‰
xx

„x

Exact integration did not succeed, and so we ask for a numerical value:

N@iD 2.19754

We can also directly resort to numerical methods.

NIntegrate[f, {x, a, b}]  Calculate the integral using numerical methods

NIntegrate@Exp@x^xD, 8x, 0, 1<D 2.19754

If we use the method % // N, eventually NIntegrate will be applied.

The integration interval can be infinite, and the end points can be singular:

NIntegrate@Exp@-x^2D Log@xD, 8x, 0, ¶<D -0.870058

644 Mathematica Navigator



Multiple integrals are calculated in the familiar way.

NIntegrate[f, {x, a, b}, {y, c, d}] Integrate first with respect to y and then with respect to x

NIntegrate@Sin@x yD, 8x, 0, p<, 8y, 0, x<D 1.45034

Mathematica  automatically  takes  into account possible  singularities  at  the end points of  the integra-
tion  interval.  If  we  have  singularities  within  the  interval,  then  we  can  integrate  in  several  pieces,  as
follows:

NIntegrate[f, {x, a, s1, s2, …, sn, b}]  Integrate in several pieces

Here, NIntegrate  integrates  separately  on  each  of  the  intervals Ha, s1L, Hs1, s2L,  …, Hsn, bL.  This  forces

Mathematica  to  take  into  account  the  possible  singularity  of  the  points s1, s2,  …, sn  in  addition  to  the

possible singularity of  the points a  and b.  Another application of  the piecewise integration is to divide
very  long  intervals  into  smaller  pieces  to  get  a  more  precise  result.  The  technique  can also  be  used to
specify a piecewise linear integration contour in the complex plane.

‡ Options

Options of NIntegrate:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the integral should be of the order
10-p;  examples of values: Automatic (usually means 6; is 2 for Monte Carlo methods), 10

AccuracyGoal  If the value of the option is a, the absolute error of the integral should be of the order
10-a;  examples of values: ¶, 10

Method  Method or strategy to use; default value: Automatic
MinRecursion  Minimum number of recursive subdivisions; examples of values: 0, 3
MaxRecursion  Maximum number of recursive subdivisions; examples of values: Automatic, 9, 12
MaxPoints  Maximum total number of sample points; default value: Automatic
Exclusions  Parts of the integration region to exclude; examples of values: None, {2, 3}, x^2 + y^2

== 1

EvaluationMonitor  Command to be executed after each evaluation of the function to be integrated;
examples of values: None, Sow[x], Sow[{x, y}], ++n, AppendTo[points, x]

Compiled  Whether the integrand should be compiled or not; possible values: Automatic, True,
False

Next,  we  study  the  use  of  some  of  the  options.  However,  the Method  option  will  be  considered  in
Sections  20.2.2  to  20.2.9.  Note  that NIntegrate  automatically  chooses  a  suitable  method.  For example,
NIntegrate  automatically  handles  singularities  at  end  points  and  oscillatory  integrands.  Thus,  we
rarely need to use the Method option. Likewise, the other options are seldom needed.

‡ WorkingPrecision

The default value of WorkingPrecision is MachinePrecision so that NIntegrate uses, by default, the
usual fixed-precision arithmetic with 16-digit  precision. Give another value for this option if you want

the calculations to be done with variable-precision arithmetic (see Section 12.3.1, p. 409). In the following

examples,  we  get  a  very  good  result  with  fixed-precision  arithmetic,  but  with  variable-precision
arithmetic we can improve the result:

Chapter 20  •  Integral Calculus 645



NIntegrate@Exp@-xD, 8x, 0, ¶<D êê InputForm

1.000000000053296

NIntegrate@Exp@-xD, 8x, 0, ¶<, WorkingPrecision Ø 25D êê InputForm

0.99999999999999999999999719255037009045`25.

‡ PrecisionGoal

The  method  used  by NIntegrate  stops  improving  the  result  as  soon  as  either PrecisionGoal  or
AccuracyGoal is met.

The  default  value Automatic  of PrecisionGoal  means  6  so  that NIntegrate  tries  to  give  you  an

answer having a relative error of the order 10-6 (this is only a goal; the actual relative error can be smaller
or  larger).  If  you  have  defined  your  own  value  for WorkingPrecision,  then PrecisionGoal  has  the
default  value WorkingPrecision - 10.  In  the  following  integral,  we  have  increased  the  value  of  the
precision goal to get a better result:

NIntegrate@Exp@-xD, 8x, 0, ¶<, PrecisionGoal Ø 10D êê InputForm

1.0000000000000013

As another example, calculate an integral both exactly and numerically:

i1 = Integrate@Sin@1 ê xD, 8x, p ê 90, p ê 4<D;
i2 = NIntegrate@Sin@1 ê xD, 8x, p ê 90, p ê 4<D;

Here are the absolute and relative errors of the numerical integral:

8Abs@i1 - i2D, Abs@i1 - i2D ê i1<

91.08247 μ 10-15, 3.46795 μ 10-15=
In this example, the actual relative error is much better than its goal of 10-6.

Note  that  if  we  increase PrecisionGoal,  we  often  also  have  to  increase WorkingPrecision;  other-
wise, convergence may not be reached.

‡ AccuracyGoal

The  default  value  of AccuracyGoal  is ¶.  Such  a  goal  will  never  be  satisfied,  so  the  method  actually
stops as soon as PrecisionGoal  is met. In practice, this means that the absolute error  is, by default, not
used as a goal. If you define a finite value of, for example, 6 for AccuracyGoal, then the method stops if

it gets a result having an absolute error at most of the order 10-6.  Next, we use a very low accuracy goal:

NIntegrate@Exp@-xD, 8x, 0, ¶<, AccuracyGoal Ø 1D êê InputForm

0.999917271688709

If the true value of the integral is zero, NIntegrate tells us that it cannot reach convergence:

NIntegrate@Sin@xD - 2 ê p, 8x, 0, p<D

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in

x near 8x< = 8á83à<. NIntegrate obtained 5.898059818321144`*^-17
and 3.55359807013137`*^-13 for the integral and error estimates. à

0. μ 10-13

If we want to get rid of the warning, we can set the value of AccuracyGoal to be smaller than ¶:

NIntegrate@Sin@xD - 2 ê p, 8x, 0, p<, AccuracyGoal Ø 10D

0. μ 10-11

646 Mathematica Navigator



The three options WorkingPrecision, PrecisionGoal,  and AccuracyGoal  are explained in detail in

Section 12.3.1, p. 409. If you skipped this section, now is a good time to read it.

‡ MinRecursion, MaxRecursion, and MaxPoints

To  achieve  the  precision  or  accuracy  goal,  the  integration  region  is  recursively  bisected  into  smaller
regions. The MinRecursion  option defines the minimum number of recursive bisections of the interval
before the integration starts; the default value is 0. This option can be used, for example, to ensure that a
narrow spike on the integrand is not missed.

The MaxRecursion  option  is  the  largest  number  of  recursive  bisections  allowed;  the  default  value
Automatic usually means 9. This option stops the recursive bisections at singular points so that special
methods can be applied to handle the singularity.

With the MaxPoints option we can restrict the total number of sample points.

As an example, the following integral did not converge after nine recursive bisections:

NIntegrate@Sin@x^2D, 8x, 0, 23 Pi<D

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in

x near 8x< = 80.<. NIntegrate obtained 0.620550468258415` and
0.0059618314998086345` for the integral and error estimates. à

0.62055

We can solve the problem by increasing either the MinRecursion or the MaxRecursion option:

NIntegrate@Sin@x^2D, 8x, 0, 23 Pi<, MinRecursion Ø 1D 0.620059

NIntegrate@Sin@x^2D, 8x, 0, 23 Pi<, MaxRecursion Ø 10D 0.620059

20.2.2  Strategies and Rules

‡ Strategies

The  working  of NIntegrate  is  governed  by strategies  and rules.  The  main  strategies  are
"GlobalAdaptive"  and "LocalAdaptive".  These  strategies  indicate  the  general  way  in  which  the
adaptive method proceeds (as is  explained later).  With these strategies,  we can use several quadrature
rules, such as the Gauss-Kronrod rule or the Newton-Cotes rule. In addition to the two main strategies,
there are special strategies. The strategies are defined with the Method option of NIntegrate:

Method  Method or strategy to use:
• default value: Automatic
• general adaptive strategies: "GlobalAdaptive", "LocalAdaptive"
• for singular integrands: "DoubleExponential", "DuffyCoordinates"
• for Cauchy principal value: "PrincipalValue"
• for periodic integrands over one period: "Trapezoidal"
• for periodizing multidimensional integrands: "MultiPeriod"
• for oscillating integrands on infinite or semi-infinite intervals: "DoubleExponentialOscillatory",

"ExtrapolatingOscillatory"

• preprocessor strategies: "SymbolicPiecewiseSubdivision", "EvenOddSubdivision",
"OscillatorySelection", "UnitCubeRescaling"

• Monte Carlo strategies: "MonteCarlo", "AdaptiveMonteCarlo", "QuasiMonteCarlo",
"AdaptiveQuasiMonteCarlo"

Chapter 20  •  Integral Calculus 647



The special strategies mentioned in the box are of three kinds: Some strategies are for special types of
integrals, some define preprocessing techniques, and some are for Monte Carlo integration.

‡ Rules

As stated previously,  with the two general  adaptive strategies  we can ask to use a  specific  integration
rule, as follows:

Method Ø {"strategy", Method Ø "rule"}  Use the "GlobalAdaptive" or "LocalAdaptive"
strategy with the given rule; possible rules:

• for open Gaussian quadrature: "GaussBerntsenEspelidRule", "GaussKronrodRule"
• for closed Gaussian quadrature: "LobattoKronrodRule", "LobattoPeanoRule"
• for interpolatory type quadrature: "NewtonCotesRule"
• for periodic integrands over one period: "TrapezoidalRule"
• for oscillatory integrands on finite intervals: "ClenshawCurtisRule"
• for multipanel (or compounded or composite) rules: "MultiPanelRule"
• for multidimensional integrals: "CartesianRule", "MultiDimensionalRule"

As  an  example,  we  can  use  the "GaussKronrodRule"  within  either  the "GlobalAdaptive"  or  the
"LocalAdaptive"  strategy.  All  the  names  of  the  rules  end  with Rule.  (Note  that  we  have  both  the
"Trapezoidal" strategy and the "TrapezoidalRule" rule.)

The  default  value Automatic  of  the Method  option  actually  means  that  the  strategy  is
"GlobalAdaptive"  and  the  rule  is "GaussKronrodRule"  for  one-dimensional  integrals  and
"MultiDimensionalRule" for multidimensional integrals.

‡ Method-Specific Options

In addition to the general options of NIntegrate, each of the integration strategies and rules has its own
special  options.  For  example,  here  are  the  special  options  of  the  global  adaptive  strategy  and  of  the
Gauss-Kronrod rule:

Options@NIntegrate`GlobalAdaptiveD

8Method Ø Automatic, MinRecursion Ø 0, MaxRecursion Ø 9, MaxPoints Ø ¶,
SingularityDepth Ø Automatic, MaxErrorIncreases Ø Automatic,
SingularityHandler Ø Automatic, SymbolicProcessing Ø Automatic<
Options@NIntegrate`GaussKronrodRuleD

8Points Ø Automatic, SymbolicProcessing Ø Automatic<
Some of the special options are mentioned later, but generally we do not consider the special options.

In  Sections  20.2.3  through  20.2.9,  we  study  the  strategies  and  rules  in  more  detail.  Note  again  that
NIntegrate automatically chooses a suitable method. Thus, we rarely need to use the Method option to
specify an integration strategy or rule.

20.2.3  General Adaptive Strategies

‡ Global and Local Adaptive Strategies

Numerical  integration  works  by  sampling  the  function  to  be  integrated  at  some  points  and  then
computing a weighted sum of sampled values. Mathematica, by default, uses adaptive sampling methods;
that  is,  more points are sampled in subregions where the current estimated error is relatively large. In
nonadaptive methods, more points are sampled in the whole  integration interval if the error estimate is
too large.

648 Mathematica Navigator



In  adaptive  integration,  two  main  strategies  can  be  used:  global  and  local  adaptive  strategies.  The
default  strategy  is "GlobalAdaptive".  In  this  strategy,  the  subinterval  with  the  largest  current  error
estimate is bisected and more points are sampled from the two smaller intervals. This kind of bisection
is  continued  recursively.  After  each  bisection,  new  global  estimates  of  the  integral  and  the  error  are
calculated  over  the  whole  integration  interval.  The  method  stops  if  the  current  global  absolute  or
relative error satisfies the accuracy or precision goal.

In "LocalAdaptive"  strategy,  the  error  is  considered  on  each  subinterval  (instead  of  the  whole
integration  interval).  If  the  error  on  a  subinterval  is  too  large  compared  to  an  initial  estimate  of  the
integral, that subinterval is divided into more subintervals. This is continued until the error estimate is
acceptable  on  each  of  the  current  subintervals.  In  general,  global  adaptive  strategies  work  better  than
the local ones.

Whichever  strategy  we  choose,  we  can  choose  from  several  quadrature  rules  that  were  mentioned
previously.  The  default  rule  is "GaussKronrodRule"  for  one-dimensional  integrals  and
"MultiDimensionalRule" for multidimensional integrals.

Next,  we  study  the  global  and  local  adaptive  strategies  in  more  detail.  The  various  rules  are
addressed in Section 20.2.4.

As stated previously, NIntegrate  automatically chooses a suitable method. Thus, mostly we do not
need to use the Method option.

‡ Global Adaptive Strategy

To show the points where NIntegrate evaluates the function, use the EvaluationMonitor option:

f = Sin@1 ê Hx + p ê 10LD;

8int, 8xpoints<< =
Reap@NIntegrate@f, 8x, 0, p<, EvaluationMonitor ß Sow@xD, PrecisionGoal Ø 9DD;

xpoints êê Length 201

The 201 points where the function was evaluated are as follows:

Graphics@Line@88Ò, 0<, 8Ò, f ê. x Ø Ò<<D & êü xpoints,
Axes Ø True, AspectRatio Ø 0.2, ImageSize Ø 420D

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

This  plot  demonstrates  the adaptivity  property  of  the  integration  method:  More  points  are  sampled
where the function changes rapidly.

In the following way, we see the order in which the points were sampled:

Chapter 20  •  Integral Calculus 649



ListPlotA8xpoints, Range@201D<¨, ImageSize Ø 420,

Ticks Ø 88p ê 16, p ê 8, p ê 4, 3 p ê 8, p ê 2, 3 p ê 4, p<, Automatic<,
Epilog Ø 8Line@88p, 0<, 8p, 201<<D, Line@88p ê 2, 6<, 8p ê 2, 201<<D,

Line@88p ê 4, 17<, 8p ê 4, 201<<D, Line@88p ê 8, 39<, 8p ê 8, 201<<D,
Line@88p ê 16, 61<, 8p ê 16, 201<<D, Line@88p ê 32, 83<, 8p ê 32, 201<<D,
Line@883 p ê 8, 50<, 83 p ê 8, 201<<D, Line@883 p ê 4, 28<, 83 p ê 4, 201<<D<E

p

16

p

8

p

4

3 p

8

p

2

3 p

4
p

50

100

150

200

First, the function is sampled at 11 points. Because the global error estimate is found to be too large,
the interval is bisected and the function is sampled at 11 points on both subintervals. The error estimate
on the first subinterval is the largest and is found to be too large. Thus, this interval is bisected and the
function is  sampled on both subintervals.  This  recursive bisection is  continued several  times until  it  is

observed that the largest error estimate is on I p
4

, p

2
M;  this interval is bisected. The error on I p

2
, pM  is then

the largest so that this interval is bisected. Now, the global error estimate satisfies the given precision or
accuracy goal.

In  the  following  example,  we  give  the MinRecursion  option  the  value  2,  and  now  two  recursive
subdivisions are done before the integration starts, resulting in four initial subintervals:

8int, 8xpoints<< = Reap@NIntegrate@f, 8x, 0, p<,
EvaluationMonitor ß Sow@xD, PrecisionGoal Ø 9, MinRecursion Ø 2DD;

650 Mathematica Navigator



ListPlotA8xpoints, Range@Length@xpointsDD<¨,
ImageSize Ø 420, Ticks Ø 88p ê 4, p ê 2, 3 p ê 4, p<, Automatic<,
Epilog Ø 8Line@88p, 0<, 8p, 201<<D, Line@883 p ê 4, 0<, 83 p ê 4, 201<<D,

Line@88p ê 2, 0<, 8p ê 2, 201<<D, Line@88p ê 4, 0<, 8p ê 4, 201<<D<E

p

4

p

2

3 p

4
p

20

40

60

80

100

120

‡ Local Adaptive Strategy

Now we use the local adaptive strategy. To show the points where NIntegrate  evaluates the function,
do again as follows:

f = Sin@1 ê Hx + p ê 10LD;

8int, 8xpoints<< = Reap@
NIntegrate@f, 8x, 0, p<, Method Ø "LocalAdaptive", EvaluationMonitor ß Sow@xDDD;

xpoints êê Length 177

The 177 points where the function was evaluated are as follows:

Graphics@Line@88Ò, 0<, 8Ò, f ê. x Ø Ò<<D & êü xpoints,
Axes Ø True, AspectRatio Ø 0.2, ImageSize Ø 420D

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

1.0

This  plot  again  demonstrates  the  adaptivity  property  of  the  integration  method:  More  points  are
sampled where the function changes rapidly.

In the following way, we see the order in which the points are sampled:

Chapter 20  •  Integral Calculus 651



ListPlotA8xpoints, Range@177D<¨, ImageSize Ø 420,

Epilog Ø 8Table@Line@88xpointsPiT, i<, 8xpointsPiT, 65<<D, 8i, 2, 9<D,
Table@Line@88xpointsPiT, i<, 8xpointsPiT, 177<<D, 8i, 2, 4<D<E

0.5 1.0 1.5 2.0 2.5 3.0

50

100

150

The  function  is  first  sampled  at  nine  points;  this  gives  an  initial  estimate  of  the  integral.  The  error
estimates to be calculated are based on this initial estimate of the integral. The error estimate on the first
subinterval is found to be too large so that the function is sampled at seven new points between the first
two original points. It is found that the same has to be done for each of the eight subintervals. After that,
because the error estimate on the second and third subintervals is still too large, more sample points are
taken from each subinterval of these two subintervals. Now the local error estimate on each subinterval
is small enough compared to the initial estimate of the integral.

20.2.4  Quadrature Rules

‡ Using the Rules

In  Section 20.2.2,  we  mentioned that  with  the "GlobalAdaptive"  and "LocalAdaptive"  strategies  we
can ask to use a specific integration rule, as follows:

Method Ø {"strategy", Method Ø "rule"}  Use the "GlobalAdaptive" or "LocalAdaptive"
strategy with the given rule; possible rules:

• for open Gaussian quadrature: "GaussBerntsenEspelidRule", "GaussKronrodRule"
• for closed Gaussian quadrature: "LobattoKronrodRule", "LobattoPeanoRule"
• for interpolatory type quadrature: "NewtonCotesRule"
• for periodic integrands over one period: "TrapezoidalRule"
• for oscillatory integrands on finite intervals: "ClenshawCurtisRule"
• for multipanel (or compounded or composite) rules: "MultiPanelRule"
• for multidimensional integrals: "CartesianRule", "MultiDimensionalRule"

As previously discussed, the default value Automatic  of the Method  option actually means that the
strategy  is "GlobalAdaptive"  and the  rule  is "GaussKronrodRule"  for  one-dimensional  integrals  and
"MultiDimensionalRule" for multidimensional integrals.

652 Mathematica Navigator



To use,  for  example,  the  Newton-Cotes  rule  with  the  global  and local  adaptive  strategies,  write  as
follows:

NIntegrate@Sin@xD, 8x, 0, p<,
Method Ø 8"GlobalAdaptive", Method Ø "NewtonCotesRule"<D

2.

NIntegrate@Sin@xD, 8x, 0, p<, Method Ø 8"LocalAdaptive", Method Ø "NewtonCotesRule"<D

2.

Because the default is to use the global adaptive strategy, we can also only write the name of the rule if
we would like to use the global strategy:

NIntegrate@Sin@xD, 8x, 0, p<, Method Ø "NewtonCotesRule"D

2.

We  would  again  like  to  note  that NIntegrate  automatically  chooses  a  suitable  method.  Thus,  we
rarely need to use the Method option.

‡ One-Dimensional Integrals

Most of the integration rules have the "Points"  option. Its default value is usually 5; however, for the
Newton-Cotes  rule  the  default  value  is  3,  and  for  the  Gauss-Berntsen-Espelid  rule  and  Gauss-Kro-
nrod rule the default value is Automatic.

The  Gauss-Kronrod  rule  uses  Gaussian  quadrature  with  error  estimation  based  on  evaluation  at
Kronrod points. Here is an example of the use of the Gauss-Kronrod rule:

NIntegrate@Sin@xD, 8x, 0, p<, Method Ø 8"GaussKronrodRule", "Points" Ø 7<D

2.

The Newton-Cotes rule is, by default, of the closed type. Next, we ask to apply an open rule:

NIntegrate@Sin@xD, 8x, 0, p<,
Method Ø 8"NewtonCotesRule", "Points" Ø 7, "Type" Ø Open<D

2.

The  trapezoidal  rule,  by  default,  applies  Romberg  quadrature.  We  can  also  ask  to  apply  the  pure
trapezoidal rule:

NIntegrate@Sin@xD, 8x, 0, p<,
Method Ø 8"TrapezoidalRule", "Points" Ø 7, "RombergQuadrature" Ø False<D

2.

The Clenshaw-Curtis rule is useful in integrating oscillatory functions (see Section 20.2.6, p. 658).

‡ Multidimensional Integrals

The "MultiDimensionalRule" is a fully symmetric cubature for multidimensional integrals. This is the
default rule for multidimensional integrals.

A d-dimensional "CartesianRule" has sampling points that are a Cartesian product of the sampling
points  of d  one-dimensional  rules.  The  weight  associated  with  a  Cartesian  rule  sampling  point  is  the
product of  the one-dimensional rule weights  that  correspond to its coordinates.  The Cartesian rule,  by
default, uses the Gauss-Krondrod rule.

As an example, we calculate the same 2D integral with both methods:

88int1, 8xypoints1<<, 8int2, 8xypoints2<<< =
Reap@NIntegrate@Exp@x yD, 8x, 0, 2<, 8y, 0, 2<, EvaluationMonitor ß Sow@8x, y<D,

Method Ø ÒDD & êü 8"MultiDimensionalRule", "CartesianRule"<;

Chapter 20  •  Integral Calculus 653



88int1, xypoints1 êê Length<,
8int2, xypoints2 êê Length<<

8817.6674, 1071<, 817.6674, 121<<
Here are plots of the sampled points:

ListPlot@Ò, AspectRatio Ø 1, PlotStyle Ø 8Black, PointSize@SmallD<,
ImageSize Ø 180D & êü 8xypoints1, xypoints2<

:

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

,

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

>

We can also define the rule to be used with the Cartesian rule:

Method Ø 8"CartesianRule", Method Ø 8"GaussKronrodRule", "Points" Ø 7<<

‡ Rule Data

For all but the Monte Carlo rules we can ask to show the data of the rule; that is,

• the abscissas: points at which the integrand is to be evaluated;
• the function weights: weights of the values of the function for the integral; and
• the error weights: weights of the values of the function for the error estimate.

For example, here are data for a Gauss-Kronrod rule:

intdata = NIntegrate`GaussKronrodRuleData@2, MachinePrecisionD

880.03709, 0.211325, 0.5, 0.788675, 0.96291<,
80.0989899, 0.245455, 0.311111, 0.245455, 0.0989899<,
80.0989899, -0.254545, 0.311111, -0.254545, 0.0989899<<

The data give the points on the interval H0, 1L. To integrate over other intervals, the integral must first be
transformed  onto H0, 1L.  Thus,  here  is  a  program  to  calculate  an  integral  with  the  Gauss-Kronrod
method:

gaussKronrod@f_, 8x_, a_, b_<, n_D := Module@8y, g<,
g = Hb - aL f ê. x Ø a + Hb - aL y; TotalüMapThread@8Hg ê. y Ø Ò1L Ò2, Hg ê. y Ø Ò1L Ò3< &,
NIntegrate`GaussKronrodRuleData@n, MachinePrecisionDDD

Here, with MapThread we get a matrix where the first column contains the weighted function values
for the integral and the second column contains the weighted function values for the error estimate:

MapThread@8Hg@xD ê. x Ø Ò1L Ò2, Hg@xD ê. x Ø Ò1L Ò3< &, intdataD

880.0989899 g@0.03709D, 0.0989899 g@0.03709D<,
80.245455 g@0.211325D, -0.254545 g@0.211325D<,
80.311111 g@0.5D, 0.311111 g@0.5D<, 80.245455 g@0.788675D, -0.254545 g@0.788675D<,
80.0989899 g@0.96291D, 0.0989899 g@0.96291D<<

654 Mathematica Navigator



With Total we get the column sums we need:

Totalü%

80.0989899 g@0.03709D + 0.245455 g@0.211325D + 0.311111 g@0.5D + 0.245455 g@0.788675D +

0.0989899 g@0.96291D, 0.0989899 g@0.03709D - 0.254545 g@0.211325D +

0.311111 g@0.5D - 0.254545 g@0.788675D + 0.0989899 g@0.96291D<
As an example, compute an integral first exactly and then with a Gauss-Kronrod rule:

Integrate@Exp@xD, 8x, -1, 2<D êê N êê InputForm

7.0211766577592085

gaussKronrod@Exp@xD, 8x, -1, 2<, 4D êê InputForm

{7.021176657759308, 0.000019289921552423372}

The rule we used here is exact for all polynomials of at most degree 13:

f = SumAai x
i, 8i, 0, 13<E;

Integrate@f, 8x, p, q<D - gaussKronrod@f, 8x, p, q<, 4DP1T êê Simplify êê Chop
0

20.2.5  Singular Integrands

‡ Telling Singularities

As mentioned previously, Mathematica  automatically takes into account possible singularities at the end
points of the integration interval. If we have singularities within the interval, we can integrate in several
pieces or tell the points to exclude:

NIntegrate[f, {x, a, s1, s2, …, sn, b}]  Integrate in several pieces
Exclusions  Parts of the integration region to exclude; examples of values: None, {2, 3}, x^2 + y^2

== 1

In  the  first  case, NIntegrate  integrates  separately  on  each  of  the  intervals Ha, s1L, Hs1, s2L,  …, Hsn, bL.
This forces Mathematica  to take into account the possible singularity of the points s1, s2, …, sn in addition

to the possible singularity of the points a and b. In the second case, we tell the points, curves, or surfaces
to exclude in the integration.

‡ Example 1

Here we do not tell the singularities at p and 2p:

NIntegrate@1 ê Sqrt@Sin@xDD, 8x, 0, 7<D

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in

x near 8x< = 83.13097<. NIntegrate obtained 6.92914- 5.16748 Â and
0.21240735884114376` for the integral and error estimates. à

6.92914 - 5.16748 Â

We  had  problems  with  the  convergence.  If  we  proceed  piecewise, Mathematica  properly  handles  the
singularities at p and 2p:

NIntegrate@1 ê Sqrt@Sin@xDD, 8x, 0, p, 2 p, 7<D

6.95223 - 5.24412 Â

The singular points can also be told with the Exclusions option:

Chapter 20  •  Integral Calculus 655



NIntegrate@1 ê Sqrt@Sin@xDD, 8x, 0, 7<, Exclusions Ø 8p, 2 p<D

6.95223 - 5.24412 Â

‡ Example 2

In multidimensional  integrals,  we may have,  in  addition to  points  of  singularity,  curves or surfaces of
singularity. Here is an example:

NIntegrate@1 ê Sqrt@x^2 + y^2 - 1D, 8x, -2, 2<, 8y, -2, 2<D

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of

the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 18 recursive bisections in

x near 8x, y< = 80.600259, 0.799133<. NIntegrate obtained 12.5906- 6.26927 Â
and 0.10860320865547311` for the integral and error estimates. à

12.5906 - 6.26927 Â

By  telling  the  curve  of  singularity  with  the Exclusions  option,  we  can  resolve  the  problems  of
convergence:

NIntegrate@1 ê Sqrt@x^2 + y^2 - 1D, 8x, -2, 2<, 8y, -2, 2<, Exclusions Ø x^2 + y^2 == 1D

12.6049 - 6.28319 Â

Another solution is the use of Boole to make the singular curve as a boundary; singularities at boundar-
ies are detected by NIntegrate:

NIntegrate@1 ê Sqrt@x^2 + y^2 - 1D Boole@x^2 + y^2 - 1 > 0D, 8x, -2, 2<, 8y, -2, 2<D +
NIntegrate@1 ê Sqrt@x^2 + y^2 - 1D Boole@x^2 + y^2 - 1 < 0D, 8x, -2, 2<, 8y, -2, 2<D
12.6049 - 6.28319 Â

‡ Special Methods

Mathematica  automatically  chooses  a  suitable  method to  handle  singularities.  We can also  ask  to  use a
specified method, as follows:

Method Ø {"GlobalAdaptive", "SingularityHandler" Ø sh}  Use a special singularity handler sh;
possible values of sh: {IMT, "TuningParameters" Ø {a, p}}, "DoubleExponential",
"DuffyCoordinates"

Method Ø "DoubleExponential"  Use the double-exponential singularity handler
Method Ø "DuffyCoordinates"  Use the Duffy’s coordinates singularity handler

To  achieve  the  prescribed  precision  and  accuracy  goals,  subintervals  of  the  integration  interval  are
bisected and more points are sampled. At a singularity, it  may be difficult to get sufficient accuracy so
that a large amount of recursive bisections are needed. After a certain amount of bisections, it becomes
clear that we have a singular point and so continuing the bisections may not be the best way to proceed.
Instead, we should resort to a singularity handler.

To  handle  singularities,  the "GlobalAdaptive"  and "LocalAdaptive"  strategies  use  the  IMT
transformation  of  variables  (published  by  Iri,  Moriguti,  and  Takasawa  in  1970).  The
"DoubleExponential"  strategy  uses  the  trapezoidal  rule  with  a  special  variable  transformation.  The
"DuffyCoordinates" strategy simplifies or eliminates certain types of singularities in multidimensional
integrals. Recall also the "PrincipalValue" strategy for computing the Cauchy principal value.

656 Mathematica Navigator



‡ Demonstrating Singularity Handling

In the following example, Mathematica uses a singularity handler (the IMT transformation):

NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<D

2.

Compare  this  with  the  following  output.  Here,  we  use  the "SingularityDepth"  option  to  tell  how
many recursive bisections to try before applying a singularity handler. We ask for an unlimited number
of bisections so that a singularity handler will actually not be used:

NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", "SingularityDepth" Ø ¶<D
NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in

x near 8x< = 80.00193758<. NIntegrate obtained 1.997237951127453`
and 0.004238324551439297` for the integral and error estimates. à

1.99724

Nine  bisections  did  not  suffice  to  handle  the  singularity.  Another  way  to  demonstrate  the  effect  of  a
singularity handler is to ask not to use any handler:

NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø None<D
NIntegrate::ncvb :

NIntegrate failed to converge to prescribed accuracy after 9 recursive bisections in

x near 8x< = 80.00193758<. NIntegrate obtained 1.997237951127453`
and 0.004238324551439297` for the integral and error estimates. à

1.99724

‡ IMT Transformation

Consider again the integral of 1í x  over H0, 1L.  Do the IMT transformation of variable x = expJ1 -
1
t
N.

Then „x = expJ1 -
1
t
N 1
t2
„ t, t = 1 ë I1 - log xM,  and the integration interval is again H0, 1L.  Thus,  we arrive

at the integral of JexpJ1 -
1
t
NN1ê2 1

t2
. Compare the plots of the original and the transformed integrand:

8Plot@1 ê Sqrt@xD, 8x, 0, 1<D, Plot@Sqrt@Exp@1 - 1 ê tDD ê t^2, 8t, 0, 1<D<

:

0.2 0.4 0.6 0.8 1.0

1.5

2.0

2.5

3.0

3.5

4.0

,

0.2 0.4 0.6 0.8 1.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

>

The  original  function  has  singularity  at x = 0,  whereas  the  transformed  function  does  not  have  any
singularities.

A more general  IMT transformation is x = a expJ1 -
1
tp
N,  where a  and p  are  so-called tuning parame-

ters. The default values are a = 10 and p = 1. For example,

NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø
8"GlobalAdaptive", "SingularityHandler" Ø 8IMT, "TuningParameters" Ø 810, 2<<<D

2.

Chapter 20  •  Integral Calculus 657



‡  Double-Exponential Method

In  the  double-exponential  method  (Mori  and  Takahasi,  1974),  first  a  transformation  of  variable  is
applied and then the trapezoidal rule is used. The name of the transformation derives from the fact that
the  derivative  of  the  transformation  decreases  double-exponentially  at  the  ends  of  the  integration
interval. Here, we apply the double-exponential singularity handler:

NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<,
Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "DoubleExponential"<D

2.

We can also use the double-exponential strategy:

NIntegrate@1 ê Sqrt@xD, 8x, 0, 1<, Method Ø "DoubleExponential"D

2.

‡ Duffy’s Coordinates

For multidimensional integrals with singularities, a method called Duffy‘s coordinates can be tried. This
is  a  technique that transforms an integrand over a square,  cube, or hypercube with a singular point in
one of the corners into an integrand with a singularity over a line, which might be easier to integrate.

In the following integral,  we have a singular corner point  and Mathematica  automatically handles it
correctly:

NIntegrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<D

1.76275

We can also explicitly ask to use Duffy’s coordinates as the singularity handler:

NIntegrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<,
Method Ø 8"GlobalAdaptive", "SingularityHandler" Ø "DuffyCoordinates"<D

1.76275

Still another way is to use the strategy of Duffy‘s coordinates:

NIntegrate@1 ê Sqrt@x^2 + y^2D, 8x, 0, 1<, 8y, 0, 1<, Method Ø "DuffyCoordinates"D

1.76275

20.2.6  Oscillatory Integrands

‡ Methods

Mathematica  automatically detects an oscillatory integrand and chooses a suitable method based on the
integration interval and the form of the integrand. We can also ask to use a specified method, as follows:

Method Ø "ClenshawCurtisRule"  For oscillatory integrands of the form kHxL f HxL, where kHxL is of

the type sinHw xp + cL, cosHw xp + cL, or expHÂ w xp + cL; integration interval is finite

Method Ø "DoubleExponentialOscillatory"  For slowly decaying oscillatory integrands of the
form kHxL f HxL, where kHxL is of the type sinHw xp + cL, cosHw xp + cL, or expHÂ w xpL; integration interval

is infinite or semi-infinite
Method Ø "ExtrapolatingOscillatory"  For oscillatory integrands of the form kHxL f HxL, where kHxL

is of the type sinHw xp + cL, cosHw xp + cL, JnHw xp + cL, YnHw xp + cL, Hn
H1LHw xp + cL, Hn

H2LHw xp + cL,
jnHw xp + cL, or ynHw xp + cL; integration interval is infinite or semi-infinite

658 Mathematica Navigator



Here, w, c, and n are real constants, and p is a positive integer. Furthermore, the special functions are

as follows:

8BesselJ@n, xD, BesselY@n, xD, HankelH1@n, xD, HankelH2@n, xD,
SphericalBesselJ@n, xD, SphericalBesselY@n, xD< êê TraditionalForm

9JnHxL, YnHxL, Hn
H1LHxL, Hn

H2LHxL, jnHxL, ynHxL=
The "ClenshawCurtisRule"  uses  Chebyshev  expansions  of  the  integrand  and  the  global  adaptive

integration strategy. "DoubleExponentialOscillatory"  uses a modification of the double-exponential
algorithm and "ExtrapolatingOscillatory" a sequence summation acceleration. In the last method, a
sequence  of  integrals  is  calculated  between  the  zeros  of  the  integrand;  this  sequence  is  then  summed
(NSum) with Wynn’s extrapolation method.

‡ Example 1

Consider the following highly oscillatory function:

f = x Sin@xD ê Hx^2 + 1L;

Plot@f, 8x, 0, 100<D

20 40 60 80 100

-0.06
-0.04
-0.02

0.02
0.04
0.06

Its integral from 0 to 100 is as follows:

Hi1 = Integrate@f, 8x, 0, 100<D êê N êê ChopL êê InputForm

0.5692936610326388

Numerical integration gives a very good result:

NIntegrate@f, 8x, 0, 100<D êê InputForm

0.5692936604752128

i1 - %

5.57426 μ 10-10

Here, the Clenshaw-Curtis rule was applied, as can be seen if we explicitly ask to use this rule:

NIntegrate@f, 8x, 0, 100<, Method Ø "ClenshawCurtisRule"D êê InputForm

0.5692936604752128

‡ Example 2

Integrate the same function on a semi-infinite interval:

Hi2 = Integrate@f, 8x, 0, ¶<D êê NL êê InputForm

0.5778636748954609

Again, numerical integration gives a very good result:

NIntegrate@f, 8x, 0, ¶<D êê InputForm

0.5778636820019379

i2 - %

-7.10648 μ 10-9

Chapter 20  •  Integral Calculus 659



Here, the double-exponential oscillatory strategy was applied:

NIntegrate@f, 8x, 0, ¶<, Method Ø "DoubleExponentialOscillatory"D êê InputForm

0.5778636820019379

The extrapolating oscillatory strategy also gives a good result:

NIntegrate@f, 8x, 0, ¶<, Method Ø "ExtrapolatingOscillatory"D êê InputForm

0.5778636315399948

i2 - %

4.33555 μ 10-8

20.2.7  Symbolic Preprocessing

‡ Symbolic Preprocessing Methods

By a symbolic preprocessing, Mathematica  is able to detect special types of integrands such as piecewise,
even, odd, and oscillatory functions. Symbolic preprocessing is done automatically to get more precise
results more rapidly, but we can also ask to apply a special preprocessing method:

Method Ø "SymbolicPiecewiseSubdivision"  Divide an integral with a piecewise integrand into
integrals with disjoint integration regions

Method Ø "EvenOddSubdivision"  Reduce the integration region if the region is symmetric around
the origin and the integrand is even or odd

Method Ø "OscillatorySelection"  Select specialized algorithms for efficient evaluation of one-
dimensional oscillating integrals

Method Ø "UnitCubeRescaling"  Transform the integration region into a unit cube or hypercube

‡ Example 1

Consider the following function:

Plot3D@Boole@x^2 + y^2 § 1D Hx^2 + y^2L, 8x, -1, 1<, 8y, -1, 1<D

Check how many sample points are needed and where they are located:

8int, 8xypoints<< = Reap@NIntegrate@Boole@x^2 + y^2 § 1D Hx^2 + y^2L,
8x, -1, 1<, 8y, -1, 1<, EvaluationMonitor ß Sow@8x, y<DDD;

8int, xypoints êê Length<

81.5708, 476<

660 Mathematica Navigator



ListPlot@xypoints, PlotStyle Ø 8Black, PointSize@TinyD<, AspectRatio Ø 1D

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

Thus, only 476 sample point were needed. The integrand was only sampled in the first quadrant and in
the region where the integrand is nonzero.

‡ Example 2

With the "SymbolicProcessing"  option we can tell  how many seconds to do symbolic preprocessing.
Giving  the  value  0,  no  symbolic  preprocessing  is  done.  In  this  way,  we  can  see  the  effect  of  the
preprocessing:

8int, 8xypoints<< = Reap@NIntegrate@Boole@x^2 + y^2 § 1D Hx^2 + y^2L,
8x, -1, 1<, 8y, -1, 1<, EvaluationMonitor ß Sow@8x, y<D,
Method Ø 8Automatic, "SymbolicProcessing" Ø 0<DD;

NIntegrate::slwcon :

Numerical integration converging too slowly; suspect one of the following: singularity, value of

the integration is 0, highly oscillatory integrand, or WorkingPrecision too small. à

NIntegrate::eincr :

The global error of the strategy GlobalAdaptive has increased more than 2000 times. The

global error is expected to decrease monotonically after a number of integrand

evaluations. Suspect one of the following: the working precision is insufficient

for the specified precision goal; the integrand is highly oscillatory or it is not

a HpiecewiseL smooth function; or the true value of the integral is 0. Increasing
the value of the GlobalAdaptive option MaxErrorIncreases might lead to a

convergent numerical integration. NIntegrate obtained 1.5691392282066634`

and 0.0008974905096775965` for the integral and error estimates. à

Thus,  without  symbolic  preprocessing,  we  have  difficulties  with  convergence,  the  result  is  not  very
accurate, and a huge amount of approximately 200,000 sampling points were needed:

8int, xypoints êê Length<

81.56914, 206 805<
ListPlot@xypoints, PlotStyle Ø 8Black, PointSize@TinyD<, AspectRatio Ø 1D

-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

Chapter 20  •  Integral Calculus 661



We see that points were sampled on the whole integration region instead of only in the first quadrant,
and an enormous effort was needed to track the circle-form boundary of the surface.

20.2.8  Monte Carlo Methods

‡ Monte Carlo and Quasi-Monte Carlo Methods

Method Ø "MonteCarlo"  Usual Monte Carlo method
Method Ø "AdaptiveMonteCarlo"  Adaptive Monte Carlo method
Method Ø "QuasiMonteCarlo"  Quasi-Monte Carlo method
Method Ø "AdaptiveQuasiMonteCarlo"  Adaptive quasi-Monte Carlo method

In  the  Monte  Carlo  methods,  the  function  is  sampled  at  a  large  number  of  points.  Usually,  Monte
Carlo methods use uniformly distributed random points in the integral’s region. The number of points
is incremented until the estimated standard deviation is small enough to satisfy the specified precision
or  accuracy  goal.  However,  a  quasi-Monte  Carlo  algorithm  uses  equidistributed,  deterministically
generated sequences of points.

The  adaptive  versions  of  the  Monte  Carlo  methods  apply  recursive  stratified  sampling:  They
recursively  bisect  the  subregion  with  the  largest  variance  estimate  into  two halves,  and they  compute
integral and variance estimates for each half (with the nonadaptive Monte Carlo methods).

The  maximum  number  of  points  is  determined  by MaxPoints;  its  default  value Automatic  means
50,000 for nonadaptive Monte Carlo methods. The default value of PrecisionGoal is 2 for Monte Carlo
methods,  which  means  that  the  result  will  not  be  very  precise.  Monte  Carlo  methods  are  suited  for
multidimensional integrals.

‡ Examples

By applying the Monte Carlo method several times, each time we get a slightly different result because
the method is based on random numbers:

Table@NIntegrate@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Method Ø "MonteCarlo"D, 85<D

82.90471, 2.88406, 2.88166, 2.90878, 2.86634<
One of  the  special  options  of  the  Monte  Carlo  method is "RandomSeed".  By  using  it,  we  get  the  same
result each time:

Table@NIntegrate@Sin@x yD, 8x, 0, p<,
8y, 0, p<, Method Ø 8"MonteCarlo", "RandomSeed" Ø 1<D, 85<D

82.91815, 2.91815, 2.91815, 2.91815, 2.91815<
A quasi-Monte Carlo method uses deterministic points so that each time we get the same result:

Table@NIntegrate@Sin@x yD, 8x, 0, p<, 8y, 0, p<,
Method Ø "QuasiMonteCarlo", MaxPoints Ø 60 000D, 85<D

82.90061, 2.90061, 2.90061, 2.90061, 2.90061<
Next, we use the adaptive Monte Carlo method:

Table@NIntegrate@Sin@x yD, 8x, 0, p<, 8y, 0, p<, Method Ø "AdaptiveMonteCarlo"D, 85<D

82.9067, 2.88096, 2.88858, 2.88829, 2.95755<
Lastly, we apply the adaptive quasi-Monte Carlo method:

Table@NIntegrate@Sin@x yD, 8x, 0, p<,
8y, 0, p<, Method Ø "AdaptiveQuasiMonteCarlo"D, 85<D

82.89929, 2.90143, 2.8997, 2.90235, 2.89995<

662 Mathematica Navigator



‡  A Comparison

Next we compare the four Monte Carlo methods:

i = Integrate@Sin@x yD, 8x, 0, p<, 8y, 0, p<D

EulerGamma - CosIntegralAp2E + 2 Log@pD
methods = 8"MonteCarlo", "QuasiMonteCarlo",

"AdaptiveMonteCarlo", "AdaptiveQuasiMonteCarlo"<;

ints = Reap@NIntegrate@Sin@x yD, 8x, 0, p<, 8y, 0, p<, MaxPoints Ø 70 000,
Method Ø Ò, EvaluationMonitor ß Sow@8x, y<DDD & êü methods;

The values of the integral, the error, and the number of sample points are as follows:

TableForm@8ÒP1T, i - ÒP1T, LengthüÒP2, 1T< & êü ints,
TableHeadings Ø 8methods, 8 "Integral", "Error", "Points"<<D

Integral Error Points

MonteCarlo 2.89243 0.00825584 43 600

QuasiMonteCarlo 2.90061 0.0000693623 52 399

AdaptiveMonteCarlo 2.89471 0.00597262 9700

AdaptiveQuasiMonteCarlo 2.89889 0.00179695 65 900

The adaptive Monte Carlo method uses many fewer points than the usual Monte Carlo method.

‡ Stratified Monte Carlo

It  can  be  shown  that  the  performance  of  Monte  Carlo  methods  can  be  improved  by  partitioning  the
integration region into smaller parts or strata and applying the Monte Carlo method separately for each
part. In this way, we get what is called stratified Monte Carlo integration. If the number of strata is s, the
standard  deviation  of  the  stratified  Monte  Carlo  estimate  is s  times  less  the  standard  deviation  of  the
crude Monte Carlo estimate.

Stratified  Monte  Carlo  integration  can  be  applied  either  by  specifying  intermediate  points  for  the
integration variables or by using the "Partitioning" option:

NIntegrate[f, {x, a0, a1, …, am}, {y, b0, b1, …, bn}, Method Ø "MonteCarlo"]

NIntegrate[f, {x, a, b}, {y, c, d}, Method Ø {"MonteCarlo", "Partitioning" Ø {m, n}}]

With the first method, we can use strata of unequal sizes. With the second method, the first dimen-
sion is stratified into m parts, the second dimension into n parts, etc.; if the value of the option is a single
number, then each dimension is stratified into the same number of strata.

Note  that,  as  mentioned previously,  the adaptive Monte Carlo methods automatically use stratified
sampling.  For  these  methods,  the "Partitioning"  option  gives  the initial  partitioning.  The  default
value of this option is Automatic for the adaptive methods, whereas it is 1 for the nonadaptive methods.

‡ Examples

Now  we  compare  all  four  Monte  Carlo  methods  and  their  stratified  versions.  A  low  value  for
MaxPoints is used to make the plots of the sampled points clearer.

Chapter 20  •  Integral Calculus 663



Plot3D@Sin@x yD, 8x, 0, p<, 8y, 0, p<D

int1 = Reap@NIntegrate@Sin@x yD, 8x, 0, p<, 8y, 0, p<, MaxPoints Ø 3000, Method Ø Ò,
EvaluationMonitor ß Sow@8x, y<DDDP2, 1T & êü methods; êê Quiet

int2 = Reap@NIntegrate@Sin@x yD, 8x, 0, p<,
8y, 0, p<, MaxPoints Ø 3000, Method Ø 8Ò, "Partitioning" Ø 2<,
EvaluationMonitor ß Sow@8x, y<DDDP2, 1T & êü methods; êê Quiet

GraphicsGrid@Partition@
ListPlot@Ò, AspectRatio Ø Automatic, PlotStyle Ø 8Black, PointSize@TinyD<D & êü
Flatten@8int1, int2<, 1D, 4D, ImageSize Ø 420D

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

2.5

3.0

In the first row are the points of the unstratified Monte Carlo methods. The points of the quasi-Monte
Carlo  method  are  more  evenly  spaced  than  the  points  of  the  normal  Monte  Carlo  method.  In  the
adaptive versions, more points are on the parts of the integration region where the function varies more.
The  second  row  shows  the  points  when  the  region  is  stratified  into  four  parts.  As  can  be  seen,  the
stratification  brings  adaptivity  also  for  the  nonadaptive  Monte  Carlo  methods.  For  the  adaptive
methods, the partitioning option only defines the initial partitioning.

20.2.9  More about Quadrature

‡ Newton-Cotes Rule

With a package, we can derive various Newton-Cotes and Gaussian quadrature formulas. First,  let us
ask for information about a two-point Newton-Cotes rule:

<< NumericalDifferentialEquationAnalysis`

664 Mathematica Navigator



8NewtonCotesWeights@2, a, a + hD, NewtonCotesError@2, f, a, a + hD<

:::a, h

2
>, :a + h,

h

2
>>, h3 f££

12
>

Thus, Ÿaa+h f HxL „x >
h
2

f HaL + h
2

f Ha + hL.  The  error  term  indicates  that  the  rule  gives  exact  results  for  all

linear  polynomials.  To  make  the  method  more  useful,  we  create  a  multipanel  (or  compounded  or
composite) rule:

nc = Table@NewtonCotesWeights@2, a + i h, a + Hi + 1L hD, 8i, 0, 3<D

:::a, h

2
>, :a + h,

h

2
>>, ::a + h,

h

2
>, :a + 2 h,

h

2
>>,

::a + 2 h,
h

2
>, :a + 3 h,

h

2
>>, ::a + 3 h,

h

2
>, :a + 4 h,

h

2
>>>

FactorTerms@Total@ÒP2T f@ÒP1TD & êü Flatten@nc, 1DD, hD ê. a + 4 h Ø b

1

2
h Hf@aD + f@bD + 2 f@a + hD + 2 f@a + 2 hD + 2 f@a + 3 hDL

Thus, we arrive at the trapezoidal rule we programmed in Section 18.1.1, p. 544:

‡
a

b

f HxL „ x >
h

2
f HaL+ 2‚

i=1

n-1

f Ha + i hL+ f HbL .

An illustration of the trapezoidal rule is as follows:

g = Sin@xD + 1.2;
points = Table@8x, g<, 8x, 0.5, 5.5<D;
Show@Plot@g, 8x, 0, 6<D, ListPlot@points, Filling Ø Axis, FillingStyle Ø BlackD,
ListLinePlot@points, Filling Ø AxisD, Ticks Ø 8880.5, a<, 85.5, b<<, None<D

‡ Gaussian Rule

Now we ask for information about a three-point Gaussian quadrature in the interval H-1, 1L:
<< NumericalDifferentialEquationAnalysis`

g = GaussianQuadratureWeights@3, -1, 1D

88-0.774597, 0.555556<, 80., 0.888889<, 80.774597, 0.555556<<
GaussianQuadratureError@3, f, -1, 1D

-0.0000634921 fI6M

Thus, the integral of f  over H-1, 1L is approximated by the following:

Total@ÒP2T f@ÒP1TD & êü gD

0.555556 f@-0.774597D + 0.888889 f@0.D + 0.555556 f@0.774597D
The  formula  gives  correct  results  for  all  fifth-order  polynomials.  The  following  program  calculates  an
integral using n-point Gaussian quadrature:

Chapter 20  •  Integral Calculus 665



gaussianQuadrature@f_, 8x_, a_, b_<, n_D :=
Total@ÒP2T f ê. x Ø ÒP1T & êü GaussianQuadratureWeights@n, a, bDD

We try the same example as presented previously but with gaussianQuadrature:

Integrate@Sin@xD, 8x, 0, 2<D - gaussianQuadrature@Sin@xD, 8x, 0, 2<, 3D

-0.0000518162

‡ Quadrature for Data

If  we do not know the whole function to be integrated but only its values at a collection of points,  we
have  some  possibilities.  If  the  data  contain  observational  errors,  then  a  good  method  is  first  to  fit  a
function  to  the  data  using Fit  or FindFit  (see  Section  25.1)  and  then  integrate  this  function  (using
Integrate  or NIntegrate).  Otherwise,  we  can  form  a  piecewise-interpolating  polynomial  using
Interpolation or ListInterpolation (see Section 24.2) and then use NIntegrate. Here is an example:

data = Table@8x, y, BesselI@2, x yD<, 8x, 0, 2, 0.2<, 8y, 0, 2, 0.2<D;

int = Interpolation@Flatten@data, 1DD

InterpolatingFunction@880., 2.<, 80., 2.<<, <>D
NIntegrate@Cos@int@x, yDD, 8x, 0, 2<, 8y, 0, 2<D

3.37132

20.3  Sums and Products

20.3.1  Exact Sums

Sum[expr, {i, a, b}] Sum of the values of expr when i varies from a to b

The  iteration  specification  can  also  be  of the  form {b}  if  we  sum b  copies  of expr, {i, b}  if  the
starting value of i is 1, and {i, a, b, d} if i goes from a to b in steps of d.

Remember that sums can also be entered with the aid of the BasicInput  palette (see Section 1.4.1, p.

15). The keyboard can also be used (see Section 3.3.3, p. 76). Consider the following sum:

‚
i=1

10

2i

To write this expression, type ÂsumÂ‚Î+Ïi=1‚Î%Ï10‚ÎâÏ2‚Î^Ïi‚ÎâÏ.

Here are some examples of infinite sums:

Sum@1 ê i^2, 8i, ¶<D
p2

6

Sum@H1 + iL ê H2 + iL^3, 8i, 0, ¶<D
1

6
Ip2

- 6 Zeta@3DM
Sum@H-1L^Hn - 1L x^n ê n, 8n, ¶<D Log@1 + xD

In the last example, we succeeded in obtaining the function that corresponds to a given power series.

Next, we calculate symbolic sums~that is, sums in which the upper bound is a symbol:

666 Mathematica Navigator



Sum@i^2 + 2^i, 8i, n<D 2 I-1 + 2nM +
1

6
n H1 + nL H1 + 2 nL

Sum@i^2 Binomial@m, iD, 8i, m<D 2-2+m m H1 + mL
Sum@1 ê i, 8i, n<D HarmonicNumber@nD

Sum@c^i, 8i, 0, ¶<D
1

1 - c

For the last result, note that the result holds if » c » < 1.

What is the expectation of X2 when X has a binomial distribution with parameters n and p?

pdf = PDF@BinomialDistribution@n, pD, kD

H1 - pL-k+n pk Binomial@n, kD
Simplify@Sum@k^2 pdf, 8k, 0, n<D, n œ IntegersD

n p H1 + H-1 + nL pL
What is the probability-generating function of a negative binomial distribution with parameters n and p?

pdf = PDF@NegativeBinomialDistribution@n, pD, kD

H1 - pLk pn Binomial@-1 + k + n, -1 + nD
Sum@z^k pdf, 8k, 0, ¶<D

pn H1 - z + p zL-n

Here is an example in which we get an incorrect result:

Sum@i Binomial@2 n - i, nD ê 2^H2 n - iL, 8i, 0, n<D

IH-1Ln 2-2 n
p Csc@n pD HypergeometricPFQRegularized@82, 1 - n<, 81 - 2 n<, 2DM ë

HGamma@nD Gamma@1 + nDL
The true value of the sum is

2 n

n
2 n+1
22 n

- 1.

Sum[expr, {i, a, b}, {j, c, d}]

Multiple sums are calculated in the same way as multiple integrals. Here, c and d may depend on i;
that  is,  the  ranges  of  the  indices  are  given in  the  familiar  mathematical  notation,  with the outer  index
given first.

Sum@x^i y^j, 8i, 1, 3<, 8j, 1, i<D

x y + x2 y + x3 y + x2 y2
+ x3 y2

+ x3 y3

We can also calculate a sum where the summing index gets irregular values:

Sum@f@nD, 8n, 81, 4, 5, 8, 10<<D

f@1D + f@4D + f@5D + f@8D + f@10D

20.3.2  Numerical Sums

‡ Calculating Sums Numerically

NSum[expr, {i, a, b}] Calculate the sum with numerical methods

Chapter 20  •  Integral Calculus 667



The idea of NSum is to sum a certain number of the first terms and then estimate accurately the sum of
the  terms  neglected.  Numerical  summation  is  useful  for  such  infinite  sums  that  cannot  be  calculated
with Sum.  Also,  sums  with  exceptionally  many  terms  can  effectively  be  calculated  using  numerical
methods.  One  application  of  numerical  summation  is  in  numerical  integration  of  oscillatory  functions

(see Section 20.2.5, p. 659).

We calculate several partial sums of the harmonic series with both Sum and NSum:

Hs1 = Table@Sum@N@1 ê iD, 8i, 10^n<D, 8n, 1, 6<DL êê Timing

87.02223, 82.92897, 5.18738, 7.48547, 9.78761, 12.0901, 14.3927<<
Hs2 = Table@NSum@1 ê i, 8i, 10^n<D, 8n, 1, 6<DL êê Timing

80.110215, 82.92897, 5.18738, 7.48547, 9.78761, 12.0901, 14.3927<<
The difference in computing times is considerable, but the differences in the results are very small:

s1 - s2

90., 2.35502 μ 10-10, 2.35556 μ 10-10, 2.34898 μ 10-10, 2.35461 μ 10-10, 2.34811 μ 10-10=
Here is a sum for which Sum does not give a result but NSum works:

NSum@Log@i^2D ê H2^i i!L, 8i, ¶<D 0.227205

We  can  also  apply % // N  to  the  result  of Sum  if Sum  does  not  succeed.  The  sum  is  then  actually
calculated by NSum.

‡ Options

Options of NSum:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the sum should be of the order
10-p; examples of values: Automatic (usually means 6), 10; this option is applicable if Method is
"EulerMaclaurin"

AccuracyGoal  If the value of the option is a, the relative error of the integral should be of the order
10-a; examples of values: ¶, 10; this option is applicable if Method is "EulerMaclaurin"

Method  Method to use; possible values: Automatic, "AlternatingSigns", "EulerMaclaurin",
"WynnEpsilon"

NSumTerms  Number of terms summed explicitly; examples of values: 15, 20
VerifyConvergence  Whether to test explicitly for convergence of infinite sums; possible values:

True, False
EvaluationMonitor  Command to be executed after each evaluation of the expression to be

summed; examples of values: None, Sow[i], ++i, AppendTo[points, i]
Compiled  Whether the summand should be compiled or not; possible values: Automatic, True,

False

‡ Methods

NSum first calculates NSumTerms (default is 15) terms of the sum and then estimates the rest by a suitable
method. There are three methods.

The "EulerMaclaurin" method estimates the value of the sum of the neglected terms by integration.
Using this method, we can set our own PrecisionGoal  and AccuracyGoal;  the current estimate of the
sum is accepted if either of these goals is satisfied.

668 Mathematica Navigator



The "WynnEpsilon"  method  calculates  a  number  of  extra  terms  and  then  tries  to  fit  them  to  a
polynomial  multiplied  by  a  decaying  exponential.  The "AlternatingSigns"  method  also  samples  a
number of additional terms and approximates their sum by the ratio of two polynomials (Padé approxi-
mation). If  the method is not specified, NSum  tries  to decide between the Euler-Maclaurin and Wynn’s
epsilon methods.

Here we calculate the same sum with two methods:

8sum1, 8points1<< = Reap@NSum@Log@i^2D ê H2^i i!L,
8i, ¶<, Method Ø "WynnEpsilon", EvaluationMonitor ß Sow@iDDD;

8sum2, 8points2<< = Reap@NSum@Log@i^2D ê H2^i i!L,
8i, ¶<, Method Ø "EulerMaclaurin", EvaluationMonitor ß Sow@iDDD;

8sum1 - sum2, points1 êê Length, points2 êê Length<

80., 30, 70<
The values of the sum are the same. Next, we show the values of i used by these methods:

9ListPlotA8points1, Range@Length@points1DD<¨, ImageSize Ø 200E,

ListPlotA8points2, Range@Length@points2DD<¨, ImageSize Ø 200E=

:

5 10 15 20 25 30

5

10

15

20

25

30

,

5 10 15 20 25 30 35

10

20

30

40

50

60

70

>

The first plot contains the 30 values of i for the term to be summed using Wynn’s epsilon method. We
see that first terms for i = 16, …, 30 were calculated; with these terms the sum from i = 16 to i = ¶  was
estimated. Then the sum of the first 15 terms was calculated.

The second plot is for the 70 points used by the Euler-Maclaurin method. The first 15 terms are again
summed explicitly.  Then the rest  is  estimated by numerical  integration.  Note that  the plot only shows
the values of i at most approximately 36; the largest value of i for which the term is evaluated is

Max@points2D

517.682

‡ Euler-Maclaurin Formula

We would like to calculate the sum of 1 ën2  for n from 1 to ¶. Calculate explicitly the sum of the first 15

terms and use the Euler-Maclaurin formula to approximate the rest. The four terms of the formula are
as follows (this example is from the Documentation Center, under NIntegrate):

f@n_D := 1 ê n^2; n0 = 1; n1 = 15; n2 = ¶; m = 5;

:‚
n=n0

n1

f@nD, Integrate@f@nD, 8n, n1, n2<D,

-
f@n1D + f@n2D

2
, ‚

i=1

m BernoulliB@2 iD

H2 iL!
IfI2 i-1M@n2D - fI2 i-1M@n1DM> êê N

81.58044, 0.0666667, -0.00222222, 0.000049339<

Chapter 20  •  Integral Calculus 669



Here, Integrate can also be replaced with NIntegrate. The sum of the four terms is

Totalü%

1.64493

This is a very accurate approximation, as can be seen when comparing with the exact result:

Sum@1 ê n^2, 8n, 1, ¶<D - %

-4.44089 μ 10-16

20.3.3  Products

Product[expr, {i, a, b}]

NProduct[expr, {i, a, b}]

Products  can  also  be  entered  with  the  aid  of  the BasicInput  palette  or  with  the  keyboard  (¤  is
entered as ÂprodÂ). Here are some examples:

Product@Ha + iL, 8i, 4<D H1 + aL H2 + aL H3 + aL H4 + aL

Product@1 - 1 ê H2 i^2L, 8i, ¶<D

2 SinB p

2

F

p

NProduct  has  the  same options  and default  values  as NSum  except  that NSumTerms  is  replaced with
NProductFactors.

20.4  Transforms

20.4.1  Laplace Transforms

LaplaceTransform[F, t, s]  Laplace transform of F (a function of t); the transform will be a
function of s

InverseLaplaceTransform[f, s, t] Inverse Laplace transform of f (a function of s); the original
function will be a function of t

The Laplace transform of a function FHtL is f HsL = Ÿ0¶FHtL ‰-s t „ t. For example,

LaplaceTransform@Sin@3 tD, t, sD
3

9 + s2

InverseLaplaceTransform@%, s, tD Sin@3 tD
Here is another example:

LaplaceTransform@Exp@a tD Cosh@b tD, t, sD
-a + s

-b2 + Ha - sL2

InverseLaplaceTransform@%, s, tD
1

2
‰
-I-a-bM t

+
1

2
‰
-I-a+bM t

FullSimplify@%D ‰
a t Cosh@b tD

Another example:

670 Mathematica Navigator



LaplaceTransform@UnitStep@t - aD, t, sD

UnitStep@-aD + ‰-a s UnitStep@aD
s

InverseLaplaceTransform@%, s, tD

UnitStep@-aD + HeavisideTheta@-a + tD UnitStep@aD
And another example:

LaplaceTransform@DiracDelta@tD, t, sD 1

InverseLaplaceTransform@%, s, tD DiracDelta@tD
We can also calculate transforms of some expressions that contain unspecified functions. Here is an

example:

LaplaceTransform@F'@tD, t, sD

-F@0D + s LaplaceTransform@F@tD, t, sD
InverseLaplaceTransform@%, s, tD F£@tD

Another example:

LaplaceTransform@Integrate@F@uD, 8u, 0, t<D, t, sD

LaplaceTransform@F@tD, t, sD
s

The inversion of this does not succeed. A convolution:

LaplaceTransform@Integrate@F@uD G@t - uD, 8u, 0, t<D, t, sD

LaplaceTransform@F@tD, t, sD LaplaceTransform@G@tD, t, sD
InverseLaplaceTransform@%, s, tD

‡
0

t

F@K$154D G@-K$154 + tD „K$154

The  original  function  may  be  an  infinite  sum  (see Spiegel,  1999,  p.  187).  In  this  case, Mathematica
cannot calculate the inverse transform:

InverseLaplaceTransform@Sinh@s xD ê Hs Sinh@s aDL, s, tD

2 InverseLaplaceTransformB
-

1

2
‰-s x +

‰s x

2

H-‰-a s + ‰a sL s, s, tF
With LaplaceTransform,  we  can  use  the  same Assumptions, GenerateConditions,  and

PrincipalValue  options  as  we did with Integrate  (see Section 20.1.3,  p. 640)  and also the Analytic

option we encountered with Limit (see Sections 19.3.1, p. 630).

Multidimensional Laplace transforms and their inverse transforms can also be calculated.

For  application  of  the  Laplace  transform  to  the  solution  of  ordinary  differential  equations,  integral

equations, and partial differential equations, see Sections 26.2.1, p. 841, 26.2.4, p. 847, and 27.1.2, p. 891.

‡ Numerical Inversion

For the numerical inversion of Laplace transforms, see Cheng, Sidauruk, and Abousleiman (1994). Here
is one such method~the Stehfest method:

Chapter 20  •  Integral Calculus 671



c@n_, i_D := H-1Li+
n

2 ‚

k=g i+1

2
w

MinBi,
n

2
F NBk

n

2 H2 kL!F

NAI n

2
- kM! k! Hk - 1L! Hi - kL! H2 k - iL!E

stehfest@f_, s_, t_, n_?EvenQD :=
Log@2D

t
‚
i=1

n

c@n, iD f ê. s Ø
i Log@2D

t

Compare the exact value sinH1L and the numerical inverse of 1 ë I1 + s2M at t = 1:

Sin@1.D - stehfest@1 ê H1 + s^2L, s, 1, 24D

-0.00122814

The numerical inverse is quite good. We can plot the inverse transform:

Plot@8Sin@tD, Evaluate@stehfest@1 ê H1 + s^2L, s, t, 24DD<, 8t, 0, 2 p<D

1 2 3 4 5 6

-1.0

-0.5

0.5

1.0

20.4.2 Z-Transforms

ZTransform[f, n, z] Z-transform of f (a function of n); the transform will be a function of z
InverseZTransform[g, z, n]  Inverse Z-transform of g (a function of z); the original function will

be a function of n

The Z-transform is defined by gHzL =⁄n=0¶ f HnL z-n.  For example,

ZTransform@a^n n^2, n, zD -
a z Ha + zL
Ha - zL3

InverseZTransform@%, z, nD an n2

The Z-transform can be used to solve difference equations (see Section 28.1.3, p. 932).

20.4.3  Fourier Transforms and Series

‡ Fourier Transforms

FourierTransform[f, t, w]  Fourier transform of f (a function of t); the transform will be a
function of w

InverseFourierTransform[F, w, t]  Inverse Fourier transform of F (a function of w); the original
function will be a function of t

An option:
FourierParameters  Parameters of the Fourier transform; examples of values: {0, 1}, {1, -1}, {-1,

1}, {0, -2p}

672 Mathematica Navigator



The  Fourier  transform  of f HtL  in Mathematica  is FHwL = 1

2 p
Ÿ-¶¶ f HtL ‰i w t „ t  if  the  option

FourierParameters  has  the  default  value {0, 1}.  Various  other  Fourier  transforms  are  applied  in
different  disciplines.  They  can  be  used  by  giving FourierParameters  a  suitable  value.  If  the  value  is

{a, b},  the transform is K …b…

H2 pL1+a
O1ê2 Ÿ-¶¶ f HtL ‰i b w t „ t.  The Assumptions  and GenerateConditions  options

can also be used.

Here is an example:

FourierTransform@Exp@-t^2D Sinh@tD, t, wD

H-1 + Cos@wD + Â Sin@wDL JCoshB 1

4
HÂ + wL2F - SinhB 1

4
HÂ + wL2FN

2 2

InverseFourierTransform@%, w, tD êê FullSimplify

‰
-t2

Sinh@tD
FourierSinTransform[f, t, w], InverseFourierSinTransform[f, t, w]

FourierCosTransform[f, t, w], InverseFourierCosTransform[f, t, w]

The  default  Fourier  sine  transform  is 2
p

Ÿ0¶ f HtL sinHw tL „ t.  Other  Fourier  sine  transforms  can  be

obtained  from  the  most  general  form, 2 K …b…

H2 pL1+a
O1ê2 Ÿ0¶ f HtL sinHb w tL „ t,  by  giving  the  parameters a  and b

suitable values with FourierParameters. Similarly, we get Fourier cosine transforms.

The FourierSeries`  package  also  has  the  commands DTFourierTransform  and
InverseDTFourierTransform  and  numerical  versions  of  all  of  the  eight  commands  mentioned
previously (e.g., NFourierTransform).

‡ Fourier Series

In the FourierSeries` package:

FourierTrigSeries[f, t, k]  Fourier trigonometric series expansion to order k of f; by default, f is
treated as a periodic function of t with one period on H-1 ê 2, 1 ê 2L

FourierCosCoefficient[f, t, k]  Coefficient of a cos term
FourierSinCoefficient[f, t, k]  Coefficient of a sin term
An option:
FourierParameters  Parameters of the series expansion; default value: {0, 1}

The  package  also  defines  the  commands FourierSeries  (Fourier  exponential  series)  and
FourierCoefficient.

If  the  option FourierParameters  has  the  default  value {0, 1},  the  Fourier  trigonometric  series  is

c0 +⁄n=1k @cn cosH2 p n tL+dn sinH2 p n tLD  for  a  periodic  function  with  one  period  on I- 1
2

, 1
2
M.  If

FourierParameters is given the value {0, b}, then the series is (if b is positive)

b :c0 +⁄n=1k @cn cosH2 p b n tL+dn sinH2 p b n tLD>
for a periodic function with one period on J- 1

2 b
, 1

2 b
N. The coefficients c0, cn, and dn are as follows:

Chapter 20  •  Integral Calculus 673



c0 = b ‡
-
1

2 b

1

2 b
f HtL „ t, cn = 2 b ‡

-
1

2 b

1

2 b
f HtL cosH2 p b n tL „ t, dn = 2 b ‡

-
1

2 b

1

2 b
f HtL sinH2 p b n tL „ t.

As an example, we calculate the third-order Fourier trigonometric series of Ht - 1L2 when this function

is treated as periodic with one period on H-2, 2L. Because we want 1

2 b
 to be 2, we choose b to be 1 ê 4:

<< FourierSeries`

ser = FourierTrigSeries@Ht - 1L^2, t, 3, FourierParameters Ø 80, 1 ê 4<D

1

2

14

3
-

32 CosA p t

2
E

p2
+
8 Cos@p tD

p2
-

32 CosB 3 p t

2
F

9 p2
-

16 SinA p t

2
E

p

+
8 Sin@p tD

p

-

16 SinB 3 p t

2
F

3 p

To  compare  this  function  with  the  original  periodic  function,  we  define  the  periodic  function  (see

Section 18.5.1, p. 602):

f@t_D := If@-2 § t < 2, Ht - 1L^2, f@t - 4DD

Plot@8f@tD, ser<, 8t, -2, 10<D

-2 2 4 6 8 10

2

4

6

8

We can also calculate the general coefficients of the Fourier series:

c0 = FourierCosCoefficient@Ht - 1L^2, t, 0, FourierParameters Ø 80, 1 ê 4<D

14

3

cn = FourierCosCoefficient@Ht - 1L^2, t, n, FourierParameters Ø 80, 1 ê 4<D

32 H-1Ln

n2 p2

dn = FourierSinCoefficient@Ht - 1L^2, t, n, FourierParameters Ø 80, 1 ê 4<D

16 H-1Ln

n p

So we see that in the interval H-2, 2L, we have

Ht - 1L2 = 1

2
B 14

3
+‚
n=1

¶ 32

n2 p2
H-1Ln cos

n p t

2
+

16

n p
H-1Ln sin

n p t

2
F.

For more information about the FourierSeries` package, see FourierSeriesêtutorialêFourierSeries.

674 Mathematica Navigator



20.4.4  Discrete Fourier Transforms

‡ Discrete Fourier Transforms

Fourier[data]  Discrete Fourier transform
InverseFourier[data]  Discrete inverse Fourier transform

An option:
FourierParameters  Parameters of the transform; examples of values: {0, 1}, {-1, 1}, {1, -1}

Data  are  often  analyzed  by  calculating  the  discrete  Fourier  transform  or  the  spectrum.  For  data
8u1, …, un<,  the transform is n-1ê2⁄r=1n ur ‰2 p Â Hr-1L Hs-1Lên  if the option FourierParameters  has the default

value {0, 1}.  If FourierParameters  is  given  the  value {a, b},  then  the  transform  is

n-H1-aLê2⁄r=1n ur ‰2 p Â b Hr-1L Hs-1Lên.  To  ensure  a  unique  inverse  discrete  Fourier  transform, » b »  must  be

relatively prime to n (greatest common divisor of » b » and n is 1). Fourier can also find the transform for
higher-dimensional data.

As a simple example, we calculate the Fourier transform of a list having three elements; Chop can be
used to replace near-zero real or imaginary parts with an exact zero:

Fourier@81, 0, 2<D 81.73205 + 0. Â, 0. - 1. Â, 0. + 1. Â<
Chop@%D 81.73205, -1. Â, 1. Â<

Then we calculate the inverse transform:

InverseFourier@%D 91., 2.56395 μ 10-16, 2.=
Chop@%D 81., 0, 2.<

In Section 30.6.2, p. 1045, we present an example that shows how the discrete Fourier transform can

be used to smooth or filter data.

‡ Fourier Discrete Sine and Cosine Transforms

FourierDST[data, m] (Ÿ6)  Fourier discrete sine transform of type m
FourierDCT[data, m] (Ÿ6)  Fourier discrete cosine transform of type m

The parameter m can have the values 1, 2, 3, and 4. The value 2 is the default. The inverse of type 1, 2,
3, or 4 transform is type 1, 3, 2, and 4 transform, respectively.

FourierDCT@81, 0, 2<D 81.73205, -0.5, 0.866025<
FourierDCT@%, 3D êê Chop 81., 0, 2.<

Chapter 20  •  Integral Calculus 675



676 Mathematica Navigator

This page intentionally left blank



21
Matrices

Introduction 677

21.1  Vectors 677

21.1.1  Basics of Vectors 677 MatrixForm, Range, CharacterRange, Table, Array, ConstantArray, etc.

21.1.2  Manipulating Vectors 679 Part, Take, Drop, Prepend, Append, Select, Cases, Sort, Union, etc.

21.1.3  Vector Calculus 681 Total, Accumulate, Differences, Dot, Norm, Orthogonalize, etc.

21.2  Matrices 686

21.2.1  Basics of Matrices 686 MatrixForm, Table, Array, SparseArray, ArrayPlot, MatrixPlot, etc.

21.2.2  Manipulating Matrices 692 Part, Take, Drop, Diagonal, ArrayFlatten, Transpose, etc.

21.2.3  Matrix Calculus 696 Total, Det, Dot, MatrixExp, Inverse, Norm, Eigenvalues, MatrixRank, etc.

21.2.4  Decompositions 704 LUDecomposition, QRDecomposition, SingularValueDecomposition, etc.

 Introduction

In some colleges of music, part of the doctoral requirement is to compose an original full-length
 symphony. Because modern music sounds so weird, a good ploy is to take a well-known classical

 symphony, write it backwards, and submit it as an original work. One student took the daring step of
 taking his professor’s doctoral symphony and reversing it. He failed to receive his degree, the examiners

 remarking that he had reproduced Sibelius’ Fourth Symphony with not a single note changed.

In Mathematica, vectors and matrices are represented as lists. Accordingly, in this chapter we encounter
many  of  the  commands  that  are  familiar  from  Chapter  14.  Note  that  systems  of  linear  equations  are
considered in Section 22.1, and linear programming is addressed in Section 23.2.1. For more information
about linear algebra with Mathematica, see tutorialêLinearAlgebraOverview. See also Szabo (2000, 2001), and
Ruskeepää (2007).

21.1  Vectors

21.1.1  Basics of Vectors

‡ Displaying Vectors

{a, b, c, … }  A vector with elements a, b, c, …

A vector is a one|dimensional list:

v = 84, 3, 7< 84, 3, 7<

This is the usual form of a vector in Mathematica. Vectors can also be displayed in other forms:



MatrixForm[v]  Show vector v as a column, with parentheses at left and right
MatrixForm[{v}]  Show vector v as a row, with parentheses at left and right

Column[v] (Ÿ6)  Show vector v as a column without parentheses
Row[v, s] (Ÿ6)  Show vector v as a row without parentheses; separate elements with s

8MatrixForm@vD, MatrixForm@8v<D, Column@vD, Row@v, " "D<

:
4

3

7

, H 4 3 7 L,

4

3

7

, 4 3 7>

For more information about Column  and Row,  see Section 15.1.2,  p. 469.  For more information about

MatrixForm,  see Section  21.2.1,  p. 686.  Note  that  these  commands  are  only  used  to display  vectors:

Vectors displayed with these commands cannot be used in any calculations.

‡ Generating Vectors

Vectors that arise from a systematic scheme can be input with special commands such as Table, Range,

and Array,  familiar  from Section  14.1.1,  p. 444.  Here,  we  recall  these  commands,  together  with  some

new commands.

Range[n]  Create the vector {1, 2, …, n}; Range[n0, n] creates the vector {n0, n0 + 1, …, n} and

Range[n0, n, d] the vector of numbers from n0 to n in steps of d

CharacterRange["c1", "c2"]  Create a vector of characters from c1 to c2

Table[expr, {i, n}]  Create a vector from the values of expr when i goes from 1 to n; write {i,

n0, n} if i goes from n0 to n and {i, n0, n, d} if i goes from n0 to n in steps of d; write {n} to

create n copies of expr

Array[f, n] Create a vector from the values of f[i] when i goes from 1 to n; write Array[f, n,

n0] if i goes from n0 to n + n0 | 1

ConstantArray[c, n] (Ÿ6)  Create a vector of n copies of element c

SparseArray[rules, dims, default]  Create a sparse array (see Section 21.2.1, p. 689)

UnitVector[n, k] (Ÿ6)  The n|dimensional unit vector in the kth direction

Range@10D 81, 2, 3, 4, 5, 6, 7, 8, 9, 10<
CharacterRange@"a", "g"D 8a, b, c, d, e, f, g<
Table@Prime@nD, 8n, 6<D 82, 3, 5, 7, 11, 13<
Array@f, 84<D 8f@1D, f@2D, f@3D, f@4D<
ConstantArray@1, 5D 81, 1, 1, 1, 1<
Table@UnitVector@3, iD, 8i, 3<D 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<

678 Mathematica Navigator



21.1.2  Manipulating Vectors

‡ Taking Parts of Vectors

Because vectors are lists, we can use all the list manipulation commands presented in Chapter 14. Here,
we recall these commands. First, we show ways to take elements by using Part or [[ ]]. Note that the
two characters [[  can also be replaced with the single character P; write it as Â[[Â. Similarly, ]] can
be  replaced  with T;  write  it  as Â]]Â.  Still  another  way  to  take  parts  is  to  use  the ÑPÑT  button  in  the

BasicMathInput palette.

vPiT  Take the ith element
vP-iT  Take the ith element from the end

vPi ;; jT (Ÿ6)  Take elements i through j

vPi ;;T  Take elements from i to the end
vP-i ;;T  Take the last i elements
vP ;; jT  Take the first j elements
vP ;; -jT  Take elements from the beginning to the jth element from the end
vPi ;; j ;; dT  Take elements i through j in steps of d

vP{i, j, … }T  Take elements i, j, …

v = Range@6D 81, 2, 3, 4, 5, 6<
8vP4T, vP3 ;; 6T, vP82, 3, 6<T<

84, 83, 4, 5, 6<, 82, 3, 6<<

‡ Resetting Elements

vPiT = a  Set the ith element to scalar a

vPi ;; jT = a  Set elements i through j to scalar a

vPi ;; jT = {a, …, b}  Set element i to a, …, element j to b

vP{i, j, … }T = {a, b, … }  Set elements i, j, … to a, b, …

Parts specified by P T can be used to set new values for elements:

vP4T = 44 44

v 81, 2, 3, 44, 5, 6<

‡ Taking and Dropping Elements

First[v], Rest[v]  Take/drop the first element
Last[v], Most[v]  Take/drop the last element

Take[v, i], Drop[v, i]  Take/drop the first i elements
Take[v, -i], Drop[v, -i]  Take/drop the last i elements
Take[v, {i, j}], Drop[v, {i, j}]  Take/drop elements i‚ …, j

Take[v, {i, j, d}], Drop[v, {i, j, d}]  Take/drop elements in steps of d

TakeWhile[list, crit] (Ÿ6)  Take elements from list as long as crit gives True

LengthWhile[list, crit] (Ÿ6)  Give the length of the list given by TakeWhile

Note that these commands do not modify the original value of v:

Chapter 21  •  Matrices 679



Drop@v, -3D 81, 2, 3<
v 81, 2, 3, 44, 5, 6<

‡ Inserting and Deleting Elements

Among the following commands, PrependTo and AppendTo are special, as explained later.

Prepend[v, a]  or Join[{a}, v]  Insert element a at the beginning of v

Append[v, a]  or Join[v, {a}]  Insert element a at the end of v

PrependTo[v, a]  Insert element a at the beginning of v and reset v to the result
AppendTo[v, a]  Insert element a at the end of v and reset v to the result

Insert[v, a, i]  Insert element a between elements i - 1 and i

ReplacePart[m, a, i]  Replace ith element with a

Delete[v, i], Delete[v, -i]  Delete the ith element, counting from the beginning/end
Delete[v, {{i}, {j}, … }]  Delete elements i, j, …

Riffle[{a, b, c, … }, {x, y, z, … }]  {a, x, b, y, c, z, …}
Riffle[{a, b, c, … }, x, {p0, p1, d}] (Ÿ6) x appears at positions p0, p0 + d, p0 + 2d, … (a

negative p1 counts from the end)

PadRight[v, n]  Pad vector v with zeros on the right to make a vector of length n

PadRight[v, n, a]  Pad vector v cyclically with a (a may be a scalar or list)

Note  that  with  the  exception  of PrependTo  and AppendTo,  these  commands  do  not  modify  the
original value of v:

Prepend@v, 0D 80, 1, 2, 3, 44, 5, 6<
v 81, 2, 3, 44, 5, 6<

However, PrependTo[v, a]  and AppendTo[v, a]  do  modify  the  original  vector.  The  same  effect  can
also be obtained by v = Prepend[v, a] and v = Append[v, a]:

PrependTo@v, 0D 80, 1, 2, 3, 44, 5, 6<
v 80, 1, 2, 3, 44, 5, 6<
v = Prepend@v, -1D 8-1, 0, 1, 2, 3, 44, 5, 6<
v 8-1, 0, 1, 2, 3, 44, 5, 6<

With PadRight or PadLeft we can pad a vector to form a longer vector:

PadRight@81, 2, 3<, 7D 81, 2, 3, 0, 0, 0, 0<

‡ Selecting Elements

Select[v, test]  Select the elements that give True for test

Cases[v, pattern]  Select the elements that match pattern

DeleteCases[v, pattern] Delete the elements that match pattern

Count[v, pattern] Give the number of the elements that match pattern

Position[v, pattern]  Give the positions at which elements match pattern

Extract[v, pos]  Extract the elements that are at the positions given by Position

680 Mathematica Navigator



SeedRandom@1D; v = RandomInteger@6, 10D

86, 4, 2, 4, 0, 1, 6, 0, 0, 2<
Select@v, Ò § 3 &D 82, 0, 1, 0, 0, 2<
Select@v, Ò ã 1 »» Ò ã 6 &D 86, 1, 6<
Cases@v, x_ ê; x § 3D 82, 0, 1, 0, 0, 2<
Cases@v, 1 » 6D 86, 1, 6<
Position@v, x_ ê; x § 3D 883<, 85<, 86<, 88<, 89<, 810<<
Extract@v, %D 82, 0, 1, 0, 0, 2<

Select  is  considered  in Section  14.1.7,  p. 457,  and  most  other  commands  are  discussed  in Section

16.1.1, p. 493.

‡ Reordering Elements

Sort[v]  Sort the elements into a standard order
SortBy[list, f] (Ÿ6)  Sort the elements of list in the order defined by applying f to each of them
Union[v]  Sort the elements into a standard order and remove any duplicates
Join[u, v, … ]  Join the given vectors into one vector
Partition[v, n]  Partition the vector into subvectors of n elements
Split[v]  Split the vector into subvectors consisting of runs of identical elements

21.1.3  Vector Calculus

‡ Properties of Vectors

Length[v]  The number of elements of vector v

VectorQ[v]  Test whether v is a vector
VectorQ[v, test]  Test whether v is a vector with elements that satisfy test

8VectorQ@84, 3, 7<D, VectorQ@884, 3<, 82, 8<<D, VectorQ@8<D<

8True, False, True<
8VectorQ@84, 3, 7<, NumericQD, VectorQ@84, 2, 8<, EvenQD<

8True, True<

We consider tests in more detail in Section 13.3.5, p. 431.

‡ Arithmetic with Vectors

Arithmetic  with  vectors  is  easy  because Mathematica  automatically  does  all  operations  element  by
element. Here are some calculations with a single vector:

a + v  Add scalar a to each element of vector v

a v  Multiply each element of vector v with scalar a

1/v  Calculate the reciprocal of each element of vector v

v^a  Calculate the ath power (a is a scalar) of each element of vector v

a^v  Calculate the powers of scalar a that are given in vector v

v = 8x, y, z<;

Chapter 21  •  Matrices 681



81 + v, 5 v, 1 ê v, v^2, 2^v<

:81 + x, 1 + y, 1 + z<, 85 x, 5 y, 5 z<, :
1

x
,

1

y
,

1

z
>, 9x2, y2, z2=, 92x, 2y, 2z=>

Built|in functions of vectors are also calculated elementwise:

Log@vD 8Log@xD, Log@yD, Log@zD<

Here are some calculations with two vectors of the same size:

u + v  Add two vectors u and v

u v  Multiply the corresponding elements of u and v (use u.v for an inner product)
u/v Divide the corresponding elements of vectors u and v

u^v  Calculate powers of corresponding elements of vectors u and v

u = 84, 3, 7<; v = 8x, y, z<;

8u + v, u v, u ê v, u^v<

:84 + x, 3 + y, 7 + z<, 84 x, 3 y, 7 z<, :
4

x
,

3

y
,

7

z
>, 94x, 3y, 7z=>

‡ Sum, Product, Minimum, and Maximum of Elements

Total[v] The sum of the elements of vector v

Total[v, Method Ø CompensatedSummation] Use compensated summation
Apply[Times, v]  The product of the elements of vector v

Min[v], Max[v]  The smallest/largest element

v = 8a, b, c, d<;

Total@vD a +b +c +d

Apply@Times, vD a b c d

In summing long lists, round|off error may accumulate. Using an option resolves the problem:

t = ConstantArray@2.9, 10^6D;

Total@tD - 2.9 μ 10^6 -0.0000535152

Total@t, Method Ø CompensatedSummationD - 2.9 μ 10^6 0.

‡ Cumulative Sums and Differences of Elements

Accumulate[v] (Ÿ6)  The list of successive cumulative sums of elements
Differences[v] (Ÿ6)  The list of successive differences of elements
Differences[v, n] (Ÿ6)  The list of nth differences

v = 8a, b, c, d<;

Accumulate@vD 8a, a + b, a + b + c, a + b + c + d<
Differences@vD 8-a + b, -b + c, -c + d<

Let us calculate several differences in two ways:

Table@Differences@v, nD, 8n, 0, 4<D

88a, b, c, d<, 8-a + b, -b + c, -c + d<, 8a - 2 b + c, b - 2 c + d<, 8-a + 3 b - 3 c + d<, 8<<

682 Mathematica Navigator



NestList@Differences, v, 4D

88a, b, c, d<, 8-a + b, -b + c, -c + d<, 8a - 2 b + c, b - 2 c + d<, 8-a + 3 b - 3 c + d<, 8<<

Cumulative sums are needed in simulation of random walks:

ListLinePlot@Accumulate@RandomChoice@8-1, 1<, 50DD, Mesh Ø AllD

10 20 30 40 50
-2

2

4

6

‡ Products

u v  Element|by|element product (the result is a vector)
u.v  or Dot[u, v]  Scalar (or inner) product (the result is a scalar)
uäv  or Cross[u, v]  Cross product (the result is a vector)
KroneckerProduct[u, v] (Ÿ6)  Kronecker (or outer) product (the result is a matrix)

The cross (ä) can be written as ÂcrossÂ. Examples:

u = 8a, b, c<; v = 8P, Q, R<;

u v 8a P, b Q, c R<
u.v a P +b Q +c R

uäv 8-c Q + b R, c P - a R, -b P + a Q<

Calculate the Kronecker product in two ways:

KroneckerProduct@u, vD 88a P, a Q, a R<, 8b P, b Q, b R<, 8c P, c Q, c R<<
Outer@Times, u, vD 88a P, a Q, a R<, 8b P, b Q, b R<, 8c P, c Q, c R<<

Note  especially  that  the  normal  product  (written  as  a  space)  cannot  be  used  to  calculate  the  scalar
product; we have to use the dot.

Note also that a vector such as 8a, b, c< looks like a row vector. The truth is, however, that Mathematica
does not distinguish between row and column vectors; all vectors are written in the same way. Mathemat-
ica  can  work  in  this  way  because  it  is  almost  always  clear  to Mathematica  what  should  be  done  in  a
computation  that  contains  vectors  and  matrices.  To  illustrate  this  further,  we  introduce  a  matrix
together with two vectors:

T = 883, 1<, 84, 6<<;
r = 8x, y<; s = 83, 8<;

To multiply T and r, write the following:

T.r 83 x + y, 4 x + 6 y<

To multiply r and T, write

r.T 83 x + 4 y, x + 6 y<

However, if we want the product of T, s (considered as a column vector), s (considered as a row vector),
and T, we have to be careful and use KroneckerProduct:

T.KroneckerProduct@s, sD.T 88697, 867<, 82460, 3060<<

Chapter 21  •  Matrices 683



‡  Norms

Norm[v]  The 2|norm of vector v

Norm[v, p]  The p|norm of vector v, 1 § p § ¶

The p|norm of a vector is I⁄ … vi »pM
1ëp

 for 1 § p < ¶, and the ¶|norm is the maximum of the absolute

values of the elements.

v = 8a, b, c<;

Norm@v, ÒD & êü 81, 2, p, ¶<

:Abs@aD + Abs@bD + Abs@cD, Abs@aD2 + Abs@bD2 + Abs@cD2 ,

IAbs@aDp + Abs@bDp + Abs@cDpM
1

p , Max@Abs@aD, Abs@bD, Abs@cDD>
The 1|, 2|, and ¶|norms are easy to program:

vectorNorm@v_, p_D := Switch@p,
1, Total@Abs@vDD,
2, Sqrt@Abs@vD.Abs@vDD,
¶, Max@Abs@vDDD

vectorNorm@v, 2D Abs@aD2 + Abs@bD2 + Abs@cD2

‡ Distances

EuclideanDistance[u, v] (Ÿ6)  The same as Norm[u - v]

HammingDistance[u, v] (Ÿ6)  The number of elements whose values disagree in u and v

EuclideanDistance@82, 3<, 8x, y<D Abs@2 - xD2 + Abs@3 - yD2

HammingDistance@81, 2, 3, 4, 5<, 82, 2, 3, 5, 4<D 3

Mathematica  has  many  other  distances: BrayCurtisDistance, CanberraDistance,
ChebyshevDistance  (the  same  as Norm[u - v, ¶]), CorrelationDistance, CosineDistance,
EditDistance, ManhattanDistance  (the  same  as Norm[u - v, 1]),  and SquaredEuclideanDistance.
These  distances  can  be  used  as  a  value  for  the DistanceFunction  option  of  such  commands  as

FindShortestTour, FindClusters, and Nearest; see Sections 23.5.1, p. 777, and 30.1.2, p. 1009.

As an example, let us draw 100 random lines in unit square:

SeedRandom@1D;
tt = RandomReal@80, 1<, 8100, 2, 2<D;

Graphics@8Line êü tt<, Axes Ø TrueD

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

684 Mathematica Navigator



We calculate the lengths of the lines and the mean and variance of the lengths:

lengths = EuclideanDistance@ÒP1T, ÒP2TD & êü tt;

8Mean@lengthsD, Variance@lengthsD<

80.532353, 0.0602447<

‡ Orthogonalization

Orthogonalize[{v1, v2, … }] (Ÿ6)  Generate an orthonormal set from the vectors
Projection[u, v] (Ÿ6)  Orthogonal projection of u onto v

Normalize[v] (Ÿ6)  Normalize the vector v

Here is an example of Gram-Schmidt orthonormalization:

u = 85, 1<; v = 83, 4<;

8o1, o2< = Orthogonalize@8u, v<D ::
5

26

,
1

26

>, :-
1

26

,
5

26

>>

The inner product of these vectors is 0 and their norm is 1:

8o1.o2, Norm@o1D, Norm@o2D< 80, 1, 1<

Next, we calculate and show the orthogonal projection of v onto u:

pr = Projection@v, uD :
95

26
,

19

26
>

Graphics@8Arrow@880, 0<, u<D, Arrow@880, 0<, v<D, Arrow@880, 0<, pr<D,
Line@8v, pr<D, Text@"u", u, 8-2, 0<D, Text@"v", v, 8-1, -1<D<, Axes Ø TrueD

u

v

1 2 3 4 5

1

2

3

4

Orthogonalize  and Projection,  by  default,  use  the  usual  inner  product (#1.#2 &),  but  another
inner product can be defined by writing a pure function as an additional argument to these commands.

‡ Angles and Rotation

VectorAngle[u, v] (Ÿ6)  The angle between the two vectors
RotationMatrix[q] (Ÿ6)  The matrix to rotate in 2D by q radians counterclockwise about the origin

VectorAngle@o1, o2D
p

2
RotationMatrix@qD 88Cos@qD, -Sin@qD<, 8Sin@qD, Cos@qD<<
RotationMatrix@p ê 2D.81, 0< 80, 1<

For more information about these commands, see the Mathematica documentation.

Chapter 21  •  Matrices 685



‡ Transforms

Vectors can be transformed with Affine|, LinearFractional|, Reflection|, Rescaling|, Rotation|,
Scaling|, Shearing|, and TranslationTransform.

ParametricPlot@RotationTransform@Pi ê 4D@82 Cos@tD, Sin@tD<D êê Evaluate,
8t, 0, 2 p<, Ticks Ø 88-1, 1<, 8-1, 1<<, ImageSize Ø 90D

-1 1

-1

1

21.2  Matrices

21.2.1  Basics of Matrices

‡ Writing Matrices

{{a, b, … }, {c, d, … }, … }  A matrix with rows {a, b, …}, {c, d, …}, …

A matrix  is  represented as a  list;  each row of the matrix is  a  separate sublist.  Here is  a  matrix with
two rows and three columns:

m = 884, 2, 7<, 83, 5, 1<< 884, 2, 7<, 83, 5, 1<<

The menu command Insert @ Table/Matrix @ New generates an empty matrix such as the one in the
following:

m = K
Ñ Ñ Ñ

Ñ Ñ Ñ
O

We can then fill in the placeholders:

m =
4 2 7

3 5 1
884, 2, 7<, 83, 5, 1<<

Matrices can also be entered with the keyboard. To start, type ‚Î,Ï to get two placeholders of a H1μ 2L
matrix. To get more columns, type ‚Î,Ï several times. To get more rows, type ‚Î¿Ï several times. Then
fill in the matrix.

‡ Displaying Matrices

MatrixForm[m]  Write matrix m in a 2D form, with parentheses at left and right
TraditionalForm[m]  Write matrix m in a 2D form, with parentheses at left and right
Grid[m] (Ÿ6)  Write matrix m in a 2D form, without parentheses

8MatrixForm@mD, TraditionalForm@mD, Grid@mD<

: 4 2 7

3 5 1
,

4 2 7

3 5 1
,

4 2 7

3 5 1
>

Note  that MatrixForm, TraditionalForm,  and Grid  are  only  used  to display  matrices:  Matrices
displayed with these commands cannot be used in any calculations. For example, write the following:

686 Mathematica Navigator



q = 883, 1<, 82, 5<< êê MatrixForm
3 1

2 5

We  defined q  to  be  not  the  matrix  itself  but  its  matrix  form. Mathematica  will  not  do  any  calculations
with such a form:

82 + q, 3 q, Transpose@qD, Inverse@qD<

:2 +
3 1

2 5
, 3

3 1

2 5
, TransposeB 3 1

2 5
F, InverseB 3 1

2 5
F>

Therefore, when defining q, we have to be careful so that the value of q will be the matrix itself and not
its matrix form. The simplest way is to use two separate commands: First define the matrix and then ask
for its matrix form:

q = 883, 1<, 82, 5<< 883, 1<, 82, 5<<

q êê MatrixForm
3 1

2 5

If  we  want,  in  one  command,  to  define  and  display  a  matrix,  we  can  do  so  in  either  of  the  following
ways:

MatrixForm@q = 883, 1<, 82, 5<<D
3 1

2 5

Hq = 883, 1<, 82, 5<<L êê MatrixForm
3 1

2 5

A good way to show all matrices in the matrix form~without problems in calculations~is to define
$PrePrint = If[MatrixQ[#], MatrixForm[#], #]&. Now all matrices are shown in the matrix form. By
defining $PrePrint =., we can cancel the definition.

For MatrixForm, we have the same five options as for TableForm; the options of the latter command

were considered in Section 15.1.1, p. 467. The default value Automatic  of the TableAlignments  option

now means {Center, Baseline}  (the  default  value  is {Left, Baseline}  for TableForm).  The  default
value Automatic  of the TableSpacing  option (defining the space between rows and columns) actually
means {1, 1}.

TraditionalForm is considered in Section 3.3.1, p. 70, and Grid in Section 15.2, p. 470.

‡ Generating Matrices

Matrices that arise from a systematic scheme can be input with special commands such as Table, Range,

and Array,  familiar  from Section  14.1.1,  p. 444.  Here,  we  recall  these  commands,  together  with  some

new commands.

Table[expr, {i, m}, {j, n}]  Create an (m n) matrix; other forms of the iteration specifications are
{i, m0, m}, {i, m0, m, d}, and {m}

Array[f, {m, n}]  Create an (m n) matrix with elements f[i, j]; add a third argument {m0, n0} if

index origins are m0 and n0

ConstantArray[c, {m, n}] (Ÿ6) Create an (m n) matrix, all elements being c

SparseArray[rules, dims, default]  Create a sparse matrix

Chapter 21  •  Matrices 687



IdentityMatrix[n]  An (n n) identity matrix
DiagonalMatrix[v]  A diagonal matrix with diagonal elements from vector v

HilbertMatrix[n]  The (n n) Hilbert matrix
Partition[v, n]  From vector v, form a matrix with n columns and as many rows as become

complete

Here is a Hilbert matrix, calculated in three ways:

Table@1 ê Hi + j - 1L, 8i, 3<, 8j, 3<D

::1,
1

2
,

1

3
>, :

1

2
,

1

3
,

1

4
>, :

1

3
,

1

4
,

1

5
>>

Array@1 ê HÒ1 + Ò2 - 1L &, 83, 3<D

::1,
1

2
,

1

3
>, :

1

2
,

1

3
,

1

4
>, :

1

3
,

1

4
,

1

5
>>

HilbertMatrix@3D

::1,
1

2
,

1

3
>, :

1

2
,

1

3
,

1

4
>, :

1

3
,

1

4
,

1

5
>>

Here is matrix with general elements:

Array@f, 82, 2<D

88f@1, 1D, f@1, 2D<, 8f@2, 1D, f@2, 2D<<

Here is a zero matrix in three ways:

ConstantArray@0, 83, 3<D 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<
Array@0 &, 83, 3<D 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<
Table@0, 83<, 83<D 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

Other examples:

IdentityMatrix@3D 881, 0, 0<, 80, 1, 0<, 80, 0, 1<<
DiagonalMatrix@8a, b, c<D 88a, 0, 0<, 80, b, 0<, 80, 0, c<<
Partition@Range@10D, 3D 881, 2, 3<, 84, 5, 6<, 87, 8, 9<<

Next, we use If, Which, and Switch (see Section 18.2.2, p. 556):

Table@If@i § j, i + j, 0D, 8i, 3<, 8j, 3<D êê MatrixForm

2 3 4

0 4 5

0 0 6

Table@Which@i > j, 0, i ã j, 1, i ã j - 1, 2, i § j - 2, 3D, 8i, 3<, 8j, 3<D êê MatrixForm

1 2 3

0 1 2

0 0 1

Table@Switch@i - j, -1, a, 0, b, 1, c, _, 0D, 8i, 3<, 8j, 3<D êê MatrixForm

b a 0

c b a

0 c b

Here is a Vandermonde matrix:

688 Mathematica Navigator



Outer@Power, 8x, y, z<, Range@0, 2DD êê MatrixForm

1 x x2

1 y y2

1 z z2

‡ Generating Sparse Matrices

In  sparse  vectors  or  matrices,  we  typically  have  few  nonzero  elements  compared  with  the  number  of
zero elements. Using SparseArray, we can specify only the nonzero elements.

SparseArray[rules, dims, default]  From rules, create a sparse array that has dimensions dims

and takes unspecified elements to be default

SparseArray  also  accepts  the  shorter  form SparseArray[rules, dims],  and  then  unspecified
elements  are  taken  to  be  0.  A  still  shorter  form is SparseArray[rules],  and  then  the  dimensions  are
exactly large enough to include all elements with explicitly specified positions.

The rules can be of the following forms:

8pos1 Ø val1, pos2 Ø val2, …<

8pos1, pos2, …< Ø 8val1, val2, …<

8pos1, pos2, …< Ø val

In this way, we specify the positions and values of some elements; elements in other positions are set to
default.  The  position  specifications  can  contain  patterns  (see  Chapter  16).  Dimension dims  is,  for
example, of the form {d1} for vectors and of the form {d1,d2} for matrices.

As an example, we generate a 3μ 3 diagonal matrix with 5 as the diagonal element. The following is
the easiest way:

s0 = DiagonalMatrix@83, 3, 3<D

883, 0, 0<, 80, 3, 0<, 80, 0, 3<<

However, next we form the same matrix as a sparse matrix, in four different ways:

s1 = SparseArray@881, 1< Ø 5, 82, 2< Ø 5, 83, 3< Ø 5<D

SparseArray@<3>, 83, 3<D
s2 = SparseArray@881, 1<, 82, 2<, 83, 3<< Ø 85, 5, 5<D;

s3 = SparseArray@881, 1<, 82, 2<, 83, 3<< Ø 5D;

s4 = SparseArray@88i_, i_< Ø 5<, 83, 3<D;

The result is a SparseArray object. We only see the number of rules (three here) and the dimensions of
the  matrix  ({3,  3}  here).  With Normal,  we  can  see  the  sparse  matrix  in  the  usual  list  form  and  with
MatrixForm in a two|dimensional form:

s1 êê Normal 885, 0, 0<, 80, 5, 0<, 80, 0, 5<<

s1 êê MatrixForm

5 0 0

0 5 0

0 0 5

Normal[sparseArray]  Create a list version of sparseArray

SparseArray[list]  Create a sparse array version of list

ArrayRules[sparseArray]  Give the rules of sparseArray

Chapter 21  •  Matrices 689



Normal  converts  a  sparse  array into a  usual  list.  The inverse is  done with SparseArray:  It  converts
usual  lists  into  sparse  arrays.  With ArrayRules,  we  get  the  list  of  rules  that  specify  the  elements  of  a
sparse array. For example, we can transform the matrix s0 calculated previously into a sparse matrix:

SparseArray@s0D SparseArray@"<"3">", 83, 3<D
ArrayRules@%D 881, 1< Ø 3, 82, 2< Ø 3, 83, 3< Ø 3, 8_, _< Ø 0<

We can calculate with sparse matrices and vectors in a similar manner as we calculate with normal
matrices  and  vectors.  In  general,  matrix  calculus  such  as Eigenvalues, LinearSolve,  and
LinearProgramming work with sparse matrices as they do with normal matrices.

‡ Generating Band Matrices

Sparse matrices often consist of bands along the main diagonal and along diagonals above and beneath
it. With Band, we can easily construct such sparse matrices.

Band[start] (Ÿ6)  Represents, in a sparse matrix, the sequence of positions on the diagonal band
that starts at position start (start is of the form 8m, n<)

Band[start, end]  The band ends at position end

Band[start, end, step]  The band moves with step

Band[start] Ø a  All elements in the band Band[start] are equal to a

Band[start] Ø {a1, a2, … }  The elements in the band are equal to a1, a2, …
Band[start] Ø {m1, m2, … }  The band contains a sequence of matrices m1, m2, …

The  starting  and  ending  positions  of  the  band  can  be  anywhere  in  the  matrix.  Here  are  some
examples of band matrices:

MatrixForm êü 8SparseArray@Band@81, 1<D Ø 1, 84, 4<D,
SparseArray@Band@81, 1<, 83, 3<D Ø 1, 84, 4<D,
SparseArray@Band@81, 1<, 84, 4<, 2D Ø 1D,
SparseArray@Band@82, 1<, 84, 4<, 80, 1<D Ø 1D<

:

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 1

,

1 0 0 0

0 1 0 0

0 0 1 0

0 0 0 0

,

1 0 0 0

0 0 0 0

0 0 1 0

0 0 0 0

,

0 0 0 0

1 1 1 1

0 0 0 0

0 0 0 0

>

m1 = 88a, b<, 8c, d<<;
m2 = 88e, f<, 8g, h<<;

MatrixForm êü 8SparseArray@
8Band@81, 1<D Ø a, Band@82, 1<D Ø b, Band@81, 2<D Ø c, 81, 4< Ø d<, 84, 4<D,

SparseArray@Band@82, 2<D Ø 8a, b, c<, 84, 4<D,
SparseArray@Band@82, 2<D Ø 88a, b<, 8c, d<<, 84, 4<D,
SparseArray@Band@81, 1<D Ø 8m1, m2<, 85, 5<D<

:

a c 0 d

b a c 0

0 b a c

0 0 b a

,

0 0 0 0

0 a 0 0

0 0 b 0

0 0 0 c

,

0 0 0 0

0 a b 0

0 c d 0

0 0 0 0

,

a b 0 0 0

c d 0 0 0

0 0 e f 0

0 0 g h 0

0 0 0 0 0

>

‡ Plotting Matrices

We have two commands to plot matrices:

690 Mathematica Navigator



ArrayPlot[m]  Plot the matrix by showing zero elements in white, the element(s) with the maximum
absolute value in black, and other elements in various gray levels

MatrixPlot[m] (Ÿ6)  Plot the matrix by showing zero elements in white, the element(s) with the
maximum positive value in orange, the element(s) with the maximum negative value in blue, and
other elements in lighter orange and lighter blue

The following plots show the coloring schemes of the two commands:

Hm = 8Range@0, 5D, Range@-5, 0D<L êê MatrixForm

0 1 2 3 4 5

-5 -4 -3 -2 -1 0

8ArrayPlot@mD, MatrixPlot@mD<

: ,

1 2 3 4 5 6

1

2

1 2 3 4 5 6

1

2

>

Both commands plot the rows of the matrix down the page: The first row is on the top.

The commands have all the options of Graphics and, in addition, the following options:

Options of ArrayPlot and MatrixPlot:

Mesh  Whether to draw a mesh; examples of values: False, True, All, {5, 10} (5 horizontal and 10
vertical lines)

MeshStyle  The style of the mesh; examples of values: GrayLevel[GoldenRatio - 1], {{Blue,
Thick}}

ColorFunction  How the cells are colored; examples of values: Automatic, Hue, (If[# == 0, White,

Black] &)

ColorFunctionScaling  Whether to scale the values of the elements into @0, 1D; possible values:
True, False

ColorRules  Rules for determining colors from the values of elements; examples of values:
Automatic, {0 Ø White, _ Ø Black}, {1|-1 Ø Red, x_ /; x < -1 Ø Blue, x_ /; x > 1 Ø Green, _ Ø

White}

MaxPlotPoints  The maximum number of elements explicitly plotted; examples of values: ¶ (the
default for ArrayPlot), Automatic (the default for MatrixPlot)

PixelConstrained  How to constrain cells to align with screen pixels; examples of values: False,
True, 1 (each cell is one pixel)

PlotRangeClipping  Whether to clip at the plot range; possible values: True, False

ClippingStyle  The color of cells whose values are clipped; examples of values: None, Red, {Blue,
Red}

DataRange  The range of x and y values to assume; examples of values: All, {{a, b}, {c, d}} (the

centers of successive cells should be at equally spaced positions between a and b in the x direction
and between c and d in the y direction; the first item is centered at Ha, dL)

DataReversed  Whether to reverse the order of rows; possible values: False, True

Chapter 21  •  Matrices 691



In ColorRules, we can use patterns such as _ (meaning anything), 1|-1 (meaning 1 or -1), or x_ /; x

< -1 (meaning numbers that are < -1); for patterns, see Chapter 16.

For options other than those mentioned in the previous box, note the following.

The default value of AspectRatio is Automatic.

The default value of Frame is Automatic for ArrayPlot and True for MatrixPlot. For ArrayPlot, a
frame is normally drawn, but if Mesh is True, the default is that a frame is not drawn.

The  default  value  of FrameTicks  is None  for ArrayPlot  and All  for MatrixPlot.  If FrameTicks  is
Automatic,  then ticks are placed at round integers, but if FrameTicks  is All,  then ticks are also placed
at the minimum and maximum row and column index.

The  default  value  of PlotRange  is All.  For  this  option,  similar  values  can  be  given  as  for
DensityPlot; a value such as s plots only elements that are in [0, s]. For ArrayPlot, if an explicit value
is  given  for PlotRange,  then the  minimum  value  is  white  and  the  maximum  value  black  (e.g.,  the
coloring is not based on absolute values).

m = 880, 0, 1, 1, 0<, 81, 0, 1, 2, 1<, 82, 1, 2, 0, 1<, 82, 1, 1, 3, 2<<;

GraphicsRow@8ArrayPlot@m, Mesh Ø AllD,
ArrayPlot@m, ColorFunction Ø HIf@Ò ã 0, White, BlackD &L,

Mesh Ø All, Frame Ø True, FrameTicks Ø 8All, None, None, All<D,
ArrayPlot@m, ColorRules Ø 80 Ø White, _ Ø Black<, Mesh Ø AllD,
ArrayPlot@SparseArray@8Band@81, 1<D Ø 2, Band@86, 1<D Ø 1, Band@81, 6<D Ø 1<,

840, 40<DD<, ImageSize Ø 420D

1

2

3

4

1 2 3 4 5

‡ Tensors

A tensor of rank k is a k|dimensional table of values; see tutorialêTensors.  Tensors of rank 0, 1, and 2 are
scalars,  vectors,  and  matrices,  respectively.  Tensors  can  be  generated  with Table  or Array.  With
ArrayDepth we can obtain the rank of a tensor and with Dimensions a list of the dimensions.

21.2.2  Manipulating Matrices

‡ Manipulating Rows

As matrices are lists, we can use all the list manipulation commands presented in Chapter 14. Elements
and rows of matrices can be taken as follows:

mPi, jT  Take element (i, j)
mPi, jT = a  Set element (i, j) to a

mPiT  Take row i

mPiT = r  Set row i to vector r

mPi ;; jT  Take rows i through j

mP{i, j, … }T  Take rows i, j, …

692 Mathematica Navigator



Recall that P and T can be written as Â[[Â and Â]]Â; we can also use the character sequences [[

and ]].

Here are special commands for taking or dropping rows:

First[m], Rest[m]  Take/drop the first row
Last[m], Most[m]  Take/drop the last row

Take[m, i], Drop[m, i]  Take/drop the first i rows
Take[m, -i], Drop[m, -i]  Take/drop the last i rows
Take[m, {i}], Drop[m, {i}]  Take/drop row i

Take[m, {i, j}], Drop[m, {i, j}]  Take/drop rows i‚ …, j

Take[m, {i, j, d}], Drop[m, {i, j, d}]  Take/drop rows in steps of d

Next, we show commands for inserting, deleting, and replacing rows.

Prepend[m, r]  or Join[{r}, m]  Insert row r at the top of m

Append[m, r]  or Join[m, {r}]  Insert row r at the bottom of m

Insert[m, r, i]  Insert row r between rows i - 1 and i

ReplacePart[m, r, i]  Replace ith row with row r

Delete[m, i], Delete[m, -i]  Delete the ith row, counting from the beginning/end
Delete[m, {{i}, {j}, … }]  Delete rows i, j, …

As an example, consider the matrix

MatrixForm@m = 881, 2, 3<, 8p, q, r<, 8P, Q, R<<D

1 2 3

p q r

P Q R

We arrange the rows in another order, take rows 2 to 3, and append a row at the bottom of the matrix:

m1 = mP82, 1, 3<T;
m2 = mP2 ;; 3T;
m3 = Append@m, 8a, b, g<D;

Map@MatrixForm, 8m1, m2, m3<D

:
p q r

1 2 3

P Q R

,
p q r

P Q R
,

1 2 3

p q r

P Q R

a b g

>

Map[f[#]&, m]  or f[#]& /@ m  Map each row with the pure function f

With Map we can easily do various manipulations for each row. As examples, we reverse the order of
the elements of each row of m, pick the second element from each row (i.e., pick the second column), and
calculate the sum of the elements of each row:

Reverse êü m 883, 2, 1<, 8r, q, p<, 8R, Q, P<<
ÒP2T & êü m 82, q, Q<

Total êü m 86, p + q + r, P + Q + R<

Chapter 21  •  Matrices 693



‡ Manipulating Columns and Diagonals

In the following, when we need the transpose of a matrix m or Transpose[m], we use the short notation
m¨. Here, ¨ can be written as ÂtrÂ.

mPAll, iT  or m¨PiT  Take column i

mPAll, iT = c  Set the ith column to vector c

mPAll, i ;; jT  Take columns i through j

mPAll, {i, j, … }T  Take columns i, j, …

Take[m, All, i]  or Take[m¨, i]¨  Take the first i columns
Take[m, All, {i}]  or Take[m¨, {i}]¨  Take column i

Drop[m, None, i]  or Drop[m¨, i]¨  Drop the first i columns
Drop[m, None, {i}]  or Drop[m¨, {i}]¨  Drop column i

Prepend[m¨, c]¨  Insert column c at the left of m

Append[m¨, c]¨  Insert column c at the right of m

As an example, consider the same m matrix discussed previously. We arrange the columns in another
order, take columns 2 to 3, and append a column at the left of the matrix:

m4 = mPAll, 82, 1, 3<T;
m5 = mPAll, 2 ;; 3T;

m6 = AppendAm¨, 84, s, S<E¨;

MatrixForm êü 8m4, m5, m6<

:
2 1 3

q p r

Q P R

,

2 3

q r

Q R

,

1 2 3 4

p q r s

P Q R S

>

Diagonal[m] (Ÿ6)  Give the elements on the leading diagonal
Diagonal[m, k]  Give the elements on the kth diagonal above the leading diagonal
Diagonal[m, -k]  Give the elements on the kth diagonal below the leading diagonal

In Diagonal, the matrix need not be square:

8Diagonal@m6D, Diagonal@m6, 1D, Diagonal@m6, -1D<

881, q, R<, 82, r, S<, 8p, Q<<

‡ Taking Submatrices

mP{i1, i2, … }, {j1, j2, … }T  Take the submatrix that has elements with the given row and column

indices
mPi1;; i2, j1;; j2T  or Take[m, {i1, i2}, {j1, j2}]  Take the submatrix that has elements with

row and column indices in the given ranges
Drop[m, {i1, i2}, {j1, j2}]  Drop rows i1 to i2 and columns j1 to j2

Partition[m, {i, j}]  Partition a matrix into blocks of size (iäj)

Consider matrix m6 constructed previously:

694 Mathematica Navigator



m6 êê MatrixForm

1 2 3 4

p q r s

P Q R S

We do the following:

• We take the submatrix with row indices 1 and 3 and column indices 2 and 4.
• We take the submatrix with row indices 1, 2, and 3 and column indices 2, 3, and 4.
• We drop row 3 and columns 1 and 2.
• We partition m6 to two matrices of the size H3, 2L (note that in partitioning, any leftover elements are

dropped).

m7 = m6P81, 3<, 82, 4<T;
m8 = m6P1 ;; 3, 2 ;; 4T;
m9 = Drop@m6, 83<, 81, 2<D;
m10 = Partition@m6, 83, 2<D;

MatrixForm êü 8m7, m8, m9, m10<

: 2 4

Q S
,

2 3 4

q r s

Q R S

,
3 4

r s
,

1 2

p q

P Q

3 4

r s

R S

>

‡ Combining and Extending Matrices

With ArrayFlatten  and Join  we  can  construct  a  single  matrix  from  some  blocks  of  matrices.  In
ArrayFlatten, the argument is a matrix of matrices.

ArrayFlatten[{{m}, {n}}] (Ÿ6)  or Join[m, n]  Create the matrix
m

n

ArrayFlatten[{{m, n}}] or Join[m, n, 2] or Join[m¨, n¨]¨  Create the matrix H m n L

ArrayFlatten[{{m, n}, {p, q}}]  Create the matrix
m n

p q

ArrayFlatten[{{m, n, … }, {p, q, … }, … }]  Create a matrix from matrices m, n, p, q, …

PadRight[m, {n1, n2}]  Extend m with zeros to an n1 n2 matrix
PadRight[m, {n1, n2}, a]  Extend m with replicates of matrix a to an n1 n2 matrix

m = 881, 2<, 83, 4<<; n = 88a, b<, 8c, d<<;
o = 880, 0<, 80, 0<<; p = 88S, T<, 8U, V<<;

m11 = Join@m, nD;
m12 = Join@m, n, 2D;
m13 = ArrayFlatten@88m, n<, 8o, p<<D;

MatrixForm êü 8m11, m12, m13<

:

1 2

3 4

a b

c d

,
1 2 a b

3 4 c d
,

1 2 a b

3 4 c d

0 0 S T

0 0 U V

>

MatrixForm êü 8m, PadRight@m, 82, 4<D, PadRight@m, 84, 2<D, PadRight@m, 84, 4<D<

: 1 2

3 4
,

1 2 0 0

3 4 0 0
,

1 2

3 4

0 0

0 0

,

1 2 0 0

3 4 0 0

0 0 0 0

0 0 0 0

>

Chapter 21  •  Matrices 695



‡  Reordering Rows and Columns

Transpose[m]  Interchange rows and columns

Reverse[m]  Reverse the order of the rows
Reverse[m¨]¨  or Reverse[m, 2]  Reverse the order of the columns

RotateLeft[m]  Move the first row to be the last row
RotateLeft[m¨]¨  Move the first column to be the last column

RotateRight[m]  Move the last row to be the first row
RotateRight[m¨]¨  Move the last column to be the first column

21.2.3  Matrix Calculus

‡ Properties of Matrices

Length[m]  The number of rows of matrix m

Dimensions[m]  The dimensions (numbers of rows and columns) of m

MatrixQ[m]  Test whether m is a matrix
MatrixQ[v, test]  Test whether v is a matrix with elements that satisfy test

HermitianMatrixQ[m] (Ÿ6)  Test whether m is Hermitian (i.e., whether the conjugate transpose of
the matrix is the same as the matrix; if the matrix is real, Hermitian means the same as symmetric)

PositiveDefiniteMatrixQ[m] (Ÿ6)  Test whether m is positive definite

m = 882, 7, 5<, 88, 1, 6<<;

8Length@mD, Dimensions@mD< 82, 82, 3<<
8MatrixQ@884, 3<, 82, 7<<D, MatrixQ@84, 3<D, MatrixQ@884, 3<<D<

8True, False, True<
MatrixQ@884, 3<, 82, 7<<, NumericQD True

We considered tests in more detail in Section 13.3.5, p. 431.

m = 880.64, 0.61, 0.66<, 80.61, 0.76, 0.69<, 80.66, 0.69, 0.80<<;

8HermitianMatrixQ@mD, PositiveDefiniteMatrixQ@mD< 8True, True<

The positive definiteness can also be seen from the fact that all eigenvalues are positive:

Eigenvalues@mD 82.04494, 0.0999083, 0.0551525<

‡ Arithmetic with Matrices

Arithmetic  with  matrices  is  easy  because Mathematica  automatically  does  all  operations  element  by
element.

a + m  Add scalar a to each element of matrix m

a m  Multiply each element of m with scalar a

1/m  Calculate the reciprocal of each element of m (use Inverse[m] for a matrix inverse)
m^a  Calculate the ath power (a is a scalar) of each element of m (use MatrixPower[m, a] for a matrix

power)
a^m  Calculate the powers of scalar a that are given in matrix m

696 Mathematica Navigator



n = 88a, b<, 8c, d<<;

MatrixForm êü 83 + n, 5 n, n^-1, n^2, 2^n<

: 3 + a 3 + b

3 + c 3 + d
,

5 a 5 b

5 c 5 d
,

1

a

1

b

1

c

1

d

,
a2 b2

c2 d2
,

2a 2b

2c 2d
>

m + n  Add two matrices m and n

m n  Multiply the corresponding elements of m and n (use m.n for a matrix product)
m/n Divide the corresponding elements of m and n

m^n  Calculate powers of the corresponding elements of m and n

m = 881, 2<, 83, 4<<;

MatrixForm êü 8m + n, m n, m ê n, m^n<

: 1 + a 2 + b

3 + c 4 + d
,

a 2 b

3 c 4 d
,

1

a

2

b

3

c

4

d

,
1 2b

3c 4d
>

As indicated previously, to get a true matrix inverse, power, or product, we cannot write m^-1, m^a,
or m n but, rather, we have to write Inverse[m], MatrixPower[m, a], and m.m, respectively.

‡ Transpose and Trace

Transpose[m]  Transpose
ConjugateTranspose[m]  Conjugate transpose

Tr[m]  Trace (the sum of diagonal elements)
Tr[m, List]  or Diagonal[m] (Ÿ6)  List of diagonal elements
Tr[m, Times]  Product of diagonal elements

Transpose[m]  can  also  be  written  as m¨,  where ¨  can  be  written  as ÂtrÂ.  Similarly,
ConjugateTranspose[m]  can  also  be  written  as mæ,  where æ  can  be  written  as ÂctÂ.
ConjugateTranspose[m] is equivalent to Conjugate[Transpose[m]].

m = 882 + I, 5<, 8-I, 5 - 3 I<<;

MatrixForm êü 9m, mæ=

: 2 + Â 5

-Â 5 - 3 Â
,

2 - Â Â

5 5 + 3 Â
>

For a triangular matrix, the product of diagonal elements is the same as the determinant:

m = 88a, 0, 0<, 8b, c, 0<, 8d, e, f<<;

8Tr@m, TimesD, Det@mD< 8a c f, a c f<

‡ Sums, Minimums, and Maximums

Total[list]  The sum(s) of the elements of list that are at level 1
Total[list, {n}]  The sum(s) of the elements of list that are at level n

Total[list, n]  The sum(s) of elements of list that are at levels 1 through n

Total[list, {m, n}]  The sum(s) of the elements of list that are at levels m through n

As special cases of these general commands for lists, we get the following commands for matrices:

Chapter 21  •  Matrices 697



Total[m, {1}]  or Total[m]  The sum of the rows, giving the vector of column sums
Total[m, {2}]  or Total /@ m  or Total[m¨]  The sums of the elements of each row, giving the

vector of row sums
Total[m, {1, 2}]  or Total[m, 2]  or Total[Flatten[m]]  The sum of all elements

Consider the following matrix:

Hm = 881, 2, 3<, 8a, b, c<, 8A, B, C<<L êê MatrixForm

1 2 3

a b c

A B C

Calculate the column sums, the row sums, and the overall sum:

Total@mD 81 + a + A, 2 + b + B, 3 + c + C<

TotalAm¨E 86, a + b + c, A + B + C<
Total@m, 2D 6 +a +A +b +B +c +C

For  sums  in  which  numerical  errors  cause  problems,  use Total  with  the  option Method Ø

CompensatedSummation to reduce the error.

Here are ways to calculate,  with Min,  various minimums for matrices; maximums can be calculated
with Max:

Min /@ m  The smallest element of each row
Min /@ m¨  The smallest element of each column
Min[m]  The smallest element of the matrix

‡ Differences

Differences[m] (Ÿ6)  Differences of rows
Differences[m, i] ith differences of rows
Differences[m, {0, j}] jth differences of columns
Differences[m, {i, j}] ith differences of rows and jth differences of columns

Hm = 881, 2, 3<, 8a, b, c<, 8A, B, C<<L êê MatrixForm

1 2 3

a b c

A B C

MatrixForm êü 8Differences@mD, Differences@m, 80, 1<D<

: -1 + a -2 + b -3 + c

-a + A -b + B -c + C
,

1 1

-a + b -b + c

-A + B -B + C

>

‡ Determinant and Minors

Det[m]  Determinant of a square matrix
Minors[m]  Minors of a square matrix
Minors[m, k] kth minors

Calculate the determinant of a Hilbert matrix by using exact arithmetic, usual decimal numbers, and
high-precision decimal numbers:

698 Mathematica Navigator



m = HilbertMatrix@6D;

8Det@mD, Det@m êê ND, Det@N@m, 20DD<

:
1

186 313 420 339 200 000
, 5.3673 μ 10-18, 5.36729988736 μ 10-18>

According to Cramer’s rule, the solution of a linear equation A x = b is xi = » AHi ê bL » ê » A », where » »

means  determinant  and AHi ê bL  is  matrix A  with  column i  replaced  with b.  The  following  program  is
from the Documentation Center.

cramersRule@a_, b_D := Module@8m, d = Det@aD<,
Table@m = a; mPAll, iT = b; Det@mD ê d, 8i, Length@aD<DD

cramersRule@881, 2<, 82, -1<<, 87, 4<D 83, 2<
LinearSolve@881, 2<, 82, -1<<, 87, 4<D 83, 2<

‡ Product, Power, and Exponential

m.n  Product of matrices
MatrixPower[m, a]  The ath power of a square matrix (a can also be negative)
MatrixExp[m]  Matrix exponential of a square matrix

Note that if we want the product of matrices m and n but write m n, the product is formed element by
element, and this is probably not the product we want. The normal matrix product is formed with the
use of the dot:

m =
1 2

3 4
; n =

a b

c d
;

m.n êê MatrixForm
a + 2 c b + 2 d

3 a + 4 c 3 b + 4 d

Multiplication with a vector, from left or right, is also formed with the dot:

m.8x, y< 8x + 2 y, 3 x + 4 y<
8x, y<.m 8x + 3 y, 2 x + 4 y<

The  Kronecker  product  (or  outer  product)  of  two  vectors  must  instead  be  calculated  with  a  special
command:

KroneckerProduct@8a , b, c<, 8x, y, z<D

88a x, a y, a z<, 8b x, b y, b z<, 8c x, c y, c z<<

Powers of matrices such as m^3 are formed element by element, and this is again something we most
likely do not want. If we want to calculate the true matrix power, we write m.m.m or MatrixPower[m, 3]:

m.m.m 8837, 54<, 881, 118<<

Calculate the square root of m:

MatrixPower@m, 0.5D

880.553689 + 0.464394 Â, 0.806961 - 0.212426 Â<,
81.21044 - 0.31864 Â, 1.76413 + 0.145754 Â<<

%.% êê Chop 881., 2.<, 83., 4.<<

Next, we calculate a matrix exponential ‰m = ⁄
i=0

¶ 1

i!
mi:

Chapter 21  •  Matrices 699



MatrixExp@880, 1<, 8-1, 0<< tD

88Cos@tD, Sin@tD<, 8-Sin@tD, Cos@tD<<

‡ Inverse and Pseudoinverse

Inverse[m]  Inverse of a square matrix
PseudoInverse[m]  Pseudoinverse (of a possibly rectangular matrix)

Note that m^-1 only inverts each element. Use Inverse to calculate the true matrix inverse:

Inverse@883, 2<, 84, 1<<D ::-
1

5
,

2

5
>, :

4

5
, -

3

5
>>

Matrix inversion is numerically an exacting and risky task. Avoid it whenever possible. Often, we do
not really need an inverse because the problem can often be restated in a form in which the problem is
to solve a linear system of equations.

Hilbert  matrices  are  examples  of  matrices  that  behave  badly,  but  no  problems  arise  if  we  calculate
with exact numbers:

h@n_D := HilbertMatrix@nD

Hh@5D.Inverse@h@5DDLP2T 80, 1, 0, 0, 0<

The result is as it should be. With decimal numbers, however, the result is not so good:

HN@h@5DD.Inverse@N@h@5DDDLP2T

9-3.13731 μ 10-13, 1., 4.32606 μ 10-12, -2.82196 μ 10-12, 2.92681 μ 10-12=
We  can  increase  the  precision  of  the  calculations;  here  we  use  20|digit  precision,  which  gives  a  good
result again:

HN@h@5D, 22D.Inverse@N@h@5D, 20DDLP2T

90. μ 10-18, 1.000000000000000, 0. μ 10-16, 0. μ 10-16, 0. μ 10-16=
Even if the normal inverse does not exist, we can calculate a pseudoinverse:

c = 883, 2<, 86, 4<<;

Inverse@cD

Inverse::sing : Matrix 883, 2<, 86, 4<< is singular. à

Inverse@883, 2<, 86, 4<<D

p = PseudoInverse@cD ::
3

65
,

6

65
>, :

2

65
,

4

65
>>

The pseudoinverse satisfies the following four identities:

9c.p.c ã c, p.c.p ã p, Hc.pL¨ ã c.p, Hp.cL¨ ã p.c=
8True, True, True, True<

The pseudoinverse is calculated with singular value decomposition. For a nonsingular square matrix,
the pseudoinverse is the same as the usual inverse. For the option Tolerance,  see SingularValueList

in the next subsection. PseudoInverse is also considered in Section 22.1.2, p. 714.

700 Mathematica Navigator



‡ Singular Values

SingularValueList[m]  Singular values (of a possibly rectangular matrix)
SingularValueList[m, k]  The k largest singular values
SingularValueList[{m, a}]  Generalized singular values of m with respect to matrix a

SingularValueDecomposition[m]  Singular value decomposition

Singular values are listed from largest to smallest:

m = 883, 2<, 84, 1<<;

SingularValueList@mD

: 5 3 + 2 2 , 5 3 - 2 2 >

Singular values can also be calculated as follows:

SqrtAEigenvaluesAm.mæEE

: 5 3 + 2 2 , 5 3 - 2 2 >

The singular values are sorted from the largest to the smallest (repeated singular values appear with
their  appropriate  multiplicity).  Only  singular  values  considered to  be  nonzero are  listed.  We calculate
the 12 singular values of the 12th Hilbert matrix and show their decimal values:

SingularValueList@HilbertMatrix@12DD êê N

91.79537, 0.380275, 0.0447385, 0.00372231, 0.000233089, 0.0000111634, 4.08238 μ 10-7,

1.12286 μ 10-8, 2.25196 μ 10-10, 3.11135 μ 10-12, 2.64902 μ 10-14, 1.04795 μ 10-16=
If we calculate the singular values from the numerical Hilbert matrix, we get only 10 singular values:

SingularValueList@HilbertMatrix@12D êê ND

91.79537, 0.380275, 0.0447385, 0.00372231, 0.000233089,

0.0000111634, 4.08238 μ 10-7, 1.12286 μ 10-8, 2.25196 μ 10-10, 3.11135 μ 10-12=
The last two singular values are under a tolerance value and are considered to be zero. However, we can
use an option to define a new tolerance value.

Tolerance  An option for SingularValueList as well as for SingularValueDecomposition and
PseudoInverse, to mention a few. The default value Automatic means that only singular values
larger than 100μ 10-p, where p is Precision[m], are kept; in particular, for exact and symbolic

matrices, all singular values are kept. Setting Tolerance Ø t keeps only singular values that are at
least t times the largest singular value. Setting Tolerance Ø 0 keeps all singular values.

By using a tolerance of 0, all singular values of the Hilbert matrix are calculated:

SingularValueList@HilbertMatrix@12D êê N, Tolerance Ø 0D

91.79537, 0.380275, 0.0447385, 0.00372231, 0.000233089, 0.0000111634, 4.08238 μ 10-7,

1.12286 μ 10-8, 2.25196 μ 10-10, 3.11135 μ 10-12, 2.6492 μ 10-14, 1.09518 μ 10-16=
The 2-norm condition number of a matrix is the ratio of largest to smallest singular values:

conditionNumber@m_D :=
With@8s = SingularValueList@m êê N, Tolerance Ø 0D<, First@sD ê Last@sDD

Chapter 21  •  Matrices 701



A large condition number indicates sensitivity to round|off  errors.  Hilbert matrices are well|known
examples of matrices with large condition numbers:

Table@conditionNumber@HilbertMatrix@nDD, 8n, 1, 6<D

91., 19.2815, 524.057, 15 513.7, 476 607., 1.49511 μ 107=
With a built-in command we can calculate the ¶-norm condition number:

Table@LinearAlgebra`MatrixConditionNumber@HilbertMatrix@nD êê ND, 8n, 1, 6<D

91., 27., 748., 28 375., 943 656., 2.90703 μ 107=
SingularValueDecomposition is considered in Section 21.2.4, p. 706.

‡ Norms

Norm[m]  The 2|norm
Norm[m, p]  The p|norm; p is a number in @1, ¶L or the value ¶ or Frobenius

The  2|norm  is  the  largest  of  the  singular  values,  the  1|norm  is  the  largest  of  the  absolute  column
sums, and the ¶|norm is the largest of the absolute row sums. The Frobenius norm is the square root of
the sum of squared absolute values. For example,

m = 883, 2<, 84, 1<<;

Norm@m, ÒD & êü 81, 2, Frobenius, ¶<

:7, 5 3 + 2 2 , 30 , 5>

% êê N 87., 5.39835, 5.47723, 5.<

The basic matrix norms are easy to program:

matrixNorm@m_, p_D := Switch@p,
1, Max@Total@Abs@mDDD,
2, SingularValueList@mDP1T,
Frobenius, Sqrt@Total@Abs@mD^2, 2DD,
¶, Max@Total@Abs@mD, 82<DDD

matrixNorm@m, ÒD & êü 81, 2, Frobenius, ¶<

:7, 5 3 + 2 2 , 30 , 5>

‡ Eigenvalues

Eigenvalues[m]  Eigenvalues of a square matrix
Eigenvalues[m, k]  The k eigenvalues that are largest in absolute value
Eigenvalues[m, -k]  The k eigenvalues that are smallest in absolute value
Eigenvalues[{m, a}]  The generalized eigenvalues of m with respect to matrix a

Eigenvectors[m]  Eigenvectors
Eigensystem[m]  Eigenvalues and eigenvectors
CharacteristicPolynomial[m, x]  Characteristic polynomial

Here is an example of eigenvalues and eigenvectors:

m = 883, 2<, 84, 1<<;

702 Mathematica Navigator



Eigenvalues@mD 85, -1<
8u, v< = Eigenvectors@mD 881, 1<, 8-1, 2<<

Eigenvalues are given in the order of decreasing absolute value (repeated eigenvalues appear with their
appropriate multiplicity). Eigenvalues and eigenvectors can also be calculated at the same time:

88l, m<, 8u, v<< = Eigensystem@mD 885, -1<, 881, 1<, 8-1, 2<<<

We can verify that the familiar conditions of eigenvalues and eigenvectors are satisfied:

8m.u ã l u, m.v ã m v< 8True, True<

Eigenvalues can also be easily calculated in the following ways:

Solve@Det@m - x IdentityMatrix@2DD ã 0, xD 88x Ø -1<, 8x Ø 5<<

CharacteristicPolynomial@m, xD -5 -4 x +x2

Solve@% ã 0, xD 88x Ø -1<, 8x Ø 5<<

If you do not want exact eigenvalues and eigenvectors, it is better to calculate with decimal numbers
from the start;  this can be done with Eigenvalues[N[m]].  If  you want to start the calculations with k|
digit precision, use Eigenvalues[N[m, k]].

It  may  happen  that  a  matrix  has  fewer  eigenvectors  than  the  number  of  rows;  in  this  case,  null
vectors are added to get the same number of vectors as there are rows.

Roots  of  cubic  and  quadratic  equations  are  often  not  written  explicitly  because  they  are  often  long
expressions:

m = 883, 2, 4<, 82, 2, 4<, 86, 4, 3<<;

Eigenvalues@mD

9RootA10 - 23 Ò1 - 8 Ò12 + Ò13 &, 3E,

RootA10 - 23 Ò1 - 8 Ò12 + Ò13 &, 1E, RootA10 - 23 Ò1 - 8 Ò12 + Ò13 &, 2E=
With some options, we can get explicit eigenvalues for H3μ 3L and H4μ 4L matrices.

Cubics, Quartics  Options of Eigenvalues, Eigenvectors, and Eigensystem. The default value
False means that eigenvalues resulting as roots of cubic and quadratic equations are not written
explicitly. Give value True to get explicit eigenvalues.

Eigenvalues@m, Cubics Ø TrueDP1T

8

3
+

133

3 J1205 + 6 Â 25 017 N
1ë3

+
1

3
1205 + 6 Â 25 017

1ë3

An eigenvalue may seem to be complex, although it actually is real:

% êê N 10.1657+0. Â

Im@%%D êê FullSimplify 0

‡ Rank, Null Space, and Gaussian Elimination

MatrixRank[m]  Rank
NullSpace[m]  Basis vectors of the null space
RowReduce[m]  Do Gaussian elimination to produce a reduced row echelon form

Chapter 21  •  Matrices 703



Consider the following matrix:

m = 880, 1, 0, 0, 0<, 80, 0, 0, 1, 1<, 80, 1, 0, 1, 1<, 80, 0, 0, 0, 0<, 81, 1, 0, 0, 1<<;

The matrix is singular. This can be seen in various ways. The determinant is zero and the inverse does
not exist:

Det@mD 0

Inverse@mD

Inverse::sing :

Matrix 880, 1, 0, 0, 0<, 80, 0, 0, 1, 1<, 80, 1, 0, 1, 1<, 80, 0, 0, 0, 0<, 81, 1, 0, 0, 1<< is singular. à
Inverse@
880, 1, 0, 0, 0<, 80, 0, 0, 1, 1<, 80, 1, 0, 1, 1<, 80, 0, 0, 0, 0<, 81, 1, 0, 0, 1<<D

Also, we get only three nonzero singular values and only three nonzero eigenvalues, and the rank (the
number of linearly independent rows or columns) of the matrix is only 3:

SingularValueList@m êê ND 82.53209, 1.3473, 0.879385<
Eigenvalues@m êê ND

81.83929, -0.419643 + 0.606291 Â, -0.419643 - 0.606291 Â, 0., 0.<
MatrixRank@mD 3

The null  space  of  a  matrix m  consists  of  vectors x  satisfying m.x ã 0. NullSpace[m]  gives  the basis
vectors of this space. For nonsingular matrices, the null space is empty. The previous matrix m has a null
space spanned by the following two vectors:

NullSpace@mD 88-1, 0, 0, -1, 1<, 80, 0, 1, 0, 0<<

The rank of a matrix equals the column dimension minus the dimension of the null space.

The reduced row echelon form of m has only three nonzero rows:

RowReduce@mD êê MatrixForm

1 0 0 0 1

0 1 0 0 0

0 0 0 1 1

0 0 0 0 0

0 0 0 0 0

RowReduce is also considered in Section 22.1.2, p. 713.

21.2.4  Decompositions

‡ Decompositions into Triangular Matrices

LUDecomposition[m]  PLU decomposition of a square matrix. For matrix M, the decomposition is
P M = L U, where L is unit lower triangular (with 1’s on the diagonal), U is upper triangular, and P

is a permutation matrix. Output is 9K, p, c=, where matrix K contains both L and U, p is a permuta-

tion vector (i.e., a list specifying rows used for pivoting), and c is the L¶ condition number of m
(however, for exact matrices with no decimal points, c is 1).

We use the following matrix as an example when we next compute various decompositions:

M = 880.53, 0.88, 0.18<, 80.70, 0.44, 0.17<, 80.17, 0.56, 0.36<<;

Calculate a PLU decomposition:

704 Mathematica Navigator



MatrixForm êü H8LU, perm, cond< = LUDecomposition@MDL

:
0.7 0.44 0.17

0.757143 0.546857 0.0512857

0.242857 0.828631 0.276217

,

2

1

3

, 12.7397>

In the following way, we can get explicit L and U matrices:

L = LU SparseArray@8i_, j_< ê; i > j Ø 1, 83, 3<D + IdentityMatrix@3D;
U = LU SparseArray@8i_, j_< ê; i § j Ø 1, 83, 3<D;

MatrixForm êü 8L, U<

:
1 0 0

0.757143 1 0

0.242857 0.828631 1

,

0.7 0.44 0.17

0 0.546857 0.0512857

0 0 0.276217

>

Now we can check that the decomposition is correct:

MPpermT - L.U êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

In the following way, we can get a function to solve linear equations of the form M x = b for fixed M
and any b:

luFunction = LinearSolve@MD

LinearSolveFunction@83, 3<, <>D

For example, if b = H4, 2, 7L, then the solution of the equation M x = b is

luFunction@84, 2, 7<D 8-2.96588, 3.03303, 16.127<

LinearSolve  uses  the  PLU  decomposition.  Indeed,  some  parts  of luFunction  are  the  same  as  the
output from the PLU decomposition:

luFunctionP2, 3T ã 9LU¨, perm, cond= True

The logic of the LU decomposition for the system M x = b is that when L and U  have been obtained,
the original  system is  replaced with two very easy triangular  systems:  First  we solve L y = b  for y  and

then U x = y  for x.  Therefore, M x = HL UL x = L y = b.  This  means  that x  is  the  solution.  Triangular

systems are solved very easily: y  is  solved by forward substitution,  and then x  is  solved by backward

substitution. We try these computations:

y = LinearSolve@L, 84, 2, 7<PpermTD 82., 2.48571, 4.45455<

x = LinearSolve@U, yD 8-2.96588, 3.03303, 16.127<

From www.wolfram.com/products/mathematica/newin6/content/ExtendedArrayOperations ,  I  found
the following program for LU decomposition:

LUDecompose@A_D := Module@8m, n, L, U<,
8m, n< = Dimensions@AD; L = IdentityMatrix@nD; U = A;
Do@LPk ;; n, kT = UPk ;; n, kT ê UPk, kT;

UPHk + 1L ;; n, k ;; nT = UPHk + 1L ;; n, k ;; nT - LPHk + 1L ;; n, 8k<T.UP8k<, k ;; nT,
8k, n - 1<D; 8L, U<D

LUDecompose@MD

9881., 0, 0<, 81.32075, 1., 0<, 80.320755, -0.384535, 1<<,

980.53, 0.88, 0.18<, 91.11022 μ 10-16, -0.722264, -0.0677358=, 80., 0., 0.276217<==

CholeskyDecomposition[m]  Cholesky decomposition of a Hermitian, positive definite matrix. For
matrix M, the decomposition is M = UæU, where U is upper triangular. Output is U.

Chapter 21  •  Matrices 705



Here, Uæ  means  conjugate  transpose.  A  matrix M  is  Hermitian  if  the  conjugate  transpose  of  the
matrix  is  the  same  as  the  matrix: Mæ = M;  if M  is  real,  Hermitian  means  the  same  as  symmetric.  To
calculate a Cholesky decomposition, define the following matrix:

M2 = 880.64, 0.61, 0.66<, 80.61, 0.76, 0.69<, 80.66, 0.69, 0.80<<;

8HermitianMatrixQ@M2D, PositiveDefiniteMatrixQ@M2D<

8True, True<

Then calculate and check the Cholesky decomposition:

HU = CholeskyDecomposition@M2DL êê MatrixForm

0.8 0.7625 0.825

0. 0.422604 0.144195

0. 0. 0.313979

M2 - Uæ.U êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

HermiteDecomposition[m] (Ÿ6)  Hermite decomposition of a matrix with rational (real or complex)
elements. For matrix M, the decomposition is U M = R, where U is unimodular (determinant is a
unit) and R upper triangular. Output is 8U, R<.

Calculate and check a Hermite decomposition:

M3 = 883 ê 5, 2 ê 3<, 85 ê 2, 1 ê 4<<;

MatrixForm êü H8U, R< = HermiteDecomposition@M3DL

: -4 1

25 -6
,

1

10
-

29

12

0
91

6

>

8U.M3 == R, Det@UD< 8True, -1<

‡ Orthogonal Decompositions

QRDecomposition[m]  QR decomposition. For matrix M, the decomposition is M = Q æR, where Q is
orthonormal and R is upper triangular. Output is 8Q, R<.

Calculate and check a QR decomposition:

MatrixForm êü H8Q, R< = QRDecomposition@MDL

:
-0.592632 -0.782722 -0.19009

0.523927 -0.553844 0.647115

-0.611791 0.283908 0.738315

,

-0.894315 -0.972364 -0.308169

0. 0.579749 0.233115

0. 0. 0.203935

>

M - Qæ.R êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<
The rows of Q are orthonormal:

Q.Q¨ êê Chop 881., 0, 0<, 80, 1., 0<, 80, 0, 1.<<

SingularValueDecomposition[m]  Singular value decomposition. For matrix M, the decomposition
is M = U W Væ, where U and V are orthonormal and W is diagonal with singular values as the
diagonal elements. Output is 8U, W , V<. The option Tolerance can be used; see

SingularValueList in Section 21.2.3, p. 701.

Calculate and check a singular value decomposition:

706 Mathematica Navigator



MatrixForm êü H8U, W, V< = SingularValueDecomposition@MDL

:
-0.716157 0.156269 0.68022

-0.54731 -0.730522 -0.408399

-0.433096 0.664769 -0.608695

,

1.44299 0. 0.

0. 0.394413 0.

0. 0. 0.185784

,

-0.579564 -0.800004 -0.155239

-0.771708 0.477566 0.419997

-0.261863 0.363215 -0.894149

>

M - U.W.Væ êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

PseudoInverse uses singular value decomposition and returns V W -1 Uæ.

‡ Decompositions Related to Eigenvalue Problems

JordanDecomposition[m]  Jordan decomposition of a square matrix. For matrix M, the decomposi-
tion is M = S J S-1, where S is a similarity matrix and J is the Jordan canonical form of M. Output is
8S, J<.

Calculate and check a Jordan decomposition:

MatrixForm êü H8S, J< = JordanDecomposition@MDL

:
-0.687844 -0.61899 -0.198684

-0.584 0.672139 -0.134772

-0.431063 -0.406301 0.970753

,

1.38995 0 0

0 -0.30741 0

0 0 0.24746

>

M - S.J.Inverse@SD êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

In this example, the Jordan decomposition is essentially the same as the result given by Eigensystem:

MatrixForm êü Eigensystem@MD

:
1.38995

-0.30741

0.24746

,

-0.687844 -0.584 -0.431063

-0.61899 0.672139 -0.406301

-0.198684 -0.134772 0.970753

>

SchurDecomposition[m]  Schur decomposition of a square, numerical matrix with at least one entry
that has a decimal point. For matrix M, the decomposition is M = Q T Qæ, where Q is orthonormal
and T is block upper triangular. Output is 8Q, T<.

Calculate and check a Schur decomposition:

MatrixForm êü H8Q, T< = SchurDecomposition@MDL

:
-0.687844 -0.486333 -0.538843

-0.584 0.811651 0.0129322

-0.431063 -0.32358 0.842307

,

1.38995 -0.361635 0.123309

0. -0.30741 -0.196508

0. 0. 0.24746

>

M - Q.T.Qæ êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

HessenbergDecomposition[m]  Hessenberg decomposition of a square, numerical matrix with at
least one entry that has a decimal point. For matrix M, the decomposition is M = P H Pæ, where P is
a unitary and H a Hessenberg matrix. Output is 8P, H<.

Calculate and check a Hessenberg decomposition:

Chapter 21  •  Matrices 707



MatrixForm êü H8P, H< = HessenbergDecomposition@MDL

:
1. 0. 0.

0. -0.971754 -0.235997

0. -0.235997 0.971754

,

0.53 -0.897623 -0.032762

-0.720347 0.602956 -0.110996

0. -0.500996 0.197044

>

M - P.H.Pæ êê Chop 880, 0, 0<, 80, 0, 0<, 80, 0, 0<<

708 Mathematica Navigator



22
Equations

Introduction 709

22.1  Linear Equations 710

22.1.1  Two Representations 710 Solve, LinearSolve

22.1.2  Special Topics 712 RowReduce, LeastSquares

22.2  Polynomial and Radical Equations 716

22.2.1  Polynomial Equations 716 Solve, NSolve

22.2.2  Special Topics 718 Eliminate, SolveAlways, Root, RootReduce, ToRadicals, Reduce, etc.

22.2.3  Radical Equations 723 Solve, NSolve, Reduce

22.2.4  Inequalities 725 Reduce, FindInstance, SemialgebraicComponentInstances

22.2.5  Quantifiers 728 ForAll, Exists, Implies, Resolve

22.3  Transcendental Equations 730

22.3.1  Exact Solutions 730 Solve, Reduce

22.3.2  Numerical Solutions 732 FindRoot

22.3.3  Special Topics 735 BesselJZero, BesselYZero, AiryAiZero, AiryBiZero, InterpolateRoot

22.3.4  Own Programs 737 newtonSolve, newtonSolveSystem, secantSolve, secantSolve2

Introduction

Someone told me that each equation I included in the book would halve the sales.~Stephen Hawking

Equations can be classified as linear, polynomial, radical, or transcendental. Polynomial equations consist of
sums of integer powers of variables, whereas radical equations may contain rational powers. Transcen-

dental  equations  contain  transcendental  functions  such  as sinHxL  or logIx + yM.  The  main  command  for

linear,  polynomial,  and radical  equations  is Solve,  and that  for  transcendental  equations  is FindRoot.
However, other commands can also be used; these are explained next.

If  we  have  linear  equations  in  the  form  of  a  coefficient  matrix  and  right-hand-side  vector,  then
LinearSolve is easy to use.

For polynomial equations, Solve gives an answer for generic  values of the possible parameters of the
equations. If an exhaustive analysis of the solutions is wanted for all possible values of the parameters in
polynomial  equations, then Reduce  can be used. If Solve  cannot obtain exact solutions for polynomial
equations, then NSolve can be used to calculate the solutions numerically.

For  transcendental  equations,  we  can  sometimes  apply Solve  or Reduce,  but  usually  we  have  to
resort to the iterative methods provided by FindRoot (Newton’s, Brent’s, or the secant method).

Here is a summary of the commands for equations:



• Linear equations: Solve, LinearSolve

• Polynomial and radical equations: Solve, Reduce, NSolve

• Transcendental equations: Solve, Reduce, FindRoot

Exact symbolic solutions can be obtained with Solve, LinearSolve, and Reduce. Numerical methods
are used with NSolve and FindRoot.

In this chapter, we also consider inequalities.

22.1  Linear Equations

22.1.1  Two Representations

Linear  systems  can  be  represented  by  either  writing  down  the  equations  explicitly  with  variables  or
giving the left-hand-side coefficient  matrix  and the right-hand-side vector.  Appropriate commands for
these representations are Solve and LinearSolve, respectively.

‡ Giving the Equations

Solve[eqns]  Solve the equations eqns for the symbols therein
Solve[eqns, vars] Solve the equations eqns for the variables vars

Here, eqns is a list of equations, and vars is a list of variables. Remember that equations are defined
with  two  equal  signs  (==),  but Mathematica  replaces  them  with  the  special  symbol ã  (this  symbol  can
also be directly written with Â==Â). First, we write the equations directly in the command:

Solve@8x + 2 y ã 7, 2 x - y ã 4<D 88x Ø 3, y Ø 2<<

We can also first define the equations and then solve them:

eqns = 8x + 2 y ã 7, 2 x - y ã 4<;

sol = Solve@eqnsD 88x Ø 3, y Ø 2<<

The  result  of Solve  is  a  list  of  transformation  rules.  A  system of  equations  may  have  several  solu-

tions, and, accordingly, the general form of the result of Solve is {sol1, sol2, … }, where each soli  is a list
of  rules  for  the  variables.  In  our  example,  the  equations  only  have  one  solution,  and  so  the  result  is
{sol1}.

For unique solutions, it may be convenient to get rid of the outermost curly braces. We can do this by
picking the first and only element of sol:

sol2 = solP1T 8x Ø 3, y Ø 2<

We can check the solution:

eqns ê. sol2 8True, True<

We can also insert the solution into other expressions:

x y ê. sol2 6

If a list of values is wanted as the solution, we can write the following:

8x, y< ê. sol2 83, 2<

If we want to assign the solution into {x, y}, we can write the following:

710 Mathematica Navigator



8x, y< = 8x, y< ê. sol2 83, 2<

Now x = 3 and y = 2:

8x, y< 83, 2<

You may want  to  reread Section 13.1.2,  p. 416,  in  which we considered transformation rules.  We now

clear our assignments for x and y:

Clear@x, yD

If symbols appear as coefficients, then the variables have to be given:

Solve@8x + y ã 2 a, x - y ã 2 b<, 8x, y<D 88x Ø a + b, y Ø a - b<<

Here we have a system with no solutions:

Solve@83 x + y ã 9, 6 x + 2 y ã 4<D 8<

The  result  is  an  empty  list,  which  indicates  that  no  solutions  exist.  Here  we  have  infinitely  many
solutions:

Solve@83 x + y ã 9, 6 x + 2 y ã 18<D

Solve::svars : Equations may not give solutions for all "solve" variables. à

::x Ø 3 -

y

3
>>

This means that y can be arbitrary and x = 3 - y ë3.

For sparse  systems, Solve  uses special methods that are efficient for such systems (a linear system is
sparse if the coefficient matrix contains many zeros). The special methods are available if the coefficients
are real or complex machine numbers.

‡ Giving the Coefficients

LinearSolve[a, b] Solve the system a.x ã b of linear equations

In  the  simplest  case, x  is  the  vector  of  unknowns, a  is  a  square  matrix,  and b  is  a  vector

(generalizations are considered in Section 22.1.2, p. 712). For example, let a and b be as follows:

a = 881, 2<, 82, -1<<;
b = 87, 4<;

The equations are then x + 2 y = 7 and 2 x - y = 4. Solve the equations:

sol = LinearSolve@a, bD 83, 2<

Thus, x = 3 and y = 2. We could also use Solve:

Solve@a.8x, y< ã bD 88x Ø 3, y Ø 2<<

To check the solution, write the following:

a.sol - b 80, 0<

If the coefficient matrix is singular (i.e., has a zero determinant), the system usually has no solutions:

LinearSolve@883, 1<, 86, 2<<, 89, 4<D

LinearSolve::nosol : Linear equation encountered that has no solution. à

LinearSolve@883, 1<, 86, 2<<, 89, 4<D

Chapter 22  •  Equations 711



Sometimes an infinite number of solutions exists:

LinearSolve@883, 1<, 86, 2<<, 89, 18<D 83, 0<

In  this  example,  all  solutions  are  of  the  form {3 - y/3, y}; LinearSolve  gives  one  of  the  possible
solutions (Solve, as we saw previously, gives all solutions).

Inverting the coefficient matrix is one possibility for solving linear equations, but this method is not
recommended (inversion of a matrix is more demanding than solving linear equations):

Inverse@aD.b 83, 2<

LinearSolve  has  a Method  option.  Settings  for  exact  and  symbolic  matrices  include
"CofactorExpansion", "DivisionFreeRowReduction",  and "OneStepRowReduction".  Settings  for
approximate  numerical  matrices  include "Cholesky",  and  those  for  sparse  arrays  include
"Multifrontal"  and "Krylov".  The  default  setting  of Automatic  switches  among  these  methods
depending on the matrix given.

‡ Transforming between the Two Representations

{b, a} = CoefficientArrays[eqns, vars]  Find the coefficients b and a of the given linear
equations; the coefficients correspond with the system b + a.vars ã 0

eqns = Thread[a.vars ã b]  Form explicit equations from the coefficients

Sometimes  we  would  like  to  find  the  coefficient  matrix  and  right-hand-side  vector  of  explicitly
written equations:

eqns = 8x + 2 y ã 7, 2 x - y ã 4<;

8b, a< = CoefficientArrays@eqns, 8x, y<D

8SparseArray@<2>, 82<D, SparseArray@<4>, 82, 2<D<

The result is expressed in terms of sparse arrays. The normal arrays are as follows:

% êê Normal 88-7, -4<, 881, 2<, 82, -1<<<

We  got  the  vector b = 8-7, -4<  and  the  matrix a = 881, 2<, 82, -1<<.  This  means  that  the  equations  are
b + a.x ã 0; that is, a.x ã -b. This can be checked:

Thread@a.8x, y< == -bD 8x + 2 y ã 7, 2 x - y ã 4<

22.1.2  Special Topics

‡ Eliminating Variables

Solve[eqns, vars, elims]  Attempt to solve the equations eqns for the variables vars, eliminating
the variables elims

Define two equations:

eqns = 8x - y ã c, x + y ã 2 c<;

We can solve for x and y:

Solve@eqns, 8x, y<D ::x Ø
3 c

2
, y Ø

c

2
>>

We can also ask to eliminate c:

712 Mathematica Navigator



Solve@eqns, 8x, y<, 8c<D

Solve::svars : Equations may not give solutions for all "solve" variables. à

88x Ø 3 y<<

‡ Several Systems

f = LinearSolve[a]  Give a function f for which f[b] solves the equation a.x ã b

f[b1], f[b2], …  Solve the systems a.x ã b1, a.x ã b2, …

This is a handy way to solve several systems that have the same left-hand-side matrix but different
right-hand-side vectors. In the following example, we have two right-hand sides, 81, 2, 3< and 8-4, 5, 6<:

a = 882, 1, 1<, 81, 1, 1<, 81, 0, 1<<;
b1 = 81, 2, 3<;
b2 = 8-4, 5, 6<;

First, ask for the solution as a function:

f = LinearSolve@aD LinearSolveFunction@83, 3<, <>D

The  result  is  an  object  called LinearSolveFunction.  We  are  then  able  to  solve  systems  with  various
right-hand-side vectors:

8f@b1D, f@b2D< 88-1, -1, 4<, 8-9, -1, 15<<

Thus,  the  corresponding  solutions  are 8-1, -1, 4<  and 8-9, -1, 15<.  The  two  solutions  can  also  be
calculated at the same time:

LinearSolveAa, 8b1, b2<¨E¨ 88-1, -1, 4<, 8-9, -1, 15<<

‡ Gaussian Elimination

RowReduce[a]  Do Gaussian elimination to a to produce a reduced row echelon form

RowReduce can be used to solve linear systems. We solve the system a.x == b1 we defined previously.
First, we append the elements of the right-hand-side vector to the rows of the left-hand-side matrix:

m = AppendAa¨, b1E¨ 882, 1, 1, 1<, 81, 1, 1, 2<, 81, 0, 1, 3<<
Then we do a Gaussian elimination:

r = RowReduce@mD 881, 0, 0, -1<, 80, 1, 0, -1<, 80, 0, 1, 4<<

The solution is the last column of this matrix:

rPAll, -1T 8-1, -1, 4<

‡ Tridiagonal Systems

Tridiagonal  systems can be  efficiently  solved by  first  forming a  sparse  array from the sub-,  main,  and
superdiagonals  and  then  using LinearSolve.  As  an  example,  we  solve  a  tridiagonal  system in  which
the coefficient matrix is as follows:

884, 2, 0<, 81, 4, 2<, 80, 1, 4<< êê MatrixForm

4 2 0

1 4 2

0 1 4

The right-hand-side vector is 86, 4, 7<.  First define the diagonals and the right-hand side and then form

the tridiagonal matrix (for Band, see Section 21.2.1, p. 690):

Chapter 22  •  Equations 713



sub = 81, 1<; main = 84, 4, 4<; super = 82, 2<; b = 86, 4, 7<;

a = SparseArray@8Band@82, 1<D Ø sub, Band@81, 1<D Ø main, Band@81, 2<D Ø super<D

SparseArray@<7>, 83, 3<D

We can check that the matrix is correct:

a êê Normal 884, 2, 0<, 81, 4, 2<, 80, 1, 4<<

Then solve the system:

LinearSolve@a, bD :
5

3
, -

1

3
,

11

6
>

‡ Overdetermined Systems

In  addition  to  square  linear  systems, Mathematica  can  handle  rectangular  linear  systems.  If  there  are
more  equations  than  variables,  the  system  is overdetermined,  and  solutions usually  do  not  exist. Solve

and LinearSolve can be tried: They give a solution if it exists and otherwise give an empty list (Solve)
or tell us that no solutions exist (LinearSolve).

If a solution of the equations a.x = b  does not exist, we can find a least-squares solution by minimiz-

ing the 2-norm »» a.x - b »».

LeastSquares[a, b] (Ÿ6)  Give an approximating solution of a.x ã b

 Consider the following overdetermined system:

a = 883, 1<, 82, 5<, 88, 1<<;
b = 82, 7, 5<;

An approximating solution is as follows:

apprsol = LeastSquares@a, bD êê N 80.450549, 1.20513<

The  left-hand  sides  of  the  equations  with  these  values  for  the  variables  are  similar  to  the  right-hand
sides 82, 7, 5<:

a.apprsol 82.55678, 6.92674, 4.80952<

Alternatively, we can use a pseudoinverse (or a generalized inverse or Moore-Penrose inverse):

PseudoInverse@aD.b êê N 80.450549, 1.20513<

This can be compared with Inverse[a].b (see Section 22.1.1, p. 712).

‡ Underdetermined Systems

If  there  are  more  variables  than  equations,  the  system  is underdetermined,  and  an  infinite  number  of
solutions usually exist. For example,

a = 884, 3, 1<, 83, 2, 5<<;
b = 89, 4<;

Solve gives all solutions:

Solve@a.8x, y, z< ã bD

Solve::svars : Equations may not give solutions for all "solve" variables. à

88x Ø -6 - 13 z, y Ø 11 + 17 z<<

LinearSolve gives one solution:

714 Mathematica Navigator



LinearSolve@a, bD 8-6, 11, 0<

LeastSquares or PseudoInverse also gives one solution (exact this time):

LeastSquares@a, bD êê N 81.50545, 1.18519, -0.577342<
PseudoInverse@aD.b êê N 81.50545, 1.18519, -0.577342<

‡ Jacobi’s Method

There  are  a  number  of  iterative  solution  methods  for  linear  systems.  Here,  we  implement  Jacobi’s
method and the Gauss-Seidel method. Consider the following diagonally dominant system:

a = 884, 1, -2<, 8-1, 4, 3<, 82, 1, -3<<; b = 85, 2, 2<;

n = 3; y = Array@x, nD 8x@1D, x@2D, x@3D<
eqns = Thread@a.y ã bD

84 x@1D + x@2D - 2 x@3D ã 5, -x@1D + 4 x@2D + 3 x@3D ã 2, 2 x@1D + x@2D - 3 x@3D ã 2<

The solution of this system is as follows:

sol = y ê. Solve@eqnsDP1T êê N

81.30769, 0.538462, 0.384615<

To apply Jacobi’s method, first we solve xi from the ith equation:

newy = y ê. Table@Solve@eqnsPiT, x@iDDP1, 1T, 8i, n<D

:
1

4
H5 - x@2D + 2 x@3DL,

1

4
H2 + x@1D - 3 x@3DL,

1

3
H-2 + 2 x@1D + x@2DL>

We start  from a point,  for example, H0, 0, …, 0L,  and then iteratively calculate new values for x1,  …, xn
from newy. We do 30 iterations:

yi = 80, 0, 0<;
Do@yi = newy ê. Thread@y Ø yiD êê N, 830<D;
yi
81.30769, 0.538462, 0.384615<

This is a good approximation to the solution:

sol - yi

92.96988 μ 10-8, 1.02619 μ 10-9, 2.91744 μ 10-8=

‡ Gauss-Seidel Method

To accelerate convergence of Jacobi’s method, the already calculated new values for x1, ..., xi can be used

in the calculation of the new values for xi+1, i = 1, …, n - 1. This is the Gauss-Seidel method. We again

start from H0, 0, 0L and do 30 iterations:

yi = 80, 0, 0<;
Do@yi = Table@yiPjT = newyPjT ê. Thread@y Ø yiD, 8j, n<D êê N, 830<D;
yi 81.30769, 0.538462, 0.384615<

The point here is to do the update equation by equation, with Table, and to assign the new value newyP

jT directly to yiPjT  so that this value is used in the remaining updates when the substitution y Ø yi is
made. The solution is much better than the solution offered by Jacobi’s method:

sol - yi

98.90399 μ 10-14, -5.50671 μ 10-14, 4.10783 μ 10-14=
Remove@"Global`*"D

Chapter 22  •  Equations 715



22.2  Polynomial and Radical Equations

22.2.1  Polynomial Equations

‡ Exact Solution

Solve[eqn]  Solve the equation eqn for the symbol in the equation
Solve[eqn, x] Solve the equation eqn for the variable x

If  the  equation  contains  only  one  symbol,  it  need  not  be  mentioned  in  the  command.  Here  is  the
familiar second-order equation:

eqn = a x^2 + b x + c ã 0;

sol = Solve@eqn, xD

::x Ø
-b - b2 - 4 a c

2 a
>, :x Ø

-b + b2 - 4 a c

2 a
>>

The solutions are given as transformation rules (see Section 13.1.2, p. 416). We can verify the solutions:

eqn ê. sol êê Simplify

8True, True<

For both solutions, the equation simplifies to 0 == 0, which is True.

If you want a list of values (rather than a list of rules), enter the following:

x ê. sol

:
-b - b2 - 4 a c

2 a
,

-b + b2 - 4 a c

2 a
>

You can also type the following:

x ê. Solve@eqn, xD

:
-b - b2 - 4 a c

2 a
,

-b + b2 - 4 a c

2 a
>

Note, however, that the transformation rules are handy in that they can easily be used to calculate the
value of any expression:

b + 2 a x ê. sol :- b2
- 4 a c , b2

- 4 a c >

‡ Special Questions

Solve  is  able to solve all  polynomials up to order four.  Polynomials of order five and greater can also
sometimes be solved:

p = -6 + 23 x - 34 x^2 + 24 x^3 - 8 x^4 + x^5;

sol = Solve@p ã 0D

88x Ø 1<, 8x Ø 1<, 8x Ø 1<, 8x Ø 2<, 8x Ø 3<<

716 Mathematica Navigator



Plot@p, 8x, 0.5, 3.1<, Epilog Ø Point@8x, 0< ê. solDD

1.0 1.5 2.0 2.5 3.0

-1.0

-0.5

0.5

1.0

(Here, 1 is a zero of multiplicity 3.) However, it often happens that such high-order equations cannot be
solved exactly:

sol = Solve@x^5 - x + 1 ã 0D

99x Ø RootA1 - Ò1 + Ò15 &, 1E=, 9x Ø RootA1 - Ò1 + Ò15 &, 2E=,

9x Ø RootA1 - Ò1 + Ò15 &, 3E=, 9x Ø RootA1 - Ò1 + Ò15 &, 4E=, 9x Ø RootA1 - Ò1 + Ò15 &, 5E==
Solve  gives a symbolic representation for the solution with the Root  object. Root[f, k]  represents the

kth root of the equation f ã 0 (for Root, see Section 22.2.2, p. 720). We can, however, ask for numerical

values for the roots:

sol êê N

88x Ø -1.1673<, 8x Ø -0.181232 - 1.08395 Â<, 8x Ø -0.181232 + 1.08395 Â<,
8x Ø 0.764884 - 0.352472 Â<, 8x Ø 0.764884 + 0.352472 Â<<

If  the  solution  contains  powers  of -1,  we  can  transform  them  with ComplexExpand  to  expressions
that  contain trigonometric  functions,  which in turn sometimes automatically reduce to radicals  (i.e.,  to
arithmetic combinations of various roots):

sol = x ê. Solve@x^3 + 1 ã 0D :-1, H-1L1ë3, -H-1L2ë3>

sol êê ComplexExpand :-1,
1

2
+

Â 3

2
,

1

2
-

Â 3

2
>

Solve  uses  explicit  formulas  up  to  degree  four.  For  higher-order  polynomials, Solve  attempts  to
reduce  polynomials  using Factor  and Decompose,  and Solve  recognizes  cyclotomic  and other  special
polynomials.

‡ Numerical Solution

Solve[eqn]  Try exact solution
% // N  If this did not succeed, use numerical methods (NSolve is eventually used)

NSolve[eqn, x]  Solve eqn numerically for x

NSolve[eqn, x, n]  Solve eqn numerically for x, using n-digit precision in the calculations

NSolve is based on the Jenkins-Traub algorithm. For example,

p = x^5 - x + 1;

sol = NSolve@p ã 0, xD

88x Ø -1.1673<, 8x Ø -0.181232 - 1.08395 Â<, 8x Ø -0.181232 + 1.08395 Â<,
8x Ø 0.764884 - 0.352472 Â<, 8x Ø 0.764884 + 0.352472 Â<<

The solution does not pass the test that we should have p ã 0 at the roots:

p ã 0 ê. sol 8False, False, False, False, False<

This is a normal situation with numerical solutions. If we instead ask for the value of the polynomial at
the roots, we observe that the roots are very good:

Chapter 22  •  Equations 717



p ê. sol

9-2.22045 μ 10-15, 0. - 2.22045 μ 10-16
Â, 0. + 2.22045 μ 10-16

Â,

3.33067 μ 10-16
- 4.44089 μ 10-16

Â, 3.33067 μ 10-16
+ 4.44089 μ 10-16

Â=
Here is a plot of the solutions in the complex plane:

ListPlot@8Re@xD, Im@xD< ê. sol, PlotStyle Ø PointSize@MediumDD

-1.0 -0.5 0.5

-1.0

-0.5

0.5

1.0

‡ Several Polynomial Equations

Solve[eqns, vars]  Solve the equations for vars

NSolve[eqns, vars]  Solve the equations numerically for vars

For simultaneous equations we write a list of equations and a list of variables. When solving systems
of polynomial equations, Solve actually constructs a Gröbner basis with GroebnerBasis.

In the following example, we get two solutions:

Solve@8x^2 + y^2 ã 5, x + y ã 1<D 88x Ø -1, y Ø 2<, 8x Ø 2, y Ø -1<<

The following system has six solutions:

eqns = 8x^2 + y^3 - x y ã 0, x + y + x^2 - 1 ã 0<;

sol = NSolve@eqns, 8x, y<D

88x Ø 1.13665, y Ø -1.42864<, 8x Ø -1.43152 + 0.695043 Â, y Ø 0.865346 + 1.2949 Â<,
8x Ø -1.43152 - 0.695043 Â, y Ø 0.865346 - 1.2949 Â<, 8x Ø -2.06867, y Ø -1.21074<,
8x Ø 0.397534 - 0.0995355 Â, y Ø 0.454339 + 0.178673 Â<,
8x Ø 0.397534 + 0.0995355 Â, y Ø 0.454339 - 0.178673 Â<<

Illustrate the real solutions:

ContourPlot@eqns êê Evaluate, 8x, -2.5, 1.5<, 8y, -1.7, 1.5<, Frame Ø False,
Axes Ø True, AspectRatio Ø Automatic, Epilog Ø Point@8x, y< ê. 8solP1T, solP4T<DD

-2 -1 1

-1.5

-1.0

-0.5

0.5

1.0

1.5

22.2.2  Special Topics

‡ Eliminating Variables

Solve[eqns, vars, elims]  Solve eqns for vars, eliminating elims

Eliminate[eqns, elims] Eliminate elims from eqns

718 Mathematica Navigator



In the following example, we ask to eliminate y and solve for x:

eqns = 8x^2 + y^2 ã a, x + y ã b<;

Solve@eqns, x, yD

::x Ø
1

2
b - 2 a - b2 >, :x Ø

1

2
b + 2 a - b2 >>

Next, we ask for an elimination only. The result is an equation or several equations:

Eliminate@eqns, yD a -2 x2
ã b2

- 2 b x

Here is another example:

Eliminate@8x^2 + y^3 ã x y, x + y + x^2 ã 1<, xD

-3 y + y2
+ 4 y3

- y4
+ y6

ã -1

‡ Making Equations Valid for All Values of Some Variables

SolveAlways[eqns, vars]  Give conditions for the parameters appearing in eqns that make the
equations valid for all values of the variables vars

SolveAlways  may  be  useful,  for  example,  in  the  method  of  undetermined  coefficients.  In  this
method, we want to find conditions under which a trial expression is a solution of an equation. As an
example, consider the following differential equation:

eqn = y'@tD + a y@tD + b ã 0 b +a y@tD +y£@tD ã 0

Define the following function:

z@t_D := c + d Exp@e tD

We examine whether this function could be a solution of the equation for some values of the parameters
c, d, and e. First, we insert the function into the equation:

eqn ê. y Ø z b + d e ‰
e t

+ a Ic + d ‰
e tM ã 0

Because SolveAlways does not handle transcendental equations, we form a series expansion:

Series@%, 8t, 0, 2<D

Hb + a c + a d + d eL + Ia d e + d e2M t +
1

2
Ia d e2

+ d e3M t2
+ O@tD3

ã 0

Then we find conditions under which this expression is identically zero for all t:

SolveAlways@%, tD

88b Ø -a c, d Ø 0<, 8b Ø -a c, e Ø -a<, 8b Ø -a c - a d, e Ø 0<, 8b Ø 0, e Ø 0, a Ø 0<<

The second solution gives the solution -
b
a
+ d ‰-a t  for the differential equation. This solution is the same

as that obtained with DSolve:

DSolve@eqn, y@tD, tD ::y@tD Ø -
b

a
+ ‰

-a t C@1D>>

Another example is in Section 26.2.4, p. 848, where we solve a Fredholm integral equation.

Chapter 22  •  Equations 719



‡ Unstable Systems

An option for Solve:
VerifySolutions Whether solutions are verified: extraneous solutions rejected or inaccurate

numerical solutions improved; possible values: Automatic, True, False

When solving equations with exact coefficients with Solve, the solution is automatically verified. The
verification is important when solving radical equations, where extraneous solutions easily emerge (see

Section 22.2.3, p. 724). For equations with inexact  coefficients, the verification is not done automatically.

For numerically unstable systems, verifying the convergence may improve the solution. As an example,
consider the following system:

p1 = -49.8333 + 703.3295 x^2 + 1022.7811 x y + 895.0554 y^2;
p2 = -54.8990 + 791.4604 x^2 + 1150.9409 x y + 959.1353 y^2;

We use Solve and NSolve and calculate the values of the polynomials p1 and p2 at the first solution:

8p1, p2< ê. Solve@8p1 ã 0, p2 ã 0<DP1T

8-0.0016004, -0.00180094<
8p1, p2< ê. NSolve@8p1 ã 0, p2 ã 0<, 8x, y<DP1T

93.3932 μ 10-9, 4.21171 μ 10-9=
NSolve gave a better solution. To get more accurate solutions with Solve, we use the VerifySolutions

option (note that NSolve does not have this option):

8p1, p2< ê. Solve@8p1 ã 0, p2 ã 0<, VerifySolutions Ø TrueDP1T

91.42109 μ 10-14, 1.42109 μ 10-14=

‡ Root Objects

Root[f, k]  The kth root of the polynomial equation f[x] ã 0 (f must be a pure function)
RootReduce[expr]  Attempts to reduce expr to a single Root object
RootSum[f, form]  The sum of form[x] for all x that satisfy the polynomial equation f[x] ã 0

ToRadicals[expr]  Attempts to express a Root object in terms of radicals

If Solve  cannot  solve  an  equation,  it  represents  the  solution  by  the Root  object.  Consider  the
following equation and its solution:

sol = Solve@a - x + x^5 ã 0, xD

99x Ø RootAa - Ò1 + Ò15 &, 1E=, 9x Ø RootAa - Ò1 + Ò15 &, 2E=,

9x Ø RootAa - Ò1 + Ò15 &, 3E=, 9x Ø RootAa - Ò1 + Ò15 &, 4E=, 9x Ø RootAa - Ò1 + Ò15 &, 5E==
Root  objects are exact but implicit representations for the roots. They can be seen as representations of
algebraic numbers. Several calculations are possible with root objects. For example, we can plot a root as
a function of parameter or find a series expansion or calculate the product of the roots:

Plot@Evaluate@x ê. solP1TD, 8a, -2, 1<D

-2.0 -1.5 -1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

720 Mathematica Navigator



Series@x ê. solP1T, 8a, 0, 3<D

-1 -
a

4
+

5 a2

32
-

5 a3

32
+ O@aD4

Apply@Times, x ê. sol ê. a Ø 3D êê FullSimplify -3

RootSum can be used to calculate the sum of the values of a function at the solutions of a polynomial
equation. We calculate the sum of roots and their inverses:

RootSum@a - Ò + Ò^5 &, Ò &D 0

RootSum@a - Ò + Ò^5 &, 1 ê Ò &D
1

a

Some integrals are expressed in terms of RootSum:

Integrate@1 ê H1 + x + x^3L, 8x, 0, ¶<D

-RootSumB1 + Ò1 + Ò13 &,
Log@-Ò1D

1 + 3 Ò12
&F

% êê N 0.921763+0. Â

With RootApproximant (Ÿ6) we can find good approximations in terms of algebraic numbers:

Table@RootApproximant@p, iD, 8i, 1, 3<D

:
80 143 857

25 510 582
,

198 261 + 105 043 517 473

166 274
, RootA7622 + 2308 Ò1 - 2396 Ò12

+ 283 Ò13 &, 2E>

p - % êê N

94.44089 μ 10-16, 0., 2.66454 μ 10-15=
For algebraic number fields, see tutorialêAlgebraicNumberFields.

‡ Detailed Solution

When solving equations, Solve  produces solution candidates and then verifies which ones are correct.
Note  that Solve  rejects  only  solution  candidates  that  are  incorrect  for all  values  of  parameters;  candi-
dates that are valid for at least some values of the parameters are accepted. Also note that the candidates
that Solve  accepts  are generic  solutions,  which  means  that  they  are  solutions  that  are  valid  for general
values of  the parameters;  for  special  values of  parameters,  the solution may be different.  For example,
the  solution  for  the  general  quadratic  equation a x2 + b x + c = 0  is  valid  only  if a  is  not  0.  If a  is  0,  the
solution  is x = -c ê b.  If b  is  also  0,  then c  must  be  0  for  the  equation  to  be  satisfied.  Such  a  detailed
solution can be obtained with Reduce.

Reduce[eqns, vars]  Give a detailed analysis of the solutions of given equations
Reduce[eqns, vars, dom]  Restrict all variables and parameters to belong to the given domain;

examples of domains: Complexes, Reals, Integers

Options:
Cubics  Whether cubic equations are solved explicitly; possible values: False, True

Quartics  Whether quartic equations are solved explicitly; possible values: False, True

Backsubstitution  Whether values of later variables in the result are allowed to depend on earlier
variables (False) or are given explicitly (True); possible values: False, True

Chapter 22  •  Equations 721



Actually, Reduce  can  solve  much  more  general  conditions  containing  logical  combinations  of
equations  (==),  inequations  (!=),  inequalities  (<, £,  etc.),  domain  specifications  (x œ Reals,  etc.;  see

Section 13.2.1, p. 420), and universal (" or ForAll) and existential ($ or Exists) quantifiers. For example,

Reduce@a x^2 + b x + c ã 0, xD

a 0 && x ã
-b - b2 - 4 a c

2 a
»» x ã

-b + b2 - 4 a c

2 a
»»

a ã 0 && b 0 && x ã -
c

b
»» Hc ã 0 && b ã 0 && a ã 0L

Remember  that &&  means  logical  AND and ||  means  logical  OR.  Later  variables  may be expressed in
terms of earlier variables:

Reduce@8x + y ã 1, x^2 - y ã 2<, 8x, y<D

x ã
1

2
-1 - 13 »» x ã

1

2
-1 + 13 && y ã 1 - x

With the Backsubstitution option, however, we get explicit values:

Reduce@8x + y ã 1, x^2 - y ã 2<, Backsubstitution Ø TrueD

y ã
1

2
3 - 13 && x ã

1

2
-1 + 13 »» y ã

1

2
3 + 13 && x ã

1

2
-1 - 13

With ToRules we can get a list of rules:

8% êê ToRules<

::y Ø
1

2
3 - 13 , x Ø

1

2
-1 + 13 >, :y Ø

1

2
3 + 13 , x Ø

1

2
-1 - 13 >>

Without a domain specification, the expression is reduced over complexes:

Reduce@x^2 + 2 y^2 ã 9, 8x, y<D

y ã -
9 - x2

2

»» y ã
9 - x2

2

Next, we reduce over reals:

Reduce@x^2 + 2 y^2 ã 9, 8x, y<, RealsD

-3 § x § 3 && y ã -
9 - x2

2

»» y ã
9 - x2

2

If we ask for integer solutions, we are faced with a Diophantine equation:

Reduce@x^2 + 2 y^2 ã 9, 8x, y<, IntegersD

Hx ã -3 && y ã 0L »» Hx ã -1 && y ã -2L »» Hx ã -1 && y ã 2L »»
Hx ã 1 && y ã -2L »» Hx ã 1 && y ã 2L »» Hx ã 3 && y ã 0L

Now we find Pythagorean triples:

Table@8z, Reduce@x^2 + y^2 == z^2 && y > x > 0, 8x, y<, IntegersD<, 8z, 13<D

881, False<, 82, False<, 83, False<, 84, False<,
85, x ã 3 && y ã 4<, 86, False<, 87, False<, 88, False<, 89, False<,
810, x ã 6 && y ã 8<, 811, False<, 812, False<, 813, x ã 5 && y ã 12<<

Select@%, ÒP2T =!= False &D

885, x ã 3 && y ã 4<, 810, x ã 6 && y ã 8<, 813, x ã 5 && y ã 12<<

722 Mathematica Navigator



In Sections  22.2.3, 22.2.4, 22.2.5,  and 22.3.1  we  use Reduce  to  solve  radical  equations,  inequalities,
quantified equations, and transcendental equations.

For  more  information  about  real,  complex,  and  integer  systems,  see tutorialêRealReduce,
tutorialêComplexPolynomialSystems, and tutorialêDiophantineReduce.

‡ Frobenius Equations

A Frobenius equation is a Diophantine equation of the form a1 x1 + a2 x2 + … + an xn = b, where the ai  are

positive  integers, b  is  an  integer,  and  a  solution x1,  …, xn  must  consist  of  nonnegative  integers.  The

Frobenius number of a1,  …, an  is  the largest  integer b  for  which the corresponding Frobenius equation

has no solutions.

FrobeniusSolve[{a1, …, an}, b] (Ÿ6)  Give all solutions of the Frobenius equation
FrobeniusNumber[{a1, …, an}] (Ÿ6)  Give the Frobenius number

Suppose we have many stamps of 5, 10, 20, and 50 cents. In how many ways can we pay a postage of
45 cents?

FrobeniusSolve@85, 10, 20, 50<, 45D

881, 0, 2, 0<, 81, 2, 1, 0<, 81, 4, 0, 0<, 83, 1, 1, 0<,
83, 3, 0, 0<, 85, 0, 1, 0<, 85, 2, 0, 0<, 87, 1, 0, 0<, 89, 0, 0, 0<<

Suppose we have many stamps of 5, 10, and 13 cents. We can pay all postages of at least 48 cents:

FrobeniusNumber@85, 10, 13<D 47

‡ Number of Roots; Isolating Intervals

CountRoots[poly, x] (Ÿ6)  Give the number of real roots
CountRoots[poly, {x, a, b}]  Give the number of roots between a and b

RootIntervals[poly] (Ÿ6)  Give isolating intervals for real roots

In these commands, the polynomial can have rational coefficients.

The following polynomial has five real roots:

p = Hx - 1 ê 2L^3 Hx^2 - 4L Hx^2 + 1L;

sol = Solve@p ã 0D

:8x Ø -2<, 8x Ø -Â<, 8x Ø Â<, :x Ø
1

2
>, :x Ø

1

2
>, :x Ø

1

2
>, 8x Ø 2<>

Count the number of real roots and find intervals for them:

CountRoots@p, xD 5

RootIntervals@pD 888-3, 0<, 80, 1<, 81, 3<<, 881<, 81, 1, 1<, 81<<<

Thus, one root with multiplicity 1 is in H-3, 0L, one root with multiplicity 3 is in H0, 1L, and one root with
multiplicity 1 is in H1, 3L.

22.2.3  Radical Equations

‡ Solving Radical Equations

Solve, NSolve, Eliminate, and Reduce can also be used to solve radical equations, which are equations
that contain rational powers. For example,

Chapter 22  •  Equations 723



eqn = Sqrt@x + 1D + x^H1 ê 3L ã 2;

Solve@eqnD

::x Ø
1

3
-2 - 161

2

1703 + 459 93

1ë3

+
1

2
1703 + 459 93

1ë3

>>

Reduce does not write an explicit solution for cubic or quartic equations if the solution is long:

Reduce@eqnD x ã RootA-27 + 55 Ò1 + 2 Ò12
+ Ò13 &, 1E

With the Cubics and Quartics options, however, we get an explicit expression:

Reduce@eqn, Cubics Ø TrueD

x ã
1

6
-4 - 322

2

1703 + 459 93

1ë3

+ 22ë3 1703 + 459 93
1ë3

Another way is the use of ToRadicals:

ToRadicals@%%D

x ã
1

3
-2 - 161

2

1703 + 459 93

1ë3

+
1

2
1703 + 459 93

1ë3

Here is another example:

f = Sqrt@3 x + 2D + Sqrt@2 x - 1D - 3 Sqrt@x - 1D;

Solve@f ã 0D ::x Ø
3

4
-7 - 73 >>

‡ Extraneous Solutions

When  solving  radical  equations,  extraneous  solutions  easily  emerge  (as  the  result  of,  for  example,
squaring). Solve  automatically  verifies  solution  candidates  and  rejects  extraneous  solutions  if  the
equations  contain  exact  coefficients.  All  solution  candidates  can  be  seen  if  the  candidates  are  not
verified. We continue with the preceding example:

sol = Solve@f ã 0, VerifySolutions Ø FalseD

::x Ø
3

4
-7 - 73 >, :x Ø

3

4
-7 + 73 >>

sol êê N 88x Ø -11.658<, 8x Ø 1.158<<

In  the  preceding  example, Solve  rejected  the  second solution  candidate.  To  graphically  show the  real

root,  we  could  plot f .  However,  because f  is  complex  valued  for x < 1,  we  plot … f …: f  has  a  zero

whenever … f …  has a  zero.  The figure shows that  the first  candidate is  a  solution but the second candi-

date is not:

Plot@Abs@fD, 8x, -20, 20<D

-20 -10 10 20

0.5

1.0

1.5

2.0

2.5

3.0

724 Mathematica Navigator



‡  Step|by|Step Solution

Sometimes  we  would  like  to  solve  an  equation  by  doing  a  series  of  transformations.  Use Thread  to
apply a transformation to both sides of an equation:

Thread[f[expr1 ã expr2], Equal]  Create the expression f[expr1] ã f[expr2]

As an example, we again consider the familiar equation:

eqn = f ã 0 -3 -1 + x + -1 + 2 x + 2 + 3 x ã 0

First add 3 x - 1  to both sides and then square and expand both sides:

Thread@eqn + 3 Sqrt@x - 1D, EqualD -1 + 2 x + 2 + 3 x ã 3 -1 + x

Thread@%^2, EqualD -1 + 2 x + 2 + 3 x
2

ã 9 H-1 + xL

% êê Expand 1 + 5 x + 2 -1 + 2 x 2 + 3 x ã -9 + 9 x

Subtract 1 + 5 x from both sides, square both sides, move all terms into the left-hand side, and solve the
resulting equation:

Thread@% - H1 + 5 xL, EqualD 2 -1 + 2 x 2 + 3 x ã -10 + 4 x

Thread@%^2, EqualD 4 H-1 + 2 xL H2 + 3 xL ã H-10 + 4 xL2

ThreadA% - H-10 + 4 xL2, EqualE êê Expand -108 + 84 x + 8 x2
ã 0

Solve@%D ::x Ø
3

4
-7 - 73 >, :x Ø

3

4
-7 + 73 >>

A verification shows that the second solution is extraneous:

f ê. % êê FullSimplify :0, -46 + 6 73 >

Similarly,  we  can,  for  example,  take  logarithms from both sides  by Thread[Log[eqn], Equal]  and
add two equations by Thread[eqn1 + eqn2, Equal].

22.2.4  Inequalities

‡ Solving Inequalities

Reduce[expr, vars]  Give a detailed analysis of the solutions of given equations and inequalities
Reduce[expr, vars, dom]  Assume dom to be the domain of variables, parameters, and function

values

In Section 22.2.2, p. 721, we used Reduce to get a detailed solution for equations. Reduce is also useful

when solving inequalities  and sets  of  equations and inequalities.  In our first  few examples,  we do not
have any parameters, and so the variable need not be declared:

Reduce@x^2 - 3 x - 2 > 0D

x <
1

2
3 - 17 »» x >

1

2
3 + 17

Chapter 22  •  Equations 725



Remember  that &&  means  logical  AND  and ||  means  logical  OR.  All  numbers  should  be  exact.  For
problems  with  inexact  numbers, Reduce  solves  a  corresponding  exact  problem  and  numericizes  the
result:

Reduce@x^2 - 3 x - 2. > 0D

Reduce::ratnz :

Reduce was unable to solve the system with inexact coefficients. The answer was obtained

by solving a corresponding exact system and numericizing the result. à
x < -0.561553 »» x > 3.56155

Next, we solve a system of inequalities:

Reduce@8x^2 - 3 x - 2 > 0, Abs@xD < 1<D

-1 < x <
1

2
3 - 17

Reduce  gives  a  cylindrical  algebraic  decomposition  of  the  region  in  question.
CylindricalDecomposition is also available for the real domain.

‡ Specifying a Domain

Reduce  assumes  that  all  quantities  that  appear  algebraically  in  inequalities  are  real  and  that  all  other
quantities are complex. With a third argument given to Reduce, we can restrict all variables, parameters,
and function values to a given domain such as Reals, Integers, or Complexes. The domain Reals may
be  suitable  in  many problems with  inequalities.  In  the  following example,  we get  the condition that a

and b should be real:

Reduce@8x + y ã a, y < a b<, 8x, y<D

Ha » bL œ Reals && Re@xD > a - a b && Im@xD ã 0 && y ã a - x

It is useful to declare that all variables are real:

Reduce@8x + y ã a, y < a b<, 8x, y<, RealsD

x > a - a b && y ã a - x

In Section 28.3.1, p. 950, we solve the following system of inequalities:

ineqs = Abs@2 - aD < 1 && Abs@b Ha - 1L ê aD < 1 && b ¥ 0;

Reduce@ineqs, 8a, b<, RealsD

1 < a < 3 && 0 § b <
a

-1 + a

We can plot the region satisfied by the inequalities with RegionPlot (see Section 5.2.5, p. 136):

RegionPlot@ineqs, 8a, 0, 4<, 8b, 0, 10<, AspectRatio Ø 1 ê GoldenRatioD

726 Mathematica Navigator



‡ Finding Instances

FindInstance[expr, vars]  Find an instance of vars that makes expr be True
FindInstance[expr, vars, dom]  Assume domain dom for variables, parameters, and function

values
FindInstance[expr, vars, dom, n]  Find n instances

A  typical  use  of  this  command  is  to  find  a  point  that  satisfies  a  set  of  inequalities  (or,  in  terms  of
optimization, to find a feasible point). However, the expression can also contain equations and quantifi-
ers. Inequalities in the following examples were considered previously with Reduce:

FindInstance@8x^2 - 3 x - 2 > 0, Abs@xD < 1<, 8x<, RealsD

::x Ø -
3

4
>>

With the RandomSeed option we can get somewhat different points:

FindInstance@8x^2 - 3 x - 2 > 0, Abs@xD < 1<, 8x<, Reals, 3, RandomSeed Ø 1D

::x Ø -
655

687
>, :x Ø -

184

229
>, :x Ø -

143

229
>>

SemialgebraicComponentInstances[ineqs, vars] (Ÿ6)  Find at least one sample point in each
connected component of the semialgebraic set defined by the inequalities ineqs in the variables
vars

Find instances in which the following function is positive:

f = Hx - 1L Hx^2 - 7L Hx^2 - 12L;

s = SemialgebraicComponentInstances@f > 0, xD

88x Ø -3<, 8x Ø 2<, 8x Ø 4<<
Plot@f, 8x, -3.8, 4.1<, Epilog Ø Point@8x, f< ê. sD, PlotRange Ø AllD

-2 2 4

-100

-50

50

100

150

If we define a weak inequality, we also get the zeros:

s = SemialgebraicComponentInstances@f ¥ 0, xD

::x Ø -
49

16
>, 8x Ø 1<, :x Ø

15

8
>, 8x Ø 4<, :x Ø -2 3 >, :x Ø 2 3 >, :x Ø - 7 >, :x Ø 7 >>

Plot@f, 8x, -3.8, 4.1<, Epilog Ø Point@8x, f< ê. %D, PlotRange Ø AllD

-2 2 4

-100

-50

50

100

150

Chapter 22  •  Equations 727



Find some points where the following function obtains negative values:

f = 10 x - x^3 + y^2;

s = SemialgebraicComponentInstances@f < 0, 8x, y<D

::x Ø -
3

2
, y Ø 0>, :x Ø -

3

2
, y Ø - 6 >, :x Ø -

3

2
, y Ø 6 >,

8x Ø 4, y Ø 0<, :x Ø 4, y Ø -2 3 >, :x Ø 4, y Ø 2 3 >>
RegionPlot@f < 0, 8x, -4, 6<, 8y, -5, 5<, Epilog Ø Point@8x, y< ê. sDD

22.2.5  Quantifiers

In mathematics, we often use the quantifiers " or “for all” and $ or “there exists.” These can also be used
in Mathematica.

ForAll[x, expr]  States that expr is True for all values of x

ForAll[x, cond, expr]  States that expr is True for all values of x satisfying the condition cond

ForAll[{x1, …, xn}, expr]  States that expr is True for all values of x1, …, xn

Exists[x, expr]  States that there exists a value of x for which expr is True
Exists[x, cond, expr]  States that there exists a value of x satisfying cond for which expr is True
Exists[{x1, …, xn}, expr]  States that there exist values of x1, …, xn for which expr is True

Implies[p, q]  States that p implies q

Resolve[expr]  Attempts to resolve expr into a form that eliminates ForAll and Exists quantifiers
Resolve[expr, dom]  Works over domain dom

Resolve[expr, vars, dom]  Solves for vars

In addition to Resolve, we can also use Reduce to eliminate quantifiers.

‡ Example 1

Write the statement that, for three variables, harmonic mean § geometric mean § arithmetic mean:

ForAll@8x, y, z<, x > 0 && y > 0 && z > 0,
3 ê H1 ê x + 1 ê y + 1 ê zL § Hx y zL^H1 ê 3L § Hx + y + zL ê 3D

"8x,y,z<,x>0&&y>0&&z>0

3

1

x
+

1

y
+

1

z

§ Hx y zL1ë3
§

1

3
Hx + y + zL

Both Reduce and Resolve can be used to prove that this statement is true:

Reduce@%D True

728 Mathematica Navigator



Resolve@%%D True

‡ Example 2

Write the statement that a quadratic expression is positive for all real x:

q = ForAll@x, 8x, a, b, c< œ Reals, a x^2 + b x + c > 0D

"x,Ix»a»b»cMœReals c + b x + a x2
> 0

Under what conditions is this statement true?

Reduce@q, 8a, b, c<, RealsD

Ha ã 0 && b ã 0 && c > 0L »» a > 0 && c >
b2

4 a

Note  that  the  result  of Reduce  may  depend  on  the  order  in  which  the  variables  are  declared;  in  this
example,  the  simplest  result  is  obtained  by  writing  the  variables  as 8a, b, c<.  With Resolve,  without
declaring the variables, we get unsolved inequalities:

Resolve@q, RealsD

Ia > 0 && -a b2
+ 4 a2 c > 0M »» Ha ã 0 && b ã 0 && c > 0L »»

Ia ¥ 0 && b ã 0 && c > 0 && -a b2
+ 4 a2 c > 0M

By declaring the variables, we get the same result as with Reduce:

Resolve@q, 8a, b, c<, RealsD

Ha ã 0 && b ã 0 && c > 0L »» a > 0 && c >
b2

4 a

‡ Example 3

Write the statement that there exists an x for which a x2 + b > 0:

Exists@x, a x^2 + b > 0D $x b + a x2
> 0

Under what conditions is this true?

Reduce@%, 8a, b<, RealsD Ha § 0 && b > 0L »» a > 0

‡ Example 4

Consider the following polynomial:

g@x_D := a + b x + c x^2 + x^3

Under what conditions are all roots equal?

q = ForAll@8x, y<, g@xD ã 0 && g@yD ã 0, x ã yD

"8x,y<,a+b x+c x2+x3ã0&&a+b y+c y2+y3ã0 x ã y

Reduce@q, 8c, a, b<D

a ã
c3

27
&& b ã

c2

3
»» Hc ã 0 && a ã 0 && b ã 0L

We can see that under these conditions all the roots are indeed the same:

Solve@Hg@xD ê. ÒL ã 0, xD & êü 8ToRules@%D<

:::x Ø -
c

3
>, :x Ø -

c

3
>, :x Ø -

c

3
>>, 88x Ø 0<, 8x Ø 0<, 8x Ø 0<<>

Chapter 22  •  Equations 729



‡  Example 5

Prove that if y § -x2, then y § x + 1:

ForAll@8x, y<, Implies@y § -x^2, y § x + 1DD

"8x,y< ImpliesAy § -x2, y § 1 + xE
Reduce@%D True

22.3  Transcendental Equations

22.3.1  Exact Solutions

If  a  transcendental  equation  or  inequality  is  simple  enough, Solve  or Reduce  may  be  able  to  get  a
solution;  such  equations  are  considered  here.  In  most  cases,  we  have  to  resort  to  iterative  methods
provided by FindRoot. These equations are considered in Sections 22.3.2 to 22.3.4.

Solve[eqns, vars]  Try to give some solutions of the given transcendental equations
Reduce[expr, vars, dom]  Try to give a complete solution of the given transcendental equations

and inequalities

‡ An Example

A  transcendental  equation  can  be  solved  symbolically  if  the  equation  can  be  transformed  into  an
equation in which a single transcendental function can be taken to be the variable and if the transformed
equation  can  be  solved  for  this  transcendental  function.  The  solution  of  the  original  equation  is  then
obtained with the inverse function. As an example, we first try Solve:

Solve@Sin@xD ã Cos@xD, xD

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. à

::x Ø -
3 p

4
>, :x Ø

p

4
>>

We  obtained  two  solutions,  with  the  warning  that  other  solutions  may  exist.  Indeed,  the  equation  is

valid whenever x =
p

4
+ n p  and n  is an integer. This is typical for solutions of transcendental equations

given  by Solve:  We  get  some  solutions,  but  other  solutions  may  (and  often  do)  exist.  Then  we  try
Reduce:

Reduce@Sin@xD ã Cos@xD, xD

C@1D œ Integers && x ã -2 ArcTanB1 + 2 F + 2 p C@1D »» x ã -2 ArcTanB1 - 2 F + 2 p C@1D
% êê FullSimplify

C@1D œ Integers && H8 p C@1D ã 3 p + 4 x »» p + 8 p C@1D ã 4 xL

Reduce  was  able  to  give  all  of  the  solutions:  For  an  integer C@1D,  solutions  are x =
p

4
+ 2 C@1D p  and

x = -
3 p
4
+ 2 C@1D p, which is the same as x =

p

4
+ n p.

730 Mathematica Navigator



By  the  way, Solve  has  the InverseFunctions  option.  The  default  value Automatic  of  this  option
means that inverse functions are used, and a warning message about possibly missing roots is printed.
If  we  give  the  option  the  value True,  then  inverse  functions  are  also  used,  but  the  warning  is  not
printed. With the value False, inverse functions are not used:

Solve@Sin@xD ã Cos@xD, x, InverseFunctions Ø TrueD

::x Ø -
3 p

4
>, :x Ø

p

4
>>

Solve@Sin@xD ã Cos@xD, x, InverseFunctions Ø FalseD

Solve::ifun2 : Cannot obtain a solution with the InverseFunctions -> False option setting. à

Solve@Sin@xD ã Cos@xD, x, InverseFunctions Ø FalseD

To save space, we now turn warnings about inverse functions off:

Off@Solve::"ifun"D
Off@InverseFunction::"ifun"D

‡ More Examples

Here is a simple inequality:

Reduce@Sin@xD > 0, x, RealsD

C@1D œ Integers && 2 p C@1D < x < p + 2 p C@1D

In the next example, we have hyperbolic functions:

Solve@Sinh@xD ã Cosh@xD - 2, xD êê FullSimplify

88x Ø -Log@2D<<
Reduce@Sinh@xD ã Cosh@xD - 2, xD

C@1D œ Integers && x ã 2 Â p C@1D - Log@2D

We can restrict variables and functions to be real:

Reduce@Sinh@xD ã Cosh@xD - 2, x, RealsD x ã -Log@2D

Sometimes  the  solution  contains  a  product  log  function.  The  next  example  gives  the  definition  of
product log:

Solve@z ã w Exp@wD, wD 88w Ø ProductLog@zD<<

This shows that product log at z is the (principal) solution for w of z = w ‰w. Here is another example:

f = a - x Exp@x^2D;

Solve@f ã 0, xD

::x Ø -

ProductLogA2 a2E

2

>, :x Ø

ProductLogA2 a2E

2

>>

From the result of Reduce,  we see that the first solution is correct for a § 0 and the second solution for
a ¥ 0.

Chapter 22  •  Equations 731



Reduce@f ã 0, x, RealsD

Ha ã 0 && x ã 0L »» a > 0 && x ã

ProductLogA2 a2E

2

»»

a 0 && a < 0 && x ã -

ProductLogA2 a2E

2

Now we turn the messages on:

On@Solve::"ifun"D
On@InverseFunction::"ifun"D

‡ Toward Numerical Methods

The next equation is not solvable with Solve (or Reduce):

Solve@Sin@xD ã x, xD

Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non-algebraic way. à
Solve@Sin@xD ã x, xD

However, this equation has the simple solution x = 0. If Solve  or Reduce  does not succeed, we can use
numerical methods specially developed for transcendental equations. These methods include Newton’s
method, the secant method, and the bisection method. These methods are considered next.

22.3.2  Numerical Solutions

FindRoot is used to solve transcendental equations with iterative methods. The methods can be divided
into two groups:

• a method that requires derivatives (Newton’s method; this method needs one starting point);
• two methods not requiring derivatives (the secant method and Brent’s method; these methods need

two starting points).

FindRoot decides the type of method to use from the number of starting points. Note that even when
FindRoot starts with, for example, Newton’s method, it may later move to other methods.

‡ Newton’s Method

The  best-known  method  for  solving  a  transcendental  equation f HxL = 0  is  Newton’s  method

xi+1 = xi - f IxiM ë f £IxiM. It can be used in the following way:

FindRoot[eqn, {x, x0}]  Find a solution for the equation starting from the point x0; use Newton’s
method

If we write, in place of {x, x0}, a list {x, x0, xmin, xmax}, then iterations are stopped if the solution
goes outside the interval (xmin, xmax). In place of an equation expr1 ã expr2, we can also write a single
expression expr, and then it is understood that the equation is expr ã 0.

Newton’s  method  needs  the  derivative  of  the  function.  If  the  derivative  or,  more  generally,  the
Jacobian cannot be calculated symbolically, a finite difference approximation is used.

As  an  example,  we  solve  the  equation ‰-x - x2 = 0  by  first  defining  and  plotting  the  left-hand-side
function:

732 Mathematica Navigator



f = Exp@-xD - x^2;

Plot@f, 8x, -1, 2<D

-1.0 -0.5 0.5 1.0 1.5 2.0

-3

-2

-1

1

A root seems to be approximately 0.7. Apply Newton’s method starting from zero:

sol = FindRoot@f, 8x, 0<D 8x Ø 0.703467<

We could also have written an explicit equation:

sol = FindRoot@f ã 0, 8x, 0<D 8x Ø 0.703467<

The value of the function at the solution is, in fact, zero very accurately:

f ê. sol -1.4988 μ 10-15

If you only want the value of the zero (instead of the rule), then write the following:

x ê. sol 0.703467

You can also write this:

sol = x ê. FindRoot@f, 8x, 0<D 0.703467

Complex zeros, too, can be searched by giving complex starting points:

FindRoot@f, 8x, -1 + I<D 8x Ø -1.58805 + 1.54022 Â<

‡ The Secant Method and Brent’s Method

Newton’s method requires the derivative of the function, but we can also use methods that do not need
the derivative. The secant method and Brent’s method are two of the best-known methods of this kind.
They can be used in the following way:

FindRoot[eqn, {x, x0, x1}]  Find a solution starting from the points x0 and x1; use the secant
method or Brent’s method

If we write, in place of {x, x0, x1}, a list {x, x0, x1, xmin, xmax}, then iterations are stopped if the
solution  goes  outside  the  interval  (xmin, xmax). Mathematica  uses  Brent’s  method  if  the  values  of  the
function  at  the  points x0  and x1  are  real  and of  opposite  sign;  otherwise, Mathematica  uses  the  secant
method.

The secant method applies the following recursion formula:

xn+1 = xn -
f HxnL Hxn - xn-1L

f HxnL - f Hxn-1L
.

Brent’s method keeps the root bracketed (we always have one point where the function is positive and
one  point  where  the  function  is  negative),  and  at  each  step  a  choice  is  made  between  an  interpolated
(secant) step and a bisection in such a way that convergence is guaranteed. For example,

FindRoot@Exp@-xD - x^2, 8x, 0, 1<D 8x Ø 0.703467<

Chapter 22  •  Equations 733



‡  Several Transcendental Equations

FindRoot[{eqn1, eqn2, … }, {x, x0}, {y, y0}, … ]  Use Newton’s method
FindRoot[{eqn1, eqn2, … }, {x, x0, x1}, {y, y0, y1}, … ]  Use the secant method

As an example, we solve the following pair of equations:

eqns = 8x^2 + y^2 - 1 ã 0, Sin@xD - y ã 0<;

The situation can be visualized with contour plots:

ContourPlot@eqns êê Evaluate, 8x, -2, 2<, 8y, -1, 1<,
Frame Ø False, Axes Ø True, AspectRatio Ø AutomaticD

-2 -1 1 2

-1.0

-0.5

0.5

1.0

The system seems to have two solutions:

FindRoot@eqns, 8x, 1<, 8y, 1<D

8x Ø 0.739085, y Ø 0.673612<
FindRoot@eqns, 8x, -1<, 8y, -1<D

8x Ø -0.739085, y Ø -0.673612<

Simultaneous polynomial  equations  can  also  be  formulated with  matrices.  Here,  we  find a  normal-
ized eigenvector and eigenvalue:

a = 881, -1, 1<, 8-2, -0, 1<, 82, 1, 1<<;

FindRoot@8a.x ã l x, x.x ã 1<, 88x, 81, 1, 1<<, 8l, 1<<D

8x Ø 8-0.222336, 0.738913, 0.636061<, l Ø 1.4626<

The dimensions of the variables are taken from the dimensions of the starting points.

‡ Options

As usual, the default values of options are mentioned first.

Options of FindRoot:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the root should be of the order
10-p; examples of values: Automatic (usually means 8), 10

AccuracyGoal  If the value of the option is a, the absolute error of the root and the absolute value of
the function at the root should be of the order 10-a; examples of values: Automatic (usually means
8), 10

Method  Method used; possible values: Automatic, "Newton", "Secant", "Brent"

MaxIterations  Maximum number of iterations used; default value: 100

DampingFactor  Damping factor; examples of values: 1, 2

Jacobian  Jacobian of the system in Newton’s method; examples of values: Automatic, "Symbolic",
"FiniteDifference"

734 Mathematica Navigator



Compiled  Whether the function should be compiled; possible values: Automatic, True, False

Evaluated  Whether the function is evaluated; possible values: True, False

StepMonitor  Command to be executed after each step of the iterative method; examples of values:
None, Sow[x], ++n, AppendTo[iters, x]

EvaluationMonitor  Command to be executed after each evaluation of the equation; examples of
values: None, Sow[x], ++n, AppendTo[points, x]

The  default  is  that  iterations  are  stopped when the  relative  or  absolute  error  of the  root  is  less  than

10-8  and  the  absolute  value  of  the  function  at  the  root  is  less  than 10-8.  The  general  default  value  of
PrecisionGoal and AccuracyGoal is WorkingPrecision/2. For more information about these options,

see Section 12.3.1, p. 409.

A slow convergence may be an indication of a multiple zero. If the zero is of multiplicity d, we get a
quadratic convergence again if we give DampingFactor the value d. The iteration formula for Newton’s

method is now xi+1 = xi - d f IxiM ë f £IxiM. For equations in which the calculation of the Jacobian may cause

problems,  we can give Jacobian  the value FiniteDifference,  and then the Jacobian is approximated
by numeric methods.

22.3.3  Special Topics

‡ Looking at the Iterations: One Equation

Consider the following function:

f = Exp@-xD - x^2;

To see the iterations, write the following:

8zero, 8points<< = Reap@FindRoot@f, 8x, 1<, StepMonitor ß Sow@8x, f<DDD

98x Ø 0.703467<, 9980.733044, -0.0569084<, 80.703808, -0.000647392<,

90.703467, -8.7166 μ 10-8=, 90.703467, -1.4988 μ 10-15====
TableForm@points, TableHeadings Ø 8Range@Length@pointsDD, 8"x", "fHxL"<<D

x fHxL
1 0.733044 -0.0569084

2 0.703808 -0.000647392

3 0.703467 -8.7166 μ 10-8

4 0.703467 -1.4988 μ 10-15

‡ Looking at the Iterations: Two Equations

Consider two equations:

eqns = 8x^2 + y^2 - 1 ã 0, Sin@xD - y ã 0<;

8zero, 8points<< = Reap@FindRoot@eqns, 8x, 1<, 8y, -1<, StepMonitor ß Sow@8x, y<DDD

88x Ø 0.739085, y Ø 0.673612<,
8881.29182, -0.658184<, 81.4143, -0.196652<, 81.20721, 0.955503<,

80.777205, 0.781706<, 80.743713, 0.677414<, 80.739096, 0.673627<,
80.739085, 0.673612<, 80.739085, 0.673612<<<<

Chapter 22  •  Equations 735



ContourPlot@eqns êê Evaluate, 8x, -1, 1.8<, 8y, -1, 1<, Frame Ø False, Axes Ø True,
AspectRatio Ø Automatic, Epilog Ø 8Point@pointsD, Line@pointsD<, ImageSize Ø 180D

-1.0 -0.5 0.5 1.0 1.5

-1.0

-0.5

0.5

1.0

‡ Zeros of Bessel and Airy Functions

We have special commands for the roots of the Bessel functions JnHxL (first kind) and UnHxL (second kind)

and of the Airy functions AiHxL and BiHxL.

BesselJZero[n, k] (Ÿ6)  The kth zero greater than 0 of JnHxL
BesselYZero[n, k] (Ÿ6)  The kth zero greater than 0 of UnHxL
AiryAiZero[k] (Ÿ6)  The kth zero less than 0 of AiHxL
AiryBiZero[k] (Ÿ6)  The kth zero less than 0 of BiHxL

In  place  of k  we  can  also  write  a  list  of  values;  then  we  get  the  corresponding  list  of  zeros.  These
commands also accept one additional argument, x0, and then we ask for the kth zero greater than x0 for
Bessel functions and for the kth zero smaller than x0 for Airy functions.

The NumericalMath`BesselZeros`  package  defines  more  commands  for  zeros  of  various  expressions
that contain Bessel functions. It can be loaded from library.wolfram.com/infocenter/MathSource/6777/.

Zeros of Bessel functions are sometimes needed in the solutions of partial differential equations (see

Section 27.2.4, p. 901).

Consider, for example, BesselJ[2, x]:

Plot@BesselJ@2, xD, 8x, 0, 20<D

5 10 15 20

-0.2

0.2

0.4

BesselJZero@2, Range@5DD êê N

85.13562, 8.41724, 11.6198, 14.796, 17.9598<

In addition, 0 is a zero.

‡ Inverse Cubic Interpolation

In the FunctionApproximations` package:

InterpolateRoot[f, {x, a, b}]  Find a zero for f near the starting points a and b

736 Mathematica Navigator



This package uses inverse cubic interpolation. The idea of this method is to take the last four points~

for  example a, b, c,  and d~to  calculate  a  cubic  interpolation  polynomial  through  the  points I f HaL, aM,

I f HbL, bM, I f HcL, cM, and I f HdL, dM and to calculate the value of this polynomial at 0. This package is designed

only  for  simple  roots  of  a  single  function  or  an  equation  that  is  well  behaved.  The  method  can  be
advantageous  in  comparison  to FindRoot  in  cases  in  which  evaluating  the  function  is  extremely
laborious, particularly for very high precision. The default value of WorkingPrecision is 40.

<< FunctionApproximations`

r = InterpolateRoot@Exp@-xD - x^2, 8x, 0, -2.5<D

8x Ø 0.70346742249839165204981860<

Exp@-xD - x^2 ê. r 0. μ 10-27

22.3.4  Own Programs

‡ Own Newton

In Chapter 18, we presented several implementations for Newton’s method. Here, we present a version

of the function newton8 that was presented in Section 18.3.4, p. 579. We add a damping factor, which is

used for multiple zeros and explained in Section 22.3.2, p. 735.

newtonSolve@f_, x_, x0_, d_: 1, n_: 20, opts___?OptionQD :=
With@8df = D@f, xD<,

FixedPointList@Hx - d f ê dfL ê. x Ø Ò &, N@x0D, n, optsDD

You may want to read Section 18.3.4  for  explanations of  this program. The iterations are stopped if
two successive points are the same to 16-digit precision. The damping factor d  has the default value 1.
At most n  iterations are done; n  has the default value 20.  We can write zero or more options (note the
three underscores after opts). The option we can use is SameTest  (see Section 18.3.4). (Note that if you
want to use a different n, you must also enter a value for d, and if you want to write an option, you must
also write values for d and n.) We try newtonSolve for the equation f = 0 that we considered previously:

f = Exp@-xD - x^2;

newtonSolve@f, x, 1D

81., 0.733044, 0.703808, 0.703467, 0.703467, 0.703467, 0.703467<

Complex starting values can be given:

newtonSolve@f, x, -1.5 + 1.5 ID

8-1.5 + 1.5 Â, -1.59551 + 1.54133 Â, -1.58809 + 1.54021 Â,
-1.58805 + 1.54022 Â, -1.58805 + 1.54022 Â, -1.58805 + 1.54022 Â<

Consider the following function:

f2 = x^3 ê 3 - x + 2 ê 3;

Plot@f2, 8x, -3, 3<D

-3 -2 -1 1 2 3

-2

-1

1

2

3

Chapter 22  •  Equations 737



It seems that a point at approximately 1 is a zero of multiplicity 2, so we use a damping factor of 2. We
also use a custom stopping criterion. We stop the iterations after two successive approximations to the

zero (represented by #1 and #2 in the SameTest option) differ by at most 10-6 :

newtonSolve@f2, x, 4, 2, 20, SameTest Ø HAbs@Ò1 - Ò2D < 10^-6 &LD

84., 1.6, 1.04615, 1.00035, 1., 1.<

Then we stop after the value of the function at the last point is less than 10-14 :

newtonSolve@f2, x, 4, 2, 20, SameTest Ø HAbs@f2 ê. x Ø Ò2D < 10^-14 &LD

84., 1.6, 1.04615, 1.00035, 1.<

‡ Illustrating Newton’s Method

Newton’s  method for  an  equation f HxL = 0  is  interpreted  as  follows.  A  tangent  to f HxL  is  drawn at  the

present point xi. The next point xi+1 is where the tangent intersects the x axis. A new tangent is drawn at

this  point,  and  so  we  continue.  To  graphically  show  this  process,  we  first  form  a  set  of  points  that
consists of the iteration points at the x axis and at the function:

f = Exp@-xD - x^2;

it = newtonSolve@f, x, -2.5D;

points = Flatten@88Ò, 0<, 8Ò, f ê. x Ø Ò<< & êü it, 1D;

Then we show how Newton’s method proceeds (the starting point is at the left: x0 = -2.5):

Plot@f, 8x, -2.7, 1.7<, Epilog Ø Line@pointsD, ImageSize Ø 210D

-2 -1 1

-2

2

4

6

‡ Own Newton for Several Equations

newtonSolveSystem@f_List, x_List, x0_List, eps_: 10^-6, n_: 20D :=
With@8jac = D@f, 8x<D<,

FixedPointList@Ò + LinearSolve@jac ê. Thread@x Ø ÒD, -f ê. Thread@x Ø ÒDD &,
N@x0D, n, SameTest Ø HNorm@Ò1 - Ò2D < eps &LDD

This program is a generalization of newtonSolve for several equations. The stopping criterion is now
the 2-norm (or  the square  root  of  the sum of  the squares)  of  the difference between the last  two itera-

tions;  we  can give  the eps  for  this  criterion.  The  new point  could be  calculated from xn+1 = xn - Jn
-1 fn,

where Jn  is  the  Jacobian  of  the  system  (jac  in  the  program).  However,  we  can  avoid  calculating  the

inverse of Jn  by solving the linear system Jn dx = - fn  and then calculating xn+1 = xn + dx.  This method is

faster. For example,

f1 = x^2 + y^2 - 1; f2 = Sin@xD - y;

738 Mathematica Navigator



newtonSolveSystem@8f1, f2<, 8x, y<, 81, -1<D

881., -1.<, 83.91816, 2.41816<, 82.75207, 0.130969<,
81.48707, 1.54999<, 80.900059, 0.947405<, 80.766791, 0.700529<,
80.739527, 0.674194<, 80.739085, 0.673612<, 80.739085, 0.673612<<

ContourPlot@8f1 == 0, f2 == 0<, 8x, -1, 4<, 8y, -1, 2.5<, Frame Ø False, Axes Ø True,
AspectRatio Ø Automatic, Epilog Ø 8Point@%D, Line@%D<, ImageSize Ø 160D

-1 1 2 3 4

-1.0

-0.5

0.5

1.0

1.5

2.0

2.5

‡ Own Secant in Procedural Style

secantSolve@f_, x_, x0_, x1_, eps_: 10^-10, d_: 1, n_: 20D :=
Module@8y0 = x0, y1 = x1, f0 = N@f ê. x Ø x0D, f1, newy, iters = 8x0, x1<<,

Do@f1 = N@f ê. x Ø y1D;
If@Abs@f1D < eps, Break@DD;
newy = y1 - d f1 Hy1 - y0L ê Hf1 - f0L;
iters = 8iters, newy<;
y0 = y1; y1 = newy; f0 = f1, 8n<D;

Flatten@itersDD

This program is in the procedural style. If the value of the function becomes smaller than eps (default

value is 10-10), then iterations are stopped. Iterations are done at most n  times (the default value is 20).
The damping factor d has the default value 1.

The iterations are gathered to iters.  In  general,  a  module prints  the result  of  the last  command so
that we have placed the simple command Flatten[iters] as the last command to get a list of all of the
iterations. Flatten is needed because iters = {iters, newy} creates a nested list.

Note  that  we have used y0  and y1  to  store the two successive iterations.  We cannot  use x0  and x1

because x0  and x1  are arguments of secantSolve,  and the arguments of a function cannot be changed

inside the function (see Section 18.2.4, p. 566). For example,

f = Exp@-xD - x^2;

secantSolve@f, x, 0.2, 0.5D

80.2, 0.5, 0.753338, 0.699275, 0.703386, 0.703468, 0.703467<

‡ Illustrating the Secant Method

The next point is where the secant through the last two points intersects the x axis.

it = secantSolve@f, x, -2.5, -2.0D; points = 8<;

Do@AppendTo@points, 8itPiT, 0<D;
AppendTo@points, 8itPiT, f ê. x Ø itPiT<D;
AppendTo@points, 8itPi + 1T, f ê. x Ø itPi + 1T<D;
AppendTo@points, 8itPi + 2T, 0<D, 8i, Length@itD - 2<D

Chapter 22  •  Equations 739



Plot@f, 8x, -2.7, 1.7<, Epilog Ø Line@pointsD, ImageSize Ø 180D

-2 -1 1

-2

2

4

6

‡ Own Secant in Functional Style

secantStep2@f_, x_, d_, 8x0_, x1_, f0_, f1_<D :=
With@8newx = x1 - d f1 Hx1 - x0L ê Hf1 - f0L<,
8x1, newx, f1, f ê. x Ø newx<D

secantSolve2@f_, x_, x0_, x1_, eps_: 10^-10, d_: 1, n_: 20D :=
FixedPointList@secantStep2@f, x, d, ÒD &,

8x0, x1, f ê. x Ø x0, f ê. x Ø x1< êê N, n,
SameTest Ø HAbs@Ò2P4TD < eps &LDPAll, 2T

This program is in the functional style. Now we have four values to be iterated, and we enclose them
in  a  list {x0, x1, f0, f1}  in secantStep2  because FixedPointList  requires  one  iteration  variable
(denoted by #).  Note how easily one step can be done: Just calculate the new value (denoted by newx)
and return the new values {x1, newx, f1, N[f /. x Ø newx]}.

The function secantSolve2 does the needed iterations. The starting point is {x0, x1, f /. x Ø x0, f

/. x Ø x1}.  The  stopping  criterion  is  that  the  value  of  the  function  at  the  latest  approximation  is  less
than eps. The variable #2 represents the latest iteration that consists of the four values {x0, x1, f /. x Ø

x0, f /. x Ø x1} so that #2P4T is the value of the function at the latest approximation.

The  result  of FixedPointList  is  an Hmä4L-matrix  if m  iterations  were  done.  By  taking  the  second
column,  the  values  of  the  approximations  to  the  root  are  obtained  (however,  the  initial  guess x0  is
lacking). For example,

secantSolve2@f, x, 0.2, 0.5D

80.5, 0.753338, 0.699275, 0.703386, 0.703468, 0.703467<

740 Mathematica Navigator



23
Optimization

Introduction 741

23.1  Global Optimization 743

23.1.1  Exact Global Optimization 743 Minimize, Maximize

23.1.2  Numerical Global Optimization 747 NMinimize, NMaximize

23.1.3  Options for Numerical Global Optimization 749

23.2  Linear Optimization 753

23.2.1  Linear Problems by Variables 753 Minimize, Maximize

23.2.2  Linear Problems by Matrices 757 LinearProgramming

23.3  Local Optimization 759

23.3.1  Numerical Local Optimization 759 FindMinimum, FindMaximum

23.3.2  Options for Numerical Local Optimization 762

23.3.3  Own Programs 765 dfpMinimize

23.4  Classical Optimization 768

23.4.1  No Constraints 768

23.4.2  Equality Constraints 769

23.4.3  Equality and Inequality Constraints 773 kktOptimize

23.5  Special Topics 777

23.5.1  Traveling Salesman 777 FindShortestTour

23.5.2  Dynamic Programming 780

23.5.3  Calculus of Variations 789 EulerEquations

Introduction

Because the shape of the whole universe is most perfect and, in fact, designed
 by the wisest creator, nothing in the world will occur in which no maximum

 or minimum rule is somehow shining forth.~Leonhard Euler

Mathematica  contains  tools  for  all  basic  types  of  optimization:  We  can  solve  linear  and  nonlinear,
unconstrained  and  constrained,  local  and  global,  and  continuous  and  discrete  problems.  The  main
minimization  commands  are LinearProgramming, Minimize, NMinimize,  and FindMinimum;  for
maximization,  we  have Maximize, NMaximize,  and FindMaximum.  The  problem  may  be  that  of  choice:
Given a problem, which of the commands is the most suitable one? The following list gives some guides
for minimization:



• Linear optimization in matrix form: LinearProgramming

• Linear optimization in variable form: Minimize

• Nonlinear, global, exact optimization: Minimize

• Nonlinear, global, numerical optimization: NMinimize

• Nonlinear, local, numerical optimization: FindMinimum

All  the  methods apply  to  continuous  and discrete  and to unconstrained and constrained optimiza-

tion. LinearProgramming  and Minimize  can  find  the global  optimum  for  linear  and  polynomial
problems, respectively. These commands give the exact solution if the problem is exact. NMinimize often
also finds the global optimum. FindMinimum only searches for a local minimum near the starting point.

Minimize  works mainly with polynomial  optimization problems but  can also solve  many transcen-

dental  and  piecewise  problems,  and  it  is  also  able  to  solve  problems  with  symbolic  parameters.  This
command  is  mainly  suited  to  small  exact  problems. NMinimize  is  also  suited  to  larger  nonlinear
problems.  For  large  problems, FindMinimum  may  be  suitable  if  we  only  need  a  local  optimum,  if  the
problem only has a single optimum, if a good starting point can be provided, or if the problem only has
a  small  number  of  local  optimums  (they  can  perhaps  be  investigated  separately  by  using  suitable
starting values).

LinearProgramming, Minimize,  and NMinimize  solve  linear  problems  with  the  simplex  or  revised
simplex  method  or  with  an  interior  point  method;  for  linear  integer  problems,  the  branch-and-bound
algorithm  is  used.  For  polynomial  problems, Minimize  uses  cylindrical  algebraic  decomposition.
NMinimize  uses  various  derivative-free  iterative  methods:  the  method  of  Nelder  and  Mead,  a  genetic
method,  the method of  simulated annealing,  and a  random search method. FindMinimum  uses various
iterative methods, most of which require the derivative: Mainly the quasi-Newton method is used, but
also Newton’s method, a conjugate gradient method, Brent’s principal axis method (derivative-free), the
Levenberg-Marquardt method, and an interior point method are available.

Note  that  even  if  we  only  want  to  get  a  local  minimum,  it  is  not  necessary  to  use FindMinimum.
Indeed, Minimize  can be used by suitably restricting the area where the optimum is searched for.  The
latter command has the advantage that we can get an exact solution.

In  addition  to  the  built-in  commands,  we  also  consider  classical  optimization  in  which  necessary
conditions are used to find the optimum. The conditions are usually equations that contain derivatives
of  the  object  function  or  of  a  modified  function  if  constraints  are  present.  By  solving  the  (nonlinear)
equations, we get solution candidates for the problem. Often, we can use some sufficiency conditions to
check whether the solution candidates are maximum or minimum points.

Furthermore,  we  also  consider  some  special  topics:  the  traveling  salesman  problem,  dynamic
programming, and calculus of variations.

For  more  information  about  optimization  with Mathematica,  see Bhatti  (2000), Hastings  (2006),  and
the  tutorials tutorialêUnconstrainedOptimizationOverview and tutorialêConstrainedOptimizationOverview.  With

ExampleData we have access to many test problems in linear optimization (see Section 9.3.4, p. 311). The

Optimization`UnconstrainedProblems`  package contains test problems in unconstrained optimization; see
tutorialêUnconstrainedOptimizationTestProblems.  In tutorialêConstrainedOptimizationLocalNumerical  we  can
find examples of solving minimax problems and using goal programming.

In  the Combinatorica`  package,  there  are  several  optimization  functions  for  graph-theoretical
problems: Dijkstra, ShortestPath, MinimumSpanningTree, NetworkFlow,  etc.  For  integer  program-

ming,  see Bulmer  and  Carter  (1996);  for  genetic  programming,  see Nachbar  (1995);  and  for  dynamic
programming,  see Hastings  (2006)  and Wagner  (1995).  A  multiplier  method for  constrained  nonlinear
problems can be found at library.wolfram.com/database/MathSource/795.

742 Mathematica Navigator



The following commercial products are available (see www.wolfram.com/products/fields):

• Global Optimization (global optimization for constrained and unconstrained nonlinear functions)
• Industrial Optimization (local optimization for linear, nonlinear, and queuing problems)
• KNITRO for Mathematica (large-scale nonlinear optimization)
• MathOptimizer (advanced modeling and optimization)
• MathOptimizer Professional (advanced global and local nonlinear optimization)
• Operations Research (constrained optimization with applications from operations research)

23.1  Global Optimization

23.1.1  Exact Global Optimization

‡ Exact Global Minimums and Maximums

Minimize[f, vars]  Give the global minimum of f with respect to variables vars

Minimize[{f, cons}, vars]  Minimize subject to constraints cons

Minimize[{f, cons}, vars, dom]  Minimize over domain dom

Maximize[f, vars]  Give the global maximum of f with respect to variables vars

Maximize[{f, cons}, vars]  Maximize subject to constraints cons

Maximize[{f, cons}, vars, dom]  Maximize over domain dom

The  function  to  be  minimized  or  maximized  and  the  equality  and  inequality  constraints  can  be
algebraic expressions. Typical examples are polynomial, rational, and radical expressions. Many transcen-

dental problems are also solved. The functions can contain symbolic parameters.

The constraints are written as lists or as logical expressions containing, for example, the logical AND
(&&). By specifying the domain to be Integers, we can solve integer problems (the default is to optimize
over Reals).  Within  the  constraints  we  can  also  restrict  individual  variables  to  be  integer  valued  by
writing, for example, x œ Integers.

Minimize  and Maximize  give  an exact  solution  if  the  problem  is  exact~that  is,  does  not  contain
decimal  numbers.  If  the problem contains a  decimal number,  then actually NMinimize  and NMaximize

are used; these commands are considered in Section 23.1.2, p. 747.

Minimize  and Maximize  give  the global  optimum  in  the  region  in  which  the  constraints  hold.  If  the
global  optimum  is  not  unique,  the  commands  pick  one  of  them.  If  we  are  interested  in  special  local
optimums, we have to add suitable constraints so that in the resulting feasible region, the local optimum
we are searching for is also the global optimum.

Minimize and Maximize use cylindrical algebraic decomposition to solve the optimization problem. This
method is not an iterative method; thus, it can give the exact solution. However, the method has double-
exponential complexity in the number of variables, and this means that the method is not applicable to
large  nonlinear  problems.  For  large  problems  or  other  problems  not  solved  by  the  mentioned  com-

mands,  we can resort  to the numerical,  iterative methods provided by NMinimize  and NMaximize.  For
problems with equality  constraints  within a  bounded box, Minimize  and Maximize  use the method of
Lagrange multipliers. The application of Minimize and Maximize to solve linear problems is considered

in Section 23.2.1, p. 753.

Chapter 23  •  Optimization 743



‡ Example 1

Consider the following function:

f = 5 + 40 x^3 - 45 x^4 + 12 x^5;

Plot@f, 8x, -0.7, 2.4<D

-0.5 0.5 1.0 1.5 2.0

-20

-10

10

20

When using Minimize,  we  should remember  that  it  calculates  the global  minimum.  Thus,  without  any
restrictions, the global minimum value of the function in our example is -¶:

Minimize@f, xD

Minimize::natt : The minimum is not attained at any point satisfying the given constraints. à

8-¶, 8x Ø -¶<<

If we want to calculate the local minimum at approximately x = 2, we have to write suitable constraints
to force the search to a region in which that local minimum is also the global minimum:

Minimize@8f, x > 0<, xD 8-11, 8x Ø 2<<

Thus,  at x = 2,  we have a local  minimum where the value of the function is -11.  Next,  we find a local
maximum:

Maximize@8f, x < 3 ê 2<, xD 812, 8x Ø 1<<

If we have a strict inequality constraint, the result may be that an optimum does not exist. In such a
case, Minimize gives the point on the boundary:

Minimize@8f, x > 2<, xD

Minimize::wksol : Warning: There is no minimum in the

region described by the constraints; returning a result on the boundary. à
8-11, 8x Ø 2<<

‡ Example 2

The following function has a local minimum and a local maximum:

f = x^3 + y^3 + 2 x^2 + 4 y^2 + 6;

ContourPlot@f, 8x, -2.5, 1<, 8y, -3.5, 1<, Contours Ø 12D

744 Mathematica Navigator



Minimize@8f, -1 < x < 1, -1 < y < 1<, 8x, y<D

86, 8x Ø 0, y Ø 0<<
Maximize@8f, -2 < x < -1, -3 < y < -2<, 8x, y<D

:
50

3
, :x Ø -

4

3
, y Ø -

8

3
>>

‡ Example 3

The following function seems to have a minimum:

f = x^4 + 3 x^2 y + 5 y^2 + x + y;

ContourPlot@f, 8x, -3, 3<, 8y, -3, 3<, PlotRange Ø AllD

Here is the exact solution:

sol = Minimize@f, 8x, y<D

9RootA6793 - 11 208 Ò1 + 8976 Ò12 + 38 720 Ò13 &, 1E,

9x Ø RootA5 - 3 Ò1 + 11 Ò13 &, 1E, y Ø RootA43 + 336 Ò1 + 2244 Ò12 + 4840 Ò13 &, 1E==
The solution is expressed with the aid of Root objects (see Section 22.2.2, p. 720). We can ask for explicit

expressions:

sol êê ToRadicals

:
1

220
-17 - 1653

2

78 373 - 1355 2981

1ë3

- 3
1

2
78 373 - 1355 2981

1ë3

,

:x Ø -
2

11 J55 - 2981 N

1ë3

-

J 1

2
J55 - 2981 NN

1ë3

112ë3
,

y Ø
1

110
-17 - 3

2

273 - 5 2981

1ë3

- 3
1

2
273 - 5 2981

1ë3

>>

The numerical values are as follows:

sol êê N

8-0.832579, 8x Ø -0.886324, y Ø -0.335671<<

‡ Example 4

The following problem has both equality and inequality constraints:

Chapter 23  •  Optimization 745



Minimize@8Hx - yL^2 + 5 z, x + y + z ã -5, y - 3 z ã 1, x ¥ 0<, 8x, y, z<D

:
19

4
, :x Ø 0, y Ø -

7

2
, z Ø -

3

2
>>

Here is a constrained nonlinear integer problem:

Minimize@8x^2 + x y + z, x + x y ¥ 5, x ¥ 0, y ¥ 0, z ¥ 0<, 8x, y, z<, IntegersD

85, 8x Ø 1, y Ø 4, z Ø 0<<

Here is a larger linear integer problem:

vars = Array@x, 15D; SeedRandom@7D; a = RandomInteger@8-10, 10<, 815, 15<D;

Minimize@
8Total@varsD, Join@Thread@a.vars ¥ 1D, Thread@vars ¥ 0D, 8vars œ Integers<D<, varsD

826, 8x@1D Ø 8, x@2D Ø 0, x@3D Ø 3, x@4D Ø 0, x@5D Ø 0, x@6D Ø 0, x@7D Ø 1, x@8D Ø 0,
x@9D Ø 0, x@10D Ø 0, x@11D Ø 6, x@12D Ø 0, x@13D Ø 1, x@14D Ø 5, x@15D Ø 2<<

The following problem is somewhat difficult:

Minimize@8x^2 ê 2 + Hy^2 + z^2 + v^2L ê 6, x ¥ 2, x + y ¥ 5, x + z ¥ 2, x + v ¥ 1, v ¥ 0<,
8x, y, z, v<D êê Timing

:24.6092, :
7

2
, 8x Ø 2, y Ø 3, z Ø 0, v Ø 0<>>

Note that all constraints except the constraint x + v ¥ 1 are active on the optimum solution.

What is the minimum distance from the point Ha, 0L to the line y = b x2?

Simplify@Minimize@8Sqrt@Hx - aL^2 + y^2D, y ã b x<, 8x, y<D, a > 0 && b > 0D

:
a b

1 + b2

, :x Ø
a

1 + b2
, y Ø

a b

1 + b2
>>

Next, we optimize an algebraic expression:

Maximize@8Sqrt@3 x + 2D + Sqrt@2 x - 1D - 3 Sqrt@x - 1D, 0 § x § 10<, xD

:1 + 5 , 8x Ø 1<>

‡ Example 5

In the next problem, the original solution contains Root objects but we succeed, with FullSimplify and
ToRadicals, in getting quite simple expressions into the solution:

8val, point< =
Minimize@81 ê H5 x y zL + 4 ê x + 3 ê z, 2 x z + x y § 10, x ¥ 0, y ¥ 0, z ¥ 0<, 8x, y, z<D êê

FullSimplify êê ToRadicals

:
4

5

1

5
76 + 151 , :x Ø

2

3

1

5
76 - 151 , y Ø

1

10

, z Ø

151

10

2
>>

% êê N

83.36168, 8x Ø 2.37976, y Ø 0.316228, z Ø 1.94294<<

The first inequality constraint is active at the optimum solution:

2 x z + x y ê. point êê FullSimplify 10

746 Mathematica Navigator



‡ Example 6

Minimize the surface area p r r2 + h2  of a cone given that its volume 1
3
p r2 h has a given value v:

sol =
Simplify@Minimize@8p r Sqrt@r^2 + h^2D, p r^2 h ê 3 ã v, r > 0, h > 0<, 8r, h<D, v > 0D

:RootA-2187 p2 v4 + 4 Ò16 &, 2E,

:r Ø RootB9 v2 - RootA-2187 p2 v4 + 4 Ò16 &, 2E2
Ò12 + p2 Ò16 &, 3F,

h Ø
3 v

p RootB9 v2 - RootA-2187 p2 v4 + 4 Ò16 &, 2E2
Ò12 + p2 Ò16 &, 3F

2
>>

By  using ToRadicals  several  times  together  with FullSimplify,  we  succeed  in  getting  the  following
explicit result:

FullSimplify@sol êê ToRadicals êê ToRadicals, v > 0D êê ToRadicals

:
3 31ë6 p1ë3 H-vL2ë3

21ë3
, :r Ø -

H-3L1ë3 v1ë3

21ë6 p1ë3
, h Ø - -

6

p

1ë3

v1ë3>>

Calculate the third powers:

8%P1T^3, 8r Ø %P2, 1, 2T^3, h Ø %P2, 2, 2T^3<<

:
27

2
3 p v2, :r Ø

3 v

2 p

, h Ø
6 v

p
>>

Thus, the optimum values are r = 3

2 p

v

1

3

 , h = J 6
p

vN
1

3  and the minimum surface area is 3
3

2
p v2

1

3

.

In Section 23.4.2, p. 769, and in Example 4 of Section 23.4.3, p. 776, we again consider this problem by

using Lagrange’s multipliers and Karush-Kuhn-Tucker conditions.

23.1.2  Numerical Global Optimization

‡ Numerical Global Minimums and Maximums

NMinimize[f, vars]  Give the global minimum of f with respect to variables vars

NMinimize[{f, cons}, vars]  Minimize subject to constraints cons

NMaximize[f, vars]  Give the global maximum of f with respect to variables vars

NMaximize[{f, cons}, vars]  Maximize subject to constraints cons

These  commands  use  iterative  methods  and give  a  decimal  approximation  to  the  optimum  solution.
Recall that Minimize  and Maximize  give the exact solution. Also, NMinimize  and NMaximize attempt to
give  the  global  optimum,  but  this  cannot  be  guaranteed.  Recall  that Minimize  and Maximize  give  the
global solution.

The  function  to  be  minimized  and  the  equality  and  inequality  constraints  can  be  arbitrary  expres-

sions  (e.g.,  nonlinear,  noncontinuous,  and  nondifferentiable).  Within  the  constraints  we  can  restrict
individual  variables  to  be  integer valued by writing,  for  example, x œ Integers.  The functions cannot
contain any symbolic parameters. The methods used are direct search methods and as such are deriva-

tive-free.

Chapter 23  •  Optimization 747



‡  Examples

We solve some of the problems we solved previously with Minimize. In most cases, we get a result that
is very close to the exact result.

NMinimize@85 + 40 x^3 - 45 x^4 + 12 x^5, x > 0<, xD

8-11., 8x Ø 2.<<
NMinimize@8 x^3 + y^3 + 2 x^2 + 4 y^2 + 6, -1 < x < 1, -1 < y < 1<, 8x, y<D

96., 9x Ø 1.20221 μ 10-15, y Ø -2.70515 μ 10-15==
NMinimize@x^4 + 3 x^2 y + 5 y^2 + x + y, 8x, y<D

8-0.832579, 8x Ø -0.886324, y Ø -0.335671<<
NMinimize@8Hx - yL^2 + 5 z, x + y + z ã -5, y - 3 z ã 1, x ¥ 0<, 8x, y, z<D

84.75, 8x Ø 0., y Ø -3.5, z Ø -1.5<<
NMinimize@
8x^2 ê 2 + Hy^2 + z^2 + v^2L ê 6, x ¥ 2, x + y ¥ 5, x + z ¥ 2, x + v ¥ 1, v ¥ 0<, 8x, y, z, v<D

93.5, 9v Ø 4.44159 μ 10-13, x Ø 2., y Ø 3., z Ø 5.45179 μ 10-9==
NMinimize@81 ê H5 x y zL + 4 ê x + 3 ê z, 2 x z + x y § 10, x ¥ 0, y ¥ 0, z ¥ 0<, 8x, y, z<D

83.36168, 8x Ø 2.37977, y Ø 0.316227, z Ø 1.94293<<

In Example 4 of Section 23.1.1,  p. 745,  we solved the following problem with Minimize  and got the

global optimum x = 1, y = 4, z = 0, with minimum value 5. Now we do not get the global optimum:

NMinimize@8x^2 + x y + z, x + x y ¥ 5, x ¥ 0, y ¥ 0, z ¥ 0, 8x, y, z< œ Integers<, 8x, y, z<D

88., 8x Ø 2, y Ø 2, z Ø 0<<

Here is a larger linear integer problem:

vars = Array@x, 15D; SeedRandom@7D; a = RandomInteger@8-10, 10<, 815, 15<D;

NMinimize@
8Total@varsD, Join@Thread@a.vars ¥ 1D, Thread@vars ¥ 0D, 8vars œ Integers<D<, varsD

826., 8x@1D Ø 8, x@2D Ø 0, x@3D Ø 3, x@4D Ø 0, x@5D Ø 0, x@6D Ø 0, x@7D Ø 1, x@8D Ø 0,
x@9D Ø 0, x@10D Ø 0, x@11D Ø 6, x@12D Ø 0, x@13D Ø 1, x@14D Ø 5, x@15D Ø 2<<

‡ Initial Intervals

NMinimize  needs an initial  interval in which to start  the search for  the optimum. The default is to use
the  interval @-1, 1D  for  each  variable.  We  can  define  initial  intervals  when  defining  the  variables.  For
example,  an  initial  interval @0, 3D  for x  can  be  defined  with {x, 0, 3}.  If  the  constraints  contain  an
interval such as 0 § x § 3, then it is used as the initial interval (if not otherwise specified). With the initial
interval we can force the search to a special region where we believe the optimum should lie. To ensure
that  we  find  the  global  optimum,  we  can  solve  the  problem  several  times  using  different  starting
intervals.

In  the  following  example,  the  intervals @-2, 0D  and @-1, 0D  are  used  to  start  the  search  for  the
optimum:

NMinimize@x^4 + 3 x^2 y + 5 y^2 + x + y, 88x, -2, 0<, 8y, -1, 0<<D

8-0.832579, 8x Ø -0.886324, y Ø -0.335671<<

748 Mathematica Navigator



23.1.3  Options for Numerical Global Optimization

NMinimize and NMaximize can resort to several methods. With regard to the options of the commands,
some options are common to all methods, whereas others are specific to each method. First we consider
the common options.

‡ Common Options

Options of NMinimize and NMaximize:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the optimum point and of the
value of the function (or a penalty function) at the optimum point should be of the order 10-p;
examples of values: Automatic (usually means 8), 10

AccuracyGoal  If the value of the option is a, the absolute error of the optimum point and of the
value of the function (or a penalty function) at the optimum point should be of the order 10-a;
examples of values: Automatic (usually means 8), 10

Method  Method used; possible values: Automatic, "NelderMead", "DifferentialEvolution",
"SimulatedAnnealing", "RandomSearch"

MaxIterations  Maximum number of iterations used; examples of values: 100, 200

StepMonitor  Command to be executed after each step of the iterative method; examples of values:
None, Sow[x], ++n, AppendTo[iters, x]

EvaluationMonitor  Command to be executed after each evaluation of the function to be mini-
mized; examples of values: None, Sow[x], ++n, AppendTo[points, x]

The  default  value  of PrecisionGoal  and AccuracyGoal  is  usually  8;  their  general  default  value  is
WorkingPrecision/2.  They  both  refer  to  both  the  minimum  point  and  the  minimum  value  of  the
function.  Thus,  iteration  is,  by  default,  stopped  when  the  estimated  relative  or  absolute  error  of  the

optimum point and of the optimum value is less than 10-8.  In more detail, if the precision goal is p and

accuracy goal a, then iterations are stopped if »» xk - x* »» § max 910-a, 10-p »» xk »»= and »» “ f IxkM »» § 10-a.

To ensure we get the global optimum, it may be advantageous to try several settings:

• Try some values of MaxIterations (the default is 100).
• Try some values of Method (the default is Automatic).
• Try some initial intervals (the default is @-1, 1D).
• Try some values of "RandomSeed" (the default is 0).

For example, we previously found that we obtained only a local minimum for the following problem:

problem = 8x^2 + x y + z, x + x y ¥ 5, x ¥ 0, y ¥ 0, z ¥ 0, 8x, y, z< œ Integers<;

NMinimize@problem, 8x, y, z<D

88., 8x Ø 2, y Ø 2, z Ø 0<<

It turns out that with the simulated annealing method we get the global optimum:

NMinimize@problem, 8x, y, z<, Method Ø "SimulatedAnnealing"D

85., 8x Ø 1, y Ø 4, z Ø 0<<

Another solution is to give some initial intervals:

Chapter 23  •  Optimization 749



NMinimize@problem, 88x, 0, 10<, 8y, 0, 10<, 8z, 0, 10<<D

85., 8x Ø 1, y Ø 4, z Ø 0<<

‡ Looking at the iterations

Let us see all the points where the function is evaluated when using the various methods:

f = x^4 + 3 x^2 y + 5 y^2 + x + y;
methods =

8"NelderMead", "DifferentialEvolution", "SimulatedAnnealing", "RandomSearch"<;

solutions =
Reap@NMinimize@f, 8x, y<, EvaluationMonitor ß Sow@8x, y<D, Method Ø ÒDD & êü methods;

MapThread@ContourPlot@f, 8x, -2, 2.5<, 8y, -2, 2<, PlotRange Ø All, Contours Ø 30,
ContourShading Ø False, PlotLabel Ø Ò1, Epilog Ø 8Point@Ò2P2, 1TD, Line@Ò2P2, 1TD,

Red, PointSize@MediumD, Point@8x, y< ê. Ò2P1, 2TD<D &, 8methods, solutions<D

: , ,

, >

‡ Methods

We can use four methods with NMinimize and NMaximize:

• "NelderMead" is the simplex method by J. A. Nelder and R. Mead. It is generally the fastest of the
four  methods,  and  it  is  well  suited  for  problems  with  continuous  variables.  For  a  function  of d
variables,  the  algorithm  maintains  a  set  of d + 1  points  forming  the  vertices  of  a  polytope  in d-
dimensional space.

• "DifferentialEvolution"  is a genetic method developed by K. Price and R. Storn. It may be the
most  robust  method of  the  four,  but  it  is  also  computationally  demanding and often  slower  than
other  methods.  This  method  is  suggested,  for  example,  for  problems  with  integer  variables.  The
algorithm maintains a population of m points, m p d. During each iteration a new population of m
points is generated, based on the old population.

750 Mathematica Navigator



• "SimulatedAnnealing" starts from many points. For each starting point, a sequence of iterations is
generated by moving from the current point to a random direction. If the move results in a better
point,  it  is  accepted;  otherwise,  the  point  is  accepted  with  a  certain  probability.  The  best  found
point is chosen as the solution. The method can also be used for discrete problems.

• "RandomSearch"  first  generates  a  large  number  of  points  in  the  initial  region and then  uses  each
point as the starting point for a local optimizer to find a local optimum. The best local minimum is
chosen  as  the  solution.  The  default  method  for  local  optimization  is Automatic,  which  means
FindMinimum. This method requires that the objective function is locally continuous. The method is
not well suited for discrete problems.

The default setting Method Ø Automatic tries to choose a good method, as follows:

• If the problem is linear (and does not have integer variables), use "LinearProgramming".
• If any of the variables are integer valued, use "DifferentialEvolution".
• Otherwise~that  is,  if  the problem is nonlinear and continuous~use "NelderMead",  and if it  does

poorly, switch to "DifferentialEvolution".

Each method has special options that we study next.

‡ Common Method-Specific Options

The method-specific options are used inside the value of the Method option, as follows:

NMinimize[{f, cons}, vars, opts, Method Ø {"method", methodSpecOpts}]

Among  the  method-specific  options,  six  options  are  not  so  method  specific  but  are  shared  with  all
four methods (with one exception). These options are considered first.

"RandomSeed"  Seed for random number generator; default value: 0

"SearchPoints"  Number of initial points (not for "NelderMead"); default value: Automatic, which
means, for d variables,
minH10 d, 50L for "DifferentialEvolution",
minH10 d, 100L for "RandomSearch", and
minH2 d, 50L for "SimulatedAnnealing"

 (NelderMead uses d + 1 points)
"InitialPoints"  Set of initial points; examples of values: Automatic, {{x1,y1}, {x2,y2}, … }

"PenaltyFunction"  Function applied to constraints to penalize invalid points; default value:
Automatic

"Tolerance"  Tolerance for accepting constraint violations; default value: 0.001

"PostProcess"  Whether and how to postprocess using local search methods; examples of values:
Automatic, "FindMinimum" (a penalty method), "InteriorPoint" (interior point method), "KKT"

(Karush-Kuhn-Tucker method), True, False

All  of  the  methods  use  random  numbers  in  choosing  initial  points  and/or  in  each  iteration.  The
default value of "RandomSeed" is zero. Thus, we get the same result if we solve a problem several times.
However,  with  different  seeds,  we may get  different  results.  In fact,  it  is  advisable  to  solve  a  problem
with several seeds and pick the best result. For example, here we use the differential evolution method
with six different seeds:

problem = :
4

x
+

3

z
+

1

5 x y z
, x y + 2 x z § 10, x ¥ 0, y ¥ 0, z ¥ 0>;

Chapter 23  •  Optimization 751



Table@8i, NMinimize@problem, 8x, y, z<,
Method Ø 8"DifferentialEvolution", "RandomSeed" Ø i<D<, 8i, 0, 5<D êê Quiet

880, 83.36168, 8x Ø 2.37976, y Ø 0.316225, z Ø 1.94294<<<,
81, 83.36168, 8x Ø 2.37977, y Ø 0.316227, z Ø 1.94293<<<,
82, 83.36991, 8x Ø 2.51199, y Ø 0.332459, z Ø 1.82244<<<,
83, 83.36168, 8x Ø 2.37977, y Ø 0.316225, z Ø 1.94293<<<,
84, 83.36168, 8x Ø 2.37977, y Ø 0.316227, z Ø 1.94293<<<,
85, 83.36838, 8x Ø 2.49371, y Ø 0.28102, z Ø 1.8621<<<<

We got three different solutions; the value 3.36168 seems to be the global minimum.

All of the four methods start from a set of points. We can either give the number of initial points as
the  value  of "SearchPoints"  and  let  the  algorithm  choose  the  points  at  random  from  the  initial
intervals  or  give  the  points  themselves  as  the  value  of "InitialPoints". "NelderMead"  and
"RandomSearch"  proceed  deterministically  after  the  initial  points  are  chosen,  but
"DifferentialEvolution" and "SimulatedAnnealing" use random numbers in each iteration.

Near the solution of the problem, the current approximation of the solution is fine-tuned by postpro-

cessing  with  a  combination  of  KKT,  interior  point,  and  penalty  methods.  The  postprocessing  can  be
controlled via the "PostProcess" option.

‡ Special Method-Specific Options

Some  method-specific  options  are  special  for  each  method.  For  more  about  these  options,  see
tutorialêConstrainedOptimizationOverview. The options of each method can be seen as follows:

Options@NMinimize`NelderMeadD êê N

8ContractRatio Ø 0.5, ExpandRatio Ø 2., InitialPoints Ø Automatic,
PenaltyFunction Ø Automatic, PostProcess Ø Automatic, RandomSeed Ø 0.,
ReflectRatio Ø 1., ShrinkRatio Ø 0.5, Tolerance Ø 0.001<

Special options for "NelderMead":
"ContractRatio"  Ratio used for contraction; default value: 1/2

"ExpandRatio"  Ratio used for expansion; default value: 2

"ReflectRatio"  Ratio used for reflection; default value: 1

"ShrinkRatio"  Ratio used for shrinking; default value: 1/2

Special options for "DifferentialEvolution":
"CrossProbability"  Probability that a gene is taken from the parent; default value: 1/2

"ScalingFactor"  Scale applied to the difference vector when creating a mate; default value: 3/5

In  integer  problems,  a  larger  value  of "ScalingFactor"  such  as  1  may  be  tried  in  an  effort  to  get
better mobility with respect to the integer variables.

Special options for "SimulatedAnnealing":
"BoltzmannExponent"  Exponent for the probability function; default value: Automatic

"LevelIterations"  Maximum number of iterations to stay at a given point; default value: 50

"PerturbationScale"  Scale for the random jump; default value: 1

Special options for "RandomSearch":
Method  Which method to use for minimization; possible values: Automatic, "InteriorPoint"

752 Mathematica Navigator



23.2  Linear Optimization

23.2.1  Linear Problems by Variables

We can formulate a linear programming problem either by writing explicit expressions with variables or
by  giving  only  coefficient  matrices  and  vectors.  The  corresponding  commands  are Minimize  or
Maximize  and LinearProgramming,  respectively.  Linear  optimization  is  a  special  case  of  global
optimization considered in Section 23.1.

‡ Formulation with Variables

Minimize[{f, cons}, vars]  Give the global minimum of f subject to constraints cons

Minimize[{f, cons}, vars, dom]  Minimize over domain dom

Maximize[{f, cons}, vars]  Give the global maximum of f subject to constraints cons

Maximize[{f, cons}, vars, dom]  Maximize over domain dom

By specifying the domain to be Integers,  we can solve integer problems. Within the constraints we
can also restrict  individual variables to be integer valued by writing,  for  example, x œ Integers.  Note
that Minimize  and Maximize  give  an exact  solution  if  the  problem  is  exact~that  is,  does  not  contain
decimal  numbers.  If  the problem contains a  decimal number,  then actually NMinimize  and NMaximize

are used.

Here is an example:

Maximize@8x + y, 2 x + y § 2, x - y ¥ -1 ê 2, x + 2 y § 2<, 8x, y<D

:
4

3
, :x Ø

2

3
, y Ø

2

3
>>

The problem can be visualized as follows:

Show@RegionPlot@2 x + y § 2 && x - y ¥ -1 ê 2 && x + 2 y § 2,
8x, 0, 1<, 8y, 0, 0.9<, AspectRatio Ø AutomaticD,

ContourPlot@x + y, 8x, 0, 1<, 8y, 0, 0.9<, ContourShading Ø False,
Contours Ø Range@1 ê 3, 5 ê 3, 1 ê 3D, ContourStyle Ø Dashing@SmallDD,

Graphics@8Red, PointSize@MediumD, Point@82 ê 3, 2 ê 3<D<DD

Here,  the shaded region is  the feasible region;  the dashed lines are contours where the object  function
takes  on  the  values 1 ê 3, 2 ê 3,  1, 4 ê 3,  and 5 ê 3;  and  the  red  point  is  the  optimum  point.  Indeed,  the
contour  where  the  object  function has  the  value  4/3 is  the  highest  that  still  has a  point  in the feasible
region; this point is the solution of the problem.

Chapter 23  •  Optimization 753



To solve an integer linear programming problem, Mathematica  first solves the equational constraints,
reducing  the  problem  to  one  containing  inequality  constraints  only.  Then  lattice  reduction  techniques
are used to put the inequality system in a simpler form. Finally, the simplified optimization problem is
solved by using a branch-and-bound method.

‡ Special Problems

Now we solve an integer problem:

Maximize@8x + y, 2 x + y § 2, x - y ¥ -1 ê 2, x + 2 y § 2, x ¥ 0, y ¥ 0<, 8x, y<, IntegersD

81, 8x Ø 1, y Ø 0<<

The problem can also contain symbolic parameters:

Maximize@8x + y, 2 x + y § 2, x - y ¥ -1 ê 2, x + 2 y § a<, 8x, y<D

:
3

2
a >

5

2

2+a

3
True

, :x Ø

1

2
a >

5

2

-
2

3
H-2 - aL - a True

, y Ø
1 a >

5

2

2

3
H-2 - aL + a +

2+a

3
True

>>

For a problem having many solutions, we get one of them:

Maximize@82 x + y, 2 x + y § 2, x - y ¥ -1 ê 2, x + 2 y § 2, x ¥ 0, y ¥ 0<, 8x, y<D

82, 8x Ø 1, y Ø 0<<
Show@RegionPlot@2 x + y § 2 && x - y ¥ -1 ê 2 && x + 2 y § 2, 8x, 0, 1<, 8y, 0, 0.9<D,

ContourPlot@2 x + y, 8x, 0, 1<, 8y, 0, 0.9<, ContourShading Ø False,
Contours Ø Range@1 ê 3, 8 ê 3, 1 ê 3D, ContourStyle Ø Dashing@SmallDD,

Epilog Ø 8Red, PointSize@MediumD, Point@81, 0<D<, AspectRatio Ø AutomaticD

A  strict  inequality  may  cause  the  solution  to  be  achieved  only  infinitesimally.  In  such  a  case,
Mathematica chooses the closest point on the boundary. In general, avoid using strict inequalities.

Maximize@8x + y, 2 x + y < 2, x - y ¥ -1 ê 2, x + 2 y § 2<, 8x, y<D

Maximize::wksol : Warning: There is no maximum in the

region described by the constraints; returning a result on the boundary. à

:
4

3
, :x Ø

2

3
, y Ø

2

3
>>

‡ Example 1: A Transportation Problem

Plants  1,  2,  and  3  have  a  supply  of  a  food,  and  cities  1,  2,  3,  and  4  have  demand  for  this  food.  The
problem  is  to  decide  the  amounts  to  be  transported  from  the  plants  to  the  cities  so  as  to  minimize

transportation costs. First, we draw a graph (see Section 8.5, p. 267):

p1 = "Plant 1"; p2 = "Plant 2"; p3 = "Plant 3";
c1 = "City 1"; c2 = "City 2"; c3 = "City 3"; c4 = "City 4";

edges = 8p1 Ø c1, p1 Ø c2, p1 Ø c3, p1 Ø c4, p2 Ø c1,
p2 Ø c2, p2 Ø c3, p2 Ø c4, p3 Ø c1, p3 Ø c2, p3 Ø c3, p3 Ø c4<;

754 Mathematica Navigator



GraphPlot@edges, Method Ø 8"LayeredDigraphDrawing", "Rotation" Ø -p ê 2<,
DirectedEdges Ø True, VertexLabeling Ø True, AspectRatio Ø 1D

Plant 1 City 1

City 2

City 3

City 4

Plant 2

Plant 3

The plants, cities, supplies, demands, and transportation costs are as follows:

plants = 8p1, p2, p3<; cities = 8c1, c2, c3, c4<;
supplies = 847, 36, 52<; demands = 838, 34, 29, 34<;
costs = 885, 7, 6, 10<, 89, 4, 6, 7<, 85, 8, 6, 6<<;

For example, transportation of one unit from Plant 1 to City 1 costs $5. To create a tabular representation

of the problem, we write a function (for Grid, see Section 15.2, p. 470):

tabulate@tt_D := GridAJoinA8Join@8""<, cities, 8"Supply"<D<,

JoinA8plants<¨, tt, 8supplies<¨, 2E,

8Join@8"Demand"<, demands, 8Total@demandsD<D<E,

Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, -2 Ø True<<,

Alignment Ø 88Left, 8Right<<<E êê Text

Here is the problem:

tabulate@costsD

City 1 City 2 City 3 City 4 Supply

Plant 1 5 7 6 10 47

Plant 2 9 4 6 7 36

Plant 3 5 8 6 6 52

Demand 38 34 29 34 135

Let xi,j be the amount transported from Plant i to City j:

vars = Table@xi,j, 8i, 3<, 8j, 4<D

88x1,1, x1,2, x1,3, x1,4<, 8x2,1, x2,2, x2,3, x2,4<, 8x3,1, x3,2, x3,3, x3,4<<

The total cost is as follows:

obj = 8Total@Flatten@costs varsDD<

85 x1,1 + 7 x1,2 + 6 x1,3 + 10 x1,4 + 9 x2,1 + 4 x2,2 + 6 x2,3 + 7 x2,4 + 5 x3,1 + 8 x3,2 + 6 x3,3 + 6 x3,4<

Note  that  here  we  did  not  use  the  dot  in  matrix  multiplication  but,  rather,  the  space,  which  does  an
element-by-element multiplication. Supply, demand, and nonnegativity constraints are as follows:

supplyConstr = Thread@HTotal êü varsL § suppliesD

8x1,1 + x1,2 + x1,3 + x1,4 § 47, x2,1 + x2,2 + x2,3 + x2,4 § 36, x3,1 + x3,2 + x3,3 + x3,4 § 52<
demandConstr = Thread@Total@varsD ¥ demandsD

8x1,1 + x2,1 + x3,1 ¥ 38, x1,2 + x2,2 + x3,2 ¥ 34, x1,3 + x2,3 + x3,3 ¥ 29, x1,4 + x2,4 + x3,4 ¥ 34<

Chapter 23  •  Optimization 755



nonneg = Thread@Flatten@varsD ¥ 0D

8x1,1 ¥ 0, x1,2 ¥ 0, x1,3 ¥ 0, x1,4 ¥ 0, x2,1 ¥ 0,
x2,2 ¥ 0, x2,3 ¥ 0, x2,4 ¥ 0, x3,1 ¥ 0, x3,2 ¥ 0, x3,3 ¥ 0, x3,4 ¥ 0<

The problem to be solved is now as follows:

problem = Join@obj, supplyConstr, demandConstr, nonnegD

85 x1,1 + 7 x1,2 + 6 x1,3 + 10 x1,4 + 9 x2,1 + 4 x2,2 + 6 x2,3 + 7 x2,4 + 5 x3,1 + 8 x3,2 + 6 x3,3 + 6 x3,4,
x1,1 + x1,2 + x1,3 + x1,4 § 47, x2,1 + x2,2 + x2,3 + x2,4 § 36, x3,1 + x3,2 + x3,3 + x3,4 § 52,
x1,1 + x2,1 + x3,1 ¥ 38, x1,2 + x2,2 + x3,2 ¥ 34, x1,3 + x2,3 + x3,3 ¥ 29,
x1,4 + x2,4 + x3,4 ¥ 34, x1,1 ¥ 0, x1,2 ¥ 0, x1,3 ¥ 0, x1,4 ¥ 0, x2,1 ¥ 0,
x2,2 ¥ 0, x2,3 ¥ 0, x2,4 ¥ 0, x3,1 ¥ 0, x3,2 ¥ 0, x3,3 ¥ 0, x3,4 ¥ 0<

Solve the problem:

8val, point< = Minimize@problem, Flatten@varsDD

8704, 8x1,1 Ø 20, x1,2 Ø 0, x1,3 Ø 27, x1,4 Ø 0, x2,1 Ø 0,
x2,2 Ø 34, x2,3 Ø 2, x2,4 Ø 0, x3,1 Ø 18, x3,2 Ø 0, x3,3 Ø 0, x3,4 Ø 34<<

Tabulate the optimal transportation amounts:

tabulate@vars ê. point ê. 0 Ø ""D

City 1 City 2 City 3 City 4 Supply

Plant 1 20 27 47

Plant 2 34 2 36

Plant 3 18 34 52

Demand 38 34 29 34 135

‡ Example 2: A Knapsack Problem

Let  us  solve  a  knapsack  problem  in  which  the  benefits  of  four  items  are  14,  10,  15,  8,  and  9  and  the
corresponding  weights  are  6,  8,  5,  6,  and  4.  What  is  the  optimal  collection  of  items  when  we  want  to
maximize the total benefit subject to the constraint that the total weight has to be at most 18? Let xi  be 1

if the ith item is included and 0 otherwise. 0-1 variables can be formulated in Mathematica  by constrain-

ing the variables in the interval @0, 1D and requiring that the variables are integers. Write the following:

benefits = 814, 10, 15, 8, 9<; weights = 86, 8, 5, 6, 4<;

vars = Table@xi, 8i, 5<D

8x1, x2, x3, x4, x5<
obj = benefits.vars

14 x1 + 10 x2 + 15 x3 + 8 x4 + 9 x5

constr = weights.vars § 18

6 x1 + 8 x2 + 5 x3 + 6 x4 + 4 x5 § 18

intervals = Thread@0 § vars § 1D

80 § x1 § 1, 0 § x2 § 1, 0 § x3 § 1, 0 § x4 § 1, 0 § x5 § 1<
8val, point< = Maximize@8obj, constr, intervals<, vars, IntegersD

838, 8x1 Ø 1, x2 Ø 0, x3 Ø 1, x4 Ø 0, x5 Ø 1<<

It  is  optimal  to  take  the  first,  third,  and  fifth  items;  the  total  benefit  is  then  38.  The  total  weight  is  as
follows:

constrP1T ê. point 15

This means that 3 weight units are unused.

756 Mathematica Navigator



23.2.2  Linear Problems by Matrices

‡ Formulation with Matrices

LinearProgramming[c, m, b]  Minimize c.x subject to m.x ¥ b and x ¥ 0
LinearProgramming[c, m, {{b1, s1}, {b2, s2}, … }]  The ith constraint is mi.x § bi, mi.x == bi, or

mi.x ¥ bi according to whether si is -1, 0, or 1
LinearProgramming[c, m, b, {l1, l2, … }]  Add the constraints xi ¥ li (a single number can also

be supplied for the lower bound; it is then applied for each variable)
LinearProgramming[c, m, b, {{l1, u1}, {l2, u2}, … }]  Add the constraints li § xi § ui

LinearProgramming[c, m, b, lu, dom]  Minimize over domain dom

LinearProgramming[c, m, b, lu, {dom1, dom2, … }]  Assume xi œ domi

If we have to maximize c.x, then we can minimize -c.x, instead. Lower and upper bounds can also
be -¶  and ¶.  The fourth argument defining the lower and upper bounds can also be Automatic if we
do not need special bounds but would like to define a domain. A domain can be Reals or Integers. All
vectors and matrices can be defined with sparse arrays.

With  the Method  option  we  can  set  the  method  to  be "Simplex", "RevisedSimplex",  or
"InteriorPoint";  the  default  value  is Automatic.  With  the  simplex  methods,  the  algorithm  moves
from  vertices  to  vertices  of  the  polytope  defined  by  the  constraints.  These  methods  use  dense  linear
algebra,  and  they  can  also  use  exact  or  arbitrary-precision  arithmetic.  The  interior  point  method
operates  from  the  interior  of  the  polytope  defined  by  the  constraints.  The  method  uses  machine-
precision sparse linear algebra. Thus, the interior point method is suited for large-scale problems.

As  an  example,  we  solve  the  same  problem  we  solved  with Maximize:  Minimize -x - y  subject  to

-2 x - y ¥ -2, x - y ¥ -1 ê 2, and -x - 2 y ¥ -2 together with x ¥ 0 and y ¥ 0:

c = 8-1, -1<; m = 88-2, -1<, 81, -1<, 8-1, -2<<;
b = 8-2, -1 ê 2, -2<;

sol = LinearProgramming@c, m, bD :
2

3
,

2

3
>

Thus, x = y = 2 ê 3. The value of the original objective function x + y is as follows:

-c.sol
4

3

If  we want to write the constraints as 2 x + y § 2, x - y ¥ -1 ê 2,  and x + 2 y § 2,  we have to use the si
numbers. A § inequality is denoted with si = -1 and a ¥ inequality with si = 1:

c = 8-1, -1<; m = 882, 1<, 81, -1<, 81, 2<<;
b = 82, -1 ê 2, 2<; s = 8-1, 1, -1<;

bs = 8b, s<¨

:82, -1<, :-
1

2
, 1>, 82, -1<>

LinearProgramming@c, m, bsD :
2

3
,

2

3
>

In the following example, we add the bounds 1
4
§ x §

1
2

 and 1
5
§ y §

2
5

:

Chapter 23  •  Optimization 757



l = 81 ê 4, 1 ê 5<; u = 81 ê 2, 2 ê 5<;

lu = 8l, u<¨

::
1

4
,

1

2
>, :

1

5
,

2

5
>>

LinearProgramming@c, m, bs, luD :
1

2
,

2

5
>

Next, we solve an integer problem. For such problems, we get a message:

LinearProgrammingAc, m, bs, 880, 0<, 85, 5<<¨, IntegersE

LinearProgramming::lpip :

Warning: integer linear programming will use a machine precision approximation of the inputs. à
81, 0<

To get rid of the message, put a decimal point in the problem:

LinearProgrammingAc, m, bs, 880., 0<, 85, 5<<¨, IntegersE
81, 0<

‡ Example 1: A Transportation Problem

Let us solve the transportation problem anew, now using vectors and matrices. The data were

supplies = 847, 36, 52<; demands = 838, 34, 29, 34<;
costs = 885, 7, 6, 10<, 89, 4, 6, 7<, 85, 8, 6, 6<<;

Although variables will not be used in the formulation, they are as follows:

vars = Flatten@Table@xi,j, 8i, 3<, 8j, 4<DD

8x1,1, x1,2, x1,3, x1,4, x2,1, x2,2, x2,3, x2,4, x3,1, x3,2, x3,3, x3,4<

The cost vector, the left-hand-side matrix, and the right-hand-side matrix are shown here:

c = Flatten@costsD

85, 7, 6, 10, 9, 4, 6, 7, 5, 8, 6, 6<
m = 881, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0<,

80, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0<,
80, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1<,
81, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0<,
80, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0<,
80, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 0<,
80, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1<<;

bs = 8Join@supplies, demandsD, 8-1, -1, -1, 1, 1, 1, 1<<¨
8847, -1<, 836, -1<, 852, -1<, 838, 1<, 834, 1<, 829, 1<, 834, 1<<

The solution is as follows:

sol = LinearProgramming@c, m, bsD

820, 0, 27, 0, 0, 34, 2, 0, 18, 0, 0, 34<

We pick the variables that have a positive value:

Select@Thread@vars Ø solD, ÒP2T 0 &D

8x1,1 Ø 20, x1,3 Ø 27, x2,2 Ø 34, x2,3 Ø 2, x3,1 Ø 18, x3,4 Ø 34<

The minimum cost is as follows:

c.sol 704

758 Mathematica Navigator



‡  Example 2: A Knapsack Problem

We  solve  the  familiar  knapsack  problem  by  maximizing 14 x1 + 10 x2 + 15 x3 + 8 x4 + 9 x5  subject  to

6 x1 + 8 x2 + 5 x3 + 6 x4 + 4 x5 § 18.  In  addition,  variables  are  0-1  variables  so  that  we  define  the  lower

bound to be 0 and the upper bound to be 1 and optimize over integers:

benefits = 814, 10, 15, 8, 9<; weights = 86, 8, 5, 6, 4<;

sol = LinearProgramming@-benefits, -8weights<, 8-18.<, Table@80, 1<, 85<D, IntegersD

81, 0, 1, 0, 1<

The corresponding benefit and total weight are

8benefits.sol, weights.sol< 838, 15<

23.3  Local Optimization

23.3.1  Numerical Local Optimization

‡ Finding Local Minimums and Maximums

FindMinimum[f, {x, x0}]  Find a local minimum of f by starting from x0; use the gradient of f

FindMinimum[f, {{x, x0}, {y, y0}, … }]  Start from x0, y0, …
FindMinimum[{f, cons}, {{x, x0}, {y, y0}, … }]  Minimize subject to constraints cons

FindMinimum[{f, cons}, {x, y, … }]  Start from a point within the region defined by the constraints

FindMaximum[f, {x, x0}]  Start from x0; etc.

If we would like to avoid the use of the gradient, we can define two starting points for each variable:

FindMinimum[f, {x, x0, x1}]

FindMinimum[f, {{x, x0, x1}, {y, y0, y1}, … }]

In addition, if we write {x, x0, xmin, xmax} or {x, x0, x1, xmin, xmax}, then iterations are stopped
if the solution is going outside the interval (xmin, xmax).

FindMinimum  uses  iterative  methods  to approximate  a local  minimum  point  (note  that Minimize,

introduced in Section 23.1.1, p. 743, finds an exact global minimum and NMinimize, introduced in Section

23.1.2, p. 747, finds an approximate global  minimum). A domain constraint such as x œ Integer can only

be used for linear problems.

‡ Example 1

Consider the following function:

f = x Cos@xD;

Plot@f, 8x, 0, 8<D

2 4 6 8
-2

2

4

6

Chapter 23  •  Optimization 759



One of the local minimums seems to be near 3.5:

8val, point< = FindMinimum@f, 8x, 3<D

8-3.28837, 8x Ø 3.42562<<

The  corresponding  minimum  value  is -3.28837.  We  can  check  whether  the  derivative  is  zero  (a
necessary condition) and the second derivative positive (a sufficient condition) at the point found:

8D@f, xD, D@f, x, xD< ê. point

95.80336 μ 10-12, 3.84882=
Next, we find a local point of maximum:

FindMaximum@f, 8x, 6<D 86.361, 8x Ø 6.4373<<

A starting point is not needed, but then we cannot control which extremum point is sought:

FindMaximum@f, xD 80.561096, 8x Ø 0.860334<<

‡ Example 2

Consider the following function:

f = x^4 + 3 x^2 y + 5 y^2 + x + y

x + x4 + y + 3 x2 y + 5 y2

A local minimum point is as follows:

8val, point< = FindMinimum@f, 88x, 1<, 8y, -2<<D

8-0.832579, 8x Ø -0.886324, y Ø -0.335671<<

A starting point is not needed:

8val, point< = FindMinimum@f, 8x, y<D

8-0.832579, 8x Ø -0.886324, y Ø -0.335671<<

A necessary condition for a minimum or maximum is that the gradient is zero. A sufficient condition
for a minimum is that the Hessian is positive definite. A sufficient condition for a maximum is that the
Hessian is negative definite or that the Hessian multiplied by -1 is positive definite. To test the Hessian,
we  have PositiveDefiniteMatrixQ,  but  definiteness  can  also  be  concluded  with  the  eigenvalues:  A
symmetric matrix is positive [negative] definite if and only if all eigenvalues are positive [negative].

For the previous example, check whether the gradient is zero and the Hessian positive definite:

D@f, 88x, y<<D 91 + 4 x3 + 6 x y, 1 + 3 x2 + 10 y=

% ê. point 9-2.96061 μ 10-11, 1.79594 μ 10-10=
D@f, 88x, y<, 2<D 9912 x2 + 6 y, 6 x=, 86 x, 10<=
PositiveDefiniteMatrixQ@% ê. pointD True

We could also check that the eigenvalues are positive:

Eigenvalues@%% ê. pointD 814.1794, 3.23339<

‡ Example 3

The following function has a local minimum, a local maximum, and two saddle points,  as can be seen
from the contours:

760 Mathematica Navigator



f = x^3 + y^3 + 2 x^2 + 4 y^2 + 6

6 + 2 x2 + x3 + 4 y2 + y3

ContourPlot@f, 8x, -2.5, 1<, 8y, -3.5, 1<, AspectRatio Ø Automatic, Contours Ø 34D

Calculate the Hessian:

hes = D@f, 88x, y<, 2<D 884 + 6 x, 0<, 80, 8 + 6 y<<

Here is a minimum point:

8val, point< = FindMinimum@f, 88x, 1<, 8y, 1<<D

96., 9x Ø 2.07017 μ 10-9, y Ø 6.2673 μ 10-9==
PositiveDefiniteMatrixQ@hes ê. pointD True

Here is a maximum point:

8val, point< = FindMaximum@f, 88x, -1<, 8y, -2<<D

816.6667, 8x Ø -1.33333, y Ø -2.66667<<
PositiveDefiniteMatrixQ@-hes ê. pointD True

One of the saddle points is H0, -8 ê 3L. If we start from this point, we get a warning. Mathematica  finds
that this point may be a saddle point:

8val, point< = FindMinimum@f, 88x, 0<, 8y, -8 ê 3<<D

FindMinimum::fmgz :

Encountered a gradient that is effectively zero. The result returned may not be

a minimum; it may be a maximum or a saddle point. à
815.4815, 8x Ø 0., y Ø -2.66667<<

Indeed, the Hessian is neither positive nor negative definite:

PositiveDefiniteMatrixQ@Ò ê. pointD & êü 8hes, -hes<

8False, False<

This can also be seen from the eigenvalues:

Eigenvalues@hes ê. pointD 8-8., 4.<

The other saddle point is H-4 ê 3, 0L.
Even if the starting point is not a saddle point, it may happen that the search is stopped at a saddle

point without a warning. However, calculating the eigenvalues of the Hessian reveals the nature of the
point:

Chapter 23  •  Optimization 761



8val, point< = FindMinimum@f, 88x, -4 ê 3<, 8y, -2<<D

97.18519, 9x Ø -1.33333, y Ø 8.79606 μ 10-14==
Eigenvalues@hes ê. pointD 88., -4.<

A slight modification of the starting point helps to avoid the saddle point:

FindMinimum@f, 88x, -1.33333<, 8y, -2<<D

96., 9x Ø 1.87457 μ 10-9, y Ø -5.59565 μ 10-10==
In  general,  it  is  recommended  that  no  “special”  points  (e.g., -4 ê 3)  be  chosen  as  starting  points.  A

good starting point is near the minimum point but is otherwise rather random.

‡ Example 4

Previously, we considered the following constrained problem:

problem = 8x^2 ê 2 + Hy^2 + z^2 + v^2L ê 6, x ¥ 2, x + y ¥ 5, x + z ¥ 2, x + v ¥ 1, v ¥ 0<;

Minimize gives the exact global solution:

Minimize@problem, 8x, y, z, v<D

:
7

2
, 8x Ø 2, y Ø 3, z Ø 0, v Ø 0<>

NMinimize gives an approximate global solution:

NMinimize@problem, 8x, y, z, v<D

93.5, 9v Ø 4.44159 μ 10-13, x Ø 2., y Ø 3., z Ø 5.45179 μ 10-9==
FindMinimum gives an approximate local minimum (in this case, the local minimum also happens to be
the global minimum):

FindMinimum@problem, 8x, y, z, v<D

83.5, 8x Ø 2., y Ø 3., z Ø 0.0015887, v Ø 0.00137299<<

To get a better solution, define a tighter accuracy goal:

FindMinimum@problem, 8x, y, z, v<, AccuracyGoal Ø 10D

93.5, 9x Ø 2., y Ø 3., z Ø 7.09418 μ 10-6, v Ø 6.95631 μ 10-6==

‡ Example 5

The  function  to  be  minimized  can  be  formulated  with  matrices  and  vectors.  The  dimension  of  the
variable is then taken from the dimension of the initial value. For example,

A = 884, 1, 1<, 81, 1, 1<, 81, 1, 3<<; b = 83, 1, 2<; c = 3;

FindMinimum@x.A.x + b.x + c, 8x, 81, 1, 1<<D

82.29167, 8x Ø 8-0.333333, 0.0833333, -0.25<<<

23.3.2  Options for Numerical Local Optimization

‡ Common Options

With  the  options  we  can,  for  example,  choose  the  method  from  Newton,  quasi-Newton,  conjugate
gradient, and others.

762 Mathematica Navigator



Options of FindMinimum and FindMaximum:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the optimum point and of the
value of the function at the optimum point should be of the order 10-p; examples of values:
Automatic (usually means 8), 10

AccuracyGoal  If the value of the option is a, the absolute error of the optimum point and of the
value of the function at the optimum point should be of the order 10-a; examples of values:
Automatic (usually means 8), 10

Method  Method used; possible values: Automatic, "Newton", "QuasiNewton",
"ConjugateGradient", "LevenbergMarquardt", "PrincipalAxis", "InteriorPoint"

MaxIterations  Maximum number of iterations used; examples of values: Automatic, 500

Gradient  Gradient of the function; examples of values: Automatic, Symbolic, FiniteDifference

Compiled  Whether the function should be compiled; possible values: Automatic, True, False

StepMonitor  Command to be executed after each step of the iterative method; examples of values:
None, Sow[x], ++n, AppendTo[iters, x]

EvaluationMonitor  Command to be executed after each evaluation of the function to be mini-
mized; examples of values: None, Sow[x], ++n, AppendTo[points, x]

The  default  value  of PrecisionGoal  and AccuracyGoal  is  usually  8;  their  general  default  value  is
WorkingPrecision/2.  They  both  refer  to  both  the  minimum  point  and  the  minimum  value  of  the
function. Therefore, iteration is, by default, stopped when the estimated relative or absolute error of the

optimum point and of the optimum value is less than 10-8.  In more detail, if the precision goal is p and

accuracy goal a, then iterations are stopped if »» xk - x* »» § max 910-a, 10-p »» xk »»= and »» “ f IxkM »» § 10-a.

The default value Automatic of Gradient means that a symbolic gradient is calculated if possible; if
not  possible,  a  finite  difference  approximation  is  used.  The  value Symbolic  works  otherwise similarly
but prints a warning if finite differences are used. If the option has the value FiniteDifference,  then
the gradient is approximated with finite differences. The value of Gradient can also be a mathematical
expression containing the gradient.

‡ Looking at the Iterations

First, we consider a function of one variable and show information about the steps:

f = x Cos@xD; df = D@f, xD;

8sol, 8points<< = Reap@FindMinimum@f, 8x, 4<, StepMonitor ß Sow@8x, f, df<DDD;

TableForm@points, TableSpacing Ø 81, 2<,
TableHeadings Ø 8Range@Length@pointsDD, 8"x", "f", "f'"<<D

x f f'

1 3.46189 -3.28582 0.140828

2 3.42795 -3.28836 0.00897361

3 3.42564 -3.28837 0.0000779862

4 3.42562 -3.28837 4.52149 μ 10-8

5 3.42562 -3.28837 2.27929 μ 10-13

Consider then a function of two variables and apply four different methods:

f = x^4 + 3 x^2 y + 5 y^2 + x + y;
methods = 8"Newton", "QuasiNewton", "ConjugateGradient", "PrincipalAxis"<;

Chapter 23  •  Optimization 763



solutions = Reap@FindMinimum@f, 88x, 1<, 8y, -2<<,
Method Ø Ò, EvaluationMonitor ß Sow@8x, y<DDD & êü methods;

points = Prepend@ÒP2, 1T, 81, -2<D & êü solutions;

Plot all the points where the function was evaluated:

MapThread@ContourPlot@f, 8x, -3.2, 2.1<, 8y, -3.6, 1.6<,
Contours Ø 20, PlotRange Ø All, ContourShading Ø False,
AspectRatio Ø Automatic, PlotLabel Ø Ò1, Epilog Ø 8Point@Ò2D, Line@Ò2D,

Red, PointSize@MediumD, Point@8-0.886, -0.336<D<D &, 8methods, points<D

: , ,

, >

‡ Methods

We can use several methods with FindMinimum and FindMaximum:

• "Newton" uses the exact Hessian (or a finite difference approximation to it).
• "QuasiNewton" uses the quasi-Newton Broyden-Fletcher-Goldfarb-Shanno approximation to the

Hessian built up by updates based on past steps.
• "ConjugateGradient" is a nonlinear version (Polak-Ribiere) of the conjugate gradient method for

solving linear systems; a model Hessian is never formed explicitly.
• "LevenbergMarquardt"  (or "GaussNewton")  is a  Gauss-Newton  method  for  least-squares

problems; the Hessian is approximated by JT J, where J is the Jacobian of the residual function.
• "PrincipalAxis" by Brent works without using any derivatives, not even the gradient, by keeping

values from past steps; it requires two starting conditions in each variable.
• "InteriorPoint" combines  constraints  and  the  objective  function  through  the  use  of  a  barrier

function and requires first and second derivatives of the objective and constraints.

The default setting Method Ø Automatic tries to choose a good method, as follows:

764 Mathematica Navigator



• If the objective is a sum of squares, "LevenbergMarquardt" is used.
• If two starting values are provided, "PrincipalAxis" is used.
• If the problem contains constraints, "InteriorPoint" is used (this is the only method available).
• Otherwise, "QuasiNewton" is used.

Thus, the quasi-Newton method is the main algorithm for unconstrained local optimization.

Each of the methods also has special options to fine-tune the algorithm; see
tutorialêUnconstrainedOptimizationOverview. The options can be asked for as follows:

Options@FindMinimum`QuasiNewtonD

8StepControl Ø LineSearch, StepMemory Ø Automatic<

23.3.3  Own Programs

‡ Newton’s Method

In Section 22.3.4, p. 737, we presented the following program to solve nonlinear equations f HxL = 0 using

Newton’s method:

newtonSolve@f_, x_, x0_, d_: 1, n_: 20, opts___?OptionQD :=
With@8df = D@f, xD<, FixedPointList@Hx - d f ê dfL ê. x Ø Ò &, N@x0D, n, optsDD

Now we are interested in maximum and minimum points, and so we want to solve equations of the
form f £HxL = 0. Thus, newtonSolve  can also be used for optimization. The program stops if two succes-

sive points are the same to 16-digit precision. For example,

f = x Cos@xD; df = D@f, xD;

Plot@f, 8x, 0, 8<D

2 4 6 8
-2

2

4

6

Here is a point of minimum:

newtonSolve@df, x, 4D

84., 3.42503, 3.42562, 3.42562, 3.42562, 3.42562<

Here is a point of maximum:

newtonSolve@df, x, 1D

81., 0.864536, 0.860339, 0.860334, 0.860334, 0.860334<

‡ Davidon-Fletcher-Powell Method

Here,  we  write  a  program  for  the  Davidon-Fletcher-Powell  (DFP)  method  to  minimize  a  function  of
several  variables.  First,  we  define  functions  for  a  substitution  and  for  Newton’s  method  (the  optimal
step  size  is  calculated by  Newton’s  method;  we use a  simplified version of  the program newtonSolve

we presented previously).

Chapter 23  •  Optimization 765



subst@f_, x_List, x0_ListD := N@f ê. Thread@x Ø x0DD
newton@f_, x_, x0_D := With@8df = D@f, xD<, FixedPoint@Hx - f ê dfL ê. x Ø Ò &, x0, 15DD

Then  we  write  a  program dfpStep  for  one  step  of  the  DFP  method.  Let f HxL  be  the  function  to  be

minimized and gHxL  its  gradient.  Let xi  be  the present point, gi = gIxiM,  and Hi  an approximation to the

inverse of the Hessian at xi. We calculate the next values xi+1, gi+1, and Hi+1 as follows.

The  direction  of  search  is di = -Hi gi  (normalized  to  have  length  1).  The  optimal  step  size l  is

calculated in the program oneDim by minimizing hHlL = f Ixi + l diM with respect to l. The minimization is

done by first sampling hHlL  at a set of values for l.  The best value l0  is chosen as the starting point for

Newton’s method to calculate the optimal value li.

The updates are then calculated in the program update.  The new step is dxi = li di,  the new point is

xi+1 = xi + dxi, and the new gradient is gi+1 = gIxi+1M. If we denote dgi = gi+1 - gi, the new approximation

to the inverse of the Hessian is as follows:

Hi+1 = Hi +
dxi dxi

dxi dgi
-

Hi dgi dgi Hi

dgi Hi dgi
.

dfpStep@f_, g_, x_, 8xi_, gi_, Hi_<D := Module@8di, ndi, li<,
di = -Hi.gi; H*direction of search*L
ndi = Norm@diD; H*norm of the direction*L
If@ndi ã 0., Return@8xi, gi, Hi<D, di = di ê ndiD; H*normalize the dir.*L
li = oneDim@f, x, xi, diD; H*li is the optimal l*L
If@li ã 0., Return@8xi, gi, Hi<DD; H*test for stopping*L
update@g, x, li, di, xi, gi, HiDD H*return updated values*L

oneDim@f_, x_, xi_, di_D := Module@8lsample, h, hsample, l0<,
lsample = Range@0., 10., 0.2D; H*used to sample h*L
h = subst@f, x, xi + l diD; H*step size l is chosen optimally*L
hsample = N@h ê. l Ø lsampleD; H*sample h at points lsample*L
l0 = lsampleP Ordering@hsample, 1DP1T T; H*best of lsample*L
newton@D@h, lD, l, l0DD H*the optimal l*L

update@g_, x_, li_, di_, xi_, gi_, Hi_D := Module@8dx, xnew, gnew, dg, Hnew<,
dx = li di; H*the optimal step*L
xnew = xi + dx; H*update x*L
gnew = subst@g, x, xnewD; H*update g*L
dg = gnew - gi; H*needed next*L
Hnew = Hi + 1 ê Hdx.dgL KroneckerProduct@dx, dxD -

1 ê Hdg.Hi.dgL KroneckerProduct@Hi.dg, dg.HiD; H*update H*L
8xnew, gnew, Hnew<D H*return updated values*L

In dfpStep, f is the function to be minimized, g its gradient, and {xi, gi, Hi} the current state of the
algorithm. The result of dfpStep is {xnew, gnew, Hnew}. Note that Ordering[hsample, 1]P1T, which is
used in oneDim, gives the position of the smallest element in hsample.

We then write the main program dfpMinimize. We apply the functional programming style in which
dfpStep is iterated with FixedPointList:

766 Mathematica Navigator



dfpMinimize@f_, x_List, startx_List, e1_: 10^-6, e2_: 10^-6D :=
Module@8g, x0, g0, H0<,

g = D@f, 8x<D; H*gradient of f*L
x0 = N@startxD; H*initial x*L
g0 = subst@g, x, x0D; H*initial g*L
H0 = IdentityMatrix@Length@xDD; H*initial H*L
iters = FixedPointList@dfpStep@f, g, x, ÒD &, 8x0, g0, H0<, 100,

SameTest Ø HNorm@Ò2P2TD < e1 && Norm@Ò1P1T - Ò2P1TD < e2 &LDPAll, 1T;
H*solve the problem*L

8Length@itersD - 1, subst@f, x, Last@itersDD, Last@itersD<D
H*number of iterations, optimal f, optimal x*L

The stopping criterion requires that the norm of the gradient is at most e1 (default value is 10-6) and

the norm of the difference between the last two points is less than e2 (default value is 10-6). Remember
that #1 is the next-to-last and #2 the last iteration, and that, for example, #2P2T is the second component
of the last iteration~that is, the gradient gnew. With PAll, 1T  we pick the x  values from the iterations.
We have not defined iters (the whole list of points generated by dfpMinimize) as a local variable, so it
is available outside the module. We can then, for example, plot the points.

‡ Example

Consider the function that we have already used several times:

f = x^4 + 3 x^2 y + 5 y^2 + x + y;

dfpMinimize@f, 8x, y<, 81, -2<D

89, -0.832579, 8-0.886324, -0.335671<<

We needed nine iterations, the minimum value of the function is -0.832579, and the minimum point is
H-0.886324, -0.335671L.  The iterations are in the variable iters.  The following program can be used to
show the iterations:

showIterations@f_, x_, y_, iters_List, opts___D :=

ModuleA8X, Y, e = 0.2<, 8X, Y< = iters¨;

ContourPlot@f, 8x, Min@XD - e, Max@XD + e<,
8y, Min@YD - e, Max@YD + e<, ContourShading Ø False,

PlotRange Ø All, opts, Epilog Ø 8Point@itersD, Line@itersD<DE

showIterations@f, x, y, iters, Contours Ø 30, AspectRatio Ø AutomaticD

Chapter 23  •  Optimization 767



23.4  Classical Optimization

23.4.1  No Constraints

‡ Example 1: One Variable

Let us examine the critical points of the following function:

f = 5 + 40 x^3 - 45 x^4 + 12 x^5;

The  critical  points  are  points  where  the  derivative  is  zero.  Among  these  are  points  of  minimum  and
maximum. The critical points are as follows:

c = Solve@D@f, xD ã 0D

88x Ø 0<, 8x Ø 0<, 8x Ø 1<, 8x Ø 2<<

If the function is a polynomial of high order, Solve may not be able to solve the equation, and you may
want  to  use NSolve  instead  (or,  if  the  function  to  be  optimized  is  transcendental,  you  may  need
FindRoot).  In  general,  the  critical  points  may  also  be  complex.  However,  we  pick  real  and  distinct
points:

crit = cP81, 3, 4<T 88x Ø 0<, 8x Ø 1<, 8x Ø 2<<

We check the second derivative:

D@f, x, xD ê. crit 80, -60, 240<

Thus, x = 1 is a maximum point and x = 2 a minimum point.  At the point x = 0,  the third derivative is
nonzero:

D@f, x, x, xD ê. critP1T 240

Thus, this point is an inflection point. The critical points and their corresponding function values are as
follows:

points = 8x, f< ê. crit 880, 5<, 81, 12<, 82, -11<<

Lastly, we plot the function and the critical points:

Plot@f, 8x, -0.7, 2.4<, Epilog Ø 8Red, Point@pointsD<D

-0.5 0.5 1.0 1.5 2.0

-20

-10

10

20

‡ Example 2: Several Variables

Here is a function of two variables (see also Example 3 in Section 23.3.1, p. 760):

f = x^3 + y^3 + 2 x^2 + 4 y^2 + 6;

Calculate the gradient:

grad = D@f, 88x, y<<D 94 x + 3 x2, 8 y + 3 y2=
Then calculate the critical points:

768 Mathematica Navigator



c = Solve@grad ã 0D

::x Ø -
4

3
, y Ø -

8

3
>, :x Ø -

4

3
, y Ø 0>, :x Ø 0, y Ø -

8

3
>, 8x Ø 0, y Ø 0<>

These are all real and distinct, so we accept them all:

crit = c;

We plot the function and the points:

ContourPlot@f, 8x, -2.5, 1<, 8y, -3.5, 1<, AspectRatio Ø Automatic,
Contours Ø 34, Epilog Ø 8PointSize@MediumD, Point@8x, y< ê. critD<D

From this plot, we see that H0, 0L is a minimum point, J- 4
3

, - 8
3
N is a maximum point, and J- 4

3
, 0N and

J0, - 8
3
N are saddle points. Values of the function at the critical points are as follows:

f ê. crit êê N 816.6667, 7.18519, 15.4815, 6.<

A sufficient condition for  a  minimum [maximum] is  that  the Hessian is positive [negative] definite.
Recall  that  a  symmetric  matrix  is  positive [negative]  definite  if  and only if  all  eigenvalues are positive
[negative]. Calculate the Hessian:

hess = D@f, 88x, y<, 2<D 884 + 6 x, 0<, 80, 8 + 6 y<<

Next, we write a table that contains the eigenvalues of the Hessian at each critical point:

Grid@Prepend@8x, y, f, Eigenvalues@hessD< ê. crit, 8"x", "y", "f", "eigenvalues"<D,
Spacings Ø 2, Dividers Ø 8False, 82 Ø True<<D
x y f eigenvalues

-
4

3
-

8

3

50

3
8-4, -8<

-
4

3
0

194

27
8-4, 8<

0 -
8

3

418

27
84, -8<

0 0 6 84, 8<
Thus, the first point is a maximum, the last point is a minimum, and the rest are saddle points.

23.4.2  Equality Constraints

‡ Problem

Consider the following problem that we already solved in Example 6 of Section 23.1.1, p. 747. Given that

the volume of a  cone should be v,  what  should the height h  and radius r  of  the cone be if  we want to
minimize the surface area of the cone? The surface area A and the volume V are as follows:

Chapter 23  •  Optimization 769



A = Pi r Sqrt@h^2 + r^2D p r h2 + r2

V = Pi h r^2 ê 3
1

3
h p r2

We  want  to  minimize A  with  respect  to h  and r  given  that V = v.  We  solve  the  problem  with  three
methods:  graphically  (for  a  numerical  value  of v),  by  the  method  of  substitution,  and  by  Lagrange’s
method.

‡ A Graphical Solution

With  the  graphical  method,  we  assume  that v = 150.  First,  we  plot  contours  of  constant  value  of  the
surface area: We plot, on the Hh, rL-surface, the contours where the surface area has the values 28, 58, 88,
…, 238:

p1 = ContourPlot@A, 8h, 0, 10<, 8r, 0, 7<, Contours Ø Range@28, 238, 30D,
ContourLabels Ø Automatic, ContourShading Ø False, FrameLabel Ø 8"h", "r"<,
RotateLabel Ø False, PlotRangePadding Ø 0.6, AspectRatio Ø AutomaticD

Then we plot the constraint V - 150 = 0:

p2 = ContourPlot@V - 150 ã 0, 8h, 0, 10<,
8r, 0, 7<, ContourShading Ø False, ContourStyle Ø Red,
FrameLabel Ø 8"h", "r"<, RotateLabel Ø False, AspectRatio Ø AutomaticD

0 2 4 6 8 10
0

1

2

3

4

5

6

7

h

r

All points on this curve satisfy the constraint. Combine the plots:

Show@p1, p2, Epilog Ø Point@86.6, 4.7<DD

770 Mathematica Navigator



In the combined plot, we have added (by trial and error) a point that is approximately the solution of
the  problem.  The point  is  approximately Hh, rL = H6.6, 4.7L.  Why is  this  point  the solution? The point  of
solution is  such that  the constraint curve and one of the contours of constant value of the surface area
have the same tangent. Such a contour seems to be the one that has the value 118; the smallest surface
area is thus approximately 118.

The plot also shows how sensitive the solution is~how much the surface area increases if we move
away from the  optimum point  but  stay on the constraint  curve.  We see that  the surface area does not
increase much if h is in an interval of approximately H5.5, 7.5L and r is adjusted accordingly such that the
volume has the value 150 (r changes from approximately 5.1 to approximately 4.4).

‡ The Method of Substitution

Now  we  solve  one  variable  from  the  constraint  and  substitute  it  into  the  object  function,  thereby
reducing  a  2D  problem  to  a  1D one.  Indeed,  we  solve h  from  the  constraint  and  substitute  it  into  the
surface area:

h1 = Solve@V ã v, hDP1, 1T h Ø
3 v

p r2

A1 = A ê. h1 p r r2 +
9 v2

p2 r4

We find the optimum value of r:

r1 = Solve@D@A1, rD ã 0, rD

::r Ø

J- 3

p
N

1ë3
v1ë3

21ë6
>, :r Ø -

J 3

p
N

1ë3
v1ë3

21ë6
>, :r Ø

J 3

p
N

1ë3
v1ë3

21ë6
>,

:r Ø

H-1L2ë3 J 3

p
N

1ë3
v1ë3

21ë6
>, :r Ø -

H-3L1ë3 v1ë3

21ë6 p1ë3
>, :r Ø -

H-1L2ë3 31ë3 v1ë3

21ë6 p1ë3
>>

Check which solutions are real and positive:

% êê N

99r Ø H0.438654 + 0.759771 ÂL v1ë3=, 9r Ø -0.877308 v1ë3=,

9r Ø 0.877308 v1ë3=, 9r Ø H-0.438654 + 0.759771 ÂL v1ë3=,

9r Ø H-0.438654 - 0.759771 ÂL v1ë3=, 9r Ø H0.438654 - 0.759771 ÂL v1ë3==
Only the third is real and positive. We choose this value as the optimum r and calculate the correspond-

ing values of h and A:

8ropt = r1P3, 1T, hopt = h1 ê. ropt, Aopt = A1 ê. ropt ê. hopt< êê Simplify

:r Ø

J 3

p
N

1ë3
v1ë3

21ë6
, h Ø

6

p

1ë3

v1ë3,
3 31ë6 p1ë3 v2ë3

21ë3
>

‡ Lagrange’s Method

Lastly, we form Lagrange’s function, in which we have the object function and the left-hand side of the
constraint V - v = 0 multiplied by a constant l (Lagrange’s multiplier):

L = A + l HV - vL p r h2 + r2 +
1

3
h p r2 - v l

Chapter 23  •  Optimization 771



A necessary condition for  the optimum solution is  that  partial  derivatives of  Lagrange’s function with
respect to h and r are zero and that the equality constraint is satisfied:

eqns = 8D@L, hD ã 0, D@L, rD ã 0, V - v ã 0<

:
h p r

h2 + r2

+
1

3
p r2 l ã 0,

p r2

h2 + r2

+ p h2 + r2 +
2

3
h p r l ã 0,

1

3
h p r2 - v ã 0>

Solve these equations:

sol = Solve@eqns, 8l, h, r<D;

Check which solutions are real and positive:

8h, r< ê. sol êê N

991.2407 v1ë3, 0.877308 v1ë3=, 91.2407 v1ë3, -0.877308 v1ë3=,

9H-0.62035 + 1.07448 ÂL v1ë3, H0.438654 - 0.759771 ÂL v1ë3=,

9H-0.62035 + 1.07448 ÂL v1ë3, H-0.438654 + 0.759771 ÂL v1ë3=,

9H-0.62035 - 1.07448 ÂL v1ë3, H-0.438654 - 0.759771 ÂL v1ë3=,

9H-0.62035 - 1.07448 ÂL v1ë3, H0.438654 + 0.759771 ÂL v1ë3==
Of the six solutions, only the first solution has real and positive values for h and r, and so we choose this
as the optimal solution:

lhropt = solP1T

:l Ø -
22ë3 31ë6 p1ë3

v1ë3
, h Ø

6

p

1ë3

v1ë3, r Ø

J 3

p
N

1ë3
v1ë3

21ë6
>

Another  way  to  state  this  is hopt = 6 v êp3
 and ropt = 3 vìK 2 pO3 .  The  smallest  surface  area  is  as

follows:

Aopt = A ê. lhropt êê Simplify
3 31ë6 p1ë3 v2ë3

21ë3

Another way to state this is Aopt = 3 3 p v2 ë23 .

We plot the optimal r and h and also the optimal surface area, all as functions of v:

8Plot@8r, h< ê. lhropt, 8v, 0, 200<, PlotRange Ø 88-5, 235<, All<,
Epilog Ø 8Text@ropt, 8220, 5<D, Text@hopt, 8220, 7.1<D<D, Plot@Aopt, 8v, 0, 200<D<

:

50 100 150 200

1

2

3

4

5

6

7

ropt

hopt

,

50 100 150 200

20
40
60
80

100
120
140

>

If the volume of the cone is, for example, 150, the optimal solution is as follows:

8A0, lhr0< = 8Aopt, lhropt< ê. v Ø 150.

8118.234, 8l Ø -0.525484, h Ø 6.59221, r Ø 4.66139<<

772 Mathematica Navigator



This optimal cone is displayed as follows:

line = h - h ê r x ê. lhr0

6.59221 - 1.41421 x

RevolutionPlot3D@line, 8x, 0, r ê. lhr0<,
BoxRatios Ø 81, 1, r ê h ê. lhr0<, ViewPoint Ø 81.6, -2.8, 1.0<D

23.4.3  Equality and Inequality Constraints

‡ Example 1

We  minimize Ix - yM2 + 5 z  subject  to x + y + z + 5 = 0, y - 3 z - 1 = 0,  and -x § 0.  First,  we  define  the

corresponding functions:

f = Hx - yL^2 + 5 z;
g1 = x + y + z + 5;
g2 = y - 3 z - 1;
h1 = -x;

Then we form Lagrange’s function:

L = f + l1 g1 + l2 g2 + m1 h1

Hx - yL2 + 5 z + H5 + x + y + zL l1 + H-1 + y - 3 zL l2 - x m1

A necessary condition for  the optimum is that  the derivatives of L  with respect to x, y,  and z  are 0.

Another  necessary  condition  is  that  the  equality  constraints  hold.  A  third  necessary  condition  is  the
complementary slackness condition: m1 h1 = 0, which means that a given multiplier is 0 if the corresponding
inequality constraint is satisfied with strict inequality (h1HxL < 0), and a multiplier can be positive only if
the corresponding inequality constraint is satisfied as an equality. We form these three types of equality
conditions:

eqns = 8D@L, xD ã 0, D@L, yD ã 0, D@L, zD ã 0, g1 ã 0, g2 ã 0, m1 h1 ã 0<

82 Hx - yL + l1 - m1 ã 0, -2 Hx - yL + l1 + l2 ã 0,
5 + l1 - 3 l2 ã 0, 5 + x + y + z ã 0, -1 + y - 3 z ã 0, -x m1 ã 0<

Additional  necessary conditions are that  the original inequality conditions hold and that  the Lagrange
multipliers for the inequalities are nonnegative. We form these two types of inequality conditions:

ineqs = 8h1 § 0, m1 ¥ 0< 8-x § 0, m1 ¥ 0<

The equality and inequality conditions together form the Karush-Kuhn-Tucker conditions. First, we solve
the equality conditions:

Chapter 23  •  Optimization 773



sol = Solve@eqnsD

::x Ø 0, y Ø -
7

2
, z Ø -

3

2
, l1 Ø 4, l2 Ø 3, m1 Ø 11>,

:y Ø -
211

98
, z Ø -

103

98
, x Ø -

88

49
, l1 Ø -

5

7
, l2 Ø

10

7
, m1 Ø 0>>

We then check which of the solutions also satisfy the inequality conditions:

ineqs ê. sol 88True, True<, 8False, True<<

Only the first solution satisfies all inequality conditions. This can also be seen as follows (recall that @@ is

the same as Apply and /@ the same as Map; see Section 14.2, p. 459):

HAnd üü ÒL & êü % 8True, False<
Position@%, TrueD 881<<

The candidate for a point of minimum and the corresponding minimum value are as follows:

cand = Extract@sol, %D

::x Ø 0, y Ø -
7

2
, z Ø -

3

2
, l1 Ø 4, l2 Ø 3, m1 Ø 11>>

f ê. %P1T
19

4

‡ A General Program

Consider the general problem of minimizing f HxL (x  is a vector) with respect to the equality constraints

gHxL = 0  (gHxL  is  a  vector)  and  the  inequality  constraints hHxL § 0  (hHxL  is  a  vector).  The  Lagrangian  is

L = f HxL + l gHxL + m hHxL.  The  Karush-Kuhn-Tucker  necessary  conditions  for  a  local  minimum are  as

follows: A first set of conditions is that L ê x = 0, gHxL = 0, and mi hiHxL = 0 for all i (the last condition is

the complementary slackness condition); a second set of conditions is that hHxL § 0 and m ¥ 0.

The  following  program  finds  candidates  for  an  optimum  point~that  is,  points  satisfying  the
necessary conditions. In the program, we proceed as we did in Example 1.

kktOptimize@f_, g_List, h_List, x_List, e_: 10.^-12D :=

ModuleA8ll = Array@l, Length@gDD, mm = Array@m, Length@hDD,

xlm, eqns, sol, realsol, nrealsol, ineqs, pos, cand<,
xlm = Join@x, ll, mmD;
eqns = Thread@Join@D@f + ll.g + mm.h, 8x<D, g, mm hD ã 0D;
sol = Union@Solve@eqns, xlmDD;
realsol = Select@sol, FreeQ@Chop@N@ÒD, eD, ComplexD &D;
If@realsol ã 8<, Return@"No real solutions; try a larger e"DD;
nrealsol = Thread@xlm Ø ÒD & êü Chop@N@xlm ê. realsolD, eD;
ineqs = Thread@Join@h, -mmD § eD;
pos = Position@HAnd üü ÒL & êü Hineqs ê. nrealsolL, TrueD;
If@pos ã 8<, Return@"Inequalities not satisfied; try a larger e"DD;
cand = Union@Sort êü Extract@realsol, posDD;

8f ê. cand, cand<¨E

If  the optimization problem does not contain some types of constraints,  replace g  and/or h  with an
empty list ({}).

774 Mathematica Navigator



In the program, we first form the set of variables xlm, calculate the gradient of the Lagrangian, form
the necessary equality conditions eqns,  find the solution sol  of the equations, select real solutions into
realsol,  and  form a  numerical  version nrealsol  of  the  set  of  real  solutions  (to  be  used to  check  the
inequality conditions).

Then  we  form  the  set  of  necessary  inequality  conditions ineqs  and  check  which  solutions  in
nrealsol satisfy all the inequalities; the result is a list with the ith component True or False according
to  whether  the ith  solution  in nrealsol  satisfies  all  of  the  inequalities.  The  solutions  of  the  equations
that  give True  for  all  inequalities  form  the  set cand  of  candidates  for  an  optimum  point.  Lastly,  we
attach to each candidate the corresponding value of the object function.

‡ Some Notes

In the program, we have used a small number e for three points. When selecting the real solutions into
realsol,  we  use e  to  ignore  (with Chop)  small  imaginary  parts  that  may  be  the  result  of  numerical
inaccuracy (and not “true” imaginary parts). When forming the numerical solutions nrealsol, we use e

for  the  same reason.  When  forming the  inequality  conditions ineqs,  we  use e  to  make the  conditions
slightly  less  tight:  We  replace  the  original  conditions hHxL § 0  and m ¥ 0  with hHxL § e  and m ¥ -e;
otherwise,  numerical  inaccuracy  may  cause  the  rejection  of  a  feasible  point  when  the  inequalities  are
tested (see  Example  7).  (On the  other  hand,  the  less  tight  conditions probably do not  cause the accep-

tance of solutions that do not satisfy the original tight inequality conditions.)

The  default  value 10-12  of e  has  been  shown  to  be  suitable  in  many  problems.  Although  in  most
problems e could be exactly 0, in some problems this value is too small: Due to numerical inaccuracies,
the inequality conditions do not hold exactly. When using kktOptimize, you can give a new value for e

by writing a fifth argument for the command.

‡ Further Notes

The result  of kktOptimize  for  problems that  have only exact  numbers  may be a  very long expression
(even  several  pages)  because Solve  writes  explicit  expressions  for  the  solutions  of  third-  and  fourth-
order polynomials. Such exact results may be useless, so it is better to solve such problems with decimal
numbers  (simply  insert  a  decimal  point  into  the  problem).  A  decimal  solution  is  also  calculated  more
quickly.

In  the  program,  we  do  not  simplify  the  candidates.  If  appropriate,  you  may  apply Simplify  or
FullSimplify  to the solution (note,  however,  that Simplify  and especially FullSimplify  may take a
very long time for a long expression).

The multiplier method package mentioned in the introduction to this chapter contains a notebook of
test problems for nonlinear constrained optimization. kktOptimize solved all of the test problems in no
time. Some of these test problems are solved in the examples that follow. Minimize (see Section 23.1.1, p.

743) also solves all of the test problems.

The major advantage of Minimize is that it gives a definite result: the global minimum. kktOptimize

only  gives  candidates  for  local  optimum  points  (some  of  them  may  be  local  minimums,  some  local
maximums, and some saddle points).

‡ Example 2

First, we solve the problem of Example 1:

kktOptimize@Hx - yL^2 + 5 z, 8x + y + z + 5, y - 3 z - 1<, 8-x<, 8x, y, z<D

::
19

4
, :x Ø 0, y Ø -

7

2
, z Ø -

3

2
, l@1D Ø 4, l@2D Ø 3, m@1D Ø 11>>>

Chapter 23  •  Optimization 775



Minimize gives the same result:

Minimize@8Hx - yL^2 + 5 z, x + y + z + 5 ã 0, y - 3 z - 1 ã 0, -x § 0<, 8x, y, z<D

:
19

4
, :x Ø 0, y Ø -

7

2
, z Ø -

3

2
>>

‡ Example 3

The following problem has only inequality constraints:

f = Hx - 2L^2 + Hy - 3L^2;
h1 = x + y - 4;
h2 = x - y - 2;

kktOptimize@f, 8<, 8h1, h2<, 8x, y<D

::
1

2
, :x Ø

3

2
, y Ø

5

2
, m@1D Ø 1, m@2D Ø 0>>>

A figure confirms that I 3
2

, 5
2
M really is the minimum point of the constrained problem:

Show@RegionPlot@h1 § 0 && h2 § 0, 8x, 0, 4<, 8y, 0, 4<D,
ContourPlot@f, 8x, 0, 4.1<, 8y, 0, 4.1<, Contours Ø 20, ContourShading Ø FalseD,
Graphics@Point@83 ê 2, 5 ê 2<DDD

‡ Example 4

Next, we solve the problem of Section 23.4.2, p. 769, which has an equality constraint:

kktOptimize@Pi r Sqrt@h^2 + r^2D, 8Pi h r^2 ê 3 - v<, 8<, 8h, r<D êê Simplify

::-
3 31ë6 p1ë3 v2ë3

21ë3
, :h Ø

6

p

1ë3

v1ë3, r Ø -

J 3

p
N

1ë3
v1ë3

21ë6
, l@1D Ø

22ë3 31ë6 p1ë3

v1ë3
>>,

:
3 31ë6 p1ë3 v2ë3

21ë3
, :h Ø

6

p

1ë3

v1ë3, r Ø

J 3

p
N

1ë3
v1ë3

21ë6
, l@1D Ø -

22ë3 31ë6 p1ë3

v1ë3
>>>

We obtained two candidates, but only the second one has a positive value for r,  and so we choose this
candidate as the solution.

‡ Example 5

Now we solve the following familiar problem:

776 Mathematica Navigator



kktOptimize@x^3 + y^3 + 2 x^2 + 4 y^2 + 6, 8<, 8<, 8x, y<D

::
50

3
, :x Ø -

4

3
, y Ø -

8

3
>>, :

194

27
, :x Ø -

4

3
, y Ø 0>>,

:
418

27
, :x Ø 0, y Ø -

8

3
>>, 86, 8x Ø 0, y Ø 0<<>

The program gives  us  four  candidates.  These  can  be  investigated  as  in  Example  3  of Section 23.3.1,  p.

760; the candidates contain local minimum and maximum points and saddle points.

‡ Example 6

The  following  example  was  first  encountered  in Section  23.1.1,  p. 745  (the  computing  time  with

Minimize was approximately 24 seconds):

kktOptimize@x^2 ê 2 + Hy^2 + z^2 + v^2L ê 6, 8<,
82 - x, 5 - x - y, 2 - x - z, 1 - x - v, -v<, 8x, y, z, v<D êê Timing

:0.042132,

::
7

2
, 8v Ø 0, x Ø 2, y Ø 3, z Ø 0, m@1D Ø 1, m@2D Ø 1, m@3D Ø 0, m@4D Ø 0, m@5D Ø 0<>>>

23.5  Special Topics

23.5.1  Traveling Salesman

‡ Finding the Shortest Tour

FindShortestTour[points]  Try to solve the traveling salesman problem: Try to find the shortest
tour through the points by visiting all the points once

Options:
DistanceFunction  The distance function to apply to pairs of points; examples of values:

Automatic, EuclideanDistance, ManhattanDistance

Method  Method to use; examples of values: Automatic, "OrZweig" (default for 2D real points),
"OrOpt" (default for non-2D or nonreal points), "TwoOpt" (performs exchanges of edge end points
for improvement), "CCA" (Convex hull, Cheapest insertion, and Angle selection; intended for
points in n), "Greedy" (moves from one point to the nearest unvisited neighbor), "GreedyCycle"

(a variant of the greedy algorithm with known upper bound), "SimulatedAnnealing" (uses
simulated annealing to minimize the tour length)

For  small  numbers  of  points,  the  command  usually  finds  the  shortest  tour.  For  larger  numbers  of
points, the command will normally find a tour whose length is at least close to the minimum.

The default distance for points that are numbers is the Euclidean distance. In the following, we list all
the built-in distance functions:

Names@"*Distance"D

8BrayCurtisDistance, CanberraDistance, ChebyshevDistance,
CorrelationDistance, CosineDistance, EditDistance, EuclideanDistance,
HammingDistance, ManhattanDistance, SquaredEuclideanDistance<

In Section 23.5.2, p. 786, we solve small traveling salesman problems exactly with dynamic program-

ming.

Chapter 23  •  Optimization 777



‡  Example 1

Generate 100 points and try to find the shortest tour:

SeedRandom@2D; points = RandomReal@10, 8100, 2<D;

8length, tour< = FindShortestTour@pointsD

878.6367, 81, 16, 39, 32, 59, 68, 6, 96, 75, 29, 80, 19, 85, 38, 78, 21, 65, 92, 97, 57,
52, 53, 84, 17, 7, 70, 83, 89, 88, 26, 11, 47, 5, 95, 86, 79, 82, 30, 93, 48,
9, 77, 94, 55, 71, 10, 12, 41, 27, 31, 2, 22, 58, 14, 99, 91, 42, 64, 36, 33,
72, 50, 28, 69, 45, 40, 87, 60, 15, 25, 63, 34, 67, 13, 61, 20, 24, 4, 43, 46,
51, 23, 54, 100, 62, 98, 90, 8, 74, 56, 18, 66, 73, 44, 81, 76, 3, 35, 37, 49<<

Thus, the tour starts from the first point, goes to the 16th point, and so on. The last point visited is the
49th point. The solution does not give the last step of going back to the starting point. The length of the
tour  (including the  step  of  going  back to  the  first  point)  is  78.6367.  Here  are  the  points  and the  corre-

sponding shortest tour:

8ListPlot@points, AspectRatio Ø AutomaticD,
ListLinePlot@pointsPtourT, Mesh Ø All, AspectRatio Ø Automatic,

Epilog Ø 8Red, PointSize@MediumD, Point@First@pointsDD<D<

:

2 4 6 8 10

2

4

6

8

10

,

2 4 6 8 10

2

4

6

8

10

>

We have shown the starting point with a red color. The plot of the tour does not contain the last step of
going back to the starting point. Note that the optimal tour does not depend on the starting point.

To check the length of the tour,  first order the points,  with pointsPtourT,  into the order given by
tour. Then partition the points into a list of pairs, using offset 1 and adding the first point to the end of
the list:

pairs = Partition@pointsPtourT, 2, 1, 1D;

This list of pairs has length 100 and the first point of the first pair and last point of the last pair are the
same:

8pairs êê Length, pairs êê First, pairs êê Last<

8100, 887.2224, 1.09449<, 87.71263, 1.47503<<,
885.76362, 1.5754<, 87.2224, 1.09449<<<

The Euclidean length of the tour is as follows:

Total@EuclideanDistance@ÒP1T, ÒP2TD & êü pairsD

78.6367

‡ Example 2

Next, we use the Chebyshev and Manhattan distances and also show the solution of a 3D problem:

778 Mathematica Navigator



8ListLinePlot@pointsPFindShortestTour@points, DistanceFunction Ø ÒDP2TT,
Mesh Ø All, AspectRatio Ø Automatic,
Epilog Ø 8Red, PointSize@MediumD, Point@First@pointsDD<D & êü

8ChebyshevDistance, ManhattanDistance<, SeedRandom@0D;
With@8p = RandomReal@10, 820, 3<D<, Graphics3D@

8Line@pPFindShortestTour@pD êê LastTD, Blue, PointSize@MediumD, Point@pD<DD<

::

2 4 6 8 10

2

4

6

8

10

,

2 4 6 8 10

2

4

6

8

10

>, >

‡ Example 3

Consider the large cities of United States but exclude Anchorage and Honolulu:

cities = CityData@8Large, "UnitedStates"<D;

cities2 = DeleteCases@cities, c_ ê; MemberQ@c, "Anchorage" » "Honolulu"DD;

Length@cities2D 266

Create the coordinates of these cities. Then find and show the shortest tour:

points = Reverse@CityData@Ò, "Coordinates"DD & êü cities2;

8length, tour< = FindShortestTour@pointsD;

Graphics@8Green, CountryData@"UnitedStates", "Polygon"D, Red,
Point@pointsPtourTD, Blue, Line@pointsPtourTD<, ImageSize Ø 400D

‡ Example 4

Thus far, we have specified the points with their coordinates. Now we specify the points with a distance
matrix. Suppose we have five cities. Assume that the distances are as follows:

Chapter 23  •  Optimization 779



distances = SparseArray@881, 2< Ø 5, 82, 1< Ø 5, 81, 3< Ø 2, 83, 1< Ø 2, 83, 2< Ø 2,
82, 3< Ø 2, 82, 4< Ø 4, 84, 2< Ø 4, 83, 4< Ø 5, 84, 3< Ø 5, 84, 1< Ø 6,
81, 4< Ø 6, 84, 5< Ø 8, 85, 4< Ø 8, 81, 5< Ø 1, 85, 1< Ø 1<, 85, 5<, ¶D;

distances êê MatrixForm

¶ 5 2 6 1

5 ¶ 2 4 ¶

2 2 ¶ 5 ¶

6 4 5 ¶ 8

1 ¶ ¶ 8 ¶

Find the shortest tour through the cities 1, 2, 3, 4, and 5 by using the distance matrix:

8length, tour< = FindShortestTour@Range@5D, DistanceFunction Ø HdistancesPÒ1, Ò2T &LD

817, 81, 3, 2, 4, 5<<

Use GraphPlot  to  draw  the  optimal  tour  with  red,  thick  lines  (in  our  example,  the
"CircularEmbedding" method works well):

GraphPlot@distances, Method Ø "CircularEmbedding", VertexLabeling Ø True,
EdgeRenderingFunction Ø H8If@MemberQ@Partition@tour, 2, 1, 1D, Ò2 » Reverse@Ò2DD,

Directive@Red, ThickD, BlackD, Line@Ò1D, Black,
Text@distancesPÒ2P1T, Ò2P2TT, Mean@Ò1D, Background Ø WhiteD< &LD

5

2

6

1

5

2

4
2

2

5

4

5

6

88

1

1

2

3

4

5

23.5.2  Dynamic Programming

‡ Introduction

Dynamic programming  (or dynamic optimization) is a versatile optimization method applicable to many
different types of problem. The idea of this method is to break up the original problem into a series of
smaller problems that can be solved easily. Typically, the solution procedure goes stagewise backward
from the “end” of the problem toward the “beginning” by utilizing a recursion formula.  The solution of
the  original  problem  is  then  found  by  going  forward  and  utilizing  the  results  of  the  backward
computations.

Let ftHiL be the minimum cost incurred from stage t to the end of the problem, given that at stage t the

state is i. The recursion formula of dynamic programming is often of the following form:

ftHiL = minAIcost during stage tM + ft+1Inew state at stage t + 1ME,
where the minimum is over all feasible decisions when the state at stage t is i.

780 Mathematica Navigator



Suppose that we have T  stages. Often, the calculation of fTHiL  is  very easy; this gives us the starting

point  of  the  recursion.  With  the  recursion  formula  we  then  go  backward  and  solve  a  series  of  simple
optimization  problems  until  we  have  found f1HaL  for  a  given  initial  state a.  The  optimal  value  of  the

object  function  is f1HaL.  During  the  recursive  calculation  we  write  down  the  optimal  decision  for  each

state in each stage. This enables us to get the optimal values of the decision variables for all stages, by
going forward.

Dynamic  programming  with  pencil  and  paper  easily  becomes  unmanageable  for  other  than  small
problems.  However,  with Mathematica  the  situation  is  much  more  favorable.  Indeed, Mathematica

supports the recursive programming style (see Section 18.5,  p. 596) so that writing down the recursion

formulas of  dynamic programming is  straightforward.  After  we have coded the recursion formula,  all
we have to do is to ask for the solution! Mathematica  does all the lengthy recursive computations behind
the scenes. The optimal value of the object function is obtained simply by asking for the value of f1HaL,
whereas the optimal values of the decision variables can be seen with a small calculation.

As examples of dynamic programming, we next consider some of the examples in Winston (1994): a
shortest path problem, a resource allocation problem, an inventory problem, and the traveling salesman
problem.

Note  that  “dynamic  programming”  has  two  meanings.  In  programming,  it  refers  to  a  technique  in
recursive  programming  in  which  rule  bases  containing  the  values  of  a  function  are  updated  dynami-
cally~that  is,  during  the  computation.  In  optimization,  dynamic  programming  refers  to  the  recursive
optimization method described previously. Note that in the optimization method of dynamic program-

ming we use the programming technique of dynamic programming.

‡ Shortest Path

Consider the following graph (Winston, 1994, p. 1005):

edges = 881 Ø 2, 550<, 81 Ø 3, 900<, 81 Ø 4, 770<, 82 Ø 5, 680<, 82 Ø 6, 790<,
82 Ø 7, 1050<, 83 Ø 5, 580<, 83 Ø 6, 760<, 83 Ø 7, 660<, 84 Ø 5, 510<,
84 Ø 6, 700<, 84 Ø 7, 830<, 85 Ø 8, 610<, 85 Ø 9, 790<, 86 Ø 8, 540<,
86 Ø 9, 940<, 87 Ø 8, 790<, 87 Ø 9, 270<, 88 Ø 10, 1030<, 89 Ø 10, 1390<<;

vertices = 81 Ø 81, 1<, 2 Ø 82, 2<, 3 Ø 82, 1<, 4 Ø 82, 0<,
5 Ø 83, 2<, 6 Ø 83, 1<, 7 Ø 83, 0<, 8 Ø 84, 1.5<, 9 Ø 84, 0.5<, 10 Ø 85, 1<<;

GraphPlot@edges, DirectedEdges Ø True,
VertexCoordinateRules Ø vertices, VertexLabeling Ø True, ImageSize Ø 300D

550

900

770

680

790

1050

580

760

660

510

700

830

610

790540

940790

270

1030

1390

1

2

3

4

5

6

7

8

9

10

The numbers on the edges are their lengths cij  (some of them overlap in the plot). We would like to find

the shortest path from City 1 to City 10. Note that the network is acyclic and the vertices are numbered
such that if we can go from i to j then i < j.

Chapter 23  •  Optimization 781



Write the lengths of the edges as a matrix:

T = 10;
c = SparseArray@8ÒP1, 1T, ÒP1, 2T< Ø ÒP2T & êü edges, 8T, T<, ¶D
SparseArray@<20>, 810, 10<, ¶D
c êê MatrixForm

¶ 550 900 770 ¶ ¶ ¶ ¶ ¶ ¶

¶ ¶ ¶ ¶ 680 790 1050 ¶ ¶ ¶

¶ ¶ ¶ ¶ 580 760 660 ¶ ¶ ¶

¶ ¶ ¶ ¶ 510 700 830 ¶ ¶ ¶

¶ ¶ ¶ ¶ ¶ ¶ ¶ 610 790 ¶

¶ ¶ ¶ ¶ ¶ ¶ ¶ 540 940 ¶

¶ ¶ ¶ ¶ ¶ ¶ ¶ 790 270 ¶

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ 1030

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ 1390

¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶ ¶

Let ft  be the length of the shortest path from vertex t to the final vertex T  (in our example, T = 10L. It
is clear that

ft = min
j

Ictj + fjM,

t = T - 1, T - 2, …, 1. Let pt  be the optimal value of j  for a given t.  In addition, pT = T  and fT = 0. Here

are recursive formulas to calculate ft and pt, t = 1, …, T:

Clear@f, pD
p@TD = T;
f@TD = 0;
f@t_D := f@tD = Module@8v<,

v = Table@cPt, jT + f@jD, 8j, t + 1, T<D;
p@tD = Ordering@v, 1DP1T + t;
Min@vDD

Here, we use recursive programming: The function f  calls itself.  Indeed, the value of f[t]  depends
on f[t + 1], f[t + 2]  ….  Note  the  use  of  the  dynamic  programming  technique: f[t_] := f[t] = …,
causing  the  list  of  values  of f  to  be  dynamically  updated  during  the  computation.  For  recursive

programming, see Section 18.5, p. 596. We have written Clear[f, p] at the beginning of the code to get

fresh values of f and p each time we use the code.

In calculating the value of ft, we first create a table v for the values of ctj + fj for all j = t + 1, …, T. The

value of ft  is the minimum of these values. The optimal j or pt  is the value of j that gives the minimum

of ctj + fj. Recall that with Ordering we can get the position of the minimum value in a list:

Ordering@840, 20, 50, 10, 30<, 1D 84<

Now, the length of the shortest path from vertex 1 is f1:

f@1D 2870

Here are the lengths of the shortest paths from all the vertices:

Table@8t, f@tD<, 8t, 10<D

881, 2870<, 82, 2320<, 83, 2220<, 84, 2150<,
85, 1640<, 86, 1570<, 87, 1660<, 88, 1030<, 89, 1390<, 810, 0<<

For a given vertex, what is the optimal next vertex? The optimal vertices are as follows:

782 Mathematica Navigator



Table@8t, p@tD<, 8t, 10<D

881, 2<, 82, 5<, 83, 5<, 84, 5<, 85, 8<, 86, 8<, 87, 9<, 88, 10<, 89, 10<, 810, 10<<

This means that if we start from vertex 1, then we go to 2. From 2 we go to 5, then to 8, and lastly to 10.
The shortest path can also be computed as follows:

y = 1; path = Join@81<, Table@y = p@yD, 8t, 4<DD

81, 2, 5, 8, 10<

Still another way is the following:

path = FixedPointList@p, 1D êê Most

81, 2, 5, 8, 10<

The shortest path is shown in the following figure:

GraphPlot@edges, DirectedEdges Ø True, VertexLabeling Ø True,
VertexCoordinateRules Ø vertices, ImageSize Ø 300, EdgeRenderingFunction Ø
H8If@MemberQ@Partition@path, 2, 1, 1D, Ò2D, Directive@Red, ThickD, BlackD,

Line@Ò1D, Black, Text@cPÒ2P1T, Ò2P2TT, Mean@Ò1D, Background Ø WhiteD< &LD

550

900

770

680

790

1050

580

760

660

510

700

830

610

790540

940790

270

1030

1390

1

2

3

4

5

6

7

8

9

10

‡ Resource Allocation

Suppose we have  thousand dollars to invest, and T investments are available (Winston, 1994, p. 1018).

If dj  thousand  dollars  are  invested  in  investment j,  then  a  net  present  value  (in  thousands)  of rjIdjM  is
obtained (these functions are assumed to be known). The amount placed in each investment must be an
exact  multiple  of  $1000.  How  to  allocate  the  $  to  maximize  the  net  present  value  obtained  from the
investments? We should maximize r1Hd1L + … + rTHdTL  subject to the constraint that d1 + … + dT = ;  the
values of dj should be nonnegative integers.

Assume that we have three possible investments. Define the rjIdjM functions:

Remove@"Global`*"D
T = 3;
r@1, d_D := Piecewise@887 d + 2, d > 0<, 80, d ã 0<<D
r@2, d_D := Piecewise@883 d + 7, d > 0<, 80, d ã 0<<D
r@3, d_D := Piecewise@884 d + 5, d > 0<, 80, d ã 0<<D

Let ftHiL  be  the  maximum net  present  value  that  can  be  obtained by investing i  thousand dollars  in

investments t, t + 1, …, T. It is clear that

ftHiL = max
d

ArtHdL + ft+1Hi - dLE.

Let ptHiL  be the optimal value of d.  In addition, fTHiL = rTHiL;  alternatively, we can define fT+1HiL = 0. Here

are recursive formulas to calculate ftHiL and ptHiL, t = 1, …, T:

Chapter 23  •  Optimization 783



Clear@f, pD;
f@T + 1, i_D := 0
f@t_, i_D := f@t, iD = Module@8v<,

v = Table@r@t, dD + f@t + 1, i - dD, 8d, 0, i<D;
p@t, iD = Ordering@v, -1DP1T - 1;
Max@vDD

If  we  have  thousand  dollars  to  invest,  =  1,  …,  6,  the  maximum net  present  value  that  can  be
obtained can be seen from the following list:

= 6; Table@8 , f@1, D<, 8 , <D

881, 10<, 82, 19<, 83, 28<, 84, 35<, 85, 42<, 86, 49<<

For  example,  if  we  have  $6000,  the  maximum net  present  value  is  49.  The  optimal  amounts  of  invest-
ments can be obtained by proceeding forward. First, ask what is the optimal amount for investment 1:

p@1, 6D 4

Thus,  we  should  invest  $4000  for  investment  1.  Now  we  have  $2000  left,  so  the  optimal  amount  for
investment 2 is

p@2, 2D 1

Only $1000 is now left, so the optimal amount for investment 3 is

p@3, 1D 1

The optimal investments for various initial amounts of money  can also be calculated as follows:

Table@8Row@8" = ", <D, Table@y = p@t, D; = - y; y, 8t, T<D<, 8 , <D êê Column

8 = 1, 80, 1, 0<<
8 = 2, 81, 1, 0<<
8 = 3, 81, 1, 1<<
8 = 4, 82, 1, 1<<
8 = 5, 83, 1, 1<<
8 = 6, 84, 1, 1<<

For  example,  if  we  have  $6000,  it  is  optimal  to  invest  $4000  in  investment 1  and $1000 in both invest-
ment 2 and investment 3.

Still another way to get the optimal solution is to prepare the following table:

Grid@Join@8Join@8"Money available"<, Range@0, DD<,
Table@Join@8Row@8"Investment ", t<D<, Table@p@t, iD, 8i, 0, <DD, 8t, T<DD,

Dividers Ø 82 Ø True, 2 Ø True<, Alignment Ø 8Left, 8Right<<, Spacings Ø 2,
Background Ø 8Automatic, Automatic, 8882, 2<, 88, 8<< Ø LightGray,

883, 3<, 84, 4<< Ø LightGray, 884, 4<, 83, 3<< Ø LightGray<<D

Money available 0 1 2 3 4 5 6

Investment 1 0 0 1 1 2 3 4

Investment 2 0 1 1 1 1 1 1

Investment 3 0 1 2 3 4 5 6

From this table we can read the optimal amount of investments as a function of the amount of money
available. For example, consider the situation in which the initial amount of money is 6 (this situation is
shown with gray background in the table):

1. Investment: The optimal investment is 4 units.
2. Investment: Because we have 2 units of money left, the optimal investment is 1 unit.
3. Investment: Because we have 1 unit of money left, the optimal investment is 1 unit.

784 Mathematica Navigator



‡  Inventory

Consider the following inventory problem (Winston, 1994, p. 1012). The planning period is T months. In
month t, the demand for a product is dt  (they are known in advance) and the produced amount is xt  (to

be determined optimally).  The inventory at  the end of  month t  is it  (unknown quantities).  We assume

that  the production in each month comes early enough to satisfy the demand for that  month.  Assume
that  in  month t,  the  total  cost  is cHxt, itL = a + b xt + h it  if xt > 0  and cHxt, itL = h it  if xt = 0.  We  have  the

restrictions that 0 § xt § r and 0 § it § s.

Set the following constants:

Remove@"Global`*"D
a = 3; b = 1; h = 0.5; r = 5; s = 4; T = 4;
d = 81, 3, 2, 4<;

Define the cost function:

c@x_, i_D = Piecewise@880, x ã 0<, 8a + b x, x > 0<<, ¶D + h i

0.5 i +

0 x ã 0

3 + x x > 0

¶ True

Let ftHiL be the minimum cost of meeting demands for months t, t + 1, …, T  if i units are in inventory

at the beginning of month t. It is clear that

ftHiL = min
xt

AcHxt, i + xt - dtL + ft+1Hi + xt - dtLE.

Let ptHiL  be  the optimal value of xt.  In  addition,  in the last  month it  is  optimal to choose the produced

amount  such  that  the  inventory  is  empty  at  the  end  of  the  month.  Thus, pTHiL = dT - i  and

fTHiL = cHdT - i, 0L. Here are recursive formulas to calculate ftHiL and ptHiL, t = 1, …, T:

Clear@f, pD
p@T, i_D := dPTT - i;
f@T, i_D := f@T, iD = c@dPTT - i, 0D
f@t_, i_D := f@t, iD = Module@8v, e = dPtT<,

v = Table@c@x, i + x - eD + f@t + 1, i + x - eD, 8x, e - i, Min@r, s + e - iD<D;
p@t, iD = Ordering@v, 1DP1T + e - i - 1;
Min@vDD

The minimum cost of production during the 4 months can be seen from the following list for various
values of the initial  inventory i:

Table@f@1, iD, 8i, 0, s<D

820., 16., 15.5, 15., 13.5<

To get the optimal amounts produced, suppose the initial inventory is zero. Proceed forward by asking
first what is the optimal amount produced in the first month:

p@1, 0D 1

Because  the  demand  for  this  month  is  1,  the  inventory  is  again  zero  at  the  beginning  of  the  second
month. Thus, the optimal production for this month is

p@2, 0D 5

Because the demand for the second month is 3,  the inventory is 2 at the beginning of the third month.
Thus, the optimal production for this month is

Chapter 23  •  Optimization 785



p@3, 2D 0

Because the demand for the third month is 2, the inventory is zero at the beginning of the fourth month.
Thus, the optimal production for this month is

p@4, 0D 4

The optimal  amounts  of  production for  various values  of  initial  inventory can also be calculated as
follows:

Table@8Row@8"i = ", i<D, Table@y = p@t, iD; i = i + y - dPtT; y, 8t, T<D<, 8i, 0, s<D êê
Column

8i = 0, 81, 5, 0, 4<<
8i = 1, 80, 5, 0, 4<<
8i = 2, 80, 4, 0, 4<<
8i = 3, 80, 3, 0, 4<<
8i = 4, 80, 0, 2, 4<<

For example, if the initial inventory is empty, it is optimal to produce 1, 5, 0, and 4 units in months 1, 2,
3, and 4, respectively.

Still another way to get the optimal solution is to prepare the following table:

Grid@Join@8Join@8"Init. inv."<, Range@0, sDD<,
Table@Join@8Row@8"Month ", t<D<, Table@p@t, iD, 8i, 0, s<DD, 8t, T<DD,

Dividers Ø 82 Ø True, 2 Ø True<, Alignment Ø 8Left, 8Right<<, Spacings Ø 2,
Background Ø 8Automatic, Automatic, 8882, 3<, 82, 2<< Ø LightGray,

884, 4<, 84, 4<< Ø LightGray, 885, 5<, 82, 2<< Ø LightGray<<D

Init. inv. 0 1 2 3 4

Month 1 1 0 0 0 0

Month 2 5 4 3 0 0

Month 3 2 5 0 0 0

Month 4 4 3 2 1 0

From this table we can read the optimal amount of production as a function of the initial  inventory of
each  month.  For  example,  consider  the  situation  in  which  the  initial  inventory  is  0  (this  situation  is
shown with gray background in the table):

1. Month: Because the initial inventory is 0, in the 1. month it is optimal to produce 1 unit.
2. Month: Because the demand for the 1. month was 1, the inventory at the beginning of the 2. month

will again be 0, so in the 2. month it is optimal to produce 5 units.
3. Month: Because the demand for the 2. month was 3, the inventory at the beginning of the 3. month

will be 2, so in the 3. month it is optimal to produce 0 units.
4. Month: Because the demand for the 3. month was 2, the inventory at the beginning of the 4. month

will  be  0,  so  in this  month it  is  optimal  to  produce 4  units.  Because the demand for the 4.  month
was 4, the inventory will be empty at the end of the 4. month.

‡ Traveling Salesman

We have a set of T cities, numbered as 1, …, T. A traveling salesman, currently in City 1, should visit all
the  other  cities  once  and return to  City  1.  The  salesman wants  to  minimize  the  total  distance  he must

travel  (Winston,  1994,  p.  1039).  In Section  23.5.1,  p. 777,  we  solved  traveling  salesman  problems  with

heuristic  methods,  giving  the  optimal  solution  with  high  probability.  Now  we  try  to  solve  small
traveling salesman problems exactly.

786 Mathematica Navigator



Denote by cij the distance between cities i and j. As an example, let us generate 15 random points and

calculate the distance matrix 9cij= for them:

Remove@"Global`*"D
T = 15; SeedRandom@54D;
points = RandomReal@10, 8T, 2<D;

c = Array@cc, 8T, T<D;
Table@cPi, jT = EuclideanDistance@pointsPiT, pointsPjTD, 8i, T<, 8j, T<D;

Let ftHi, SL  be the minimum distance that must be traveled to complete a tour if the t - 1 cities in the

set S have been visited and city i was the last city visited. It is clear that

ftHi, SL = min
jœSc

Acij + ft+1Ij, S ‹ 9j=ME.

Here, Sc  is  the  complement  of S.  Let ptHi, SL  be  the  optimal  value  of j~that  is,  the  city  to  which  it  is

optimal to travel when the t - 1 cities in the set S have been visited and city i was the last city visited. In
addition, pTHi, SL = 1  and fTHi, SL = ci1.  Here  are  recursive  formulas  to  calculate ftHi, SL  and ptHi, SL,
t = 1, …, T:

Clear@f, pD; cities = Range@2, TD;
p@T, i_, citiesD := 1
f@T, i_, citiesD := f@T, i, citiesD = cPi, 1T
f@t_, i_, S_D := f@t, i, SD = Module@8unvisited, v<,

unvisited = Complement@cities, SD;
v = cPi, ÒT + f@t + 1, Ò, Union@S, 8Ò<DD & êü unvisited;
p@t, i, SD = Extract@unvisited, Ordering@v, 1DP1TD;
Min@vDD

The length of the shortest tour is obtained by asking what is the shortest length of a tour if 0 cities in
the empty set {} have been visited and City 1 was the last city visited:

f@1, 1, 8<D êê Timing

834.2202, 37.6344<

The computation time was approximately half a minute and the length of the optimal tour is 37.6344. To
get the optimal tour, proceed forward step by step:

p@1, 1, 8<D 7

p@2, 7, 87<D 13

p@3, 13, 87, 13<D 2

p@4, 2, 82, 7, 13<D 14

p@5, 14, 82, 7, 13, 14<D 10

p@6, 10, 82, 7, 10, 13, 14<D 5

p@7, 5, 82, 5, 7, 10, 13, 14<D 4

p@8, 4, 82, 4, 5, 7, 10, 13, 14<D 12

p@9, 12, 82, 4, 5, 7, 10, 12, 13, 14<D 15

p@10, 15, 82, 4, 5, 7, 10, 12, 13, 14, 15<D 3

p@11, 3, 82, 3, 4, 5, 7, 10, 12, 13, 14, 15<D 9

p@12, 9, 82, 3, 4, 5, 7, 9, 10, 12, 13, 14, 15<D 11

p@13, 11, 82, 3, 4, 5, 7, 9, 10, 11, 12, 13, 14, 15<D 6

Chapter 23  •  Optimization 787



p@14, 6, 82, 3, 4, 5, 6, 7, 9, 10, 11, 12, 13, 14, 15<D 8

p@15, 8, 82, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15<D 1

Thus,  the  optimal  tour  is  {1,  7,  13,  2,  14,  10,  5,  4,  12,  15,  3,  9,  11,  6,  8,  1}.  The  optimal  tour  can  also  be
calculated as follows:

i = 1; S = 8<; tour1 = Join@81<, Table@y = p@t, i, SD; i = y; S = Union@S, 8y<D; y, 8t, T<DD

81, 7, 13, 2, 14, 10, 5, 4, 12, 15, 3, 9, 11, 6, 8, 1<

Note that more than 100,000 values were calculated for f and p:

8DownValues@fD êê Length, DownValues@pD êê Length<

8114 691, 114 676<

Although  these  figures  might  seem  large,  they  are  small  compared  to  the  amount  of  computations
needed if we solved the problem by checking all the possible 14 ! ê 2 tours among the 15 cities:

14! ê 2 43 589 145 600

Winston (1994, p. 1039) provides a smaller example in which a traveling salesman, now in New York,
should visit Miami, Dallas, and Chicago and then return to New York:

T = 4;
c = 880, 1334, 1559, 809<,

81334, 0, 1343, 1397<, 81559, 1343, 0, 921<, 8809, 1397, 921, 0<<;

Evaluate  the commands in the previous box.  After that,  ask for  the length of the optimal tour and the
optimal tour itself:

f@1, 1, 8<D 4407

i = 1; S = 8<; Join@81<, Table@y = p@t, i, SD; i = y; S = Union@S, 8y<D; y, 8t, T<DD

81, 2, 3, 4, 1<

‡ A Comparison

The built-in FindShortestTour finds a solution candidate in a fraction of a second:

H8length, tour2< = FindShortestTour@pointsDL êê Timing

80.743936, 838.6838, 81, 7, 13, 2, 14, 5, 10, 11, 4, 12, 15, 9, 3, 6, 8<<<

This  time, FindShortestTour  only  gave  a  near-optimal  solution;  remember  that  this  command  only
gives the optimal solution with a high probability. From the plots we can compare the solutions:

ListLinePlot@pointsPÒT, Mesh Ø All, AspectRatio Ø Automatic,
Epilog Ø 8Red, PointSize@MediumD, Point@First@pointsDD<D & êü 8tour1, tour2<

:

2 4 6 8

2

4

6

8

,

2 4 6 8

2

4

6

8

>

The  first  plot  is  the  optimal  solution  (with  length  37.6344)  given  by  dynamic  programming  and  the
second plot the near-optimal solution (with length 38.6838) given by FindShortestTour.

788 Mathematica Navigator



Note that our problem, in which we used SeedRandom[54]  in the generation of the points, is a very
special  problem.  It  is  one  of  the  rare  cases  in  which FindShortestTour  does  not  find  the  optimal
solution. Indeed, when solving the problem with SeedRandom[s]  when s  gets on the values 0, 1, 2, …,
100,  we  only  found  eight  values  of s  where  the  solution  given  by FindShortestTour  is  suboptimal
(these values of s are 3, 6, 26, 45, 54, 55, 76, and 85). Furthermore, the case in which s is 54 is the worst
among  the  eight  values:  The  difference  between  the  lengths  of  the  suboptimal  and  optimal  tours  is
approximately 1.05. On average, this difference is only approximately 0.44 (among the eight cases). This
means  that  in  the  rare  cases FindShortestTour  gives  a  suboptimal  solution,  it  is  very  near  to  the
optimal solution. Also, trying another method may give a better solution. In our example, the simulated
annealing method gives a better (although not the optimal) solution:

H8length, tour3< = FindShortestTour@points, Method Ø "SimulatedAnnealing"DL êê Timing

87.15697, 837.8455, 83, 15, 12, 9, 11, 4, 10, 5, 14, 2, 13, 7, 1, 8, 6<<<

23.5.3  Calculus of Variations

In  a  package  we  have  commands  that  relate  to  the  calculus  of  variations.  We  present  here  only  one
command from this package: EulerEquations. This command forms Euler’s equation (or equations) for

a problem in which we want to find the extremum for the integral Ÿa
b

f Hx, uHxL, u£HxLL „x.  The command

also accepts several independent variables x, y, ... and several dependent variables uIx, y, ...M, vIx, y, ...M.
Here are some examples of the command:

In the VariationalMethods` package:

EulerEquations[f, u[x], x]

EulerEquations[f, u[x,y], {x,y}]

EulerEquations[f, {u[x,y],v[x,y]}, {x,y}]

Let us find the curve yHxL of minimum length between H0, 0L and Ha, bL (the solution is, of course, the

straight line that connects the points). The length of the curve is Ÿ0a 1 + y£HxL2 „x. Euler’s equation is as

follows:

<< VariationalMethods`

eqn = EulerEquations@Sqrt@1 + y'@xD^2D, y@xD, xD

-
y££@xD

I1 + y£@xD2M3ë2
ã 0

The solution with the given boundary conditions is as follows:

DSolve@8eqn, y@0D ã 0, y@aD ã b<, y@xD, xD

::y@xD Ø
b x

a
>>

Chapter 23  •  Optimization 789



790 Mathematica Navigator

This page intentionally left blank



24
Interpolation

Introduction 791

24.1  Usual Interpolation 792

24.1.1  Interpolating Polynomial 792 InterpolatingPolynomial

24.1.2  Own Programs 795 lagrangeInterpolation, newtonInterpolation

24.2  Piecewise Interpolation 797

24.2.1  Two-Dimensional Data 797 ListInterpolation, Interpolation

24.2.2  Higher-Dimensional Data 800 ListInterpolation, Interpolation

24.3  Splines 803

24.3.1  Cubic Splines 803 SplineFit

24.3.2  Bezier Splines 805 SplineFit

24.4  Interpolation of Functions 806

24.4.1  Usual Interpolation 806 RationalInterpolation

24.4.2  Piecewise Interpolation 807 FunctionInterpolation

Introduction

Life is the art of drawing sufficient conclusions from insufficient premises.~Samuel Butler

With  interpolation,  we  represent  a  set  of  points  with  a  curve  that  passes  exactly  through  all  of  the
points.  Interpolation can also be  applied to functions by first  sampling the function at  some points.  In
this way, we can obtain for the data or function a suitable representation that may be sufficiently precise
for practical purposes. However, if the observations contain errors (as they often do), then you may not
want a function that passes exactly through the points but, rather, a simple function that represents the
overall  behavior  of  the  observations.  Approximation  is  then  the  correct  technique  to  use  (see  Section
25.1).

‡ Interpolation of Data

With Mathematica,  we can do three kinds of interpolation of data. First, the usual interpolating polynomial,
which is calculated with InterpolatingPolynomial, gives, for n + 1 data points, the unique polynomial
of at most degree n that passes exactly through all of the points.

The object produced by ListInterpolation and Interpolation is called an interpolating function. It
is  a  set  of  piecewise-calculated  interpolating  polynomials  between  successive  points  (the  result  is  a
continuous  curve  that  has  a  discontinuous  derivative).  We  can  choose  the  degree  of  the  piecewise
polynomials. The commands also work for multidimensional data, producing, for example, an interpolat-
ing surface.

SplineFit  calculates  various splines,  such  as  cubic  splines  that  pass  through  all  points  and  have  a
continuous first and second derivative.



‡  Interpolation of Functions

For  the  interpolation  of  functions  we  have  two  commands. RationalInterpolation  calculates,  for  a
given  function,  a  rational  interpolating  function  (i.e.,  a  quotient  of  two polynomials).  We can give  the
interpolation points  ourselves  or  let  the command choose them; in the latter case,  we obtain,  in fact,  a

rational Chebyshev approximation (see Section 25.2.1, p. 826).

FunctionInterpolation forms, for mathematical expressions, interpolating functions that consist of
a set of piecewise-calculated interpolating polynomials. For a complex expression, such an interpolating
function  may  be  a  useful  and  efficient  representation.  Indeed,  if  an  approximation  for  a  function  is
required,  then  piecewise  interpolation  by FunctionInterpolation  is  a  strong  candidate,  despite  the
fact that this command falls into the category of interpolation.

24.1  Usual Interpolation

24.1.1  Interpolating Polynomial

InterpolatingPolynomial[data, x]  The interpolating polynomial through the points in data; the
result is a function of x

The data points can be given in either of the following forms:
{f1, f2, … }  Interpolate through the points {1, f1}, {2, f2}, …
{{x1, f1}, {x2, f2}, … }  Interpolate through the points {x1, f1}, {x2, f2}, …

The command uses the Newton form of the interpolating polynomial and then writes the polynomial
in the Horner form, suitable for numerical evaluation.

Recall that in Section 10.1.3, p. 329, we presented a manipulation to interactively study interpolating

polynomials.

‡ Simple Examples

We calculate the line that goes through the points I1, f M and I2, gM:

InterpolatingPolynomial@8f, g<, xD

f + H-f + gL H-1 + xL

The next polynomial goes through the points Ia, f M and Ib, gM:

InterpolatingPolynomial@88a, f<, 8b, g<<, xD

f +

H-f + gL H-a + xL
-a + b

Here is the quadratic polynomial that goes through the points Ia, f M, Ib, gM, and Hc, hL:

InterpolatingPolynomial@88a, f<, 8b, g<, 8c, h<<, xD

f + H-a + xL
-f + g

-a + b
+

J- -f+g

-a+b
+

-g+h

-b+c
N H-b + xL

-a + c

We check that this really goes through the given points:

% ê. x Ø 8a, b, c< êê Simplify

8f, g, h<

792 Mathematica Navigator



‡  A Numerical Example

Next, we consider numerical data:

data = 8Range@14D, 81, 2, 0, 2, 2, 2, 0, 0, 2, 3, 5, 4, 3, 1< êê N<¨
881, 1.<, 82, 2.<, 83, 0.<, 84, 2.<, 85, 2.<, 86, 2.<, 87, 0.<,
88, 0.<, 89, 2.<, 810, 3.<, 811, 5.<, 812, 4.<, 813, 3.<, 814, 1.<<

p = ListPlot@dataD

2 4 6 8 10 12 14

1

2

3

4

5

The interpolating polynomial is as follows:

int = InterpolatingPolynomial@data, xD

1. + I0. + I0.0238095 + I-0.0392857 +

I-0.00423431 + I0.000800415 + I0.000513318 + I0.000222964 + I-0.0000382671 +

I6.13777 μ 10-7
+ I-2.14196 μ 10-6

+ I-7.97492 μ 10-7
+

I-7.7244 μ 10-7
+ 2.50521 μ 10-8 H-6 + xLM H-10 + xLM

H-4 + xLM H-12 + xLM H-9 + xLM H-2 + xLM H-5 + xLM
H-13 + xLM H-3 + xLM H-11 + xLM H-7 + xLM H-1 + xLM H-14 + xL

Note that the interpolating polynomial should not be simplified or expanded because the unsimplified,
nested form is the best for numerical computations. However, to show that the result in our example of
14 points is a polynomial of degree 13, we expand it:

int êê Expand

-1674. + 4948.28 x - 6052.37 x2
+ 4139.98 x3

- 1790.19 x4
+

521.379 x5
- 105.873 x6

+ 15.2428 x7
- 1.56035 x8

+ 0.112324 x9
-

0.00552547 x10
+ 0.00017544 x11

- 3.20249 μ 10-6 x12
+ 2.50521 μ 10-8 x13

Here are some values of the polynomial:

int ê. x Ø 81, 1.5, 2, 2.5, 3<

91., 17.9203, 2., -2.27272, 2.22045 μ 10-16=
We see that  at  the points  1,  2,  3,  … the polynomial  really  has the values 1,  2,  0,  …, but between these
points  the  values  may be  far  from the  neighboring values.  We plot  the polynomial  and also show the
points:

Show@p, Plot@int, 8x, 0.97, 14.03<DD

2 4 6 8 10 12 14

-5

5

10

Chapter 24  •  Interpolation 793



As can be seen, the polynomial goes through all of the points and is quite a good representation of the
data  in  an  interval  of,  for  example, H3, 12L.  Outside  of  this  interval~that  is,  near  the  end  points~the
polynomial  behaves badly.  Indeed, high-order interpolating polynomials should be used with caution.
It may be better to use piecewise-interpolating polynomials (see Section 24.2), splines (see Section 24.3),
or least-squares fits (see Section 25.1).

‡ Using Values of Derivatives

InterpolatingPolynomial  also  accepts  values  of  derivatives.  For  example,  the  data  could  be  in  the
following forms:

{{x1, f1, df1}, {x2, f2, df2}, … }

{{x1, f1, df1, ddf1}, {x2, f2, df2, ddf2}, … }

Here, df1  is  the  value  of  the  derivative  at  point x1,  and ddf1  is  the  value  of  the  second derivative.
Higher-order derivatives can also be given.

As an example, we calculate an interpolating polynomial for given values of the function and its first
derivative at two points:

int = InterpolatingPolynomial@88a, f, df<, 8b, g, dg<<, xD

f + H-a + xL df + H-a + xL
-df +

-f+g

-a+b

-a + b
+

dg-
-f+g

-a+b

-a+b
-

-df+
-f+g

-a+b

-a+b
H-b + xL

-a + b

The result is now a third-degree polynomial.

Some values of the function or its derivatives can also be Automatic:

int = InterpolatingPolynomial@88a, f, df<, 8b, Automatic, dg<<, xD

-a2 df + 2 a b df - a2 dg + 2 a f - 2 b f

2 Ha - bL
+ x

-b df + a dg

a - b
+

Hdf - dgL x

2 Ha - bL
In this example, the value of the function at x = b was not specified. The resulting interpolating polyno-

mial is a second-degree polynomial satisfying the other three conditions.

Next, we try to improve the interpolating polynomial of the numerical example by defining that the
derivative of the polynomial at points 1, 2, 13, and 14 is 2, -3, -1, and -3, respectively (the values were
found by trial and error):

data2 = 881, 1, 2<, 82, 2, -3<, 83, 0<, 84, 2<, 85, 2<, 86, 2<, 87, 0<,
88, 0<, 89, 2<, 810, 3<, 811, 5<, 812, 4<, 813, 3, -1<, 814, 1, -3<<;

The result is now much better:

int2 = InterpolatingPolynomial@data2, xD;

Show@p, Plot@int2, 8x, 0.97, 14.03<DD

2 4 6 8 10 12 14

1

2

3

4

5

794 Mathematica Navigator



‡  Multivariate Interpolating Polynomials

InterpolatingPolynomial[data, {x, y, … }] (Ÿ6)  The interpolating polynomial through the
points in data; the result is a function of x, y, …

For example, the data are of the following form for a two-variate interpolating polynomial:
{{{x1, y1}, f1}, {{x2, y2}, f2}, … }  Interpolate through the points {x1, y1, f1}, {x2, y2, f2}, …

Gradients and higher derivatives can also be given. We construct an interpolating surface that goes
through four points:

data3 = 8880, 0<, 0<, 883, 0<, 1<, 880, 2<, 2<, 883, 2<, 0<<;

points = Partition@Flatten@data3D, 3D

880, 0, 0<, 83, 0, 1<, 80, 2, 2<, 83, 2, 0<<
int3 = InterpolatingPolynomial@data3, 8x, y<D

x
1

3
-

y

2
+ y

Show@Plot3D@int3, 8x, 0, 3<, 8y, 0, 2<, BoxRatios Ø AutomaticD,
Graphics3D@8Red, PointSize@LargeD, Point@pointsD<DD

24.1.2  Own Programs

‡ Lagrange Form

lagrangeInterpolation@xx_List, yy_List, x_D :=
Sum@yyPiT Apply@Times, Hx - Drop@xx, 8i<DL ê HxxPiT - Drop@xx, 8i<DLD, 8i, Length@xxD<D

Define some x values and their corresponding y values:

xx = 8a, b, c<; yy = 8f, g, h<;

The interpolation polynomial in the Lagrange form is as follows:

lagrangeInterpolation@xx, yy, xD

h H-a + xL H-b + xL
H-a + cL H-b + cL

+

g H-a + xL H-c + xL
H-a + bL Hb - cL

+
f H-b + xL H-c + xL

Ha - bL Ha - cL
To understand the  program,  note  first  that Drop[xx, {i}]  deletes  the ith  element  of xx.  Note  then

that calculations with lists are done automatically element by element:

x - Drop@xx, 83<D 8-a + x, -b + x<
xxP3T - Drop@xx, 83<D 8-a + c, -b + c<

Chapter 24  •  Interpolation 795



Here is the quotient of these terms:

Hx - Drop@xx, 83<DL ê HxxP3T - Drop@xx, 83<DL

:
-a + x

-a + c
,

-b + x

-b + c
>

Note  again  that  the  division  of  the  two  lists  was  done  automatically  element  by  element.  Then  we
multiply the elements of the last list:

Apply@Times, Hx - Drop@xx, 83<DL ê HxxP3T - Drop@xx, 83<DLD

H-a + xL H-b + xL
H-a + cL H-b + cL

If we multiply this term by yyP3T, we get one term of the Lagrange interpolating polynomial. Summing
all such terms gives the whole polynomial.

‡ Newton Form

Remove@divD
div@z_ListD := div@zD = Hdiv@Rest@zDD - div@Most@zDDL ê HLast@zD - First@zDL

newtonInterpolation@xx_List, yy_List, x_D := With@8n = Length@xxD<,
Do@div@8xxPiT<D = yyPiT, 8i, n<D;
Sum@div@Take@xx, iDD Product@x - xxPjT, 8j, i - 1<D, 8i, n<DD

Here is an example (we use the same data as previously used):

newtonInterpolation@xx, yy, xD

f +

H-f + gL H-a + xL
-a + b

+

J- -f+g

-a+b
+

-g+h

-b+c
N H-a + xL H-b + xL

-a + c

This  is  of  the  form divHaL + divHa, bL Hx - aL + divHa, b, cL Hx - aL Hx - bL,  where  div  denotes  divided
differences.  Note  that InterpolatingPolynomial  writes  the  polynomial  in  the  Horner  form  (see

Section 24.1.1, p. 792).

The function div calculates the divided differences. We demonstrate how div works. First, note that
to  speed up the computations  we have used dynamic programming: div[z_List] := div[z] = …  (see

Section 18.5.1, p. 597). The starting values for div are calculated as follows:

Do@div@8xxPiT<D = yyPiT, 8i, 3<D

Now div is defined for {a}, {b}, and {c}:

8div@8a<D, div@8b<D, div@8c<D< 8f, g, h<

Then we can calculate the first- and second-order divided differences:

8div@8a, b<D, div@8b, c<D< :
-f + g

-a + b
,

-g + h

-b + c
>

div@8a, b, c<D
-

-f+g

-a+b
+

-g+h

-b+c

-a + c

We can show the divided differences in the form of a table:

796 Mathematica Navigator



TableFormA
88a, "", b, "", c<, 8div@8a<D, "", div@8b<D, "", div@8c<D<, 8"", div@8a, b<D, "",

div@8b, c<D, ""<, 8"", "", div@8a, b, c<D, "", ""<<¨, TableSpacing Ø 80, 3<E
a f

-f+g

-a+b

b g
-
-f+g

-a+b
+
-g+h

-b+c

-a+c
-g+h

-b+c
c h

24.2  Piecewise Interpolation

24.2.1  Two-Dimensional Data

As  shown  in  the  numerical  example  of Section  24.1.1,  p. 793,  if  we  have  many  points  and  thus  an

interpolating polynomial of a high order, the result may be bad; that is, the polynomial behaves badly,
particularly near the end points. Often, it is better to proceed piecewise: Calculate low-order polynomi-
als between successive points. This can be done with ListInterpolation or Interpolation.

These two commands differ in the way we specify the data. With 2D data, we have values fi  at some

points xi. With ListInterpolation, we specify separately the fi values and the corresponding xi values,

whereas with Interpolation  we form a list that consists of pairs 9xi, fi=.  Here is a summary of how to

calculate an interpolating function that consists of polynomials between successive points (the default is
that the polynomials are of third degree).

ListInterpolation[{f1, …, fm}] x coordinates are assumed to be {1, ..., m}
ListInterpolation[{f1, …, fm}, {{xmin, xmax}}] x coordinates are assumed to be evenly spaced

between @xmin, xmaxD
ListInterpolation[{f1, …, fm}, {{x1, …, xm}}] x coordinates are 8x1, ..., xm<

Interpolation[{f1, …, fm}] x coordinates are assumed to be {1, ..., m}
Interpolation[{{x1, f1}, …, {xm, fm}}] x coordinates are x1, ..., xm

The values fi  can be real or complex (or even symbolic), whereas the values of xi  must be real (and
numeric).

‡ Example 1: Piecewise Cubic Interpolation

As an example, we consider the same data we used in Section 24.1.1, p. 793:

data = 81, 2, 0, 2, 2, 2, 0, 0, 2, 3, 5, 4, 3, 1<;

We calculate a piecewise cubic interpolating function, assuming that the x coordinates are 1, …, 14:

int = ListInterpolation@dataD

InterpolatingFunction@881, 14<<, <>D

The result of ListInterpolation  (and Interpolation) is an object called InterpolatingFunction;  it
contains  all  of  the  information  needed  to  handle  the  piecewise  polynomial.  Only  the  interval  of
definition of the piecewise polynomial is shown; all other information is hidden inside the marks <>.

Chapter 24  •  Interpolation 797



We can calculate with the piecewise interpolating function in all  possible ways. Just give a name to
the function, such as int, and remember that its value, for example, at a is int[a] (similarly, the value
of Sin at a is Sin[a]).

A typical use of an interpolating function:

int = ListInterpolation[data]  Calculate an interpolating function
int[a]  Calculate the value of the interpolating function at a

We calculate the value of the function at some points:

8int@1D, int@1.5D, int@2D<

81, 2.3125, 2<

The function goes exactly through all data points and interpolates between them. If we ask for the value
at a point outside of the interval of definition, extrapolation is used, and we get a warning:

int@0.5D

InterpolatingFunction::dmval : Input value 80.5< lies outside the

range of data in the interpolating function. Extrapolation will be used. à
-2.8125

The interpolating function is displayed as follows:

xf = 8Range@14D, data<¨;

Plot@int@xD, 8x, 1, 14<, Epilog Ø Point@xfD, AxesOrigin Ø 80, 0<D

2 4 6 8 10 12 14

1

2

3

4

5

A cubic polynomial  is  calculated for each pair of  points by using these points and their nearest neigh-

bors. The resulting curve is smooth enough to make it an effective and useful way of summarizing and
using large data sets.

Here is the derivative function:

Show@Table@Plot@int'@xD, 8x, i, i + 1<D, 8i, 13<D,
PlotRange Ø 880, 14<, Automatic<, AxesOrigin Ø 80, 0<D

2 4 6 8 10 12 14

-2
-1

1
2
3
4
5

We see that the derivative is discontinuous at 3, 4, 5, …, 12. Next, we integrate the function:

Integrate@int@xD, 8x, 1, 14<D êê N 26.75

Previously, we assumed that the x coordinates are 1, …, 14. If the x coordinates are, for example, 0, 1,
…, 13, then we have to write one of the following three commands:

798 Mathematica Navigator



int = ListInterpolation@data, 880, 13<<D

int = ListInterpolation@data, 8Range@0, 13D<D

int = InterpolationA8Range@0, 13D, data<¨E

When we later solve differential equations numerically, we will encounter InterpolatingFunction

again: The result of NDSolve is an interpolating function (see Section 26.3.1, p. 849).

‡ Options

Options of ListInterpolation and Interpolation:

InterpolationOrder  Degree of the piecewise interpolating polynomials; examples of values: 3, 1

PeriodicInterpolation  Whether a periodic interpolating function is formed; possible values:
False, True

The default value of InterpolationOrder  is 3 so that if you intend to use third-order polynomials,
the option need not be written. Give the option the value 1 if you want a piecewise linear interpolation
(see  the  next  example).  If  we  give PeriodicInterpolation  the  value True,  then  the  interpolating
function is considered a periodic function, with one period being the same as the range of the data (see
Example 3).

‡ Example 2: Piecewise Linear Interpolation

We calculate the piecewise linear interpolating function for the data given in Example 1:

int = ListInterpolation@data, InterpolationOrder Ø 1D

InterpolatingFunction@881, 14<<, <>D
Plot@int@xD, 8x, 1, 14<, Epilog Ø Point@xfD, AxesOrigin Ø 80, 0<D

2 4 6 8 10 12 14

1

2

3

4

5

‡ Example 3: Periodic Interpolation

Now we ask for a periodic interpolating function:

int = ListInterpolation@data, PeriodicInterpolation Ø TrueD

InterpolatingFunction@881, 14<<, <>D
Plot@int@xD, 8x, 1, 56<, AspectRatio Ø 0.2, ImageSize Ø 300D

10 20 30 40 50

1

2

3

4

5

Note  that  for  a  periodic  interpolating  function,  the  data  at  the  end  points  of  the  fundamental  period

must match: If the first and last data points are Ix1, f1M and Ixn fnM, we must have f1 = fn.

Chapter 24  •  Interpolation 799



‡  Using Values of Derivatives

We can also input the values of first and higher derivatives. For example, if we input the values of the
first derivative, the commands are in the following forms:

ListInterpolation[{{f1, df1}, …, {fm, dfm}}]

Interpolation[{{{x1}, f1, df1}, …, {{xm}, fm, dfm}}]

Here, dfi  is  the  value  of  the  first  derivative  at xi.  We  try  to  improve  the  interpolating  function  of
data by specifying that the derivative of the function at 1, 5, 6, and 7 is 1.3, 0, 0, and 0, respectively:

data2 = 881, 1.3<, 2, 0, 2, 82, 0<, 82, 0<, 80, 0<, 0, 2, 3, 5, 4, 3, 1<;

int2 = ListInterpolation@data2D;

Plot@int2@xD, 8x, 1, 14<, Epilog Ø Point@xfD, AxesOrigin Ø 80, 0<D

2 4 6 8 10 12 14

1

2

3

4

5

24.2.2  Higher-Dimensional Data

‡ Regular 3D Data

ListInterpolation  and Interpolation  can  also  be  used  for  higher-dimensional  data  to  calculate
piecewise interpolating surfaces. The choice of command depends on the form of the data.

For  example,  with  3D  data,  we  have  values fi  at  some  points Ixi, yiM.  With ListInterpolation,  we

define separately the fi  values in a matrix form and the values of xi  and yi  in one of several easy ways,

whereas Interpolation  requires the points in the form 99xi, yi=, fi=.  Here is a summary of the ways in

which a piecewise interpolating surface for 3D data can be calculated (the summary extends readily to
higher-dimensional data):

ListInterpolation[data] x and y coordinates are {1, ..., m} and {1, ..., n}

ListInterpolation[data, {{xmin, xmax}, {ymin, ymax}}] x and y coordinates are evenly spaced

between @xmin, xmaxD and Aymin, ymaxE

ListInterpolation[data, {{x1, …, xm}, {y1, …, yn}}] x and y coordinates are 8x1, ..., xm< and

9y1, ..., yn=

data is of the matrix form:
{{f11, …, f1 n}, …, {fm1, …, fmn}}  (each row corresponds to a fixed value of x)

Interpolation[data]

data is of the list form:
{{{x1, y1}, f1}, …, {{xk, yk}, fk}}

800 Mathematica Navigator



With both commands, the x and y  coordinates must eventually form a regular rectangular grid  on the

Ix, yM plane. Such a grid can be seen in the following figure:

xy = Outer@List, 80, 1, 4, 6, 7<, 80, 2, 5, 6<D

8880, 0<, 80, 2<, 80, 5<, 80, 6<<,
881, 0<, 81, 2<, 81, 5<, 81, 6<<, 884, 0<, 84, 2<, 84, 5<, 84, 6<<,
886, 0<, 86, 2<, 86, 5<, 86, 6<<, 887, 0<, 87, 2<, 87, 5<, 87, 6<<<

ListPlotAFlatten@xy, 1D, PlotStyle Ø PointSize@MediumD,

Axes Ø None, AspectRatio Ø Automatic, PlotRange Ø All,

Epilog Ø 9Line@xyD, LineAxy¨E=, ImageSize Ø 90E

Note  that  unlike ListInterpolation, Interpolation  does  not  accept  the  points  in  a matrix  form:
The points must be in a flattened  list  form in which the rows are not separated by curly braces; if your
data is in a matrix form, use Flatten[data, 1] to remove the curly braces of the rows.

The options InterpolationOrder and PeriodicInterpolation can be used as they are for 2D data

(see Section 24.2.1, p. 799). The default order is 3. The order can also be set separately for each indepen-

dent variable (e.g., InterpolationOrder Ø {2, 1}). If there are not enough data for a requested order,
the order is lowered automatically (with a warning). The periodicity can also be defined separately for
each independent variable (e.g., PeriodicInterpolation Ø {True, False}).

‡ An Example

Consider the following data:

data = 885, 6, 5, 7<, 84, 6, 6, 4<, 86, 4, 6, 3<, 82, 3, 3, 5<<;

Here, each row of fi  values corresponds to a fixed value of x. Before calculating an interpolating surface

for these data, we plot the data (see Section 8.6.1, p. 275). If x and y are both in the interval H0, 3L, we can

plot the surface as follows:

ListPlot3DAdata¨, DataRange Ø 880, 3<, 80, 3<<,

Mesh Ø Full, AxesLabel Ø 8"x", "y", None<E

Note that we have to transpose the data because the plotting commands interpret the data in such a way
that each row corresponds to a fixed value of y, whereas with ListInterpolate each row corresponds

to a fixed value of x. Then we calculate a piecewise third-order interpolating surface and plot it:

Chapter 24  •  Interpolation 801



int = ListInterpolation@data, 880, 3<, 80, 3<<D

InterpolatingFunction@880, 3<, 80, 3<<, <>D
Plot3D@int@x, yD, 8x, 0, 3<, 8y, 0, 3<, AxesLabel Ø 8"x", "y", ""<D

The surface goes exactly through all of the given points and interpolates between them. We calculate a
value of the surface and integrate it in a region:

int@1.7, 2.1D 6.24158

Integrate@int@x, yD, 8x, 1, 2<, 8y, 0, 1<D êê N 4.76563

‡ Giving Derivatives

ListInterpolation[{ …,{fij, {dfxij, dfyij}}, … }]

Interpolation[{ …, {{xi, yi}, fi,{dfxi, dfyi}}, … }]

Derivatives are specified in ListInterpolation by replacing fij with a list {fij, {dfxij, dfyij}} in

which dfxij  and dfyij  are the derivatives with respect to x and y, respectively (if a derivative is lacking

at a point, then give the value Automatic for the derivative).

‡ Irregular 3D Data

We  noted  that  for ListInterpolation  and Interpolation,  the  3D  points  must  form  a  regular

rectangular  grid  on  the Ix, yM  plane  (however,  neither  the x  points  nor  the y  points  need  be  evenly

spaced).  If  the  points  are  spaced  irregularly,  there  is  no  built-in  command  to  calculate  a  piecewise
interpolating  surface  as  a mathematical  function.  However,  with ListPlot3D  we  can  show  such  a

surface (see Section 8.6.1, p. 281):

SeedRandom@2D; data = Table@With@
8x = RandomReal@80, p<D, y = RandomReal@80, p<D<, 8x, y, Sin@xD Sin@yD<D, 810<D;

gr = Graphics3D@8PointSize@MediumD, Point@dataD<D;

8Show@ListPlot3D@data, Filling Ø Bottom, Mesh Ø None,
ColorFunction Ø "SouthwestColors", InterpolationOrder Ø ÒD, grD & êü 80, 1<<

:: , >>

By  defining  the  interpolation  order  to  be  0,  we  get  flat  Voronoi  regions  (the  first  plot  above).  With  a
package we can show a triangular surface plot; a similar triangularization is obtained with ListPlot3D

by defining Mesh Ø All:

802 Mathematica Navigator



<< ComputationalGeometry`

8Show@ListPlot3D@data, Filling Ø Bottom,
Mesh Ø All, ColorFunction Ø "SouthwestColors", Ticks Ø NoneD, grD,

Show@TriangularSurfacePlot@dataD, grD<

: , >

24.3  Splines

24.3.1  Cubic Splines

‡ Introduction to Splines

We observed in Section 24.1.1,  p. 793,  that  if  one polynomial  is  required to pass through many points,

the  resulting  polynomial  may  fluctuate  in  an  undesirable  manner.  Piecewise  interpolation  is  often

better; such interpolating functions were considered in Section 24.2.1, p. 797. The resulting function does

not  have  unnecessary  fluctuations,  but  its  derivative  is  not  continuous,  and  so  the  function  lacks  this
smoothness condition. Splines are piecewise interpolating functions that are smooth.

In the Splines` package:

SplineFit[data, type]  A spline of type type through the points in data

The  points  are  given  in  the  form {{x1, f1}, {x2, f2}, … },  and  the  type  of  spline  can  be Cubic,
Bezier, or CompositeBezier. A cubic spline is made up of a set of cubic polynomials in such a way that
the  resulting  function  passes  through  each  point,  the  first  and  second  derivatives  of  the  function  are
continuous,  and the  second derivative  is  zero  at  the  end points. Bezier  splines  interpolate  only  the  end
points;  other  points  “control”  the  curve.  A composite  Bezier  spline  interpolates  the  first,  third,  fifth,  …
points, while the other points control the curve.

‡ Example 1

Consider again the numeric data that we used previously in this chapter:

data = 8Range@14D, 81, 2, 0, 2, 2, 2, 0, 0, 2, 3, 5, 4, 3, 1<<¨
881, 1<, 82, 2<, 83, 0<, 84, 2<, 85, 2<, 86, 2<, 87, 0<,
88, 0<, 89, 2<, 810, 3<, 811, 5<, 812, 4<, 813, 3<, 814, 1<<

Calculate the cubic spline:

<< Splines`

cub = SplineFit@data, CubicD

SplineFunction@Cubic, 80., 13.<, <>D

Chapter 24  •  Interpolation 803



The  result  is  a SplineFunction  object;  it  contains  all  of  the  information  about  the  spline.  Only  the
interval in which the spline is defined is shown. You may wonder about the interval 80., 13.< because our
points  were  in  the  interval H1, 14L.  Generally,  if  you  have n  points,  the  interval  of  the  spline  is
80., Hn - 1L.<.  Thus,  the  interval  shown  emerges  simply  by  giving  each  observation  an  ordinal  number,
starting  with  0.  This  may  seem  odd,  but  there  are  reasons  for  it,  which  will  be  discussed  when  we
consider multiple-valued splines in Example 2.

If  we  want  to  calculate  the  value  of  the  spline  at  a  particular  point,  we  have  to  reparameterize  the
point so that it  complies with the numbering system used by SplineFit.  For example, the point 3.5 is
halfway between the third and fourth points, and so the appropriate argument is 2.5:

cub@2.5D 83.5, 0.797698<

The result shows, besides the value of the spline (0.797698), the coordinate of the point in the normal x
axis  (3.5).  Thus, cub  is  a  parametric  function.  Accordingly,  the  spline  can  be  plotted  with
ParametricPlot:

ParametricPlot@cub@tD, 8t, 0, 13<,
Epilog Ø Point@dataD, AspectRatio Ø 1 ê GoldenRatioD

2 4 6 8 10 12 14

1

2

3

4

5

If  we want to integrate the spline, we have to take the second component cub[t]P2T  that contains the
value of the spline. We integrate the spline numerically when x is in H1, 14L, which also means that t is in
H0, 13L (the warning we get is harmless):

NIntegrate@cub@tDP2T, 8t, 0, 13<D

Part::partw : Part 2 of HSplineFunction@Cubic, 80., 13.<, <>DL@tD does not exist. à

26.3721

Derivatives can also be calculated numerically. We calculate the derivative when x is 2.5~that is, when t
is 1.5:

<< NumericalCalculus`

ND@cub@tD, t, 1.5DP2T -2.66597

‡ Example 2

A  spline  can  be  drawn  through  any  set  of  points  in  the Ix, yM  plane.  Accordingly,  the  resulting  curve

may well be multiple-valued. Here is an example:

data2 = 880, 1<, 81, 1<, 82, 1<, 82, 2<, 81, 2<, 81, 1<, 81, 0<, 81, -1<, 81, -2<,
82, -2<, 82, -1<, 81, -1<, 80, -1<, 8-1, -1<, 8-2, -1<, 8-2, -2<, 8-1, -2<,
8-1, -1<, 8-1, 0<, 8-1, 1<, 8-1, 2<, 8-2, 2<, 8-2, 1<, 8-1, 1<, 80, 1<<;

cub2 = SplineFit@data2, CubicD

SplineFunction@Cubic, 80., 24.<, <>D

804 Mathematica Navigator



ParametricPlot@cub2@tD, 8t, 0, 24<, Epilog Ø Point@data2D, ImageSize Ø 100D

-2 -1 1 2

-2

-1

1

2

With multiple-valued splines, the reparameterization of the argument becomes clear. If, for example,
we  want  the  value  of  the  spline  at  a  point  in  the  highest  part  of  the  top  right  loop,  we  must  inform
Mathematica  that we want a value between the third and fourth points (when the counting begins from
0):

cub2@3.5D 81.47835, 2.17933<

24.3.2  Bezier Splines

‡ Ordinary Bezier Splines

Consider again the same data introduced previously, and calculate a Bezier spline:

<< Splines`

b = SplineFit@data, BezierD

SplineFunction@Bezier, 80., 13.<, <>D
ParametricPlot@b@tD, 8t, 0, 13<, Epilog Ø Point@dataD,

PlotRange Ø 8All, 8-0.3, 5.3<<, AxesOrigin Ø 80, 0<, AspectRatio Ø 1 ê GoldenRatioD

2 4 6 8 10 12 14

1

2

3

4

5

As can be seen, a Bezier spline interpolates only the end points; other points control the curve.

‡ Composite Bezier Splines

Now we calculate a composite Bezier spline:

cb = SplineFit@data, CompositeBezierD

SplineFunction@CompositeBezier, 80., 13.<, <>D
ParametricPlot@cb@tD, 8t, 0, 13<, Epilog Ø Point@dataD,

PlotRange Ø All, AxesOrigin Ø 80, 0<, AspectRatio Ø 1 ê GoldenRatioD

2 4 6 8 10 12 14

1

2

3

4

5

Chapter 24  •  Interpolation 805



As can be seen, a composite Bezier spline interpolates the first, third, fifth, … points, whereas the other
points control the curve.

24.4  Interpolation of Functions

24.4.1  Usual Interpolation

‡ Rational Interpolation

Thus far, we have considered the interpolation of given data. Another situation is the case in which we
want to build an interpolating polynomial for a given function. One possibility is that the interpolation
points  are  given  (i.e.,  we  cannot  determine  them  ourselves),  and  another  possibility  is  that  we  can
choose the interpolation points. In the latter case, we can define the points so that the error of interpola-

tion  (between  interpolation  points)  becomes  smaller;  the  result  is  a  Chebyshev  approximation.  With  a
package, we can calculate both polynomial and rational interpolating functions.

In the FunctionApproximations` package:

RationalInterpolation[f, {x, m, n}, {x1, x2, …, xm+n+1}]  Rational interpolating function of

degree (m, n) for f through the given points
RationalInterpolation[f, {x, m, n}, {x, a, b}]  Rational interpolating function of degree (m, n)

for f in the interval (a, b) (i.e., rational Chebyshev approximation)

Here, m and n are the desired degrees of the numerator and the denominator. Giving n the value zero,
we can calculate polynomial interpolating functions.

In Chebyshev approximation, the interpolation points are chosen in a special way: They are the zeros
of  the Hm + n + 1Lth-degree  Chebyshev polynomial.  It  turns  out  that  by choosing the point  in this  way,
we  get  a  good  approximation  to  the  function:  The  error  is  small  throughout  the  interval Ha, bL.  This
means that the result is near the best approximation, which is the minimax approximation. Approxima-

tion of functions is considered in more detail in Section 25.2.

‡ Example 1: Interpolation

Suppose  we  have  to  interpolate  the  following  function  (the  cumulative  distribution  function  of  the
standard normal distribution):

f = H1 + Erf@x ê Sqrt@2DDL ê 2;

The  interpolation  points  are  given  as  0,  1/3,  2/3,  …,  2.  We  form  the  sixth-degree  interpolating
polynomial:

<< FunctionApproximations`

int = RationalInterpolation@f, 8x, 6, 0<, Range@0, 2, 1 ê 3DD

0.5 + 0.398489 x + 0.00309722 x2
-

0.0739335 x3
+ 0.00750692 x4

+ 0.00801905 x5
- 0.0018339 x6

Here is the absolute error:

806 Mathematica Navigator



Plot@f - int, 8x, 0, 2<D

0.5 1.0 1.5 2.0

-0.00003

-0.00002

-0.00001

0.00001

0.00002

The error has relatively large values near the end points of the interval.

‡ Example 2: Chebyshev Approximation

Now we calculate the sixth-degree Chebyshev approximation:

cheb = RationalInterpolation@f, 8x, 6, 0<, 8x, 0, 2<D

0.500007 + 0.398604 x + 0.00255252 x2
-

0.0732252 x3
+ 0.00721336 x4

+ 0.00800419 x5
- 0.00181145 x6

Plot@f - cheb, 8x, 0, 2<D

0.5 1.0 1.5 2.0

-0.00001

-5.μ10-6

5.μ10-6

0.00001

The points where the error is  zero are chosen according to the zeros of  the seventh-degree Chebyshev
polynomial. Notice how small the error is over the whole interval. We could use the option Bias to fine-

tune the points where the error is zero to produce an even more uniform error (see Section 25.2.2, p. 828).

24.4.2  Piecewise Interpolation

‡ Piecewise Interpolation for Functions

FunctionInterpolation  forms  a  piecewise  interpolating  function  for  a  mathematical  expression.  The
expression  can  contain  built-in  mathematical  functions  and  possibly  also  interpolating  functions.  For
example,  if  an  expression  is  so  complicated  that  working  with  it  takes  some  time,  we  may  consider
forming  an  interpolating  function  for  it  because  working  with  these  latter  functions  is  fast.  Another
example is an expression containing several interpolating functions. We may again consider forming a
single interpolating function for the expression, thus making computations faster.

Of  course,  we  could  form  an  interpolating  function  manually  by  sampling  the  mathematical
expression  at  some  points  and  then  using,  for  example, ListInterpolation.  However,
FunctionInterpolation  does  the  job  automatically,  is  adaptive,  and offers  some options  for  control-
ling the precision.

FunctionInterpolation[expr, {x, a, b}]  Form an interpolating function for expr by sampling
expr at sufficiently many points in (a, b)

The  command  generalizes  for  multivariate  expressions.  For  example,  if expr  has  two  independent
variables x and y, the command is of the following form:

FunctionInterpolation@expr, 8x, a, b<, 8y, c, d<D

The command has some options:

Chapter 24  •  Interpolation 807



Options@FunctionInterpolationD

8InterpolationOrder Ø 3, InterpolationPrecision Ø Automatic,
AccuracyGoal Ø Automatic, PrecisionGoal Ø Automatic,
InterpolationPoints Ø 11, MaxRecursion Ø 6<

Of  these, InterpolationOrder  is  the  usual  order  of  the  polynomial  pieces,  whereas
InterpolationPrecision  is  the  precision  of  the  values  to  be  returned  by  the  interpolating  function
generated. InterpolationPoints  is  the initial  number of  evenly spaced points (in each dimension) at
which the  expression is  evaluated,  and MaxRecursion  is  the  maximum number  of  times  a  subinterval
can be bisected (to achieve the desired precision). PrecisionGoal  and AccuracyGoal  are the standard
options for controlling the precision and accuracy of the result.

‡ Example 1: A Definite Integral

Suppose we want to treat the definite integral of sinIsinIt2MM over H0, xL as a function of x. First, we define

this function:

g@x_?NumericQD := NIntegrate@Sin@Sin@t^2DD, 8t, 0, x<D

We then form an interpolating function for this function:

int = FunctionInterpolation@g@xD, 8x, 0, p<D

InterpolatingFunction@880., 3.14159<<, <>D

Now we can, for example, plot the function:

Plot@int@xD, 8x, 0, p<D

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

(The  time  taken  to  make  this  plot  is  a  fraction  of  the  time  needed  to  make  the  plot  from  the  original
definite integral as Plot[g[x], {x, 0, p}].) The error is small:

Plot@g@xD - int@xD, 8x, 0, p<, PlotRange Ø All, AspectRatio Ø 0.2, ImageSize Ø 400D

0.5 1.0 1.5 2.0 2.5 3.0

-1.5μ10-6
-1.μ10-6
-5.μ10-7

5.μ10-7
1.μ10-6

1.5μ10-6
2.μ10-6

Below,  we  show  the  points  at  which  the  expression  has  been  sampled.  We  see  that  the  sampling  is
adaptive: More points are taken where the expression changes more rapidly.

p = 8InputForm@intDP1, 3, 1T, InputForm@intDP1, 4, 3T<¨;

808 Mathematica Navigator



Graphics@Line@88ÒP1T, 0<, Ò<D & êü p, Axes Ø True,
AspectRatio Ø 0.2, ImageSize Ø 400, ImagePadding Ø 8837, 3<, 83, 3<<D

0.5 1.0 1.5 2.0 2.5 3.0

0.2

0.4

0.6

0.8

In Section 30.7.3, p. 1051,  we use FunctionInterpolation  in Bayesian statistics in the same way as

in the example here.

‡ Example 2: The Solution of a Nonlinear Equation

In Section 5.2.3, p. 134, we considered the following equation:

eqn = y Exp@r H1 - yLD ã 2 - y;

The equation defined a function yHrL. We define that function:

yr@r_?NumericQD := y ê. FindRoot@eqn, 8y, 0.1<D

Then  we  form  an  interpolating  function  for  this  function  (we  do  not  show  here  a  series  of  warning
messages) and plot it:

yy = FunctionInterpolation@yr@rD, 8r, 2, 2.8<D êê Quiet

InterpolatingFunction@882., 2.8<<, <>D
Plot@yy@rD, 8r, 2, 2.8<D

2.2 2.4 2.6 2.8

0.4

0.6

0.8

1.0

‡ Example 3: A Function of an Interpolating Function

As a continuation of Example 2, we note that in Section 5.2.3 we also plotted the following expression as
a function of r:

delta = Abs@H1 - r yy@rDL H1 - 2 r + r yy@rDLD;

We  can  first  form  an  interpolating  function  for delta  and  then  plot  this  function  (we  choose  a  large
number of interpolation points to get a sufficiently sharp corner in the figure):

delta2 = FunctionInterpolation@delta, 8r, 2, 2.8<, InterpolationPoints Ø 60D

InterpolatingFunction@882., 2.8<<, <>D
Plot@delta2@rD, 8r, 2, 2.8<, Epilog Ø Line@880, 1<, 82.8, 1<<DD

2.2 2.4 2.6 2.8

0.5

1.0

1.5

2.0

Chapter 24  •  Interpolation 809



‡  Example 4: A Combination of Two Interpolating Functions

In Section 26.4.3,  p. 874,  we present  a  module linearBVP  that  solves  linear boundary value problems.

The solution can be written as a linear combination of two interpolating functions (they are the results of
solving two initial value problems with NDSolve). FunctionInterpolation can then be used to form a
single interpolating function.

810 Mathematica Navigator



25
Approximation

Introduction 811

25.1  Approximation of Data 812

25.1.1  Linear Fitting 812 Fit, showFit, showResiduals

25.1.2  More about Linear Fitting 816 dataLSQ

25.1.3  Nonlinear Fitting 818 FindFit

25.1.4  More about Nonlinear Fitting 821 FindFit

25.2  Approximation of Functions 824

25.2.1  Simple Methods 824 Series, PadeApproximant, RationalInterpolation, functionLSQ, etc.

25.2.2  Minimax Approximation 827 MiniMaxApproximation

Introduction

If the facts do not fit the theory, change the facts.~Albert Einstein

We will let Einstein rest (relatively speaking) with his strange advice, and we will do just the opposite.
Indeed, we have facts in the form of data or functions, and we have theory in the form of approximating
functions.  We  will  try  to  find  the  approximations  that  fit  the  facts  as  well  as  possible.  There  are  two
basic  areas  in  approximation:  approximation  of data  by  a  function and approximation  of  a function  by
another function. Approximation of data is often done to get a good summary of the overall behavior of
the  data,  whereas the reason to approximate a  function may be to  get  an expression that  requires  less
time to evaluate.

‡ Approximation of Data

Approximation of data is useful if the data contain errors and we want to find a simple representation of
the data by a function. We choose the form of the function by looking at the overall behavior of the data.
The  chosen  function  contains parameters,  and  for  these  parameters  we  try  to  find  the  best  values
according to a chosen criterion. The most widely used method is the least-squares method. There are two
types of least-squares problems:

• Linear  least  squares:  The parameters a, b,  … appear linearly in the function, which means that the
function is of the form a f HxL + b gHxL + ...; for example, a + b x + c x2 or a expH-xL + b sinHxL.

• Nonlinear  least  squares:  The  parameters  appear  nonlinearly  in  the  function,  which means that  the

function is of the form f Hx, a, b, ...L; for example, expHa + b xL or a xb expHc xL.

For  linear  least  squares,  we  have Fit.  Nonlinear  least  squares  are  done  with FindFit.  If  we  want
statistical  analysis  of  the  fits,  we  can  use Regress  and NonlinearRegress  from  some packages;  these
commands  are  considered  in  Chapter  30,  in  which  we  also  consider local  regression  and  smoothing  of
data.



If the data do not contain observational errors, then interpolation or piecewise interpolation may be
the appropriate technique for summarizing and using the data (see Chapter 24).

In Sections 26.4.5, p. 878, and 28.3.2, p. 954, we estimate differential and difference equation models

from data.

‡ Approximation of Functions

Approximation  of  a  function  is  useful  if  we  have  a  complicated  function  that  is  difficult  or  time-
consuming to evaluate  and handle and we want  to  find a  simpler function that  is  close enough to the
original function for practical purposes. We can distinguish two types of situations: approximation near
a point and approximation in an interval.

For approximation near a point, we have, for example, Taylor polynomials. Another method is Padé
approximation; in that case, the approximating function is a rational function.

For  approximation  in  an  interval,  we  can  use  interpolation  and  approximation  techniques.  In
Chapter 24, we noted that piecewise interpolation by FunctionInterpolation is a strong candidate for
an  approximation  of  a  complex  function  in  an  interval.  We  also  noted  that RationalInterpolation

gives  Chebyshev  approximations;  they  are  close  to  minimax  approximations.  The  true  minimax
approximation is calculated by MinimaxApproximation;  now the maximum error of the approximation
over the whole interval is made as small as possible. The approximating function is a rational function,
and the starting point for the iterative method is a Chebyshev approximation.

25.1  Approximation of Data

25.1.1  Linear Fitting

‡ Finding a Linear Fit

Fit  is  designed for fitting problems in which the parameters appear linearly.  The criterion used is the
least-squares criterion.

Fit[data, basis, var]  Find the least-squares fit to data as a linear combination of functions basis

of variable var

data can be given in either of the following forms:
{f1, f2, … }  Fit using the points {1, f1}, {2, f2}, …
{{x1, f1}, {x2, f2}, … }  Fit using the given points

Examples of basis:
{1, x}  The fitting function is of the form a + b x
{1, x, x^2}  The fitting function is of the form a + b x + c x2

{Exp[x], Cos[x]}  The fitting function is of the form a expHxL + b cosHxL

We also have FindFit, which suits both linear and nonlinear fitting.

FindFit[data, funct, params, var]  When funct is an expression of the variable var and contains
the parameters params, find values for the parameters such that the function fits data in the best
way (in the sense of least squares, by default)

812 Mathematica Navigator



We will consider FindFit mainly in Sections 25.1.3 and 25.1.4 in the context of nonlinear fitting. Note
that  with FindFit  we can define our own norm function,  and this enables us to find, for example, L1-

norm fits; an example is provided in Section 25.1.4, p. 822.

If you want statistical information about the fit, use Regress from the LinearRegression`  package (see

Section 30.5.1, p. 1030).

Recall  that  in Section 10.1.3,  p. 329,  we presented a manipulation to interactively study linear least-

squares fitting. A modified manipulation is given in Section 25.1.4, p. 822.

‡ A First Fit

In this example, we use simulated data:

xx = Range@0, 50D; SeedRandom@2D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;

data = 8xx, 2 + xx - 0.004 xx^2 + 2 rand<¨;

Short@data, 2D

880, 3.24673<, á49à, 850, 42.7481<<

Recall that  means the transpose; write it as ÂtrÂ. Note also that we utilized the fact that Mathematica
automatically does all calculations with vectors element by element. The data look as follows:

pdata = ListLinePlot@data, AspectRatio Ø 0.4, Mesh Ø All, ImageSize Ø 200D

10 20 30 40 50

10

20

30

40

We try a linear fit for the data (with the simulated data in mind, we know that a quadratic fit would be
better):

fit = Fit@data, 81, x<, xD

3.66138 + 0.78471 x

We could also use FindFit:

FindFit@data, a + b x, 8a, b<, xD

8a Ø 3.66138, b Ø 0.78471<
fit = a + b x ê. %

3.66138 + 0.78471 x

The fit looks as follows:

Show@pdata, Plot@fit, 8x, 0, 50<DD

10 20 30 40 50

10

20

30

40

Chapter 25  •  Approximation 813



The fit seems quite good. Next, we do a simple graphical residual analysis to get information about
the quality of the fit. But first we write, for later use, a program for fitting and showing the data and the
fit:

showFit@data_, basis_, var_, opts___D := With@8fit = Fit@data, basis, varD<,
Print@Show@ListLinePlot@data, Mesh Ø AllD,

Plot@fit, 8var, Min@dataPAll, 1TD, Max@dataPAll, 1TD<D, optsDD;
fitD

fit = showFit@data, 81, x<, x, AspectRatio Ø 0.4, ImageSize Ø 200D

10 20 30 40 50

10

20

30

40

3.66138 + 0.78471 x

‡ Graphical Residual Analysis

First, we extract the x and f  values:

8xx, ff< = data¨;

Now xx  contains the x  values and ff  the f  values. We then calculate the predicted values~that is, the

values of the fit at the data points:

pred = fit ê. x Ø xx;

We calculate the residuals:

resf = ff - pred;

The sum of the squared residuals is as follows:

resf.resf 239.262

(The  parameters  of fit  were  chosen by Fit  such  that  the  sum of  the  squared  residuals  is  as  small  as
possible. The minimum value is thus 239.262.) To plot the residuals, add the x values:

res = 8xx, resf<¨;

Here is a plot of the residuals:

pres = ListLinePlot@res, Mesh Ø AllD

10 20 30 40 50

-6

-4

-2

2

4

6

The residuals  are  quite  random but not  wholly random: A roughly quadratic  pattern can be  seen.  We
investigate the situation by fitting a cubic polynomial to the residuals:

814 Mathematica Navigator



resfit = Fit@res, 81, x, x^2, x^3<, xD

-1.65214 + 0.134729 x + 0.00130549 x2
- 0.0000883095 x3

Show@pres, Plot@resfit, 8x, 0, 50<DD

10 20 30 40 50

-6

-4

-2

2

4

6

This plot confirms that the linear fit to the data is not adequate; the residuals contain some information.

For later use, we write a program for this kind of graphical residual analysis:

showResiduals@data_, fit_, var_, opts___D := ModuleA8xx, ff, resf, res, resfit<,

8xx, ff< = data¨;
resf = ff - Hfit ê. var Ø xxL;

res = 8xx, resf<¨;
resfit = Fit@res, 81, var, var^2, var^3<, varD;
Show@ListLinePlot@res, Mesh Ø AllD,

Plot@resfit, 8var, Min@xxD, Max@xxD<D,

PlotLabel Ø Row@8"Sum of squared residuals: ", resf.resf<D, optsDE

showResiduals@data, fit, xD

10 20 30 40 50

-6

-4

-2

2

4

6

Sum of squared residuals: 239.262

‡ A Second Fit

Since the linear fit was not adequate, we next try a quadratic fit:

fit = showFit@data, 81, x, x^2<, x, AspectRatio Ø 0.4, ImageSize Ø 200D

10 20 30 40 50

10

20

30

40

1.48998 + 1.0506 x - 0.00531772 x2

The fit seems very good. We also show the residuals:

Chapter 25  •  Approximation 815



showResiduals@data, fit, xD

10 20 30 40 50

-4

-2

2

4

6

Sum of squared residuals: 185.163

It seems that the residuals do not contain significant information anymore.

25.1.2  More about Linear Fitting

‡ Multidimensional Data

With Fit, the data can be multidimensional. If we have, for example, two independent variables x and y

and a response variable f ,  we can find a fitting surface for the data. The following is a summary of 3D

fitting, but the summary generalizes readily for higher-dimensional data.

Fit[data, basis, vars]  Find the least-squares fit to data as a linear combination of functions
basis of variables vars

data is given in the following form:
{{x1, y1, f1}, {x2, y2, f2}, … }

Examples of basis:
{1, x, y}  The fitting function is of the form a + b x + c y

{1, x, y, x y, x^2, y^2}  The fitting function is of the form a + b x + c y + d x y + e x2 + f y2

Consider the following 3D data:

data = 886, 4, 7.92<, 86, 5, 9.31<, 86, 6, 9.74<,
87, 4, 11.24<, 87, 5, 12.09<, 87, 6, 12.62<,
88, 4, 14.31<, 88, 5, 14.58<, 88, 6, 16.16<<;

(In our example, the x and y arguments form a regular grid, but generally the points may be irregular.)

We then fit a plane:

fit = Fit@data, 81, x, y<, 8x, y<D

-13.305 + 3.01333 x + 0.841667 y

Plot3D@fit, 8x, 6, 8<, 8y, 4, 6<D

The sum of the squared residuals is as follows:

816 Mathematica Navigator



8xx, yy, ff< = data¨;
pred = fit ê. 8x Ø xx, y Ø yy<;
Hff - predL.Hff - predL
0.526717

‡ Own Least Squares

The following program is based on the equation X X a = X f , where vector a contains the parameters to

be estimated, vector f  contains the fi  values, and the ith row of matrix X contains the values of the basis

functions at xi. If we solve the linear equations for a, we get the least-squares parameters.

dataLSQ@xx_List, ff_List, basis_List, t_D := WithA8X = basis ê. t Ø Ò & êü xx<,

LinearSolveAX¨.X, X¨.ffE.basisE

Here, xx  and ff  contain the x  and f  values of the data, basis  contains the basis functions, and t  is

the variable of the basis functions. As an example, we find a quadratic fitting curve for the same data we

considered in Section 25.1.1, p. 813:

xx = Range@0, 50D; SeedRandom@2D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;
ff = 2 + xx - 0.004 xx^2 + 2 rand;

dataLSQ@xx, ff, 81, x, x^2<, xD

1.48998 + 1.0506 x - 0.00531772 x2

We could also use LeastSquares (Fit actually uses this command):

LeastSquares@81, Ò, Ò^2< & êü xx, ffD

81.48998, 1.0506, -0.00531772<

‡ Logarithmic Transform

If the data show an exponential growth, then one candidate for the fitting function is f HxL = expHa + b xL,
but this is nonlinear in the parameters a and b, so Fit cannot be applied in the standard way. However,

we can take logarithms of the values of the function: logI f HxLM = a + b x. Thus, the logarithms of the data

have a simple linear form to which we can apply Fit. After the fit a` + b
`

x is found for Ixi, logI fiMM, we do

the inverse transform to find the fit expJa` + b
`

xN for the original data.

Taking logarithms and then using linear least squares is a widely used procedure, but note that the
resulting  fit  is  not  the  best  possible  one.  To  find  a  true  least-squares  fit  to  the  exponential  model,

FindFit should be used (see Section 25.1.3, p. 819).

First, we generate points that show an exponential growth:

xx = Range@0, 10, 0.2D; SeedRandom@0D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;

data = 8xx, Exp@0.3 + 0.2 xxD + 0.5 rand<¨;

Then we take logarithms of the f  values:

8xx, ff< = data¨;

logdata = 8xx, Log@ffD<¨;

Now we fit a linear function to this data and make the inverse transform:

Chapter 25  •  Approximation 817



logfit = Fit@logdata, 81, x<, xD

0.0902513 + 0.228637 x

fit = Exp@logfitD

‰
0.0902513+0.228637 x

The coefficients 0.09 and 0.23 are quite near the values 0.3  and 0.2  that  we used in the simulation. We
plot the fit and the data:

Show@ListLinePlot@data, Mesh Ø AllD,
Plot@fit, 8x, 0, 10<DD

2 4 6 8 10

2

4

6

8

10

The  fit  seems  to  be  good.  We  show  the  residuals  (using  the  program showResiduals  presented  in

Section 25.1.1, p. 815):

showResiduals@data, fit, xD

2 4 6 8 10

-1.0

-0.5

0.5

1.0

Sum of squared residuals: 11.8784

The residuals  are  quite  near  zero  but  not  quite  random.  We will  apply FindFit  in  Section 22.1.3,  and
then we get a slightly better fit.

25.1.3  Nonlinear Fitting

‡ Finding a Nonlinear Fit

FindFit[data, funct, params, var]  When funct is an expression of the variable var and contains
the parameters params, find values for the parameters such that the function fits data in the best
way (in the sense of least squares, by default)

data can be given in either of the following forms:
{f1, f2, … }  Fit using the points {1, f1}, {2, f2}, …
{{x1, f1}, {x2, f2}, … }  Fit using the given points

Examples of funct: Exp[a + b x], a/(1 + b Exp[-c x])

The parameter specification params is of the form {a, b, … } or of the form {{a, a0}, {b, b0}, … }. In

the former case, the starting value for each parameter is 1, and in the latter case, a0, b0, and so on

are used as the starting values (all parameters need not have the same form of specification).

If you want statistics of the model, use NonlinearRegress (see Section 30.5.2, p. 1035).

818 Mathematica Navigator



By default, FindFit  uses the Levenberg-Marquardt method to find the best values for the parame-

ters of a function that is nonlinear in the parameters. The default criterion is to minimize the square root
of  the  sum  of  the  squares  of  the  residuals;  the  result  is  a  least-squares  fit.  The  method  is  an  iterative
procedure,  and  initial  guesses  for  the  parameters  can  be  provided.  In  general, FindFit  only  finds  a
locally optimal fit (FindFit effectively uses FindMinimum to minimize the norm of the residuals).

We can  have  constraints cons  for  the  parameters.  In  place  of funct  in  the  previous  box,  just  write
{funct, cons}.

Multidimensional  data  can  be  entered  in  the  same  way  as  for Fit.  For  example,  if  we  have  two
independent variables, the command is of the following form:

FindFit[{{x1, y1, f1}, {x2, y2, f2}, … }, funct, {a, b, … }, {x, y}]

‡ Example 1: Exponential Growth

We  consider  the  same  data  that  were  used  when  we  introduced  the  logarithmic  transform  in Section

25.1.2,  p. 817,  and we fit  the same model expHa + b xL,  which we used there.  We try the default starting

value of 1 for both parameters:

xx = Range@0, 10, 0.2D; SeedRandom@0D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;

data = 8xx, Exp@0.3 + 0.2 xxD + 0.5 rand<¨;

f = Exp@a + b xD;

ab = FindFit@data, f, 8a, b<, xD

8a Ø 0.202349, b Ø 0.212479<
fit = f ê. ab

‰
0.202349+0.212479 x

In Section 25.1.2 we obtained, by the logarithmic transform, the fit ‰0.090 x+0.229 x.  Thus, the two fits differ
somewhat. We plot the fit and show the residuals (using the program showResiduals  we presented in

Section 25.1.1, p. 815):

Show@ListLinePlot@data, Mesh Ø AllD,
Plot@fit, 8x, 0, 10<DD

2 4 6 8 10

2

4

6

8

10

showResiduals@data, fit, xD

2 4 6 8 10

-1.0

-0.5

0.5

Sum of squared residuals: 10.18

The  sum  of  the  squared  residuals,  10.18,  is  somewhat  smaller  than  the  value  11.88  obtained  by  the
logarithmic transform.

Chapter 25  •  Approximation 819



‡  Example 2: Logistic Growth

In an experiment,  the growth of  a  yeast  culture  was measured at  time instances 0,  1,  2,  …, 18 (hours).
The measurements were as follows (Pearl, 1927):

yeast = 89.6, 18.3, 29.0, 47.2, 71.1, 119.1, 174.6, 257.3, 350.7,
441.0, 513.3, 559.7, 594.8, 629.4, 640.8, 651.1, 655.9, 659.6, 661.8<;

tt = Range@0, 18D;

data2 = 8tt, yeast<¨;

p1 = ListPlot@data2D

5 10 15

100

200

300

400

500

600

The growth seems to follow the logistic pattern a ê H1 + b ‰-c xL. We try this model:

f = a ê H1 + b Exp@-c tDL;

abc = FindFit@data2, f, 8a, b, c<, tD

8a Ø 663.022, b Ø 71.5763, c Ø 0.546995<
fit = f ê. abc

663.022

1 + 71.5763 ‰-0.546995 t

The fit is very good:

Show@p1, Plot@fit, 8t, 0, 18<DD

5 10 15

100

200

300

400

500

600

‡ Example 3: A Modified Logistic Growth

Another  parameterization  of  the  logistic  model  is Mí B1 + JM
y0

- 1N expH-r M tLF.  This  is  the  form  of  the

solution of the logistic differential equation model y£HtL = r yHtLAM - yHtLE with yH0L = y0. The parameter M

is the limiting value of yHtL as time approaches infinity.

f2 = M ë I1 + IM ë y0 - 1M Exp@-r M tDM;

FindFit@data2, f2, 8M, y0, r<, tD

8M Ø 393.039, y0 Ø 9.6, r Ø 0.819405<

If  we  plotted  this  fit,  we  would  see  that  the  fit  is  very  bad; FindFit  reached  a  local  optimum.  For
example, the value of M  is approximately 393, whereas it should be approximately 660. To get a better
fit, we give our own starting value for r:

820 Mathematica Navigator



Myr = FindFit@data2, f2, 8M, y0, 8r, 0.1<<, tD

8M Ø 663.022, y0 Ø 9.13552, r Ø 0.000825002<
f2 ê. Myr

663.022

1 + 71.5763 ‰-0.546995 t

Now we obtained the same fit as in the preceding example. We could also use a constraint for r:

Myr = FindFit@data2, 8f2, r < 0.1<, 8M, y0, r<, t, Method Ø "NMinimize"D

8M Ø 663.051, r Ø 0.000824771, y0 Ø 9.14387<

Here, we used the method NMinimize; the methods are listed in the next section.

25.1.4  More about Nonlinear Fitting

‡ Finding the Global Optimum

As we saw in  Example  3,  if  the starting values  are not  good enough,  the result  may not  be  the global
optimum. Because of this, it is wise to try several starting values. We can also plot the criterion function
by  fixing  all  but  two  parameters.  We  fix y0  to  be  9.6  and  form  and  plot  the  criterion  (the  sum  of  the

squares of the residuals, which is called the c2 merit function) as a function of M and r:

res = yeast - Hf2 ê. 8y0 Ø 9.6, t Ø tt<L;
khi2 = res.res;

ContourPlot@khi2, 8M, 300, 1000<,
8r, 0, 0.0015<, ContourShading Ø False, Contours Ø 30D

We see that the optimum values of M and r are near 650 and 0.0008, respectively.

We  can  also  use NMinimize  or FindMinimum  (see Section  23.1.2,  p. 747)  to  minimize  the c2  merit

function:

res = yeast - Hf2 ê. t Ø ttL;
khi2 = res.res;

NMinimize@khi2, 8M, y0, 8r, 0, 0.1<<D

8194.325, 8M Ø 663.022, r Ø 0.000825002, y0 Ø 9.13552<<
FindMinimum@khi2, 8M, y0, 8r, 0.1<<D

8194.325, 8M Ø 663.022, y0 Ø 9.13552, r Ø 0.000825002<<

Chapter 25  •  Approximation 821



‡ Options

Options of FindFit:

WorkingPrecision  Precision used in internal computations; examples of values: Automatic, 20

PrecisionGoal  If the value of the option is p, the relative error of the optimum point and of the
value of the norm of the residuals should be of the order 10-p;  examples of values: Automatic

(usually means 8), 10

AccuracyGoal  If the value of the option is a, the absolute error of the optimum point and of the
value of the norm of the residuals should be of the order 10-a;  examples of values: Automatic

(usually means 8), 10

Method  Method used; possible values: Automatic (usually means "LevenbergMarquardt"),
"LevenbergMarquardt", "Gradient", "ConjugateGradient", "Newton", "QuasiNewton",
"NMinimize"

MaxIterations  Maximum number of iterations; examples of values: Automatic (usually means
100), 200

NormFunction  Norm of the residuals to be minimized; examples of values: Norm (means (Norm[#,

2] &)), (Norm[#, 1] &)

Gradient  How the gradient is calculated; examples of values: Automatic, "Symbolic",
"FiniteDifference"

StepMonitor  Command to be executed after each step of the iterative method; examples of values:
None, Sow[{a, b}], n++, AppendTo[iters, {a, b}]

EvaluationMonitor  Command to be executed after each evaluation of the expression to be fitted;
examples of values: None, Sow[{a, b}], n++, AppendTo[points, {a, b}]

The  default  is  that  iterations  are  stopped  if  the  estimated  relative  or  absolute  error  in  the  point

obtained and in the value of the norm of the residuals is less than 10-8.

The  norm  of  the  residuals  is  minimized  with Method.  The  default  value Automatic  of  this  option
means LevenbergMarquardt  if  the  2-norm  is  used  (which  is  the  default).  The  Levenberg|Marquardt
method initially uses the steepest descent method, but it shifts gradually to quadratic minimization.

The  default  norm  is Norm,  which  is  the  2-norm  (the  square  root  of  the  sum  of  the  squares  of  the
residuals);  we  could  also  write  this  norm as (Norm[#, 2] &).  With  the NormFunction  option,  we  can
define  other  norms,  such  as  the  1-norm  or (Norm[#, 1] &)  (the  sum  of  the  absolute  values  of  the
residuals) or the ¶-norm or (Norm[#, ¶] &)  (the maximum of the absolute values of the residuals; the
result is a minimax approximation).

‡ Using Norm Functions

Outliers  can  cause  problems  in  a  least-squares  fit.  An  outlier  is  an  observation  that  has  a  value  that
differs  markedly  from  the  general  trend  of  the  data.  Because  the  least-squares  fit  is  calculated  by
minimizing  the  squared  residuals,  an  outlier  can  have  a  considerable  unwanted  effect  on  the  fit.  An
excellent illustration of outliers is given in Shaw and Tigg (1994, pp. 315-319).

Let us consider an example given in the mentioned book. The data are otherwise regular but we have
two outliers:

lindata = Table@8x, 2 + x + 0.1 RandomReal@D<, 8x, 0, 5, 0.5<D;
lindataP5T = 82, 7<;
lindataP11T = 85, 1<;

We form three linear fits by using L1-, L2-, and L¶-norms:

822 Mathematica Navigator



fits = a + b x ê. FindFit@lindata, a + b x, 8a, b<, x, NormFunction Ø HÒLD & êü
8Norm@Ò, 1D &, Norm@Ò, 2D &, Norm@Ò, ¶D &<

82.04523 + 1.00085 x, 3.26496 + 0.399945 x, 4.74137 - 0.203543 x<

The corresponding plots are as follows:

MapThread@Plot@Ò1, 8x, 0, 5<, PlotRange Ø 80, 7.3<,
PlotLabel Ø Row@8Ò2, "-norm"<D, Epilog Ø Point@lindataDD &, 8fits, 8L1, L2, L¶<<D

:

0 1 2 3 4 5

1

2

3

4

5

6

7

L1-norm

,

0 1 2 3 4 5

1

2

3

4

5

6

7

L2-norm

,

0 1 2 3 4 5

1

2

3

4

5

6

7

L¶-norm

>

We see that the outliers have a clear bad effect to the usual least-squares or L2 fit and still worse effect to
the L¶ fit (in the latter fit, the maximum error is as small as possible). However, the L1 fit is very good: It
is able to ignore the outliers.

With  the  following  manipulation,  we  can  study  the  effect  of  various  norm  functions  when  using
polynomial  fits.  Note  that  the  points  can  be  moved  with  the  mouse.  New  points  can  be  added  by
holding down the ‡ key (Windows) or Ì key (Macintosh) and then clicking on the plot. A point can be
deleted by ‡- or Ì-clicking on that point.

fitPlot@order_, p_, points_D :=
With@8aa = Array@a, order + 1D, xx = x^Range@0, orderD<, Plot@

Evaluate@aa.xx ê. FindFit@points, aa.xx, aa, x, NormFunction Ø HNorm@Ò, pD &LDD,
8x, 0, 10<, PlotRange Ø 80, 10.3<, ImageSize Ø 230DD

Manipulate@
fitPlot@order, p, pointsD,
88order, 1<, 1, 10, 1, Appearance Ø "Labeled"<,
8p, 81, 2, ¶<<, 88points, 880, 2<, 81, 2.5<, 82, 3<, 83, 3.5<, 84, 7<,

85, 4.5<, 86, 5<, 87, 5.5<, 88, 6<, 89, 6.5<, 810, 1<<<, Locator,
Appearance Ø Ë, LocatorAutoCreate Ø True<, SaveDefinitions Ø TrueD

‡ Showing the Steps

Let us again consider the exponential data we used in Example 1 of Section 25.1.3, p. 819:

xx = Range@0, 10, 0.2D; SeedRandom@0D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;

data = 8xx, Exp@0.3 + 0.2 xxD + 0.5 rand<¨;

Chapter 25  •  Approximation 823



Use StepMonitor to gather information about how the iterations proceed step by step:

f = Exp@a + b xD; 8xx, ff< = data¨; fxx = f ê. x Ø xx;

8fit, 8steps<< = Reap@FindFit@data, f, 8a, b<, x,
Method Ø "Gradient", StepMonitor ß Sow@8a, b, Norm@ff - fxxD<DDD;

Prepare a table:

TableForm@steps, TableSpacing Ø 80.6, 2<,
TableHeadings Ø 8None, 8a, b, Norm@residualD<<D êê TraditionalForm

a b residual¥
0.908741 0.124512 8.26372
0.364025 0.181292 4.78486
0.244722 0.207836 3.21582
0.202633 0.212418 3.19062
0.202351 0.212478 3.19061
0.202349 0.212479 3.19061

25.2  Approximation of Functions

25.2.1  Simple Methods

‡ Introduction

When we next explain several methods for the approximation of functions, we will use the cumulative
distribution function of the standard normal distribution as an example:

f = H1 + Erf@x ê Sqrt@2DDL ê 2;

Plot@f, 8x, 0, 4<D

1 2 3 4

0.6

0.7

0.8

0.9

1.0

We apply  different  approximation methods either  at  point  1  or  in the interval  (0,  2).  If  we want  an
approximation  over  a  wider  interval,  for  example,  (0,  4),  it  is  probably  better  to  find  at  least  two
approximations~one for (0, 2) and the other for (2, 4).

We will use the following module to show the absolute and relative errors of the approximation appr

for f in the interval from a to b:

showError@f_, appr_, x_, a_, b_, opts___D :=
Plot@Ò, 8x, a, b<, PlotRange Ø All, optsD & êü 8f - appr, 1 - appr ê f<

First,  we  consider  some  simple  methods  of  approximation:  Taylor  polynomials  and  Padé,  econo-

mized rational, Chebyshev, and least-squares approximation. In Section 25.2.2, we explain the minimax
approximation.  This  method  minimizes  the  maximum  error  in  the  interval  considered  to  get  an  error
that is evenly spread over the entire interval.

Note that in Section 24.4.2, p. 807, we discussed FunctionInterpolation.  This command, although

it uses interpolation, is very good for approximating functions because it is adaptive (i.e., gives special
care  to  regions  where  the  function  changes  rapidly),  its  precision  can  be  controlled,  and  it  is  easy  to
calculate and use.

824 Mathematica Navigator



‡  Taylor Polynomials

Series[f, {x, a, m}]  Taylor series of degree m for f about a

A Taylor polynomial (see Section 19.2.1, p. 624) gives an approximation at a point. For example,

taylor6 = Normal@Series@f, 8x, 1, 6<DD êê N

0.841345 + 0.241971 H-1. + xL - 0.120985 H-1. + xL2
+

0.0201642 H-1. + xL4
- 0.00403285 H-1. + xL5

- 0.00201642 H-1. + xL6

The absolute and relative errors show that the approximation is good in the interval H0.5, 1.5L:
showError@f, taylor6, x, 0, 2D

:
0.5 1.0 1.5 2.0

-0.0006
-0.0004
-0.0002

0.0002
0.0004
0.0006
0.0008

, 0.5 1.0 1.5 2.0

-0.0010

-0.0005

0.0005

>

‡ Padé Approximation

A Padé approximant gives a rational approximation for a function at a point.

PadeApproximant[f, {x, a, {m, n}}]  Padé approximant of degree (m, n) for f about a

Here, m and n are the degrees of the numerator and the denominator. The rational function pHxL ë qHxL
is a Padé approximant of order Hm, nL for f HxL at x = a, if pHxL  and qHxL are of order m and n, respectively,

and the power series of f HxL qHxL - pHxL about x = a begins with the term Hx - aLm+n+1. Here is an example:

pade23 = PadeApproximant@f, 8x, 1, 82, 3<<D êê N

0.841345 + 0.274377 H-1. + xL - 0.0167285 H-1. + xL2

1. + 0.0385177 H-1. + xL + 0.112839 H-1. + xL2
- 0.0269137 H-1. + xL3

showError@f, pade23, x, 0, 2D

:

0.5 1.0 1.5 2.0
-0.0001

0.0001

0.0002

0.0003

,

0.5 1.0 1.5 2.0

0.0002

0.0004

0.0006

>

‡ Economized Rational Approximation

In the FunctionApproximations` package:

EconomizedRationalApproximation[f, {x, {a, b}, m, n}]  Economized rational approximation
of degree (m, n) for f in the interval (a, b)

This  command  first  finds  the  Padé  approximant  about  the  midpoint  of  the  interval Ha, bL  and  then
perturbs  the  approximant  with  Chebyshev  polynomials  to  reduce  the  leading  coefficient  in  the  error.
With this method, we get a somewhat better approximation than with Padé approximation:

Chapter 25  •  Approximation 825



<< FunctionApproximations`

econ23 = EconomizedRationalApproximation@f, 8x, 80, 2<, 2, 3<D êê N

0.834462 + 0.272397 H-1. + xL - 0.0157965 H-1. + xL2

0.991815 + 0.0385177 H-1. + xL + 0.112839 H-1. + xL2
- 0.0269137 H-1. + xL3

showError@f, econ23, x, 0, 2D

:
0.5 1.0 1.5 2.0

-0.0001

0.0001

0.0002

,

0.5 1.0 1.5 2.0-0.0001

0.0001
0.0002
0.0003
0.0004

>

‡ Chebyshev Approximation

In the FunctionApproximations` package:

RationalInterpolation[f, {x, m, n}, {x, a, b}]  Rational interpolating function of degree (m, n)
for f in the interval (a, b) (i.e., rational Chebyshev approximation)

In Section 24.4.1, p. 806, we considered rational Chebyshev approximation. We apply this method to

our function by using degree H6, 0L; that is, the approximating function is a sixth-degree polynomial:

cheb60 = RationalInterpolation@f, 8x, 6, 0<, 8x, 0, 2<D

0.500007 + 0.398604 x + 0.00255252 x2
-

0.0732252 x3
+ 0.00721336 x4

+ 0.00800419 x5
- 0.00181145 x6

showError@f, cheb60, x, 0, 2D

:
0.5 1.0 1.5 2.0

-0.00001

-5.μ10-6

5.μ10-6

0.00001

,
0.5 1.0 1.5 2.0

-0.00001
-5.μ10-6

5.μ10-6

0.00001

>

The approximation is very accurate, although the errors are not spread perfectly evenly over the interval.

With the option Bias, we can fine-tune the approximation. The value 0 means that the interpolation
points  are  chosen  symmetrically  in  the  interval.  A  positive  [negative]  value  causes  the  points  to  be
shifted toward the right [left]. The value has to be between -1 and 1.

We try to make the relative error of the approximation cheb60  more even. Using trial and error, we
find that a bias of -0.015 is appropriate:

cheb60b = RationalInterpolation@f, 8x, 6, 0<, 8x, 0, 2<, Bias Ø -0.015D

0.500006 + 0.398636 x + 0.00235795 x2
-

0.0727988 x3
+ 0.00679414 x4

+ 0.00819327 x5
- 0.00184333 x6

showError@f, cheb60b, x, 0, 2D

:
0.5 1.0 1.5 2.0

-0.00001
-5.μ10-6

5.μ10-6

0.00001

,
0.5 1.0 1.5 2.0

-0.00001
-5.μ10-6

5.μ10-6

0.00001

>

With GeneralRationalInterpolation,  we  can calculate  Chebyshev approximations  for  parametri-
cally defined functions.

826 Mathematica Navigator



‡  Least-Squares Approximation

With  the  least-squares  method,  we  minimize  the  integral  of  the  square  of  the  difference  between  the
function  and  the  approximation  on  the  interval  considered.  If  the  approximating  function  is  a  linear
combination of certain functions, the coefficients are obtained from a system of linear equations. Here is
a module that calculates a least-squares approximation for f in the interval from a to b; the approximat-
ing function is a linear combination of the functions in the list basis.

functionLSQ@f_, x_, a_, b_, basis_D :=
LinearSolve@NIntegrate@KroneckerProduct@basis, basisD, 8x, a, b<D,

NIntegrate@f basis, 8x, a, b<DD.basis

We calculate a sixth-degree least-squares approximation:

lsq6 = functionLSQ@f, x, 0, 2, x^Range@0, 6DD

0.500019 + 0.398426 x + 0.00319491 x2
-

0.0741471 x3
+ 0.00780805 x4

+ 0.00784075 x5
- 0.00179815 x6

showError@f, lsq6, x, 0, 2D

:
0.5 1.0 1.5 2.0

-0.00002

-0.00001

0.00001

0.00002

, 0.5 1.0 1.5 2.0

-0.00004
-0.00003
-0.00002
-0.00001

0.00001
0.00002

>

The approximation is good, but at the end points the errors are considerably larger than at other points.

25.2.2  Minimax Approximation

‡ Finding a Minimax Approximation

The  goal  of  minimax  approximation  is  to  minimize  the  maximum  error  (absolute  or  relative)  in  an
interval. This is clearly a very desirable goal: The error is then evenly low over the whole interval, which
is in contrast with an error that is low over a subinterval but large elsewhere.

In the FunctionApproximations` package:

MiniMaxApproximation[f, {x, {a, b}, m, n}]  Rational minimax approximation of degree (m, n)
for f in the interval (a, b)

Here, m and n are the degrees of the numerator and the denominator. Giving n the value zero, we can
calculate polynomial minimax approximations.

The procedure starts with a rational interpolating function rHxL  using RationalInterpolation. This
function  is  then  iteratively  modified  according  to  Remez’s  algorithm:  The  interpolation  points  are
adjusted to make the maximum relative error as small as possible.

The  procedure  uses  the  relative  error … 1 - rHxL ë f HxL …  as  the  criterion.  This  means  that f HxL  cannot

have  a  zero  in  the  interval.  However,  we  can  overcome  this  problem  by  dividing  the  zero  out  of  the
function (see the documentation of the package). Singularities must also first be eliminated. In addition,
it  is  better  to  calculate  several  approximations  for  small  intervals  rather  than one approximation  for  a
long interval.

Chapter 25  •  Approximation 827



‡ Example

Here  is  the  (6,  0)  degree  rational  minimax  approximation  (i.e.,  the  sixth-degree  polynomial  minimax
approximation) for our familiar function:

f = H1 + Erf@x ê Sqrt@2DDL ê 2;

<< FunctionApproximations`

8maxPoints, 8miniMax60, maxError<< = MiniMaxApproximation@f, 8x, 80, 2<, 6, 0<D

980., 0.0946758, 0.364016, 0.761322, 1.20893, 1.61548, 1.89853, 2.<,

90.500006 + 0.398643 x + 0.00232708 x2
- 0.0727457 x3

+

0.00675247 x4
+ 0.00820846 x5

- 0.00184541 x6, -0.0000118083==
The  result  is  of  the  following  form:  {(points  where  the  maximum  relative  error  occurs),  {the  minimax
approximation, the maximum relative error}}. The relative error is perfectly even in the interval (0, 2):

showError@f, miniMax60, x, 0, 2D

:
0.5 1.0 1.5 2.0

-0.00001

-5.μ10-6

5.μ10-6

0.00001

,
0.5 1.0 1.5 2.0

-0.00001

-5.μ10-6

5.μ10-6

0.00001

>

The  Chebyshev  approximations cheb60  and cheb60b  that  we  calculated  in Section  25.2.1,  p. 826,  are

close to the minimax approximation.

‡ Options

Options of MiniMaxApproximation:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

Bias  Bias in the symmetry of the initial interpolation points; examples of values: 0, -0.1, 0.26

Brake  Defines the braking properties of the algorithm; default value: {5, 5}

MaxIterations  Maximum number of iterations after braking has ended; default value: 20

Derivatives  Specifies a function to use for the derivatives; default value: Automatic

PlotFlag  Whether to plot the relative error at each step; possible values: False, True

PrintFlag  Whether to print information about the relative error at each step; possible values:
False, True

The value of Bias is a number between -1 and 1. The default value 0 means that the initial interpola-

tion  points  are  chosen  symmetrically  in  the  interval.  A  positive  [negative]  value  of Bias  causes  the
points to shift toward the right [left].

Brake controls the braking of the iterations. If the change from one iteration to the next is too large, the
procedure  may  go  astray.  Braking  can  prevent  this.  The  default  value  of  the  option  is  {5,  5}.  The  first
value in the list tells us how many iterations are to be affected by the braking, and the second value tells
us how much braking is to be applied to the first iteration. The braking automatically decreases with the
iterations.

The  documentation  of  the package contains much more information about  minimax approximation
than is presented here. The package also defines GeneralMinimaxApproximation, which can be used to
approximate parametrically defined functions.

828 Mathematica Navigator



26
Differential Equations

Introduction 829

26.1  Symbolic Solutions 830

26.1.1  First-Order Equations 830 DSolve

26.1.2  Second- and Higher-Order Equations 835

26.1.3  Simultaneous Equations 836

26.2  More about Symbolic Solutions 841

26.2.1  Using the Laplace Transform 841 LaplaceTransform

26.2.2  Series Solutions 843 RSolve

26.2.3  Solution as a Pure Function 846 DSolve

26.2.4  Integral and Integro-Differential Equations 847

26.3  Numerical Solutions 849

26.3.1  One Equation 849 NDSolve

26.3.2  Two Equations 852

26.3.3  Three and More Equations 860

26.4  More about Numerical Solutions 865

26.4.1  Options 865

26.4.2  The Classical Runge-Kutta Method 871 rungeKuttaSolve

26.4.3  Boundary Value Problems 874 linearBVP

26.4.4  Events 876

26.4.5  Estimation of Differential Equations 878

26.4.6  Manipulator and Equation Trekker 881

Introduction

God is not so cruel as to create situations described by
 nonlinear differential equations.~Edward Sexton

Solving  ordinary  differential  equations  with Mathematica  is  straightforward:  We  have DSolve  for
symbolic  solution and NDSolve  for  numerical  solution.  Both commands accept one or more equations,
first-  or  higher-order  equations,  and  linear  and  nonlinear  equations,  and  they  solve  both  initial  and
boundary value problems.

DSolve  can  solve  linear,  constant  coefficient  differential  equations  of  any  order.  It  can  also  solve
many linear equations up to second order with nonconstant coefficients. In addition, it can solve almost
all the nonlinear equations whose solutions are given in standard reference books such as Kamke.



We also consider solving differential equations with the Laplace transform, finding series solutions,
and  solving  integral  equations.  We  implement  the  Runge-Kutta  method  and  some  methods  for
boundary  value  problems.  Some  well-known nonlinear  systems  are  considered,  such  as  the  logistic
model,  a  predator-prey  model,  a  competing  species  model,  and  the  Lorenz  model.  We  also  consider
estimating parameters of nonlinear differential equations.

For more about differential equations with Mathematica, see Abell and Braselton (1997) and Schwalbe
and  Wagon  (1997).  See  also  the  advanced  tutorials Differential Equation Solving with DSolve  and
Advanced Numerical Differential Equation Solving in Mathematica.

26.1  Symbolic Solutions

26.1.1  First-Order Equations

Here are some common commands for first-order differential equations:

sol = y[t] /. DSolve[eqn, y[t], t]  Give the general solution
sol = y[t] /. DSolve[{eqn, y[a] ã a}, y[t], t]  Solve an initial value problem
Plot[sol, {t, a, b}]  Plot the solution of an initial value problem

An example  of  a  differential  equation is y'[t] ã a y[t] + b t + c.  The  dependent  variable,  which
here  is y,  must  contain  the  independent  variable,  here t,  as  the  argument;  this  means  that  we  cannot
write the equation as y' ã a y + b t + c. Note also that the equation must contain == (not =) and that the
initial condition must also contain == (not =) (remember that Mathematica replaces == with ã).

‡ Example 1: General Solution

Consider the following logistic equation:

eqn = y'@tD ã r y@tD HM - y@tDL y£@tD ã r HM - y@tDL y@tD
The name of the equation is eqn. The solution is as follows:

DSolve@eqn, y@tD, tD ::y@tD Ø
‰M r t+M C@1D M

-1 + ‰M r t+M C@1D
>>

The solution is in the form of a transformation rule (for more information about rules, see Section 13.1.2,

p. 416). The arbitrary constant is C[1] (we can give it whatever value we want).

In general, the solution given by DSolve consists of a list of solutions:

88solution 1<, 8solution 2<, ...<
Indeed, a given equation can have several solutions. Each solution is again a list that consists of as many
elements as there are dependent variables. In our example, we have only one dependent variable, y, and
we obtained only one solution. Thus, the solution is of the form {{solution 1 for y}}.

Often, it is convenient to ask for the value of y[t]:

y@tD ê. DSolve@eqn, y@tD, tD : ‰M r t+M C@1D M

-1 + ‰M r t+M C@1D
>

If  there  is  only  one  solution,  we  may  also  want  to  get  rid  of  the  curly  braces  by  asking  for  the  first
component of the solution:

830 Mathematica Navigator



y@tD ê. DSolve@eqn, y@tD, tDP1T
‰M r t+M C@1D M

-1 + ‰M r t+M C@1D

We will use this method from now on.

Note that the solution sol is a generic  solution, which is a solution that is valid for general values of
the  parameters r  and M.  For  some  particular  values,  the  solution  may  be  of  a  different  form.  For
example, when M is zero, the solution is as follows:

y@tD ê. DSolve@eqn ê. M Ø 0, y@tD, tDP1T
1

r t - C@1D
‡ Example 2: Initial Value Problem

Next, we solve an initial value problem:

y@tD ê. DSolve@8eqn, y@0D ã a<, y@tD, tDP1T

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. à

‰M r t M a

M - a + ‰M r t a

For all transcendental equations, Solve gives the warning that because inverse functions are used, some

solutions may not be found (see Section 22.3.1, p. 730). When solving differential equations, the solution

is mostly unique, and in such cases the warning can be ignored. We turn the message off to save space:

Off@Solve::ifunD

Next, we give specific values for all constants:

sol = y@tD ê. DSolve@8eqn ê. 8r Ø 1 ê 10, M Ø 10<, y@0D ã 1 ê 4<, y@tD, tDP1T

10 ‰t

39 + ‰t

This solution can be plotted because it does not contain any parameters:

p1 = Plot@810, sol<, 8t, 0, 10<D

2 4 6 8 10

2

4

6

8

10

This is a logistic curve. We also plotted the asymptote 10 of this curve. We can easily calculate values of
the solution:

sol ê. t Ø 0.0 0.25

Table@8t, sol<, 8t, 0., 4, 1<D

880., 0.25<, 81., 0.65158<, 82., 1.59284<, 83., 3.3994<, 84., 5.83325<<
Recall  that  in Section  10.1.2,  p. 325,  we  presented  a  manipulation  to  study  the  form  of  the  logistic

curve for various values of yH0L, r, and M.

Chapter 26  •  Differential Equations 831



‡ Example 3: Direction Field

We can learn the behavior of the solution of a differential equation by plotting a set of arrows that are
tangent to the solution. The plot is called a direction field. It can be plotted with VectorFieldPlot from

a package (see Section 5.3.2, p. 144). This command plots vectors {exprx, expry}  for some values of x

and y. In our example, we can choose exprx to be 1 and expry to be y'[t]:

<< VectorFieldPlots`

p2 = VectorFieldPlot@81, 1 ê 10 y H10 - yL<,
8t, 0, 10<, 8y, 0, 10<, PlotPoints Ø 11, Axes Ø TrueD;

We show both the direction field and one solution:

Show@p1, p2, ImageSize Ø 200D

2 4 6 8 10

2

4

6

8

10

‡ Example 4: A Set of Trajectories

Next,  we  plot  a  set  of  trajectories,  which  is  a  set  of  solutions  to  the  equation  with  different  starting
points. To begin, we compute the solution with general values a and a for the starting time and starting
value:

sol = y@tD ê. DSolve@8eqn ê. 8r Ø 1 ê 10, M Ø 10<, y@aD ã a<, y@tD, tDP1T

10 ‰t a

10 ‰a - ‰a a + ‰t a

We fix a to be 0 and give a various values:

solset = Table@sol ê. a Ø 0, 8a, 0.1, 15.1, 0.5<D;

Plot@solset, 8t, 0, 8<, PlotRange Ø All, PlotStyle Ø Black, ImageSize Ø 200D

2 4 6 8

5

10

15

832 Mathematica Navigator



‡ Example 5: Equilibrium Points

Recall  from  a  course  of  differential  equations  that  if  the  differential  equation  is y£ = f IyM,  then  the

equilibrium points y*  are the solutions of the equation f Iy*M = 0 and an equilibrium point is asymptoti-

cally stable if f £Iy*M < 0. In our model, the f  function is as follows:

f = eqnP2T r HM - y@tDL y@tD
Calculate the equilibrium points:

equi = Solve@f ã 0, y@tDD 88y@tD Ø 0<, 8y@tD Ø M<<
Check the stability:

D@f, y@tDD ê. equi 8M r, -M r<
Thus, if M r > 0, then 0 is an unstable and M  an asymptotically stable equilibrium point. These proper-

ties can also be seen from the figure of the previous example.

‡ Example 6: Equations Are Defined by ==

A common problem encountered when solving differential equations is the following:

eqn = 8y'@tD ã y@tD + t + 1, y@0D = 2<;

DSolve@eqn, y@tD, tD

DSolve::deqn :

Equation or list of equations expected instead of 2 in the first argument 9y£@tDã 1+ t+ y@tD, 2=. à
DSolve@8y£@tD ã 1 + t + y@tD, 2<, y@tD, tD

DSolve  tells  you that  it  found, from the first  argument,  the element 2 and that  this is  not an equation.
Indeed,  we  observe  that  the  initial  condition y[0] = 2  is  not  a  correct  equation.  It  must  be  written  as
y[0] == 2. When we wrote y[0] = 2, we actually assigned the value 2 for y[0], and this causes the error
message.  Before  we  solve  the  initial  value  problem,  we  must  clear  the  value  of y[0]  and  correct  the
initial condition:

y@0D =.

eqn = 8y'@tD ã y@tD + t + 1, y@0D ã 2<;

DSolve@eqn, y@tD, tD 99y@tD Ø -2 + 4 ‰t - t==
‡ Example 7: Implicit Solutions

Sometimes the solution is given in an implicit form:

Off@InverseFunction::ifunD
sol = DSolve@ y£@tD - 2 t y@tD^2 - y@tD^3 ã 0, y@tD, tD
Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non-algebraic way. à

SolveB
t AiryAiBt2 +

1

y@tD
F + AiryAiPrimeBt2 +

1

y@tD
F

t AiryBiBt2 +
1

y@tD
F + AiryBiPrimeBt2 +

1

y@tD
F

+ C@1D ã 0, y@tDF

On@InverseFunction::ifunD

If  the equation inside the Solve  command could be solved for y[t],  we would get  the solution of the
differential equation. A contour plot of the implicit function can be made as follows:

Chapter 26  •  Differential Equations 833



c1 = C@1D ê. Solve@solP1T, C@1DD ê. y@tD Ø y

:
-t AiryAiBt2 +

1

y
F - AiryAiPrimeBt2 +

1

y
F

t AiryBiBt2 +
1

y
F + AiryBiPrimeBt2 +

1

y
F

>

ContourPlot@c1, 8t, 0, 0.5<, 8y, 0, 10<, FrameLabel Ø 8t, y@tD<, RotateLabel Ø FalseD

Each contour corresponds to a solution of the differential equation for a given value of the constant C[1].

‡ Example 8: Several Solutions

Sometimes a problem has several general solutions:

sol = DSolve@y'@tD ã 1 ê y@tD, y@tD, tD

::y@tD Ø - 2 t + C@1D >, :y@tD Ø 2 t + C@1D >>
Given an initial value, a solution may not be obtained from all general solutions:

sol = DSolve@8y'@tD ã 1 ê y@tD, y@0D ã 1<, y@tD, tD

DSolve::bvnul : For some branches of the general

solution, the given boundary conditions lead to an empty solution. à

::y@tD Ø 1 + 2 t >>
‡ Example 9: Piecewise Functions

The equation can contain piecewise functions:

sol = y@tD ê. DSolve@y'@tD ã r y@tD - h UnitStep@30 - tD, y@tD, tD

:‰r t C@1D - ‰r t h
-

‰-r t

r
t § 30

-
‰-30 r

r
True

>

Plot@sol ê. 8r Ø 0.01, h Ø 2, C@1D Ø -100<, 8t, 0, 100<D

20 40 60 80 100

80

90

100

110

120

130

834 Mathematica Navigator



26.1.2  Second- and Higher-Order Equations

sol = y[t] /. DSolve[eqn, y[t], t]  General solution
sol = y[t] /. DSolve[{eqn, y[a] ã a, y'[a] ã b}, y[t], t]  Initial value problem
sol = y[t] /. DSolve[{eqn, y[a] ã a, y[b] ã b}, y[t], t]  Boundary value problem
Plot[sol, {t, a, b}]  Plot the solution of an initial or boundary value problem

These  commands  apply  to  second-order  equations.  They  generalize  directly  to higher-order  equa-

tions. The initial and boundary conditions mentioned are the simplest ones; the conditions can be more
complex equations.

‡ Example 1: Basic Techniques

We ask for a general solution of a second-order equation:

eqn = y''@tD + y@tD ã 1;

DSolve@eqn, y@tD, tD

88y@tD Ø 1 + C@1D Cos@tD + C@2D Sin@tD<<
The arbitrary constants are C[1] and C[2] (by the way, with the option GeneratedParameters, we can
give the constants another name). Next, we give two initial conditions:

sol = y@tD ê. DSolve@8eqn, y@0D ã 0, y'@0D ã 1<, y@tD, tDP1T

1 - Cos@tD + Sin@tD
Plot@sol, 8t, 0, 4 p<D

2 4 6 8 10 12

0.5

1.0

1.5

2.0

Now we give two boundary conditions, one at t = 0 and the other at t = 5:

y@tD ê. DSolve@8eqn, y@0D ã 0, y@5D ã 7<, y@tD, tDP1T

1 - Cos@tD + Cot@5D Sin@tD + 6 Csc@5D Sin@tD
The boundary conditions can be even more complex:

y@tD ê. DSolve@8eqn, y@0D ã 2, y@5D + y'@5D ã 1<, y@tD, tDP1T êê FullSimplify

1 + Cos@tD +
H-Cos@5D + Sin@5DL Sin@tD

Cos@5D + Sin@5D
‡ Example 2: Constant Coefficients

All linear second-order equations with constant coefficients can be solved. For example,

eqn = y''@tD ã a y'@tD + b y@tD + c;

DSolve@eqn, y@tD, tD

::y@tD Ø -
c

b
+ ‰

1

2
a- a2+4 b t

C@1D + ‰

1

2
a+ a2+4 b t

C@2D>>
Note that this is a generic solution. For special values of the parameters, the solution can be of another
form. The following solution is of the preceding form:

Chapter 26  •  Differential Equations 835



DSolve@8eqn ê. 8a Ø 2, b Ø 3, c Ø 2<, y@0D ã 2, y'@0D ã 0<, y@tD, tD

::y@tD Ø
2

3
‰-t I3 - ‰t + ‰4 tM>>

However, this solution is not:

DSolve@8eqn ê. 8a Ø 2, b Ø -1, c Ø 1<, y@0D ã 2, y'@0D ã 0<, y@tD, tD

99y@tD Ø 1 + ‰t - ‰t t==
Neither is this:

DSolve@8eqn ê. 8a Ø -1, b Ø -1, c Ø 1<, y@0D ã 2, y'@0D ã 0<, y@tD, tD

::y@tD Ø
1

3
‰-të2 3 ‰të2 + 3 CosB 3 t

2
F + 3 SinB 3 t

2
F >>

‡ Example 3: A Set of Trajectories

We continue the last example by varying y[0]:

sol = y@tD ê.
DSolve@8eqn ê. 8a Ø -1, b Ø -1, c Ø 1<, y@0D ã a, y'@0D ã 0<, y@tD, tDP1T êê Simplify

1

3
‰-të2 3 ‰të2 + 3 H-1 + aL CosB 3 t

2
F + 3 H-1 + aL SinB 3 t

2
F

solset = Table@sol, 8a, 0, 5<D;

Plot@solset, 8t, 0, 10<, PlotRange Ø All, PlotStyle Ø BlackD

2 4 6 8 10

1

2

3

4

5

26.1.3  Simultaneous Equations

In simultaneous equations, we have several dependent variables. Here are some typical commands for
two  equations.  They  generalize  easily  to  more  equations  and  to  different  initial  and  boundary
conditions.

vars = {x[t], y[t]}  Define the dependent variables
eqns = {eqn1, eqn2}  Define the differential equations
inits = {x[a] ã a, y[a] ã b}  Define the initial (or boundary) conditions

sol = vars /. DSolve[eqns, vars, t]  Give the general solution
sol = vars /. DSolve[Join[eqns, inits], vars, t]  Solve an initial value problem

Plot[sol, {t, a, b}]  Plot x[t] and y[t]

ParametricPlot[sol, {t, a, b}]  Plot a phase trajectory

‡ Example 1: Basic Techniques

First, we ask for a general solution:

836 Mathematica Navigator



DSolve@8x'@tD ã y@tD, y'@tD ã x@tD<, 8x@tD, y@tD<, tD êê Simplify

::x@tD Ø
1

2
‰-t II1 + ‰2 tM C@1D + I-1 + ‰2 tM C@2DM,

y@tD Ø
1

2
‰-t II-1 + ‰2 tM C@1D + I1 + ‰2 tM C@2DM>>

We can also separately define the variables and the equations:

vars = 8x@tD, y@tD<;

eqns = 8x'@tD ã y@tD, y'@tD ã x@tD<;

DSolve@eqns, vars, tD êê Simplify

::x@tD Ø
1

2
‰-t II1 + ‰2 tM C@1D + I-1 + ‰2 tM C@2DM,

y@tD Ø
1

2
‰-t II-1 + ‰2 tM C@1D + I1 + ‰2 tM C@2DM>>

We may want to directly ask for the values of x[t] and y[t]:

vars ê. DSolve@eqns, vars, tDP1T êê Simplify

:1
2

‰-t II1 + ‰2 tM C@1D + I-1 + ‰2 tM C@2DM, 1

2
‰-t II-1 + ‰2 tM C@1D + I1 + ‰2 tM C@2DM>

By  the  way,  the  solution  of  this  constant  coefficient  system  can  also  be  obtained  using  the  matrix
exponential:

MatrixExp@880, 1<, 81, 0<< tD.8C@1D, C@2D< êê Simplify

:1
2

‰-t II1 + ‰2 tM C@1D + I-1 + ‰2 tM C@2DM, 1

2
‰-t II-1 + ‰2 tM C@1D + I1 + ‰2 tM C@2DM>

Next, we solve and plot an initial value problem:

inits = 8x@0D ã 1, y@0D ã 0<;

sol = vars ê. DSolve@Join@eqns, initsD, vars, tDP1T

:1
2

‰-t I1 + ‰2 tM, 1

2
‰-t I-1 + ‰2 tM>

Plot@sol, 8t, 0, 2<, PlotStyle Ø 88<, Dashing@8Tiny<D<D

0.5 1.0 1.5 2.0

0.5
1.0
1.5
2.0
2.5
3.0
3.5

‡ Example 2: Phase Trajectories

Consider the following linear system:

vars = 8x@tD, y@tD<;

eqns = 8x'@tD ã x@tD - y@tD, y'@tD ã 3 x@tD - 2 y@tD<;

inits = 8x@0D ã 10, y@0D ã 0<;

Chapter 26  •  Differential Equations 837



sol = vars ê. DSolve@Join@eqns, initsD, vars, tDP1T

:10 ‰-të2 CosB 3 t

2
F + 3 SinB 3 t

2
F , 20 3 ‰-të2 SinB 3 t

2
F>

Plot the solution:

Plot@sol, 8t, 0, 10<, PlotStyle Ø 88<, Dashing@8Tiny<D<D

2 4 6 8 10

5

10

15

With ParametricPlot, we can plot phase trajectories for equations with two dependent variables. A

plot of this kind describes how the point IxHtL, yHtLM moves on the Ix, yM plane:

ParametricPlot@sol, 8t, 0, 30<, PlotRange Ø All, AxesLabel Ø 8x, y<D

-2 2 4 6 8 10 12
x

5

10

15

y

The  curve  approaches  the  point H0, 0L  like  a  spiral  (origin  is  a  stable  focus).  Plotting  individual  points
shows the speed of the point as it moves on a curve:

p = Table@sol, 8t, 0, 20, 0.2<D;

ListPlot@p, PlotRange Ø All, AxesLabel Ø 8x, y<, AspectRatio Ø AutomaticD

-2 2 4 6 8 10 12
x

5

10

15

y

For a linear matrix system y£ = A y, the origin is an equilibrium point. The nature of this point can be

seen from the eigenvalues of the coefficient matrix A:

838 Mathematica Navigator



Eigenvalues@881, -1<, 83, -2<<D :H-1L2ë3, -H-1L1ë3>

% êê ComplexExpand :- 1
2

+
Â 3

2
, -

1

2
-

Â 3

2
>

Because the eigenvalues are complex with a negative real part, origin is a stable focus.

‡ Example 3: A Set of Trajectories

Plotting a direction field gives an impression about how the trajectories behave:

<< VectorFieldPlots`

VectorFieldPlot@8x - y, 3 x - 2 y<, 8x, -20, 20<,
8y, -20, 20<, Axes Ø True, PlotPoints Ø 11, ImageSize Ø 140D

-20 -10 10 20

-20

-10

10

20

However, plotting several trajectories from different starting points gives a better description of the
behavior of the system. We consider the system of Example 2 and give general initial values x0 and y0:

inits = 8x@0D ã x0, y@0D ã y0<;

sol = vars ê. DSolve@Join@eqns, initsD, vars, tDP1T êê Simplify

:1
3

‰-të2 3 x0 CosB 3 t

2
F + 3 H3 x0 - 2 y0L SinB 3 t

2
F ,

‰-të2 y0 CosB 3 t

2
F + 3 H2 x0 - y0L SinB 3 t

2
F >

When y0 is 30, we let x0 vary from -6 to 14 in steps of 2; when y0 is -30, we let x0 vary from -14 to 6 in
steps of 2:

solset1 = Table@sol, 8x0, -6, 14, 2<D;
solset2 = Table@sol, 8x0, -14, 6, 2<D;

8p1 = ParametricPlot@Evaluate@solset1 ê. y0 Ø 30D,
8t, 0, 15<, PlotStyle Ø Black, PlotRange Ø All, ImageSize Ø 70D,

p2 = ParametricPlot@Evaluate@solset2 ê. y0 Ø -30D, 8t, 0, 15<,
PlotStyle Ø Black, PlotRange Ø All, ImageSize Ø 70D<

:
-20-15-10-5 5 10

-30

-20

-10

10

20

30

,
-10-5 5 10 15 20

-30

-20

-10

10

20

30

>

Chapter 26  •  Differential Equations 839



Combine the plots:

Show@p1, p2, ImageSize Ø 130D

-20 -10 10 20

-30

-20

-10

10

20

30

‡ Example 4: Three Equations

Let xHtL, yHtL,  and zHtL  stand  for  the  amount  of  lead  in  blood,  tissues,  and  bones,  respectively;  time  is

measured  in  days.  Define v = Ix, y, zM . Borrelli  and  Coleman  (1998,  p.  339)  present  the  model

v£ = A v + b, in which the coefficients are as follows:

A = 88-0.0361, 0.0124, 0.000035<, 80.0111, -0.0286, 0<, 80.0039, 0, -0.000035<<;
b = 849.3, 0, 0<;

The equilibrium point is the v that satisfies A v + b = 0; that is, A v = -b:

LinearSolve@A, -bD 81800.1, 698.639, 200 582.<
To solve the system of differential equations, define the variables and the equations:

vars = 8x@tD, y@tD, z@tD<;

eqns = Thread@D@vars, tD ã A.vars + bD

8x£@tD ã 49.3 - 0.0361 x@tD + 0.0124 y@tD + 0.000035 z@tD,
y£@tD ã 0.0111 x@tD - 0.0286 y@tD, z£@tD ã 0.0039 x@tD - 0.000035 z@tD<
inits = 8x@0D ã 0, y@0D ã 0, z@0D ã 0<;

Time is measured in days. Then solve the system:

Hsol = vars ê. DSolve@Join@eqns, initsD, vars, tD êê Expand êê ChopL êê Column

91800.1 - 719.885 ‰-0.0446688 t - 855.314 ‰-0.0200356 t - 224.898 ‰-0.0000306322 t,

698.639 + 497.283 ‰-0.0446688 t - 1108.54 ‰-0.0200356 t - 87.3791 ‰-0.0000306322 t,

200 582. + 62.902 ‰-0.0446688 t + 166.781 ‰-0.0200356 t - 200 812. ‰-0.0000306322 t=
(Here,  we applied Chop  to  get  rid  of  some negligible terms that  originated from rounding errors.)  The
solution can be written as follows:

xHtL
yHtL
zHtL

=

1800.1

698.639

200 582.

+

-719.885 -855.314 -224.898

497.283 -1108.54 -87.3791

62.902 166.781 -200 812.

‰-0.0446688 t

‰-0.0200356 t

‰-0.0000306322 t

.

The solution is displayed as follows:

840 Mathematica Navigator



Plot@sol, 8t, 0, 400<,
PlotStyle Ø 8Black, 8Black, Dashing@8Tiny<D<, 8Black, Thickness@MediumD<<D

100 200 300 400

500

1000

1500

2000

The  amounts  of  lead  in  blood  and tissues  reach  the  equilibrium quite  rapidly  (in  about  a  year),  but  it
would take a very long time (several hundred years!)  before the amount of lead in bones would reach
the equilibrium:

Plot@solP1, 3T, 8t, 0, 200 000<, PlotStyle Ø 8Black, Thickness@MediumD<,
Ticks Ø 88100 000, 200 000<, Automatic<D

100000 200000

50000

100000

150000

200000

‡ Example 5: Differential|Algebraic Equations

We can solve differential|algebraic equations. Here is an example:

DSolve@8x'@tD ã 2 x@tD + y@tD, x@tD + y@tD ã 1, x@0D ã 1<, 8x@tD, y@tD<, tD

99x@tD Ø -1 + 2 ‰t, y@tD Ø -2 I-1 + ‰tM==

26.2  More about Symbolic Solutions

26.2.1  Using the Laplace Transform

‡ One Equation

We try to solve, using the Laplace transform (see Section 20.4.1, p. 670), the following problem:

eqn = y''@tD + y@tD ã t;

inits = 8y@0D Ø a, y'@0D Ø b<;

First, take the Laplace transform of the equation:

LaplaceTransform@eqn, t, sD

LaplaceTransform@y@tD, t, sD + s2 LaplaceTransform@y@tD, t, sD - s y@0D - y£@0D ã
1

s2

Insert the initial values:

lapeqn = % ê. inits

-s a - b + LaplaceTransform@y@tD, t, sD + s2 LaplaceTransform@y@tD, t, sD ã
1

s2

From this equation, solve the transform:

Chapter 26  •  Differential Equations 841



lap = Solve@lapeqn, LaplaceTransform@y@tD, t, sDD

::LaplaceTransform@y@tD, t, sD Ø
1 + s3 a + s2 b

s2 I1 + s2M
>>

Lastly, take the inverse transform, which is then the solution to the initial value problem:

sol = InverseLaplaceTransform@lap, s, tD

88y@tD Ø t + a Cos@tD - Sin@tD + b Sin@tD<<
The same solution is obtained with DSolve:

DSolve@8eqn, y@0D ã a, y'@0D ã b<, y@tD, tD

88y@tD Ø t + a Cos@tD - Sin@tD + b Sin@tD<<

‡ Simultaneous Equations

Now we solve the same initial value problem as was seen in Example 2 of Section 26.1.3, p. 837:

eqns = 8y'@tD ã y@tD - z@tD, z'@tD ã 3 y@tD - 2 z@tD<;

inits = 8y@0D Ø 10, z@0D Ø 0<;

lapeqns = LaplaceTransform@eqns, t, sD ê. inits

8-10 + s LaplaceTransform@y@tD, t, sD ã

LaplaceTransform@y@tD, t, sD - LaplaceTransform@z@tD, t, sD,
s LaplaceTransform@z@tD, t, sD ã

3 LaplaceTransform@y@tD, t, sD - 2 LaplaceTransform@z@tD, t, sD<
lap = Solve@lapeqns, 8LaplaceTransform@y@tD, t, sD, LaplaceTransform@z@tD, t, sD<D

::LaplaceTransform@y@tD, t, sD Ø
10 H2 + sL
1 + s + s2

, LaplaceTransform@z@tD, t, sD Ø
30

1 + s + s2
>>

sol = InverseLaplaceTransform@lap, s, tD

::y@tD Ø 10 ‰-të2 CosB 3 t

2
F + 3 SinB 3 t

2
F , z@tD Ø 20 3 ‰-të2 SinB 3 t

2
F>>

The solution is the same as the one obtained in Section 26.1.3.

‡ The Step Function

Consider the following equation:

eqn = y'@tD ã r y@tD - h UnitStep@30 - tD;

It  describes an exponential  growth in which a harvesting of h  units per time unit occurs for 0 § t § 30.
Apply the Laplace transform (this example was also solved with DSolve in Example 9 of Section 26.1.1,

p. 834):

lapeqn = LaplaceTransform@eqn, t, sD ê. y@0D Ø a

-a + s LaplaceTransform@y@tD, t, sD ã -
I1 - ‰-30 sM h

s
+ r LaplaceTransform@y@tD, t, sD

lap = Solve@lapeqn, LaplaceTransform@y@tD, t, sDD

::LaplaceTransform@y@tD, t, sD Ø
‰-30 s Ih - ‰30 s h + ‰30 s s aM

s H-r + sL >>

842 Mathematica Navigator



lapsol = y@tD ê. InverseLaplaceTransform@lap, s, tDP1T

h - ‰r t h + ‰r t r a + I-1 + ‰r I-30+tMM h HeavisideTheta@-30 + tD
r

Plot@lapsol ê. 8a Ø 100, r Ø 0.01, h Ø 2<, 8t, 0, 100<D

20 40 60 80 100

80

90

100

110

120

130

26.2.2  Series Solutions

‡ Infinite Number of Terms

We  have  already  considered  series  solutions  in Section  19.2.3,  p. 629.  Now  we  consider  the  equation

y HtL - 2 t y£HtL - 2 yHtL = 0. Let us try to find the solution in the form yHtL = ⁄i=0¶ ai t
i  by inserting this into

the equation. First, note the following:

t y£HtL =‚
i=1

¶

i ai t
i
=‚
i=0

¶

i ai t
i, y HtL =‚

i=2

¶

iHi - 1L ai t
i-2

=‚
i=0

¶

Hi + 2L Hi + 1L ai+2 ti.

The  equation  then  becomes ⁄i=0¶ AHi + 2L Hi + 1L ai+2 - 2 i ai - 2 aiE ti = 0.  Thus,  the  coefficients ai  satisfy  the

difference  equation Hi + 2L Hi + 1L ai+2 - 2 Hi + 1L ai = 0;  that  is, ai =
2

i
ai-2.  In  addition, yH0L = a0  and

y£H0L = a1.

Assume first that yH0L = 1 and y£H0L = 0 so that a0 = 1 and a1 = 0.  It  is easy to see that the solution of

ai =
2

i
ai-2  is ai = 1í J i

2
N!  for i  even and ai = 0  for i  odd.  This  can  also be  seen with RSolve  (see Section

28.1.1, p. 924):

RSolve@8a@iD ã 2 ê i a@i - 2D, a@0D ã 1, a@1D ã 0<, a@iD, iD

::a@iD Ø
1 + H-1Li

2
i

2
!

>>

Thus, we get the series solution yHtL =⁄i even ti ë Hi ê 2L !. The value of the sum is as follows:

sol = Sum@t^i ê Hi ê 2L!, 8i, 0, ¶, 2<D ‰t2

Thus, yHtL = ‰t
2
 is the solution of the problem. DSolve gives the same solution:

DSolve@8y''@tD - 2 t y'@tD - 2 y@tD ã 0, y@0D ã 1, y'@0D ã 0<, y@tD, tD ::y@tD Ø ‰t2>>
Assume then that yH0L = 0 and y£H0L = 1 so that a0 = 0 and a1 = 1. From ai =

2

i
ai-2, it is easy to see that

a2 i+1 = 2i ë H2 i + 1L !!, i = 0, 1, 2, …, and other ai values are zero. RSolve gives the solution in another form:

RSolve@8a@iD ã 2 ê i a@i - 2D, a@0D ã 0, a@1D ã 1<, a@iD, iD

::a@iD Ø -
I-1 + H-1LiM p

4
i

2
!

>>

Chapter 26  •  Differential Equations 843



Therefore, we know the series expansion of yHtL, and Mathematica is able to calculate the infinite sum:

sol = Simplify@Sum@2^i ê H2 i + 1L!! t^H2 i + 1L, 8i, 0, ¶<D, t > 0D

1

2
‰t2

p Erf@tD
DSolve gives the same solution:

DSolve@8y''@tD - 2 t y'@tD - 2 y@tD ã 0, y@0D ã 0, y'@0D ã 1<, y@tD, tD

::y@tD Ø
1

2
‰t2

p Erf@tD>>
The general solution of the equation is a linear combination of the two solutions:

DSolve@y''@tD - 2 t y'@tD - 2 y@tD ã 0, y@tD, tD

::y@tD Ø ‰t2
C@2D +

1

2
‰t2

p C@1D Erf@tD>>
If we are satisfied with a finite series, we can get an approximate solution, as is seen in the next two

examples.

‡ A Finite Number of Terms 1

We continue with the preceding example and calculate an approximate solution as a finite sum by using

the formula a2 i+1 = 2i ë H2 i + 1L !!:
apprsol = Sum@2^i ê H2 i + 1L!! t^H2 i + 1L, 8i, 0, 5<D

t +
2 t3

3
+
4 t5

15
+
8 t7

105
+
16 t9

945
+
32 t11

10 395

We  can  also  directly  use  the  difference  equation ai =
2

i
ai-2  of  the  coefficients  by  first  defining  the

equation:

a@0D = 0; a@1D = 1;
a@i_D := a@iD = 2 a@i - 2D ê i

Then we calculate a finite sum:

apprsol = Sum@a@iD t^i, 8i, 0, 12<D

t +
2 t3

3
+
4 t5

15
+
8 t7

105
+
16 t9

945
+
32 t11

10 395

Before we continue, we have to remove the definition of the coefficients:

Remove@aD

‡ A Finite Number of Terms 2

If we do not know the difference equation of the coefficients, we can proceed as follows. First, we define
the differential  equation and the initial  conditions (it  is now advantageous to use &&  rather than a list,
because later we will use LogicalExpand):

eqn = y''@tD - 2 t y'@tD - 2 y@tD ã 0 && y@0D ã 0 && y'@0D ã 1;

Before we find an approximate series solution, we show the solution given by DSolve:

sol = y@tD ê. DSolve@eqn, y@tD, tDP1T

1

2
‰t2

p Erf@tD

844 Mathematica Navigator



Then we try to find an approximate solution in the form of a 12th-degree power series:

y@t_D = Sum@a@iD t^i, 8i, 0, 12<D + O@tD^13

a@0D + a@1D t + a@2D t2 + a@3D t3 + a@4D t4 + a@5D t5 + a@6D t6 +

a@7D t7 + a@8D t8 + a@9D t9 + a@10D t10 + a@11D t11 + a@12D t12 + O@tD13

The equation is now as follows:

eqn

H-2 a@0D + 2 a@2DL + H-4 a@1D + 6 a@3DL t + H-6 a@2D + 12 a@4DL t2 + H-8 a@3D + 20 a@5DL t3 +

H-10 a@4D + 30 a@6DL t4 + H-12 a@5D + 42 a@7DL t5 + H-14 a@6D + 56 a@8DL t6 +

H-16 a@7D + 72 a@9DL t7 + H-18 a@8D + 90 a@10DL t8 + H-20 a@9D + 110 a@11DL t9 +

H-22 a@10D + 132 a@12DL t10 + O@tD11 ã 0 && a@0D ã 0 && a@1D ã 1

We could find the conditions under which the equation is true:

cond = LogicalExpand@eqnD

a@0D ã 0 && a@1D ã 1 && -2 a@0D + 2 a@2D ã 0 && -4 a@1D + 6 a@3D ã 0 &&
-6 a@2D + 12 a@4D ã 0 && -8 a@3D + 20 a@5D ã 0 && -10 a@4D + 30 a@6D ã 0 &&
-12 a@5D + 42 a@7D ã 0 && -14 a@6D + 56 a@8D ã 0 && -16 a@7D + 72 a@9D ã 0 &&
-18 a@8D + 90 a@10D ã 0 && -20 a@9D + 110 a@11D ã 0 && -22 a@10D + 132 a@12D ã 0

Then we could solve the conditions with Solve[cond]. Actually, Solve can be applied directly to eqn:

aa = Solve@eqnD

::a@0D Ø 0, a@1D Ø 1, a@2D Ø 0, a@3D Ø
2

3
, a@4D Ø 0, a@5D Ø

4

15
, a@6D Ø 0,

a@7D Ø
8

105
, a@8D Ø 0, a@9D Ø

16

945
, a@10D Ø 0, a@11D Ø

32

10 395
, a@12D Ø 0>>

The corresponding approximate series solution of the original equation is as follows:

apprsol = y@tD ê. aaP1T

t +
2 t3

3
+
4 t5

15
+
8 t7

105
+
16 t9

945
+
32 t11

10 395
+ O@tD13

This is exactly the same as the series expansion of the exact solution:

Series@sol, 8t, 0, 12<D

t +
2 t3

3
+
4 t5

15
+
8 t7

105
+
16 t9

945
+
32 t11

10 395
+ O@tD13

From a figure, we see that the approximate solution is quite good near the origin:

Plot@Evaluate@8sol, apprsol êê Normal<D, 8t, 0, 2<, PlotStyle Ø 88<, Dashing@8Tiny<D<D

0.5 1.0 1.5 2.0

5

10

15

20

25

Remove@"Global`*"D

Chapter 26  •  Differential Equations 845



26.2.3  Solution as a Pure Function

sol = y /. DSolve[eqn, y, t]  Give the solution in the form of a pure function
sol[a]  Calculate the value of the solution at a
eqn /. y Ø sol  Check the solution
Plot[sol[t], {t, a, b}]  Plot the solution

Thus  far,  we  have  used DSolve  in  the  form DSolve[eqn, y[t], t].  However, DSolve  also  has
another form, in which the dependent variable is not declared as y[t] but as y. Thus, we can also write
DSolve[eqn, y, t].  The  solution  is  then  expressed  as  a  function~specifically,  a  pure  function  (see

Section 17.1.4, p. 520). As an example, we define an equation:

eqn = 8y'@tD ã y@tD + t + 1, y@0D ã 1<;

We calculate the solution using both ways:

DSolve@eqn, y@tD, tD 99y@tD Ø -2 + 3 ‰t - t==
DSolve@eqn, y, tD 99y Ø FunctionA8t<, -2 + 3 ‰t - tE==

It may seem as if the latter form of solution would not be as good as the former. In fact, the latter form
has  a  clear  advantage  in  that  we  can  use  the  solution  similarly  as  we  can  other  functions.  Next,  we
compare the methods in more detail.

First, we declare the dependent variable to be y[t]:

sol = y@tD ê. DSolve@eqn, y@tD, tDP1T -2 +3 ‰t -t

A value calculation, differentiation, and checking of the correctness of the solution are done as follows:

sol ê. t Ø 2 -4 +3 ‰2

D@sol, tD -1 +3 ‰t

eqn ê. 8y@tD Ø sol, y'@tD Ø D@sol, tD, y@0D Ø sol ê. t Ø 0<

8True, True<
When checking correctness, we inserted the solution into the equation and into the initial condition. The
result of the checking shows that both the equation and the initial condition are satisfied.

Then we declare the dependent variable to be y:

sol = y ê. DSolve@eqn, y, tDP1T FunctionA8t<, -2 + 3 ‰t -tE
Now  we  can  use sol  in  the  same  way  as  any  other  function  of Mathematica,  such  as Sin  or Exp.  We
calculate a value and derivative and check the correctness of the solution as follows:

sol@2D -4 +3 ‰2

sol'@tD -1 +3 ‰t

eqn ê. y Ø sol 8True, True<
The checking in particular is very easy with this latter method.

In Example 7 of Section 26.1.1, p. 833, we encountered an implicit solution:

846 Mathematica Navigator



Off@InverseFunction::ifunD
sol = DSolve@ y£@tD - 2 t y@tD^2 - y@tD^3 ã 0, y, tD
Solve::tdep : The equations appear to involve

the variables to be solved for in an essentially non-algebraic way. à

SolveB
t AiryAiBt2 +

1

y@tD
F + AiryAiPrimeBt2 +

1

y@tD
F

t AiryBiBt2 +
1

y@tD
F + AiryBiPrimeBt2 +

1

y@tD
F

+ C@1D ã 0, y@tDF

To check this solution, do as follows:

Solve@D@solP1T, tD, y'@tDD 99y£@tD Ø y@tD2 H2 t + y@tDL==
We see that the solution satisfies the original equation.

26.2.4  Integral and Integro-Differential Equations

‡ Volterra Integral Equation

The following equation is a Volterra integral equation of the second kind:

eqn = y@tD ã t^2 + Integrate@Sin@t - uD y@uD, 8u, 0, t<D

y@tD ã t2 + ‡
0

t

Sin@t - uD y@uD „u

This can be solved using Laplace transform:

Solve@LaplaceTransform@eqn, t, sD, LaplaceTransform@y@tD, t, sDD

::LaplaceTransform@y@tD, t, sD Ø
2 I1 + s2M

s5
>>

sol = y@tD ê. InverseLaplaceTransform@%, s, tDP1T êê Simplify

t2 +
t4

12

We perform a check:

eqn ê. 8y@tD Ø sol, y@uD Ø Hsol ê. t Ø uL< True

sol =.

‡ Fredholm Integral Equation

The next equation is a Fredholm equation of the second kind:

eqn = y@tD ã 2 + 3 t + 4 Integrate@H1 + t u^2 + t^2 u + t^3L y@uD, 8u, 0, 1<D

y@tD ã 2 + 3 t + 4 ‡
0

1I1 + t3 + t2 u + t u2M y@uD „u

We guess (from the form of the equation) that the solution is of the following form:

sol@t_D := 2 + 3 t + 4 Ha + b t + c t^2 + d t^3L

We then insert the guess into the equation:

Chapter 26  •  Differential Equations 847



eqn ê. y Ø sol

2 + 3 t + 4 Ia + b t + c t2 + d t3M ã

2 + 3 t + 4
7

2
+ 4 a + 2 b +

4 c

3
+ d +

17 t

12
+
4 a t

3
+ b t +

4 c t

5
+
2 d t

3
+

2 t2 + 2 a t2 +
4 b t2

3
+ c t2 +

4 d t2

5
+
7 t3

2
+ 4 a t3 + 2 b t3 +

4 c t3

3
+ d t3

We  solve  the  coefficients  that  satisfy  the  equation  identically  (for SolveAlways,  see Section  22.2.2,  p.

719):

coeff = SolveAlways@%, tD

::a Ø -
335

636
, b Ø -

167

424
, c Ø -

385

848
, d Ø -

335

636
>>

Thus, the solution is as follows:

sol2 = sol@tD ê. coeffP1T

2 + 3 t + 4 -
335

636
-
167 t

424
-
385 t2

848
-
335 t3

636

We check that the solution is correct:

eqn ê. 8y@tD Ø sol2, y@uD Ø Hsol2 ê. t Ø uL< True

‡ Integro-Differential Equation

Define an integro-differential equation:

eqn = y@tD + y'@tD ã 1 - Integrate@Exp@t - uD y@uD, 8u, a, t<D

y@tD + y£@tD ã 1 - ‡
a

t

‰t-u y@uD „u

Also define the initial condition yHaL = c. Differentiate the equation:

eqn2 = D@eqn, tD y£@tD + y££@tD ã -‡
a

t

‰t-u y@uD „u - y@tD
Eliminate the integral from the two equations (for Eliminate, see Section 22.2.2, p. 718):

eqn3 = Eliminate@8eqn, eqn2<, Integrate@Exp@t - uD y@uD, 8u, a, t<DD y££@tD ã -1

We arrived at a differential equation. To get a second initial condition, substitute a  for t  in the original
equation:

cond = eqn ê. t Ø a y@aD +y£@aD ã 1

The solution of the initial value problem is as follows:

sol = y ê. DSolve@8eqn3, y@aD ã c, cond<, y, tDP1T

FunctionB8t<, 1

2
I-2 a - a2 + 2 c + 2 a c + 2 t + 2 a t - 2 c t - t2MF

Collect@sol@tD, t, FactorD
1

2
I-2 a - a2 + 2 c + 2 a cM + H1 + a - cL t -

t2

2

This solves the original equation:

eqn ê. y Ø sol êê Simplify True

848 Mathematica Navigator



26.3  Numerical Solutions

26.3.1  One Equation

Here  are  typical  commands  that  are  used  when  we  numerically  solve  one  differential  equation  with
initial or boundary conditions.

sol = y[t] /. NDSolve[{eqn, conds}, y[t], {t, a, b}]P1T  Solve the problem
Plot[sol, {t, a, b}]  Plot the solution

The arguments of NDSolve are otherwise the same as the ones of DSolve except that in place of t, we
have to define the interval {t, a, b} where we ask for the numerical solution.

The  conditions  in {eqn, conds}  are  often  initial  conditions,  but  they  can  also  be  boundary  condi-
tions. The conditions need not be given at the end points of the solution interval. For example, if you ask
for  the  solution  in H0, 3L,  you  can  state  all  conditions  at t = 1  or  some  conditions  at t = 1  and  other
conditions at t = 2. Generally, if the highest-order derivative of the equation is n, a total of n conditions
must be given so that the solution can be computed. In the simplest case, the conditions give values of
yHaL, y£HaL, …, yHn-1LHaL.

NDSolve normally uses an adaptive Adams predictor-corrector method; the methods are considered

in more detail in Section 26.4.1, p. 865. The basic principle of the solution method is that the solution is

computed  at  a  finite  set  of t  points,  and  piecewise  interpolation  is  used  to  calculate  the  values  of  the

solution at other points. Note that options of NDSolve are considered in Section 26.4.1, p. 865.

‡ Example 1: A First-Order Initial Value Problem

We solve a first-order nonlinear equation:

eqn = 1000 y@tD y'@tD ã 160 - 3 y@tD^3;

sol = NDSolve@8eqn, y@0D ã 0.00001<, y@tD, 8t, 0, 150<D

88y@tD Ø InterpolatingFunction@880., 150.<<, <>D@tD<<
The solution is an InterpolatingFunction  object (see Section 24.2.1, p. 797). The object represents the

solution  as  a  collection  of  cubic  interpolating  polynomials.  Only  the  interval  of  the  solution  is  shown
({0., 150.} here); all other information is hidden behind the marks <>.

It may be preferable to ask directly for the value of y[t]:

sol = y@tD ê. NDSolve@8eqn, y@0D ã 0.00001<, y@tD, 8t, 0, 150<DP1T

InterpolatingFunction@880., 150.<<, <>D@tD
The solution looks like this:

Plot@sol, 8t, 0, 150<, AxesOrigin Ø 80, 0<D

20 40 60 80 100 120 140

0.5
1.0
1.5
2.0
2.5
3.0
3.5

Chapter 26  •  Differential Equations 849



Next, we can ask for the value of the solution at a point and tabulate the solution at a set of points:

sol ê. t Ø 100 3.6752

Table@8t, sol<, 8t, 1, 4<D

881, 0.565302<, 82, 0.798468<, 83, 0.976357<, 84, 1.12527<<
We can plot the solution for several initial values:

solset = Table@
y@tD ê. NDSolve@8eqn, y@0D ã y0<, y@tD, 8t, 0, 150<D, 8y0, 0.00001, 6.00001, 0.5<D;

Plot@solset, 8t, 0, 150<, PlotRange Ø All, PlotStyle Ø BlackD

20 40 60 80 100 120 140

1

2

3

4

5

6

‡ Example 2: A Second-Order Initial Value Problem

Consider the following second-order equation (the first Painlevé transcendent):

eqn = y''@tD ã y@tD^2 - t;

Solve the  equation and plot  the  solution and its  derivative,  both as  functions  of t  and as  a  parametric
plot:

sol = y@tD ê. NDSolve@8eqn, y@0D ã 0, y'@0D ã -3.4<, y@tD, 8t, 0, 12<DP1T

InterpolatingFunction@880., 12.<<, <>D@tD
Plot@Evaluate@8sol, D@sol, tD<D, 8t, 0, 12<D

2 4 6 8 10 12

-4

-2

2

4

ParametricPlot@Evaluate@8sol, D@sol, tD<D, 8t, 0, 12<, ImageSize Ø 80D

-4 -3 -2 -1

-4

-2

2

4

Solve the equation when yH0L = 0 and y£H0L varies from -3.4 to 1 in steps of 0.25:

solset = Table@
y@tD ê. NDSolve@8eqn, y@0D ã 0, y'@0D ã d0<, y@tD, 8t, 0, 12<D, 8d0, -3.4, 1, 0.25<D;

850 Mathematica Navigator



Plot@solset, 8t, 0, 12<, PlotStyle Ø Black, ImageSize Ø 180D

2 4 6 8 10 12

-4

-3

-2

-1

1

‡ Example 3: A Second-Order Boundary Value Problem

Now we give boundary conditions:

eqn = y''@tD ã y'@tD - t y@tD;

sol = y@tD ê. NDSolve@8eqn, y@0D ã 2, y@4D ã 2<, y@tD, 8t, 0, 4<D;

Plot@sol, 8t, 0, 4<D

1 2 3 4

-5
-4
-3
-2
-1

1
2

Boundary value problems are also considered in Section 26.4.3, p. 874.

‡ Example 4: Several Solutions

More than one solution can be obtained:

sol = y@tD ê. NDSolve@8y'@tD^2 ã t, y@0D ã 0<, y@tD, 8t, 0, p<D

8InterpolatingFunction@880., 3.14159<<, <>D@tD,
InterpolatingFunction@880., 3.14159<<, <>D@tD<
Plot@sol, 8t, 0, p<D

0.5 1.0 1.5 2.0 2.5 3.0

-3
-2
-1

1
2
3

‡ Example 5: Piecewise-Defined Equations

Consider the following equation:

eqn = y'@tD ã 0.01 y@tD - 2 UnitStep@30 - tD;

It describes an exponential growth in which a harvesting of h units per time unit occurs for 0 § t § 30. In
place of 2 UnitStep[30 - t],  we could write If[t £ 30, 2, 0].  We have already solved the equation

with DSolve  (see Section 26.1.1,  p. 834) and with the Laplace transform (see Section 26.2.1,  p. 842),  but

now we solve the equation numerically:

sol = y@tD ê. NDSolve@8eqn, y@0D ã 100<, y@tD, 8t, 0, 100<D;

Chapter 26  •  Differential Equations 851



Plot@sol, 8t, 0, 100<D

20 40 60 80 100

80
90

100
110
120
130

‡ Solution as a Pure Function

sol = y /. NDSolve[{eqn, conds}, y, {t, a, b}]P1T  Give the solution in the form of a pure
function

sol[a]  Calculate the value of the solution at a
Plot[sol[t], {t, a, b}]  Plot the solution

Thus far, we have used NDSolve in the form DSolve[{eqn, conds}, y[t], {t, a, b}]. NDSolve, like

DSolve  (see Section  26.2.3,  p. 846),  also  has  another  form  in  which  the  dependent  variable  is  not

declared as y[t] but as y. The solution is then expressed as a function, more exactly as a pure function.
As an example, define an equation:

eqn = y'@tD ã -t y@tD + Exp@-tD;

Ask for the solution as a pure function:

sol = y ê. NDSolve@8eqn, y@0D ã 1<, y, 8t, 0, 5<DP1T

InterpolatingFunction@880., 5.<<, <>D
Now sol can be used like other functions. We calculate a value and plot the solution:

sol@1D 1.04613

Plot@sol@tD, 8t, 0, 5<D

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

‡ Delay Differential Equations

For  delay  differential  equations,  see library.wolfram.com/database/MathSource/725 .  There,  you  can
download a package defining NDelayDSolve.

26.3.2  Two Equations

vars = {x[t], y[t]}  Define the dependent variables
eqns = {eqn1, eqn2}  Define the differential equations
inits = {x[a] ã a, y[a] ã b}  Define the initial (or boundary) conditions

sol = vars /. NDSolve[Join[eqns, inits], vars, {t, a, b}]P1T  Solve the problem

Plot[sol, {t, a, b}]  Plot x[t] and y[t]

ParametricPlot[sol, {t, a, b}]  Plot a phase trajectory

852 Mathematica Navigator



We present  two examples  of  systems of  two nonlinear differential  equations.  For  more information
about the examples, see Borrelli and Coleman (1998, pp. 276-298). For more information about studying
systems of nonlinear equations with Mathematica, see Murrell (1994).

‡ A Predator-Prey Model

Define the predator-prey model by Lotka and Volterra:

vars = 8x@tD, y@tD<;

f = x@tD Hp - q y@tDL;
g = y@tD H-P + Q x@tDL;

eqns = 8x£@tD ã f, y£@tD ã g<

8x£@tD ã x@tD Hp - q y@tDL, y£@tD ã H-P + Q x@tDL y@tD<
The variables xHtL and yHtL are magnitudes of the prey and predator, respectively, at time t.

First, we calculate the equilibrium points. At these points, the derivatives are simultaneously zero:

equi = Solve@8f ã 0, g ã 0<, varsD

:8x@tD Ø 0, y@tD Ø 0<, :x@tD Ø
P

Q
, y@tD Ø

p

q
>>

To check the nature of these points, calculate the Jacobian of f and g (see Section 19.1.2, p. 619):

jac = D@8f, g<, 8vars<D

88p - q y@tD, -q x@tD<, 8Q y@tD, -P + Q x@tD<<
The eigenvalues of the Jacobian at the equilibrium points are as follows:

eig = Eigenvalues@jac ê. ÒD & êü equi

:8p, -P<, :-Â p P , Â p P >>
Thus, if p and P are positive, the equilibrium point H0, 0L is a saddle point and the point J P

Q
,
p

q
N a center

or a focus.

Consider the following numerical values for the constants:

p = 3.0; q = 2;
P = 2.5; Q = 1;

The equilibrium points are now as follows:

equi

88x@tD Ø 0, y@tD Ø 0<, 8x@tD Ø 2.5, y@tD Ø 1.5<<
Calculate a solution of the system:

inits = 8x@0D ã 2.5, y@0D ã 0.5<;

sol = vars ê. NDSolve@Join@eqns, initsD, vars, 8t, 0, 10<DP1T

8InterpolatingFunction@880., 10.<<, <>D@tD,
InterpolatingFunction@880., 10.<<, <>D@tD<

We plot this solution in three ways. First, we plot xHtL and yHtL as functions of t:

Chapter 26  •  Differential Equations 853



Plot@sol, 8t, 0, 10<, PlotStyle Ø 88Black<, 8Black, Dashing@8Tiny<D<<,
AspectRatio Ø 0.2, ImageSize Ø 300D

2 4 6 8 10

1
2
3
4
5
6

The sizes of the populations vary cyclically. Then we plot a phase trajectory in the Ix, yM plane:

ParametricPlot@sol, 8t, 0, 2.5<,
AxesLabel Ø 8"prey", "predator"<, AxesOrigin Ø 80, 0<D

1 2 3 4 5 6
prey

0.5
1.0
1.5
2.0
2.5
3.0

predator

The trajectories seem to be closed curves. Lastly, we plot the phase trajectory as a collection of points:

ListPlot@Table@sol, 8t, 0, 2.5, 0.1<D, AxesLabel Ø 8"prey", "predator"<D

1 2 3 4 5 6
prey

0.5
1.0
1.5
2.0
2.5
3.0

predator

This figure gives an impression of the speed of motion in the plane.

A direction field gives an impression of the behavior of the model in an area:

<< VectorFieldPlots`

VectorFieldPlot@8f, g<, 8x@tD, 0, 12<,
8y@tD, 0, 6<, Axes Ø True, PlotPoints Ø 11, ImageSize Ø 250D

2 4 6 8 10 12

1

2

3

4

5

6

A  collection  of  phase  trajectories  is  even  more  illustrative.  We  calculate  solutions  when xH0L = 2.5  and
yH0L gets a set of values:

solset = Table@vars ê. NDSolve@Join@eqns, 8x@0D ã 2.5, y@0D ã y0<D, vars, 8t, 0, 3.1<D,
8y0, 0.1, 1.5, 0.2<D;

854 Mathematica Navigator



ParametricPlot@solset, 8t, 0, 3.1<, PlotStyle Ø Black,
PlotRange Ø All, AxesLabel Ø 8"prey", "predator"<, ImageSize Ø 300,
Epilog Ø 8Arrowheads@0.02D, Arrow@886.5, 3.2<, 86.0, 3.5<<D, Blue, Line@

880, p ê q<, 812, p ê q<<D, Line@88P ê Q, 0<, 8P ê Q, 6.5<<D, Red, Point@82.5, 1.5<D<D

2 4 6 8 10
prey

1

2

3

4

5

6

predator

The red point is the center and the blue lines are the nullclines, which are the curves where x£HtL = 0 or
y£HtL = 0. The direction of motion is counterclockwise.

In Sections  26.4.5,  p. 879,  and 26.4.6,  p. 881,  we  study  the  predator-prey  model  by  considering  its

estimation, showing a manipulation, and using a so-called equation trekker.

Remove@"Global`*"D

‡ Competing Species

Define the following model that describes competing species:

vars = 8x@tD, y@tD<;

f = x@tD Hp - q x@tD - r y@tDL;
g = y@tD HP - Q x@tD - R y@tDL;

eqns = 8x'@tD ã f, y'@tD ã g<;

The variables xHtL and yHtL are the population magnitudes at time t.

First, we calculate the nullclines where the derivatives x£HtL and y£HtL are zero:

h1 = y@tD ê. Solve@f ã 0, y@tDDP1T ê. x@tD Ø x

p - q x

r
h2 = y@tD ê. Solve@g ã 0, y@tDDP2T ê. x@tD Ø x

P - Q x

R

Then we calculate the equilibrium points:

equi = Solve@8f ã 0, g ã 0<, varsD êê Simplify

:8x@tD Ø 0, y@tD Ø 0<, :x@tD Ø
p

q
, y@tD Ø 0>,

:x@tD Ø
P r - p R

Q r - q R
, y@tD Ø

P q - p Q

-Q r + q R
>, :y@tD Ø

P

R
, x@tD Ø 0>>

Calculate the Jacobian of f and g:

Chapter 26  •  Differential Equations 855



jac = D@8f, g<, 8vars<D

88p - 2 q x@tD - r y@tD, -r x@tD<, 8-Q y@tD, P - Q x@tD - 2 R y@tD<<
The eigenvalues of the Jacobian at the equilibrium points are as follows:

eig = Eigenvalues@jac ê. ÒD & êü equi êê Simplify

:8p, P<, :-p, P -
p Q

q
>, :- 1

2 Q r - 2 q R
P q r - p q R - P q R + p Q R +

4 HP q - p QL HP r - p RL H-Q r + q RL + HP q Hr - RL + p H-q + QL RL2 ,

1

2 Q r - 2 q R
-P q r + p q R + P q R - p Q R +

4 HP q - p QL HP r - p RL H-Q r + q RL + HP q Hr - RL + p H-q + QL RL2 >, :-P, p -
P r

R
>>

Define the following numerical values for the constants:

p = 2; q = 2 ê 3; r = 2;
P = 2; Q = 4 ê 3; R = 1;

The equilibrium points are now as follows:

equi

:8x@tD Ø 0, y@tD Ø 0<, 8x@tD Ø 3, y@tD Ø 0<, :x@tD Ø 1, y@tD Ø
2

3
>, 8y@tD Ø 2, x@tD Ø 0<>

Here are the eigenvalues:

eig :82, 2<, 8-2, -2<, :-2, 2

3
>, 8-2, -2<>

Thus,  the  equilibrium  points  are  an  unstable  node,  a  stable  node,  a  saddle  point,  and  a  stable  node,
respectively.

Calculate a solution of the system:

inits = 8x@0D ã 3.5, y@0D ã 2<;

sol = vars ê. NDSolve@Join@eqns, initsD, vars, 8t, 0, 7<DP1T

8InterpolatingFunction@880., 7.<<, <>D@tD,
InterpolatingFunction@880., 7.<<, <>D@tD<

We plot this solution in three ways. First, we plot xHtL and yHtL as functions of t:

Plot@sol, 8t, 0, 7<, PlotStyle Ø 88Black<, 8Black, Dashing@8Tiny<D<<D

1 2 3 4 5 6 7

0.5

1.0

1.5

2.0

2.5

3.0

3.5

We see that the x population wins the competition and the y population vanishes; the limiting values are

3 and 0, respectively. Then we plot a phase trajectory in the Ix, yM plane:

856 Mathematica Navigator



ParametricPlot@sol, 8t, 0, 7<, PlotRange Ø All, AxesLabel Ø 8x, y<D

2.0 2.5 3.0 3.5
x

0.5

1.0

1.5

2.0

y

Lastly, we plot the phase trajectory as a collection of points to get an impression of the speed of motion
in the plane:

ListPlot@Table@sol, 8t, 0, 7, 0.1<D, PlotRange Ø All,
AxesLabel Ø 8"x", "y"<, AspectRatio Ø AutomaticD

2.0 2.5 3.0 3.5
x

0.5

1.0

1.5

2.0

y

Next, we plot a direction field:

<< VectorFieldPlots`

VectorFieldPlot@8f, g<, 8x@tD, 0, 3.5<,
8y@tD, 0, 2.5<, PlotPoints Ø 11, Axes Ø True, ImageSize Ø 250D

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.5

1.0

1.5

2.0

2.5

To plot a collection of phase trajectories, we first calculate solutions that go through the line y = 1 - x

at time t = 4 for some values of xH4L:
solset1 =
Table@vars ê. NDSolve@Join@eqns, 8x@4D ã x0, y@4D ã 1 - x0<D, vars, 8t, 0, 20<D,
8x0, 0.05, 0.95, 0.1<D;

Chapter 26  •  Differential Equations 857



p1 = ParametricPlot@solset1, 8t, 0, 20<, PlotStyle Ø BlackD

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

The  time  instance t = 4  was  chosen  by  trial  and  error  such  that  when  the  solution  starts  at t = 0,  the
starting points  are close enough to the origin.  Then we start  from the line y = 7 - x  for  some values of

xH0L:
solset2 =
Table@vars ê. NDSolve@Join@eqns, 8x@0D ã x0, y@0D ã 7 - x0<D, vars, 8t, 0, 10<D,
8x0, 0.1, 6.9, 0.25<D;

p2 = ParametricPlot@solset2, 8t, 0, 10<, PlotStyle Ø BlackD

1 2 3 4 5 6 7

1

2

3

4

5

6

7

We also plot the nullclines:

p3 = Plot@8h1, h2<, 8x, 0, 3.5<, PlotStyle Ø BlueD

0.5 1.0 1.5 2.0 2.5 3.0 3.5

-2

-1

1

2

Then we show all of the plots in one figure:

858 Mathematica Navigator



Show@p1, p2, p3, PlotRange Ø 880, 3.2<, 80, 2.2<<, ImageSize Ø 300,
Epilog Ø 8Arrowheads@0.02D, Arrow@882, 1.3<, 81.85, 1.2<<D,

Arrow@880.5, 0.33<, 80.65, 0.43<<D, PointSize@MediumD, Red,
Point@83, 0<D, Point@80, 2<D, Green, Point@80, 0<D, Point@81, 2 ê 3<D<D

0.5 1.0 1.5 2.0 2.5 3.0

0.5

1.0

1.5

2.0

The red points are the stable equilibrium points,  the green points are unstable equilibrium points,  and
the  blue  lines  are  the  nullclines.  The  direction  of  motion  is  toward the  stable  equilibrium points H3, 0L
and H0, 2L.  Note  that  for  some  other  values  of  the  parameters p, q, r, P, Q,  and R,  the  behavior  of  the

model may be wholly different.

Recall  that  in Section  10.1.3,  p. 330,  we  presented  a  manipulation  to  study  the  trajectories  of  the

model of competing species that we presented here.

‡ A Matrix Equation

NDSolve accepts equations formulated with matrices. For example,

a = 880.1, -0.5<, 80.3, -0.2<<; x0 = 815, 0<;

sol = x@tD ê. NDSolve@8x'@tD ã a.x@tD, x@0D ã x0<, x@tD, 8t, 0, 80<D

8InterpolatingFunction@880., 80.<<, <>D@tD<
ParametricPlot@sol, 8t, 0, 80<, PlotRange Ø AllD

-10 -5 5 10 15

-5

5

10

In this example, x[t] is a two-component vector. The dependent variable can also be a matrix.

‡ A Differential-Algebraic System

NDSolve can solve differential-algebraic systems. Here is a simple example:

Chapter 26  •  Differential Equations 859



sol = 8x@tD, y@tD< ê. NDSolve@
8x'@tD ã x@tD^2 + y@tD + 0.5, x@tD + y@tD ã 1, x@0D ã 0<, 8x@tD, y@tD<, 8t, 0, 1.5<D

88InterpolatingFunction@880., 1.5<<, <>D@tD,
InterpolatingFunction@880., 1.5<<, <>D@tD<<

Plot@sol, 8t, 0, 1.5<D

0.2 0.4 0.6 0.8 1.0 1.2 1.4

-3

-2

-1

1

2

3

4

Remove@"Global`*"D

26.3.3  Three and More Equations

vars = {x[t], y[t], z[t]}  Define the dependent variables
eqns = {eqn1, eqn2, eqn3}  Define the differential equations
inits = {x[a] ã a, y[a] ã b, z[a] ã g}  Define the initial (or boundary) conditions

sol = {sx, sy, sz} = vars /. DSolve[Join[eqns, inits], vars, {t, a, b}]P1T  Solve the problem

Plot[sol, {t, a, b}]  Plot x, y, and z in one figure

Plot[#, {t, a, b}]& /@ sol  Plot x, y, and z in three figures

ParametricPlot[#, {t, a, b}]& /@ {{sx, sy}, {sx, sz}, {sy, sz}}]  Plot three plane trajectories
ParametricPlot3D[sol, {t, a, b}]  Plot the space trajectory

‡ The Lorenz Model

Define the following model:

vars = 8x@tD, y@tD, z@tD<;

f = p Hy@tD - x@tDL;
g = q x@tD - y@tD - x@tD z@tD;
h = x@tD y@tD - r z@tD;

eqns = 8x'@tD ã f, y'@tD ã g, z'@tD ã h<;

This is the Lorenz model, which describes convective currents in atmosphere (see Borrelli and Coleman,
1998, pp. 500-514). The constants p, q, and r are positive. The variable x is the amplitude of the convec-

tive currents, y  is the temperature difference between rising and falling currents, and z is the deviation

from  the  normal  temperatures.  The  equations  result  in  approximating  nonlinear  partial  differential
equations of turbulent flow.

The equilibrium points are as follows:

equi = Solve@8f ã 0, g ã 0, h ã 0<, varsD

:8y@tD Ø 0, z@tD Ø 0, x@tD Ø 0<, :y@tD Ø - -r + q r , z@tD Ø -1 + q, x@tD Ø - -r + q r >,
:y@tD Ø -r + q r , z@tD Ø -1 + q, x@tD Ø -r + q r >>

Define the following numerical values for the constants:

p = 3; q = 268 ê 10; r = 1;

860 Mathematica Navigator



The equilibrium points are now as follows:

equi êê N

88y@tD Ø 0., z@tD Ø 0., x@tD Ø 0.<, 8y@tD Ø -5.07937, z@tD Ø 25.8, x@tD Ø -5.07937<,
8y@tD Ø 5.07937, z@tD Ø 25.8, x@tD Ø 5.07937<<

‡ Sensitivity to Numerical Inaccuracies

Calculating  a  numerical  solution of  the  Lorenz model  may cause  trouble  because  the  model  is chaotic.
The basic property of such models is extreme sensitivity of the solution to numerical inaccuracies and to
the initial conditions. To demonstrate the effect of numerical inaccuracies, we first calculate one solution
of the system with normal decimal numbers and ask for the value of the solution at t = 31:

inits = 8x@0D ã 0, y@0D ã 1, z@0D ã 0<;

sol1 = vars ê. NDSolve@Join@eqns, initsD, vars, 8t, 0, 35<DP1T;

sol1 ê. t Ø 31

8-2.75379, -7.14803, 11.7918<
Then we calculate the solution with high-precision numbers by asking that the calculations are done to

20 decimals. We also increase the values of the precision and accuracy goals (see Section 26.4.1, p. 865):

sol2 = vars ê. NDSolve@Join@eqns, initsD, vars, 8t, 0, 35<,
WorkingPrecision Ø 25, PrecisionGoal Ø 12, AccuracyGoal Ø 12DP1T;

sol2 ê. t Ø 31.

87.50215, 14.0227, 25.0762<
The  values  at t = 31  are  wholly  different  in  the  two solutions.  To  see  the  differences  more  clearly,  we
plot the difference of the two solutions:

Plot@Ò, 8t, 0, 35<, PlotRange Ø AllD & êü Hsol1 - sol2L

:
5 10 15 20 25 30 35

-15

-10

-5

5

10

15

,
5 10 15 20 25 30 35

-20

-10

10

20

, 5 10 15 20 25 30 35

-20

-15

-10

-5

5

10

>

The figures show that from approximately t = 25 on, the solutions differ greatly.

We can  trust  the  solution sol2  more,  but,  actually,  how accurate  it  is?  We can  solve  the  equations
once more and use even tighter precision and accuracy conditions:

sol3 = 8sx, sy, sz< =
vars ê. NDSolve@Join@eqns, initsD, vars, 8t, 0, 35<, WorkingPrecision Ø 25,

PrecisionGoal Ø 16, AccuracyGoal Ø 16, MaxSteps Ø 13 000DP1T;

The difference of sol2 and sol3 is displayed as follows:

Plot@Ò, 8t, 0, 35<, PlotRange Ø AllD & êü Hsol2 - sol3L

:
5 10 15 20 25 30 35

-0.004

-0.003

-0.002

-0.001

0.001

,
5 10 15 20 25 30 35

-0.010
-0.008
-0.006
-0.004
-0.002

0.002
0.004

,
5 10 15 20 25 30 35

-0.004

-0.002

0.002

0.004

0.006

>

Chapter 26  •  Differential Equations 861



The  solutions  are  practically  the  same  up  to  approximately t = 30,  so sol2  may  be  quite  good  to  this
point. However, we use the more accurate sol3 in the sequel.

To summarize, when calculating the solution of a chaotic model, it is important to use high precision
in  the  calculations.  Set WorkingPrecision  to  approximately  20  or  higher.  Also  increase  the  precision
and accuracy goals (their default value is 8). Remember to express all constants of the model with high
accuracy. For example, do not set q = 26.8 but, rather, q = 268/10 or q = 26.8`20 (the last definition sets

the precision of 26.8 to 20; see Section 12.2.2, p. 406).

‡ Sensitivity to Initial Conditions

To demonstrate the sensitivity of the Lorenz model to the initial conditions, we solve the equations by

now setting zH0L = 10-5 instead of zH0L = 0:

sol4 = vars ê. NDSolve@Join@eqns, 8x@0D ã 0, y@0D ã 1, z@0D ã 10^-5<D,
vars, 8t, 0, 30<, WorkingPrecision Ø 25, PrecisionGoal Ø 16,
AccuracyGoal Ø 16, MaxSteps Ø 13 000DP1T;

We compare solutions sol3, where zH0L = 0, and sol4 by plotting xHtL:
Plot@Evaluate@8sol3P1T, sol4P1T<D, 8t, 0, 30<,
PlotStyle Ø 88Black, Dashing@8Tiny<D<, 8Black<<, ImageSize Ø 160D

5 10 15 20 25 30

-10

-5

5

10

The solutions begin to differ from approximately t = 25 on, and from t = 29 on the solutions are wholly
different.  This  sensitivity  makes  the  prediction  of  a  chaotic  system  impossible  for  a  long  time  period
because the initial conditions are hardly known exactly.

For a simple first-order equation sensitive for the initial condition, see Example 3 in Section 26.4.1, p.

868.

‡ Plotting the Solution

First we plot the three curves in the same figure:

Plot@sol3, 8t, 0, 30<, Ticks Ø 8830<, Automatic<,
PlotStyle Ø 88Black, Dashing@8Tiny<D<, 8Black<, 8Gray<<,
ImageSize Ø 420, AspectRatio Ø 0.2D

30
-10

10

20

30

40

Then we plot three separate figures:

862 Mathematica Navigator



MapThread@Plot@Ò1, 8t, 0, 30<, PlotStyle Ø Ò2, Ticks Ø 8830<, Automatic<D &,
8sol3, 88Black, Dashing@8Tiny<D<, 8Black<, 8Gray<<<D

:
30

-10

-5

5

10

,

30

-10

10

20

,

30

10

20

30

40

>

The components seem to evolve quite unpredictably and chaotically.

The pairwise plane trajectories show an interesting behavior:

ParametricPlot@Ò, 8t, 0, 30<D & êü 88sx, sy<, 8sx, sz<, 8sy, sz<<

:

-10 -5 5 10

-10

10

20

,

-10 -5 5 10

10

20

30

40

,

-10 10 20

10

20

30

40

>

Lastly,  we plot the space trajectory.  To celebrate this extraordinarily fine figure,  we produce a two-
image  stereogram,  which  involves  two  versions  of  the  figure  with  slightly  different  viewpoints  (see

Section 5.3.3, p. 145). If you are able to superimpose the two figures with your eyes by focusing behind

the  paper,  you  will  get  an  amazing  stereographic  view.  (To  prevent  the  figure  from  becoming  too
complex, we plotted only up to the value t = 10.5.)

Chapter 26  •  Differential Equations 863



GraphicsRow@ParametricPlot3D@sol3, 8t, 0, 10.5<, ViewPoint Ø ÒD & êü
881.3, -2.4, 0.8<, 81.4, -2.3, 0.8<<, ImageSize Ø 280, Spacings Ø -80D

-10
-5 0 5 10

-10

0
10

20

0

10

20

30

40

-10
-5 0 5 10

-10

0
10

20

0

10

20

30

40

We can also plot points along the trajectory. A figure such as this gives an impression of the speed of
the process:

GraphicsRow@
Graphics3D@8PointSize@TinyD, Darker@BlueD, Point@Table@sol3, 8t, 0, 10.5, 0.03<DD<,

ViewPoint Ø ÒD & êü
881.3, -2.4, 0.8<, 81.4, -2.3, 0.8<<, ImageSize Ø 280, Spacings Ø -80D

‡ Larger Systems

In larger systems, we can consider the use of indexed dependent variables:

eqns = 8y1'@tD ã -y1@tD, y1@0D ã 1,
Table@8yi'@tD ã 1.5 yi-1@tD - yi@tD, yi@0D ã 0<, 8i, 2, 4<D<;

vars = Table@yi@tD, 8i, 4<D;

sol = vars ê. NDSolve@eqns, vars, 8t, 0, 10<D

88InterpolatingFunction@880., 10.<<, <>D@tD,
InterpolatingFunction@880., 10.<<, <>D@tD,
InterpolatingFunction@880., 10.<<, <>D@tD,
InterpolatingFunction@880., 10.<<, <>D@tD<<

864 Mathematica Navigator



Plot@sol, 8t, 0, 10<D

2 4 6 8 10

0.2

0.4

0.6

0.8

1.0

We can also ask for the solution of only one or some of the variables. Then the DependentVariables

option has to be used to declare all the variables:

sol = y4@tD ê. NDSolve@eqns, y4@tD, 8t, 0, 10<, DependentVariables Ø varsD

8InterpolatingFunction@880., 10.<<, <>D@tD<
Plot@sol, 8t, 0, 10<D

2 4 6 8 10

0.1
0.2
0.3
0.4
0.5
0.6
0.7

26.4  More about Numerical Solutions

26.4.1  Options

‡ Options of NDSolve

As usual, for each option, the default value is mentioned first.

Options of NDSolve:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the solution at each point
considered should be of the order 10-p;  examples of values: Automatic (usually means 8), 10

AccuracyGoal  If the value of the option is a, the absolute error of the solution at each point
considered should be of the order 10-a;  examples of values: Automatic (usually means 8), 10

Method  Method to use; possible values: Automatic (means "Adams" for nonstiff and "BDF" for stiff
problems), "Adams", "BDF", "ExplicitRungeKutta", "ImplicitRungeKutta",
"SymplecticPartitionedRungeKutta"

StartingStepSize  Initial step size used; examples of values: Automatic, 0.01
MaxStepSize  Maximum size of each step; examples of values: Automatic, 0.01
MaxStepFraction  Maximum fraction of the solution interval to cover in each step; examples of

values: 1/10, 0.05
MaxSteps  Maximum number of steps to take; examples of values: 10000, 20000
NormFunction  Norm to use for error estimation in systems of equations; examples of values:

Automatic (mostly means ¶), 1, 2, ¶

Chapter 26  •  Differential Equations 865



DependentVariables  List of all dependent variables; default value: Automatic

InterpolationOrder  The continuity degree of the final output; examples of values: Automatic, All

(the same as the underlying method used)
SolveDelayed  Whether the derivatives are solved symbolically at the beginning (False) or at each

step (True); possible values: False, True

Compiled  Whether to compile the equations; possible values: Automatic, True, False

StepMonitor  Command to be executed after each step of the method; examples of values: None,
Sow[{t, y[t]}], n++, AppendTo[steps, {t, y[t]}]

EvaluationMonitor  Command to be executed after each evaluation of the equation; examples of
values: None, Sow[{t, y[t]}], n++, AppendTo[points, t]

The default value MachinePrecision  of WorkingPrecision  means that  standard arithmetic is used
in  computations;  a  high  value  such  as  20  should  be  given  for  numerically  sensitive  problems.  The
default  value  of PrecisionGoal  is  usually  8  (the  general  value  is WorkingPrecision/2),  so NDSolve

tries to give you an answer with a relative error of order 10-8 (this is only a goal; the actual relative error
may  be  smaller  or  larger).  The  default  value  of AccuracyGoal  is  also  usually  8  (the  general  value  is

WorkingPrecision/2), so the goal is for the result to have an absolute error of the order 10-8.

For  a  given value of  the independent variable, NDSolve  accepts  the present  value of  the dependent
value if the precision or accuracy goal is satisfied. If you increase PrecisionGoal or AccuracyGoal, you
may  also  have  to  increase WorkingPrecision.  See Section  12.3.1,  p.  409,  for  more  details  about  these
options.

NDSolve  uses an adaptive method in which the step size is  varied as needed; this means that if  the
solution  seems  to  change  rapidly,  the  step  size  is  reduced  so  that  the  solution  can  be  followed  more
closely. For nonstiff problems, an Adams predictor-corrector method of order between 1 and 12 is used.
For stiff problems, a backward difference formula method (i.e., Gear’s method) of order between 1 and 5
is used. NDSolve detects the existence of stiffness automatically and chooses the correct method as well
as a suitable order for it (the method and the order may be varied during the solution process). In a stiff
system,  the  components  vary  at  very  different  rates.  An example could be  the system x£HtL = -100 xHtL,
y£HtL = yHtL + xHtL, xH0L = 1, yH0L = 0. Here, x decreases very rapidly, whereas y increases very slowly.

With the Method option, we can also select the method ourselves. "Adams" means the predictor-cor-
rector  Adams  method  with  orders  1  through  12,  and "BDF"  means  implicit  backward  differentiation
formulas  with  orders  1  through  5. "ExplicitRungeKutta"  uses  adaptive  embedded  pairs  of  2(1)
through  9(8)  Runge-Kutta  methods,  whereas "ImplicitRungeKutta"  uses  families  of  arbitrary-order
implicit  Runge-Kutta  methods. "SymplecticPartitionedRungeKutta"  applies  interleaved  Runge-
Kutta methods for separable Hamiltonian systems.

The  method  can  also  be  defined  with  so-called  controller  methods  and  submethods.  Examples  of
controller methods are "Shooting" and "EventLocator"; see Sections 26.4.3 and 26.4.4. An example of
submethods  is "ExplicitEuler";  see  Example  5.  For  more  information  about  the  controller  methods
and submethods, see the documentation.

If  the interval  of  solution is  long or  the solution varies widely,  you may receive a message that  the
maximum number of steps has been reached at a given point. You get the solution up to this point only.
You can then increase the value of MaxSteps  and solve anew. If the solution has a singular point, then
MaxSteps prevents NDSolve from reducing the step size infinitely.

See Advanced Numerical Differential Equation Solving in Mathematica  for  advanced  information  about
NDSolve.

866 Mathematica Navigator



‡  Example 1: Precision and Accuracy

First, we solve an equation numerically:

eqn = y'@tD + t y@tD - Exp@-tD ã 0;

numsol = NDSolve@8eqn, y@0D ã 1<, y, 8t, 0, 5<DP1T

8y Ø InterpolatingFunction@880., 5.<<, <>D<
Plot@y@tD ê. numsol, 8t, 0, 5<D

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

We can substitute the solution into the left-hand side of the equation. Because the right-hand side of the
equation  is  zero,  the  result  after  substitution  should  be  an  expression  that  is  very  near  to  zero  if  the
numerical solution is correct:

Plot@eqnP1T ê. numsol, 8t, 0, 5<, PlotRange Ø AllD

1 2 3 4 5

-0.00001
-5.μ10-6

5.μ10-6

0.00001

The expression seems, indeed, to be very near to zero.

In this example, we can also calculate the symbolic solution, and this enables us to plot the absolute
and relative errors:

numsol = y@tD ê. NDSolve@8eqn, y@0D ã 1<, y@tD, 8t, 0, 5<DP1T;

symbsol = y@tD ê. DSolve@8eqn, y@0D ã 1<, y@tD, tDP1T

1

2
‰
-

1

2
-

t2

2 2 ‰ + 2 p ErfiB 1

2

F + 2 p ErfiB-1 + t

2

F

8Plot@symbsol - numsol, 8t, 0, 5<, PlotRange Ø AllD,
Plot@1 - numsol ê symbsol, 8t, 0, 5<, PlotRange Ø AllD<

:
1 2 3 4 5

-3.μ10-7
-2.μ10-7
-1.μ10-7

1.μ10-7
2.μ10-7
3.μ10-7

,

1 2 3 4 5

5.μ10-7
1.μ10-6

1.5μ10-6
2.μ10-6

2.5μ10-6
3.μ10-6

>

The  absolute  error  is  at  most  approximately 3μ 10-7,  and  the  relative  error  is  at  most  approximately

3μ 10-6.  The goal with NDSolve is that both of these errors should be less than 10-8 in the whole interval
of solution. The goal is not strictly achieved, but, nevertheless, the errors are small enough for us to be
well satisfied with the numerical solution.

Chapter 26  •  Differential Equations 867



‡ Example 2: Step Sizes

In the following way, we can see all of the steps of the numerical solution:

8sol, 8points<< = Reap@
y@tD ê. NDSolve@8eqn, y@0D ã 1<, y@tD, 8t, 0, 5<, StepMonitor ß Sow@8t, y@tD<DDD;

Graphics@8Line@88ÒP1T, 0<, Ò<D & êü points<, Axes Ø True, ImageSize Ø 300D

1 2 3 4 5

0.2
0.4
0.6
0.8
1.0
1.2

The  step  size  varies  during  the  solution  process,  which  demonstrates  the  adaptivity  property  of
NDSolve. With a package, we can also plot the used steps:

<< DifferentialEquations`NDSolveUtilities`

StepDataPlot@sol, ImageSize Ø 300, AspectRatio Ø 0.3D

0 1 2 3 4 5

0.00

0.02

0.04

0.06

0.08

The plot shows how the step size is initially small and then grows, but at the end of the interval the step
size is made smaller.

‡ Example 3: Increasing the Precision

In Section 26.3.3, p. 860, we observed that the Lorenz model is very sensitive to numerical inaccuracies.

Now  we  consider  a  very  simple  model  that  is  also  very  sensitive;  this  example  is  taken  from Wagon
(2000, p. 302):

eqns@e_D := 8x'@tD == 2 x@tD + Cos@tD, x@0D == -2 ê 5 + e<;

We know the exact, symbolic solution:

sol@e_D = x@tD ê. DSolve@eqns@eD, x@tD, tDP1T

1

5
I5 ‰2 t e - 2 Cos@tD + Sin@tDM

Note that  the solution has the term ‰2 t e.  Thus, for e = 0 we get  a nicely oscillating solution but even a
small e  will  cause  the  term ‰2 t e  to,  in  due  course,  begin  to  dominate  so  that  the  solution  is  wholly
different. This means that the solution is very sensitive for the initial value. Here are two solutions:

Plot@8sol@0D, sol@10^-9D<, 8t, 0, 12<D

2 4 6 8 10 12

0.5

1.0

1.5

868 Mathematica Navigator



The  sensitivity  of  the  problem  for  the  initial  condition  can  also  be  seen  when  solving  the  problem
numerically:

sol2 = x@tD ê. NDSolve@eqns@0D, x@tD, 8t, 0, 12<D;

Plot@8sol@0D, sol2<, 8t, 0, 12<D

2 4 6 8 10 12

0.5

1.0

1.5

The numerical solution goes wrong from approximately t = 7 on. To get a better numerical solution, use
either a higher working precision or tighter precision and accuracy goals:

sol3 = x@tD ê. NDSolve@8x'@tD == 2 x@tD + Cos@tD, x@0D == -2 ê 5<,
x@tD, 8t, 0, 12<, WorkingPrecision Ø 30D;

Plot@8sol@0D, sol3<, 8t, 0, 12<D

2 4 6 8 10 12

-0.4

-0.2

0.2

0.4

sol4 = x@tD ê. NDSolve@8x'@tD == 2 x@tD + Cos@tD, x@0D == -2 ê 5<,
x@tD, 8t, 0, 12<, PrecisionGoal Ø 14, AccuracyGoal Ø 14D;

Plot@8sol@0D, sol4<, 8t, 0, 12<D

2 4 6 8 10 12

-0.4

-0.2

0.2

0.4

‡ Example 4: A Singular Point

If the solution has a singular point in the interval of solution, then to be able to follow the solution, the
step size is reduced until  it  becomes effectively zero or until  the maximum number of steps (10,000) is
reached.  In  such situations,  the  solution process  is  stopped and a  message is  written.  In the following
example,  we  ask  for  the  solution  in  the  interval  (0,  2)  but  get  the  solution  only  in  the  interval  (0,  1)
because there is a singularity at t = 1:

sol = y@tD ê. NDSolve@8y'@tD ã 1 ê Ht - 1L, y@0D ã 0<, y@tD, 8t, 0, 2<D

NDSolve::ndsz : At t == 0.999999999997489 ,̀

step size is effectively zero; singularity or stiff system suspected. à
8InterpolatingFunction@880., 1.<<, <>D@tD<

Chapter 26  •  Differential Equations 869



Plot@sol, 8t, 0, 1<D

0.2 0.4 0.6 0.8 1.0

-3

-2

-1

‡ Example 5: Special Methods

We  can  ask  to  use  a  special  method.  Each  method  has  its  own  options.  For  example,  the  explicit
Runge-Kutta method has the following options:

Options@NDSolve`ExplicitRungeKuttaD êê N

8Coefficients Ø EmbeddedExplicitRungeKuttaCoefficients,
DifferenceOrder Ø Automatic, EmbeddedDifferenceOrder Ø Automatic,
StepSizeControlParameters Ø Automatic, StepSizeRatioBounds Ø 80.125, 4.<,
StepSizeSafetyFactors Ø Automatic, StiffnessTest Ø Automatic<

One of the options is DifferenceOrder. If we specify a difference order, then it is advantageous to also
use the InterpolationOrder option to adjust the interpolation according to the order of the method:

eqn = y'@tD + t y@tD - Exp@-tD ã 0;

sol1 = NDSolve@8eqn, y@0D ã 1<, y, 8t, 0, 2<,
Method Ø 8"ExplicitRungeKutta", "DifferenceOrder" Ø 5<D;

sol2 = NDSolve@8eqn, y@0D ã 1<, y, 8t, 0, 2<,
Method Ø 8"ExplicitRungeKutta", "DifferenceOrder" Ø 5<, InterpolationOrder Ø AllD;

Plot@eqnP1T ê. Ò, 8t, 0, 2<, PlotRange Ø AllD & êü 8sol1, sol2<

:
0.5 1.0 1.5 2.0

-0.0003
-0.0002
-0.0001

0.0001
0.0002
0.0003

,
0.5 1.0 1.5 2.0

-2.μ10-7

-1.μ10-7

1.μ10-7

2.μ10-7

>

We substituted the solutions into the equation; the resulting expression should be very near to zero. In
the first solution, we did not adjust the interpolation order, and the quality of the result is not as good as
that in the second solution, where we did the adjustment.

The classical fixed step-size Euler method can be used as follows:

sol = y@tD ê. NDSolve@8eqn, y@0D ã 1<, y@tD,
8t, 0, 5<, Method Ø "ExplicitEuler", StartingStepSize Ø 0.1DP1T

InterpolatingFunction@880., 5.<<, <>D@tD
Plot@sol, 8t, 0, 5<D

1 2 3 4 5

0.2

0.4

0.6

0.8

1.0

1.2

870 Mathematica Navigator



26.4.2  The Classical Runge-Kutta Method

‡ A Coefficient Plug-in

The classical  fourth-order Runge-Kutta  method can be  defined by giving its  coefficients  (these defini-
tions are taken from tutorialêNDSolveExplicitRungeKutta):

crkamat = 881 ê 2<, 80, 1 ê 2<, 80, 0, 1<<;
crkbvec = 81 ê 6, 1 ê 3, 1 ê 3, 1 ê 6<;
crkcvec = 81 ê 2, 1 ê 2, 1<;
classicalRungeKuttaCoefficients@4, p_D := N@8crkamat, crkbvec, crkcvec<, pD;

To  use  the  classical  Runge-Kutta  method,  define  the  method  to  be "ExplicitRungeKutta",  the
difference  order  to  be  4,  and the  coefficients  to  be  as  defined  previously.  Give  a  suitable  starting  step
size (it will not be modified because the method uses a fixed step size).

sol = y ê. NDSolve@8y'@tD ã t - y@tD^2, y@0D ã 3<, y,
8t, 0, 6<, Method Ø 8"ExplicitRungeKutta", "DifferenceOrder" Ø 4,

"Coefficients" Ø classicalRungeKuttaCoefficients<, StartingStepSize Ø 0.2DP1T
InterpolatingFunction@880., 6.<<, <>D
Plot@sol@tD, 8t, 0, 6<D

0 1 2 3 4 5 6

1.5

2.0

2.5

3.0

With  a  package  we  can  extract  the  values  of t  and  the  corresponding  approximate  values  of yHtL
(calculated with the classical Runge-Kutta method):

<< DifferentialEquations`InterpolatingFunctionAnatomy`

tt = InterpolatingFunctionCoordinates@solDP1T

80., 0.2, 0.4, 0.6, 0.8, 1., 1.2, 1.4, 1.6, 1.8, 2., 2.2, 2.4, 2.6, 2.8,
3., 3.2, 3.4, 3.6, 3.8, 4., 4.2, 4.4, 4.6, 4.8, 5., 5.2, 5.4, 5.6, 5.8, 6.<
yy = InterpolatingFunctionValuesOnGrid@solD

83., 1.88968, 1.41805, 1.18527, 1.07341, 1.03346, 1.03984, 1.07671,
1.13307, 1.20094, 1.27459, 1.35007, 1.42488, 1.49761, 1.5676, 1.63464,
1.69881, 1.76031, 1.81939, 1.87629, 1.93125, 1.98445, 2.03606,
2.08624, 2.13511, 2.18277, 2.22932, 2.27483, 2.31938, 2.36302, 2.40582<

From the t values we can see that the method really used fixed-length steps.

The  approximate  solution  at t = 6  is  2.40582.  If  we  compare  this  value  with  the  value  given  by
NDSolve, we can see that the Runge-Kutta method gave an accurate solution:

y@tD ê. NDSolve@8y'@tD ã t - y@tD^2, y@0D ã 3<, y@tD, 8t, 0, 6<DP1T ê. t Ø 6

2.40583

With the package NumericalDifferentialEquationAnalysis  ̀we can study various Runge-Kutta methods.

Chapter 26  •  Differential Equations 871



‡ A Method Plug-in

In Mathematica,  we can easily write our own numerical solvers for differential equations in such a way
that NDSolve  can  use  them.  To  write  the  classical  fourth-order  Runge-Kutta  method,  we  need  the
following three functions (they are taken from tutorialêNDSolvePlugIns):

CRK4@D@"Step"@rhs_, t_, h_, y_, yp_DD := Module@8k0, k1, k2, k3<,
k0 = h yp;
k1 = h rhs@t + h ê 2, y + k0 ê 2D;
k2 = h rhs@t + h ê 2, y + k1 ê 2D;
k3 = h rhs@t + h, y + k2D;
8h, Hk0 + 2 k1 + 2 k2 + k3L ê 6<D

CRK4@___D@"DifferenceOrder"D := 4
CRK4@___D@"StepMode"D := Fixed

Now we can use this fixed step-size method:

sol = y ê. NDSolve@8y'@tD ã t - y@tD^2, y@0D ã 3<,
y, 8t, 0, 6<, Method Ø CRK4, StartingStepSize Ø 0.2DP1T

InterpolatingFunction@880., 6.<<, <>D
sol@6D 2.40582

‡ An Own Program

Consider the following system of differential equations:

y1£HtL = f1It, y1, ..., ymM,

ym£HtL = fmIt, y1, ..., ymM.
We form a function rungeKuttaStep to perform a single step of the Runge-Kutta method. We then use
NestList to apply the step n times in rungeKuttaSolve.

rungeKuttaStep@f_List, ty_List, tyi_List, h_D := Module@8k1, k2, k3, k4<,
k1 = f ê. Thread@ty Ø tyiD;
k2 = f ê. Thread@ty Ø tyi + h ê 2 Join@81<, k1DD;
k3 = f ê. Thread@ty Ø tyi + h ê 2 Join@81<, k2DD;
k4 = f ê. Thread@ty Ø tyi + h Join@81<, k3DD;
tyi + h Join@81<, Hk1 + 2 k2 + 2 k3 + k4L ê 6DD

rungeKuttaSolve@f_List, ty_List, ty0_List, t1_, n_D :=
With@8h = N@Ht1 - ty0P1TL ê nD<,
NestList@rungeKuttaStep@f, ty, Ò, hD &, N@ty0D, nDD

Here, f  is  the  list  of  right-hand-side  expressions  of  the  differential  equations, ty  is  the  list  of  the
independent  and  dependent  variables, ty0  contains  their  initial  values, t1  is  the  end  point  of  the
interval of solution, and n is the number of steps to be performed.

Remember that the result of Thread[ty Ø tyi] is a list of the form {t Ø ti, y1 Ø y1i, …, ym Ø ymi}.
Flatten  is  needed to form unnested lists. NestList  performs the iterations in which the result  of  one

iteration is the starting point of the next iteration (see Section 18.3.3, p. 575, for details).

Recall that in Sections 18.1.1, p. 546, and 18.3.3, p. 576, we developed programs for Euler’s method to

solve differential equations. Because it is not sufficiently accurate, this method has mainly pedagogical
value and is rarely used in practice.

872 Mathematica Navigator



‡ Example 1

First, we solve the equation y£HtL = t - yHtL2, yH0L = 3, in the interval H0, 6L using 30 steps. We can write the

dependent variable simply as y, but we could also write it more completely as y[t].

sol = rungeKuttaSolve@8t - y^2<, 8t, y<, 80, 3<, 6, 30D;

sol êê Last 86., 2.40582<
ListLinePlot@sol, Mesh Ø AllD

0 1 2 3 4 5 6

1.5

2.0

2.5

3.0

‡ Example 2

Now we solve the system of two equations y£HtL = t - zHtL2, z£HtL = yHtL, yH0L = 1, zH0L = 2:

sol = rungeKuttaSolve@8t - z^2, y<, 8t, y, z<, 80, 1, 2<, 6, 40D;

sol êê Last 86., 0.273551, 0.744243<
NDSolve gives quite similar numbers:

8y@tD, z@tD< ê. NDSolve@8y'@tD ã t - z@tD^2, z'@tD ã y@tD, y@0D ã 1, z@0D ã 2<,
8y@tD, z@tD<, 8t, 0, 6<DP1T ê. t Ø 6

80.273997, 0.74375<
To plot the solution, we first extract the three components of the solution:

8tt, yy, zz< = sol¨;

We plot yy and zz as well as the trajectory:

ty = 8tt, yy<¨; tz = 8tt, zz<¨; yz = 8yy, zz<¨;

ListLinePlot@8ty, tz<, Mesh Ø AllD

1 2 3 4 5 6

-3

-2

-1

1

2

3

ListLinePlot@yz, Mesh Ø AllD

-3 -2 -1 1 2 3

1

2

3

Chapter 26  •  Differential Equations 873



26.4.3  Boundary Value Problems

‡ Linear Boundary Value Problems

Consider the following boundary value problem:

y HtL = pHtL y£HtL + qHtL yHtL + rHtL, yHt0L = y0, yHt1L = y1.

Here, p, q, and r do not depend on y. We solve this problem by solving two initial value problems:

z HtL = pHtL z£HtL + qHtL zHtL + rHtL, zHt0L = y0, z£Ht0L = 0,

v HtL = pHtL v£HtL + qHtL vHtL, vHt0L = 0, v£Ht0L = 1.

It is easy to show that the following function is the solution of the original boundary value problem:

yHtL = zHtL + vHtL Iy1 - zHt1LM ë vHt1L.
This requires that vHt1L 0. If vHt1L = 0 and zHt1L = y1, then yHtL = zHtL + c vHtL  is a solution for all constants

c. If vHt1L = 0 and zHt1L y1, the problem has no solutions. Here is a module that implements this method

(without the exceptional cases).

linearBVP@p_, q_, r_, t_, t0_, t1_, y0_, y1_D := Module@8eqn, sol1, sol2, sol<,
eqn = y''@tD ã p y'@tD + q y@tD + r;
sol1 = y@tD ê. NDSolve@8eqn, y@t0D ã y0, y'@t0D ã 0<, y@tD, 8t, t0, t1<D;
sol2 = y@tD ê. NDSolve@8eqn ê. r Ø 0, y@t0D ã 0, y'@t0D ã 1<, y@tD, 8t, t0, t1<D;
sol = sol1 + sol2 Hy1 - sol1 ê. t Ø t1L ê Hsol2 ê. t Ø t1L;
FunctionInterpolation@sol, 8t, t0, t1<D@tDD

Here, FunctionInterpolation (see Section 24.4.2, p. 807) forms a single interpolating function from

the solution sol, which contains the two interpolating functions sol1 and sol2.

Let us solve the equation y HtL = y£HtL - t yHtL with the boundary conditions yH0L = 2 and yH4L = 2. Now

p = 1, q = -t, and r = 0:

sol = linearBVP@1, -t, 0, t, 0, 4, 2, 2D

InterpolatingFunction@880., 4.<<, <>D@tD
Plot@sol, 8t, 0, 4<D

1 2 3 4

-5
-4
-3
-2
-1

1
2

In Example 3 of Section 26.3.1, p. 851, we solved the same problem using NDSolve.

‡ Nonlinear Boundary Value Problems

Here is a nonlinear boundary value problem:

eqn = y''@tD ã y'@tD - y@tD^2 + t^2;

sol = y@tD ê. NDSolve@8eqn, y@0D ã 1, y@3D ã 2<, y@tD, 8t, 0, 3<DP1T;

874 Mathematica Navigator



Plot@sol, 8t, 0, 3<D

0.5 1.0 1.5 2.0 2.5 3.0
-0.5

0.5

1.0

1.5

2.0

Is this the only solution? Let us define a function that calculates, for a given value of y£H0L, the value of

yH3L:

y3@yp0_?NumericQD := y@3D ê. NDSolve@8eqn, y@0D ã 1, y'@0D ã yp0<, y, 8t, 0, 3<DP1T

Plot the function:

Plot@82, y3@yp0D<, 8yp0, -0.3, 1.7<, AxesLabel Ø 8"y'H0L", "yH3L"<D

0.5 1.0 1.5
y'H0L

1

2

3

4

yH3L

We can  see  that yH3L = 2  when y£H0L  is  either  approximately -0.3  or  approximately  1.4.  Thus,  we  have

two solutions for the boundary value problem. Find the values of y£H0L by solving the equation y3[yp0]

ã 2:

yp0a = yp0 ê. FindRoot@y3@yp0D ã 2, 8yp0, -0.3, -0.2<D

-0.258224

yp0b = yp0 ê. FindRoot@y3@yp0D ã 2, 8yp0, 1.3, 1.4<D

1.37153

Now we know the values of y£H0L that give yH3L = 2. Thus, we have reduced the boundary value problem

to two initial value problems:

sola = y@tD ê. NDSolve@8eqn, y@0D ã 1, y'@0D ã yp0a<, y@tD, 8t, 0, 3<DP1T;
solb = y@tD ê. NDSolve@8eqn, y@0D ã 1, y'@0D ã yp0b<, y@tD, 8t, 0, 3<DP1T;

Plot@8sola, solb<, 8t, 0, 3<, Epilog Ø 8Point@80, 1<D, Point@83, 2<D<D

0.5 1.0 1.5 2.0 2.5 3.0
-0.5

0.5

1.0

1.5

2.0

The method we used here is the shooting method. We “shoot” the solution at t = 0 with a guess for
y£H0L  and  try  to  iteratively  improve  the  value y£H0L  until  the  end  condition yH3L = 2  is  satisfied.  The

iterations were done with FindRoot. With NDSolve, we can ask to use the shooting method, and we can
also give starting initial conditions:

Chapter 26  •  Differential Equations 875



sol = y@tD ê. NDSolve@8eqn, y@0D == 1, y@3D == 2<, y@tD, 8t, 0, 3<, Method Ø 8"Shooting",
"StartingInitialConditions" Ø 8y@0D ã 1, y'@0D ã Ò<<DP1T & êü 8-0.3, 1, 4<;

Plot@sol, 8t, 0, 3<D

0.5 1.0 1.5 2.0 2.5 3.0
-0.5

0.5

1.0

1.5

2.0

In  addition  to  the "Shooting"  method,  we  also  have  the "Chasing"  method  for  boundary  value
problems.

The shooting can also be done experimentally with a manipulation (the following code is a modifica-

tion of the code at demonstrations.wolfram.com/ShootingMethod by Bruce Miller):

Manipulate@Plot@y@sD ê.
NDSolve@ 8y''@tD ã y'@tD - y@tD^2 + t^2, y@0D ã 1, y'@0D ã yp0<, y, 8t, 0, 3<DP1T,

8s, 0, 3<, PlotRange Ø 8-1.3, 4.1<, Prolog Ø 8Red, PointSize@LargeD, Point@83, 2<D<,
ImageSize Ø 200, MaxRecursion Ø ControlActive@0, 1DD,

88yp0, 0, "y'H0L"<, -0.3, 1.8, Appearance Ø "Labeled"<D

To speed up the redrawing, we have used the value 0 for MaxRecursion when the slider is dragged and
the value 1 when the mouse is released.

26.4.4  Events

With  the "EventLocator"  method,  we  can  solve  a  differential  equation  until  a  point  where  a  given
event happens. An event is a point where a given expression gets the zero value or where the value of a
Boolean  expression  changes  from  True  to  False  or  vice  versa.  The  event  is  defined  with  the "Event"

option. With the "EventAction"  option, we can tell what to do when an event occurs; the default is to
stop the solution process.  The points  where events  occur  are,  by default,  calculated with FindRoot  by
using Brent’s method.

‡ Example 1

In the following example, we solve the problem until yHtL becomes zero:

eqn = y''@tD ã y'@tD - y@tD^2 + t^2;

876 Mathematica Navigator



sol = y@tD ê. NDSolve@8eqn, y@0D == 1, y'@0D == 0.2<,
y@tD, 8t, 0, ¶<, Method Ø 8"EventLocator", "Event" Ø y@tD<DP1T

InterpolatingFunction@880., 4.30992<<, <>D@tD
At t = 4.30992, yHtL became zero. The value of t can be extracted as follows:

solP0, 1, 1, 2T 4.30992

Plot the solution:

Plot@sol, 8t, 0, solP0, 1, 1, 2T<D

1 2 3 4

1

2

3

4

5

‡ Example 2

In  the  next  two examples,  we  solve  the  problem until yHtL  reaches  the  value  3  and until y£HtL  becomes

zero:

sol1 = y@tD ê. NDSolve@8eqn, y@0D ã 1, y'@0D ã 0.2<,
y@tD, 8t, 0, ¶<, Method Ø 8"EventLocator", "Event" Ø y@tD - 3<DP1T;

sol2 = y@tD ê. NDSolve@8eqn, y@0D ã 1, y'@0D ã 0.2<,
y@tD, 8t, 0, ¶<, Method Ø 8"EventLocator", "Event" Ø y'@tD<DP1T;

8Plot@sol1, 8t, 0, sol1P0, 1, 1, 2T<, PlotRange Ø AllD,
Plot@sol2, 8t, 0, sol2P0, 1, 1, 2T<D<

:

0.5 1.0 1.5 2.0 2.5

1.0

1.5

2.0

2.5

3.0

,

0.05 0.10 0.15 0.20

1.005

1.010

1.015

1.020

>

‡ Example 3

We can specify an action when an event occurs (the default action is to stop the solution process). In the
next example, we count the number of times the solution becomes zero:

problem = 8eqn, y@0D ã 1, y'@0D ã -0.2<;

n = 0; sol = y@tD ê. NDSolve@problem, y@tD, 8t, 0, 4.5<,
Method Ø 8"EventLocator", "Event" Ø y@tD, "EventAction" ß n++<D;

n 3

Plot@sol, 8t, 0, 4.5<D

1 2 3 4
-2

2

4

6

Chapter 26  •  Differential Equations 877



Next, we form a list of the zeros of the solution:

zeros = 8<; sol = y@tD ê. NDSolve@problem, y@tD, 8t, 0, 5<,
Method Ø 8"EventLocator", "Event" Ø y@tD, "EventAction" ß AppendTo@zeros, tD<D;

zeros 81.18674, 2.44972, 4.29136<

‡ Example 4

If the "Direction" option has the value 1, only the events are considered where the value of the event
expression changes from negative to positive; with the value -1 we can consider events where the value
of  the  event  expression  changes  from  positive  to  negative.  Next,  we  form  a  list  of  points  where  the
solution changes from positive to negative:

zeros = 8<; sol =
y@tD ê. NDSolve@problem, y@tD, 8t, 0, 5<, Method Ø 8"EventLocator", "Event" Ø y@tD,

"EventAction" ß AppendTo@zeros, tD, "Direction" Ø -1<D;

zeros 81.18674, 4.29136<

26.4.5  Estimation of Differential Equations

How do we estimate unknown parameters that appear in a differential equation if we have some data?
We  can  distinguish  two  situations.  If  the  equation  has  a  closed-form  symbolic  solution,  then  we  use
FindFit  or NonlinearRegress  to estimate the parameters of  the solution (see Example 1).  If  a  closed-
form  solution  is  not  available,  then  we  can  use FindFit  or FindMinimum  together  with  a  numerical
solution of the equations to minimize a least-squares criterion (see Examples 2 and 3).

‡ Example 1: Using the Symbolic Solution and FindFit

In  Example  2  of Section  25.1.3,  p. 820,  we  considered  an  experiment  in  which  the  growth  of  a  yeast

culture was measured at time instances 0, 1, 2, …, 18 (Pearl, 1927). The measurements were as follows:

yeast = 89.6, 18.3, 29.0, 47.2, 71.1, 119.1, 174.6, 257.3, 350.7,
441.0, 513.3, 559.7, 594.8, 629.4, 640.8, 651.1, 655.9, 659.6, 661.8<;

data = 8Range@0, 18D, yeast<¨;

p1 = ListPlot@data, Epilog Ø Line@880, 663<, 818, 663<<DD

5 10 15

100

200

300

400

500

600

The data show a logistic growth that can be described by the differential equation y£HtL = r yHtL IM - yHtLM.
This equation has a closed-form solution:

sol = y@tD ê. DSolve@8y'@tD ã r y@tD HM - y@tDL, y@0D ã y0<, y@tD, tDP1T

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. à

‰M r t M y0

M - y0 + ‰M r t y0

Estimate the parameters of the solution:

878 Mathematica Navigator



fit = FindFit@data, sol, 88M, 600<, 8y0, 10<, 8r, 0.01<<, tD

8M Ø 663.022, y0 Ø 9.13552, r Ø 0.000825002<
The fit is good:

Show@p1, Plot@sol ê. fit, 8t, 0, 18<DD

5 10 15

100

200

300

400

500

600

‡ Example 2: Using the Numerical Solution and FindFit

Now we show how to solve the fitting problem of the preceding example if we do not have available the
symbolic  solution  of  the  differential  equation.  First,  define  a  model  as  the  numerical  solution  of  the
differential equation:

model@r_?NumericQ, M_?NumericQ, y0_?NumericQD :=
model@r, M, y0D = y ê. NDSolve@8y'@tD ã r y@tD HM - y@tDL, y@0D ã y0<, y, 8t, 0, 18<DP1T

We used caching (... := model[r, M, y0] = ...)  to speed up the fitting of the model.  Then estimate
the parameters of the model:

fit = FindFit@data, model@r, M, y0D@tD, 88M, 600<, 8y0, 10<, 8r, 0.01<<, tD

8M Ø 663.022, y0 Ø 9.13551, r Ø 0.000825003<
Show@p1, Plot@model@r, M, y0D@tD ê. fit, 8t, 0, 18<DD

5 10 15

100

200

300

400

500

600

We obtained almost the same solution as in the preceding example.

Remove@"Global`*"D

‡ Example 3: Estimating the Predator-Prey Model

From  1909  through  1934,  the  yearly  numbers  of  hare  and  lynx  pelts  sold  to  the  Hudson  Bay  Trading
Company were as follows:

hare = 825, 50, 55, 75, 70, 55, 30, 20, 15, 15,
20, 35, 60, 80, 85, 60, 30, 20, 10, 5, 5, 10, 30, 80, 100, 80<;

lynx = 82, 4, 10, 14, 19, 14, 8, 9, 2, 1, 1, 2, 4, 4, 8, 7, 9, 7, 4, 3, 2, 3, 3, 5, 7, 7<;

(We considered an extended hare and lynx pelt data set in Section 8.1.3, p. 246.) The data are displayed

as follows:

tt = Range@0, Length@hareD - 1D;
th = 8tt, hare<¨; tl = 8tt, lynx<¨;

Chapter 26  •  Differential Equations 879



9p1 = ListLinePlot@8th, tl<, Mesh Ø AllD,

p2 = ListLinePlotA8hare, lynx<¨, Mesh Ø AllE=

:

5 10 15 20 25

20

40

60

80

100

,

20 40 60 80 100

5

10

15

>

For later use, we combine the data into one list:

data = FlattenA8hare, lynx<¨E
825, 2, 50, 4, 55, 10, 75, 14, 70, 19, 55, 14, 30, 8,
20, 9, 15, 2, 15, 1, 20, 1, 35, 2, 60, 4, 80, 4, 85, 8, 60, 7, 30,
9, 20, 7, 10, 4, 5, 3, 5, 2, 10, 3, 30, 3, 80, 5, 100, 7, 80, 7<

The predator-prey model of Section 26.3.2, p. 853, would possibly suit these data. Let xHtL and yHtL be

the amounts of hare and lynx pelts, respectively. The equations are x£ = xIp - q yM and y£ = yH-P + Q xL:
vars = 8x@tD, y@tD<; pars = 8p, q, P, Q<;
eqns@8p_, q_, P_, Q_<D :=
8x£@tD ã x@tD Hp - q y@tDL,
y£@tD ã y@tD H-P + Q x@tDL,
x@0D ã 25, y@0D ã 2<

The initial conditions xH0L = 25 and yH0L = 2 are from the data. We also define the time interval and the

time step of the data:

t0 = 0; t1 = 25; dt = 1;

To estimate the parameters of the model, define the following functions:

model@a_D := model@aD =
vars ê. NDSolve@eqns@aD, vars, 8t, t0, t1<, PrecisionGoal Ø 4, AccuracyGoal Ø 4DP1T

pred@a_D := Flatten@Table@Evaluate@model@aDD, 8t, t0, t1, dt<DD
crit@a_D := EuclideanDistance@data, pred@aDD

Here, model  gives  the  solution  of  the  equations  for  given  parameters, pred  calculates  predictions
from the model (i.e., values of the solution at the same time instances as the data), and crit defines the
expression to be minimized (i.e., the square root of the sum of the squares of the differences between the
data and the model).

We will minimize crit using FindMinimum. To obtain reasonable starting values for the parameters,
we can sample the criterion function at some random points. We guess that p, q, P, and Q may be in the

intervals H0.5, 1L, H0, 0.5L, H0, 0.5L, and H0, 0.1L, respectively, and so we write the following:

SeedRandom@1D;
s = Table@8RandomReal@80.5, 1<D, RandomReal@80, 0.5<D,

RandomReal@80, 0.5<D, RandomReal@80, 0.1<D<, 83000<D;

Hcs = crit@ÒD & êü s;L êê Timing

818.0209, Null<
We ask for the best value and the corresponding values of the parameters:

8Min@csD, sPPosition@cs, Min@csDDP1, 1TT<

854.8889, 80.975995, 0.301868, 0.426301, 0.0101342<<

880 Mathematica Navigator



We choose starting values near these values (we need to set the value of a system option):

Developer`SetSystemOptions@"EvaluateNumericalFunctionArgument" Ø FalseD;

8minvalue, est< = FindMinimum@crit@8p, q, P, Q<D,
8p, 0.97, 0.98<, 8q, 0.30, 0.31<, 8P, 0.42, 0.43<, 8Q, 0.010, 0.011<D

847.1609, 8p Ø 0.97326, q Ø 0.268641, P Ø 0.412891, Q Ø 0.0103831<<
Developer`SetSystemOptions@"EvaluateNumericalFunctionArgument" Ø TrueD;

The estimated equations are as follows:

eqns@pars ê. estD

8x£@tD ã x@tD H0.97326 - 0.268641 y@tDL,
y£@tD ã H-0.412891 + 0.0103831 x@tDL y@tD, x@0D ã 25, y@0D ã 2<

Here is the estimated model:

estModel = model@pars ê. estD

8InterpolatingFunction@880., 25.<<, <>D@tD,
InterpolatingFunction@880., 25.<<, <>D@tD<

Then we show both the data and the model. The fit may be reasonable:

8Show@p1,
Plot@estModel, 8t, 0, 25<, PlotStyle Ø AbsoluteThickness@1.5DD, ImageSize Ø 200D,
Show@p2, ParametricPlot@estModel, 8t, 0, 10.5<, AxesOrigin Ø 80, 0<, PlotStyle Ø

AbsoluteThickness@1.5D, AspectRatio Ø 1 ê GoldenRatioD, ImageSize Ø 200D<

:

5 10 15 20 25

20

40

60

80

100

,

20 40 60 80 100

5

10

15

>

26.4.6  Manipulator and Equation Trekker

‡ Manipulator

A  manipulation  is  a  very  illustrative  way  to  study  the  behavior  of  a  system  described  by  differential
equations.  Here is  a  manipulation to study the predator-prey model.  We have set the initial  values of
the parameters to be the values that we obtained in Example 3 of the preceding section.

Manipulate@
ParametricPlot@Evaluate@8x@tD, y@tD< ê. NDSolve@8x£@tD ã x@tD Hp - q y@tDL,

y£@tD ã y@tD H-P + Q x@tDL, x@0D ã ÒP1T, y@0D ã ÒP2T<,
8x@tD, y@tD<, 8t, 0, 20<D & êü startD, 8t, 0, 20<,

PlotRange Ø 880, 123<, 80, 20.5<<, AspectRatio Ø 1 ê GoldenRatio,
ImageSize Ø 230D,

88start, 8825, 1<, 825, 2<, 825, 3<<<, Locator,
Appearance Ø Ë, LocatorAutoCreate Ø True<,

88p, 0.97<, 0.5, 1.5, Appearance Ø "Labeled"<,
88q, 0.27<, 0, 0.5, Appearance Ø "Labeled"<,
88P, 0.41<, 0, 1, Appearance Ø "Labeled"<,
88Q, 0.01<, 0, 0.05, Appearance Ø "Labeled"<D

Chapter 26  •  Differential Equations 881



Here,  the  middle  curve  corresponds  with  initial  conditions xH0L = 25  and yH0L = 2  of  the  hare-lynx

example.  The  parameters  can  be  adjusted with  the  sliders.  The  trajectories  can  be  moved by  dragging
the points. New trajectories can be added by ‡- or Ì-clicking on the plotting area. A trajectory can be
deleted by ‡ or Ì clicking on it.

Next,  we  consider  a  package  that  provides  a  similar  functionality  as Manipulate  but  has  many
positive features.

‡ Equation Trekker

In the EquationTrekker` package:

EquationTrekker[{eqn1, eqn2}, {x, y}, {t, tmin, tmax}]  Open a graphical interface for
specifying initial conditions and plotting the resulting numerical solution [yHtL versus xHtL] of the

system of two first-order differential equations for t in Htmin, tmaxL
Options:
TrekParameters  List of parameters and parameter ranges; examples of values: {}, {p Ø 0.97, qØ

0.27}, {p Ø {0.97, {0.5, 1.5}}, q Ø {0.27, {0, 0.5}}}

TrekGenerator  Method used to generate treks; possible values: DifferentialEquationTrek,
PoincareSection

PlotRange  Range of values to include; default value: {Automatic, {-1, 1}}
ImageSize  Absolute size of equation trekker window; default value: {400, 400}

As an example, we use the package for the same predator-prey model as discussed previously:

<< EquationTrekker`

EquationTrekker@8x£@tD ã x@tD Hp - q y@tDL,
y£@tD ã y@tD H-P + Q x@tDL<, 8x, y<, 8t, 0, 5<,
TrekParameters Ø 8p Ø 80.97, 80.5, 1.5<<, q Ø 80.27, 80, 0.5<<,

P Ø 80.41, 80, 1<<, Q Ø 80.01, 80, 0.05<<<, PlotRange Ø 880, 120<, 80, 20<<D

After executing this command, the following new window appears:

882 Mathematica Navigator



Initially, the window does not contain any curves or “treks” as they are also called. To create curves,
‚-click  on  the  plotting  area.  In  Windows,  we  can  also  click  with  the  right  mouse  button  (without
pressing  the ‚  key).  By  each  click,  a  curve  appears  on  the  window  that  starts,  at t = t0  (by  default,

t0 = tmin), from the point clicked. The point is also shown in the plot and its coordinates can be read from

the “Conditions” box at the lower right corner of the window. The curve ends with an arrowhead.

A  curve  can  be  moved  by  dragging  on  the  point.  A  curve  can  be  deleted  by  clicking  on  the  corre-

sponding  point  and  then  pressing  the „  key.  The  parameters  can  be  changed with  the  sliders  (or  by
typing and pressing the Û or Á key). The values of t0, tmin, and tmax  can be changed by typing a new

value in the corresponding input field and then clicking the  button or pressing the Û  or Á  key;

new curves use the changed values. A curve is only shown from t = tmin to t = tmax.

The possible parameters can be defined in two ways. The first is like p Ø value. Then the initial value
of p is the given value and with the slider we can adjust p in the range [0, 2 value] (or @-1, 1D if value is
zero). The second is like p Ø {value, {vmin, vmax}}. Now the initial value of p is the given value and
with the slider we can adjust p in the range [vmin, vmax].

The kernel is reserved for the trekker all the time when the trekker window is open. Thus, no other
calculations  can  be  made  when  the  trekker  window  is  open.  When  we  close  the  trekker  window,  an
output  appears  on  the  ordinary  notebook,  below  the  command  that  created  the  trekker  window.  The
first component of the output is an EquationTrekkerState object containing a complete description of
the trekker window that was closed. This object can be used to reopen the trekker window; for example,
write EquationTrekker[% // First].  The second component of the output is the plot that was on the
trekker window just before it was closed.

In the previous box, we showed the use of EquationTrekker when we have two first-order differen-

tial equations. We can also use the command for a singe second-order equation; then the plot shows y£HtL
versus yHtL. If we have a single first-order equation, then the plot shows yHtL versus t.

By using the TrekGenerator option, we can also produce so-called Poincare sections; see the documen-

tation of the package.

Chapter 26  •  Differential Equations 883



‡  Controls for the Equation Trekker

At the upper left corner of the trekker window are the following buttons:

With  the  first  four  buttons,  we  can  choose  the  drawing  mode;  the  corresponding  modes  are  the select
treks, create treks, zoom,  and pan mode. With the fifth button, we can change the color of a selected trek.
The sixth button is used to change a selected trek from lines to points or vice versa. Details of the first
four buttons follow.

 By default, the select treks mode is chosen. Then we can select treks by clicking with the mouse
and create treks by ‚-clicking, as described previously.

 If  the create treks mode is  chosen, the role of clicking and ‚-clicking is reversed: By clicking
we can create treks and by ‚-clicking we can select treks.

In this mode, we can also choose between lines and points: Drag the create treks button so that two
menu items appear: Line and Points. Release the mouse button and then click on either menu item; new
treks are then draw accordingly. By dragging the last or sixth button, we can change a chosen trek from
line to points or vice versa.

 With the zoom mode, we can zoom in and out.  To zoom in, select the zoom button and drag
over the plot: The rectangle shown will be the new plot range. Or, simply click on the plot: The plot will
be  zoomed such that  the clicked point  will  be  at  the center  of  the plot.  To zoom in, ˜-drag over the
plot:  The current  plot  region will  be  mapped to the rectangle shown. Or,  simply ˜-click on the plot.
After  starting  dragging  or ˜-dragging,  when  also  the ‚-key  is  pressed,  the  aspect  ratio  of  the  plot
can be changed. With a ‚-click we can pan the plot.

When the zoom button is dragged, two menu items appear: Zoom to Fit  and Scale to Fit.  Release the
mouse  button  and  then  click  on  either  menu  item. Zoom  to  Fit  finds  a  plot  range  in  which  all  of  the
trajectories  fit,  preserving  aspect  ratio. Scale  to  Fit  finds  the  smallest  plot  range  in  which  all  of  the
trajectories fit.

 By selecting the pan mode, we can move the plot. With a ‚-click we can zoom the plot.

884 Mathematica Navigator



27
Partial Differential Equations

Introduction 885

27.1  Symbolic Solutions 886

27.1.1  Using Symbolic Solver 886 DSolve

27.1.2  Using Laplace Transform 891 LaplaceTransform

27.2  Series Solutions 893

27.2.1  1D Parabolic Problems 893

27.2.2  1D Hyperbolic Problems 896

27.2.3  2D Hyperbolic Problems in Cartesian Coordinates 898

27.2.4  2D Hyperbolic Problems in Polar Coordinates 901

27.2.5  2D Elliptic Problems 904

27.2.6  3D Elliptic Problems 907

27.3  Numerical Solutions 909

27.3.1  Parabolic and Hyperbolic Problems 909 NDSolve

27.3.2  Method of Lines 912

27.3.3  Options 917

27.3.4  2D Elliptic Problems 921

Introduction

A mathematician was given a test in which he had to produce steam starting with a block
 of ice which was stored in the refrigerator. He successfully described in great detail all the

 steps involved in the procedure, such as thawing the ice and boiling the water. Next he was
 asked to produce steam starting with the contents of a small pond. He replied: “Put a bucket

 of water from the pond into the refrigerator and apply the result of the previous problem.”

For  partial  differential  equations  (PDEs), Mathematica  has  the  same  two  commands, DSolve  and
NDSolve, as for ordinary differential equations (ODEs).

One class of PDEs for which DSolve is suitable is quasi-linear first-order equations, for which we can
find  general  solutions  (containing  unspecified  functions)  and  also  solutions  that  satisfy  initial  or
boundary  conditions.  For  linear  second-order  equations  (containing  only  second-order  derivatives)
DSolve  is  able to find general solutions.  For some nonlinear equations we can find, with DSolve,  a so-
called complete integral (containing unspecified parameters).

Hence,  the set  of  PDEs for which a symbolic,  closed-form solution can be found is restricted. Many
problems can only be solved if initial and boundary conditions are present, and even then the solution
cannot  usually  be  expressed  in  terms  of  standard  functions  but  only  as  infinite  series.  The  Laplace
transform can also be tried, and if Mathematica is not able to find the inverse transform, we can consult a
table of Laplace transforms.



The  basic  method  for  PDEs  with  initial  and  boundary  conditions  is  the  method  of  separation  of
variables, which leads to series solutions. We present several examples of how to handle such solutions.
The idea in the use of this kind of series is to truncate it and use the resulting finite sum as an approxi-
mate solution.

With the series solutions obtained by the method of separation of variables or by using the Laplace
transform, we can obtain accurate numerical results (with up to, for example, six-digit precision). Thus,
if you can find the series solution for your problem in a book or can derive such a solution by yourself,
use it; otherwise, resort to numerical methods.

NDSolve  uses  the  method  of  lines.  The  number  of  independent  variables  is  not  restricted,  and the
problem  can  also  have  more  than  one  dependent  variable.  In  the  case  of  two  independent  variables
(typically  one  space  and  one  time  variable),  the  region  of  solution  is  a  rectangle  that  has  initial  and
boundary  conditions  on  up  to  three  sides;  typical  examples  of  such  problems  are  1D parabolic  and
hyperbolic problems. Note that elliptic problems cannot be solved with NDSolve. For elliptic problems, we
present a finite difference method in Section 27.3.4.

Using numerical  methods,  we can quickly get  a  low- or medium-precision solution (with up to, for
example,  three-digit  precision).  However,  obtaining  a  high-precision  result  may  either  require  a  lot  of
computing time and memory or simply be impossible.

For more information about PDEs with Mathematica, see Abell and Braselton (1997), Kythe, Puri, and
Schäferkotter (1996), or Ganzha and Vorozhtsov (1996). See also the advanced tutorials

• Differential Equation Solving with DSolve and
• Advanced Numerical Differential Equation Solving in Mathematica.

27.1  Symbolic Solutions

27.1.1  Using Symbolic Solver

‡ Introduction

DSolve  is able to solve linear and quasi-linear first-order equations. A first-order PDE for an unknown

function uIx, yM is linear if it is of the form

aIx, yM ux + bIx, yM uy + cIx, yM u = dIx, yM,
where the function u  and its  first-order  partial  derivatives  with respect  to the independent variables x
and y appear linearly. A first-order PDE is quasi-linear if it is of the form

aIx, y, uM ux + bIx, y, uM uy = cIx, y, uM,
where  the  first-order  partial  derivatives  of u  appear  linearly  but u  may  appear  nonlinearly  in  the
functions a, b, and c. Here are typical commands used for first-order PDEs:

DSolve[eqn, u[x, y], {x, y}]  Give the general solution of the PDE
DSolve[{eqn, bound}, u[x, y], {x, y}]  Give the solution of the boundary value problem

If  the  solution  is  requested  with  the  command DSolve[eqn, u, {x, y}],  the  solution  is  given  as  a
pure function. A solution of this kind is useful if we want to calculate with it (e.g., if we want to check
the solution).

886 Mathematica Navigator



DSolve  is  also  able  to  give  general  solutions  of  linear,  constant  coefficient,  second-order  partial
differential equations of the form

a uxx + b uxy + c uyy = 0.

Note  that a, b,  and c  are  constants  and  the  equation  only  has  second-order  terms.  An  equation  of  the
previous form is classified to be an elliptic,  a parabolic,  or a hyperbolic equation according to whether
b2 - 4 a c is negative, zero, or positive.

In addition, DSolve is able to find solutions of some nonlinear PDEs as so-called complete integrals.

Next, we consider some examples. The first four examples consider first-order PDEs, whereas the last
two examples are devoted to linear second-order PDEs and nonlinear PDEs, respectively.

‡ Example 1: Linear Constant Coefficient Equations

First, we consider an equation with constant coefficients:

eqn = a D@u@x, yD, xD + b D@u@x, yD, yD + c u@x, yD ã d

c u@x, yD + b uI0,1M@x, yD + a uI1,0M@x, yD ã d

The equation can also be written as follows:

eqn = a x u@x, yD + b y u@x, yD + c u@x, yD ã d

c u@x, yD + b uI0,1M@x, yD + a uI1,0M@x, yD ã d

Here  we  used  the BasicMathInput  palette  to  write  the  partial  derivatives Ñ Ñ.  We  use  this  shorter
notation from now on. The general solution is as follows:

sol = u@x, yD ê. DSolve@eqn, u@x, yD, 8x, y<DP1T êê Simplify

d

c
+ ‰

-
c x

a C@1DB- b x

a
+ yF

The  solution  contains  an  arbitrary  function C[1]  with  the  argument -
b x
a
+ y  (we  could  simplify  the

arbitrary function to C[1][a y - b x]). To check the solution, we ask for it as a pure function and then
substitute it into the equation:

DSolve@eqn, u, 8x, y<D

::u Ø FunctionB8x, y<,

‰
-

c x

a Kd ‰
c x

a + c C@1DB -b x+a y

a
FO

c
F>>

eqn ê. % êê Simplify 8True<
We can set the arbitrary function to be, for example, the sin function:

sol2 = sol ê. C@1D@e_D Ø Sin@eD
d

c
- ‰

-
c x

a SinBb x

a
- yF

Plot3D@sol2 ê. 8a Ø 1, b Ø 1, c Ø 1, d Ø 1<, 8x, 0, p<, 8y, 0, 2 p<D

Chapter 27  •  Partial Differential Equations 887



Next, we solve a boundary value problem:

sol3 = u@x, yD ê. DSolve@8eqn, u@0, yD ã Cos@yD<, u@x, yD, 8x, y<DP1T

‰
-

c x

a K-d + d ‰
c x

a + c CosB -b x+a y

a
FO

c

Plot3D@sol3 ê. 8a Ø 1, b Ø 1, c Ø 1, d Ø 1<, 8x, 0, p<, 8y, 0, 2 p<D

The following equation is a so-called transport equation:

eqn = x u@x, yD + c y u@x, yD ã 0;

sol = u@x, yD ê. DSolve@eqn, u@x, yD, 8x, y<DP1T êê Simplify

C@1D@-c x + yD
This solution is constant along all lines of the form y = c x + d.

Now we solve an equation with three independent variables:

eqn = a x u@x, y, zD + b y u@x, y, zD + c z u@x, y, zD + d u@x, y, zD ã e;

DSolve@eqn, u@x, y, zD, 8x, y, z<D êê Simplify

::u@x, y, zD Ø
e

d
+ ‰

-
d x

a C@1DB- b x

a
+ y, -

c x

a
+ zF>>

‡ Example 2: Linear Variable-Coefficient Equations

Here is a variable-coefficient linear equation:

eqn = x^2 x u@x, yD - x y y u@x, yD + y u@x, yD ã 0;

DSolve@eqn, u@x, yD, 8x, y<D

::u@x, yD Ø ‰
y

2 x C@1D@x yD>>
Consider then a boundary value problem:

DSolve@8eqn, u@x, 1D ã Sin@xD<, u@x, yD, 8x, y<D

::u@x, yD Ø ‰
-

1

2 x y
+

y

2 x Sin@x yD>>

‡ Example 3: A Birth-Death Process

Let XHtL  be the size of a population at time t,  and suppose that the population develops according to a
birth-death process with birth rate l and death rate m (suppose l m). It can be shown that the probabil-
ity-generating function pHs, tL of XHtL satisfies the following linear first-order PDE:

eqn = H1 - sL Hm - l sL s p@s, tD - t p@s, tD ã 0;

888 Mathematica Navigator



If  there  are k  individuals  in  the  population  at  time  0,  we  know that pHs, 0L = sk.  Solve  the  initial  value

problem:

sol = p@s, tD ê. DSolve@8eqn, p@s, 0D ã s^k<, p@s, tD, 8s, t<DP1T êê FullSimplify

1 +
-l + m

l +
‰t H-l+mL I-s l+mM

-1+s

k

We can now calculate, for example, the expectation of XHtL:
Limit@D@sol, sD, s Ø 1D ‰t Il-mM k

We can see that when t approaches infinity, the expected value of XHtL goes to 0 if l < m and to infinity if
l > m. The probability of 0 individuals at time t (meaning extinction) is as follows:

sol ê. s Ø 0 1 +
-l + m

l - ‰t I-l+mM m

k

From this we can show that when t approaches infinity, the probability of 0 individuals goes to 1 if l < m

and to Hm êlLk  if l > m. By also solving the case l = m, we could show that the probability of 0 individuals
goes to 1 even in this case, although the mean number of individuals is the constant k for all t.

‡ Example 4: Quasi-linear Equations

Here is a quasi-linear equation:

eqn = x u@x, yD + y u@x, yD ã x y u@x, yD2;

sol = DSolve@eqn, u@x, yD, 8x, y<D

::u@x, yD Ø
6

x3 - 3 x2 y - 6 C@1D@-x + yD
>>

Solve an initial value problem:

sol = DSolve@8eqn, u@x, 0D ã x<, u@x, yD, 8x, y<D

::u@x, yD Ø -
6 Hx - yL

-6 + 3 x2 y2 - 4 x y3 + y4
>>

The following equation is the so-called Burgers’ equation:

eqn = x u@x, yD + u@x, yD y u@x, yD ã 0;

sol = DSolve@eqn, u@x, yD, 8x, y<D

Solve@C@1D@u@x, yD, y - x u@x, yDD ã 0, u@x, yDD
The solution is in an implicit form. To check the solution, first pick the equation:

e = solP1T C@1D@u@x, yD, y - x u@x, yDD ã 0

Differentiate this equation with respect to x and y and solve for ux and uy:

ux = Solve@D@e, xD, x u@x, yDDP1, 1T;
uy = Solve@D@e, yD, y u@x, yDDP1, 1T;

Substitute these expressions into the original PDE:

eqn ê. 8ux, uy< True

Chapter 27  •  Partial Differential Equations 889



‡ Example 5: Linear Second-Order Equations

The wave equation is  the most well-known PDE of hyperbolic type (use the Ñ,ÑÑ  button in the Basic-

MathInput palette to write the second-order partial derivatives):

eqn = t,t u@x, tD - c2
x,x u@x, tD ã 0;

We could also write

eqn = D@u@x, tD, t, tD - c2 D@u@x, tD, x, xD ã 0;

Ask for the general solution:

Simplify@DSolve@eqn, u@x, tD, 8x, t<D, c > 0D

::u@x, tD Ø C@1DBt -
x

c
F + C@2DBt +

x

c
F>>

Consider the initial value problem utt - c2 uxx = FHx, tL, uHx, 0L = f HxL, utHx, 0L = gHxL, -¶ < x < ¶, t ¥ 0.

The solution of this problem (the so-called d’Alambert’s solution) is

uHx, tL = 1

2
A f Hx + c tL + f Hx - c tLE + 1

2 c
‡
x-c t

x+c t

gHxL „x + 1

2 c
‡
o

tB‡
x-cHt-tL

x+cHt-tL

FHx, tL „xF „t.

dAlambert@c_, F_, f_, g_, x_, t_D :=
1

2
HHf ê. x Ø x + c tL + Hf ê. x Ø x - c tLL +

1

2 c
‡

x-c t

x+c t

Hg ê. x Ø xL „x +
1

2 c
‡

0

t

‡
x-c Ht-tL

x+c Ht-tL

HF ê. 8x Ø x, t Ø t<L „x „t

sol = dAlambert@c, 1, Sin@w xD, 0, x, tD êê Simplify

t2

2
+ Cos@c t wD Sin@x wD

Laplace’s equation is the most well-known PDE of elliptic type:

eqn = x,x u@x, yD + y,y u@x, yD ã 0;

DSolve@eqn, u@x, yD, 8x, y<D

88u@x, yD Ø C@1D@Â x + yD + C@2D@-Â x + yD<<
Here is an example of a parabolic equation:

eqn = a2
x,x u@x, yD + 2 a c x,y u@x, yD + c2

y,y u@x, yD ã 0;

DSolve@eqn, u@x, yD, 8x, y<D

::u@x, yD Ø C@1DB- c x

a
+ yF + x C@2DB- c x

a
+ yF>>

‡ Example 6: Nonlinear Equations

The general solution of linear and quasi-linear equations contains arbitrary functions. For most nonlin-

ear  PDEs,  general  solutions  cannot  be  obtained.  However,  for  some nonlinear  equations  we  can  get  a
special  solution that  contains arbitrary parameters.  Such a solution is  called a complete  integral.  Here is
an example:

eqn = x u@x, yD y u@x, yD ã c;

890 Mathematica Navigator



sol = DSolve@eqn, u, 8x, y<DP1T

DSolve::nlpde :

Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

:u Ø FunctionB8x, y<, C@1D +
c x

C@2D + y C@2DF>

Here, C[1] and C[2] are arbitrary parameters. The solution satisfies the equation:

eqn ê. sol True

Here is the so-called eikonal equation:

eqn = H x u@x, yDL2 + H y u@x, yDL2 ã 1;

sol = DSolve@eqn, u@x, yD, 8x, y<D

DSolve::nlpde :

Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

::u@x, yD Ø C@1D + y C@2D - x 1 - C@2D2 >, :u@x, yD Ø C@1D + y C@2D + x 1 - C@2D2 >>
Consider the Korteweg-deVries equation:

eqn = y u@x, yD + x,x,x u@x, yD + 6 u@x, yD x u@x, yD ã 0;

sol = u@x, yD ê. DSolve@eqn, u@x, yD, 8x, y<DP1T

DSolve::nlpde :

Solution requested to nonlinear partial differential equation. Trying to build a special solution. à

-
-8 C@1D3 + C@2D + 12 C@1D3 Tanh@x C@1D + y C@2D + C@3DD2

6 C@1D
Plot3D@sol ê. 8C@1D Ø 1, C@2D Ø -4, C@3D Ø 1 ê 4<,
8x, 0, 5<, 8y, -0.5, 2<, PlotRange Ø AllD

27.1.2  Using Laplace Transform

In  using  the  Laplace  transform  to  solve  PDEs,  the  critical  point  is  to  find  the  inverse  transform.  It  is
probable that Mathematica  cannot find it.  In particular, Mathematica  cannot find inverse transforms that
are in the form of an infinite sum.

‡ Example 1: A Wave Problem

Consider the following wave equation:

ut t - c2 ux x = 0, 0 < x < 1, t > 0,

uHx, 0L = d sinH2 p xL, utHx, 0L = 0, uH0, tL = uH1, tL = 0.

First, take the Laplace transform of the equation:

Chapter 27  •  Partial Differential Equations 891



eqn = t,t u@x, tD - c2
x,x u@x, tD ã 0;

lapeqn1 = LaplaceTransform@eqn, t, sD

s2 LaplaceTransform@u@x, tD, t, sD -

c2 LaplaceTransformAuI2,0M@x, tD, t, sE - s u@x, 0D - uI0,1M@x, 0D ã 0

Simplify the notation, and take the initial conditions into account:

lapeqn2 = lapeqn1 ê. 8LaplaceTransform@u@x, tD, t, sD Ø U@xD,
LaplaceTransform@ x,x u@x, tD, t, sD Ø U''@xD,
u@x, 0D Ø d Sin@2 p xD, Derivative@0, 1D@uD@x, 0D Ø 0<

-d s Sin@2 p xD + s2 U@xD - c2 U££@xD ã 0

Solve the transformed equation by using the boundary conditions:

lap = U@xD ê. DSolve@8lapeqn2, U@0D ã 0, U@1D ã 0<, U@xD, xDP1T

d s Sin@2 p xD
4 c2 p2 + s2

Mathematica succeeds in inverting this:

sol = InverseLaplaceTransform@lap, s, tD

d Cos@2 c p tD Sin@2 p xD
Plot the solution:

Plot3D@sol ê. 8c Ø 1, d Ø 1<, 8x, 0, 1<, 8t, 0, 2<,
AxesLabel Ø 8"x", "t", ""<, Ticks Ø 880, 1<, 80, 1, 2<, 8-1, 0, 1<<D

‡ Example 2: A Heat Problem

Consider the following heat problem:

ut - c ux x = 0, 0 < x < a, t > 0,

uHx, 0L = u0, uxH0, tL = 0, uHa, tL = u1.

Proceed as in Example 1:

eqn = t u@x, tD - c x,x u@x, tD ã 0;

lapeqn1 = LaplaceTransform@eqn, t, sD

s LaplaceTransform@u@x, tD, t, sD - c LaplaceTransformAuI2,0M@x, tD, t, sE - u@x, 0D ã 0

lapeqn2 = lapeqn1 ê. 8LaplaceTransform@u@x, tD, t, sD Ø U@xD,
LaplaceTransform@ x,x u@x, tD, t, sD Ø U''@xD, u@x, 0D Ø u0<

-u0 + s U@xD - c U££@xD ã 0

The solution of the transformed equation is as follows:

892 Mathematica Navigator



lap =
U@xD ê. DSolve@8lapeqn2, U'@0D ã 0, U@aD ã u1 ê s<, U@xD, xDP1T êê ExpToTrig êê Simplify

u0 - Hu0 - u1L CoshB s x

c
F SechB a s

c
F

s

Mathematica  cannot invert this, but we can consult a table of Laplace transforms. For example, formula
33.153 in Spiegel (1999) is appropriate, and we get the solution in the form of an infinite series:

u0 + Hu1 - u0L 1 +
4

p
‚
n=1

¶ H-1Ln
2 n - 1

exp -
cH2 n - 1L2 p2 t

4 a2
cos

H2 n - 1L p x

2 a
.

Let  us  assume  that u0 = 0  and u1 = c = a = 1.  We  take  60  terms  from  the  sum  and  plot  the  resulting

approximate solution:

uappr = 1 +
4

p
‚
n=1

60 H-1Ln

2 n - 1
ExpB-

H2 n - 1L2 p2 t

4
F CosB

H2 n - 1L p x

2
F;

Plot3D@uappr, 8x, 0, 1<, 8t, 0, 2<, ViewPoint Ø 8-2, -1.5, 0.8<,
AxesLabel Ø 8"x", "t", ""<, Ticks Ø 880, 1<, 80, 1, 2<, 80, 1<<, PlotRange Ø AllD

27.2  Series Solutions

27.2.1  1D Parabolic Problems

‡ Series Solution

Consider the following heat problem:

ut - c ux x = FHx, tL, 0 < x < a, t > 0,

uHx, 0L = f HxL, uH0, tL = uHa, tL = 0.

This  model  can be  interpreted as  follows.  The value of uHx, tL  is  the temperature of  a  bar  at  position x
and time t.  The bar  is  assumed to be  slender  and homogeneous and of uniform cross section.  The bar
lies along the x axis with ends at x = 0 and x = a. The lateral surface of the bar is insulated. The value of
FHx, tL  is  the  amount  of  heat  per  unit  volume  per  unit  time  generated  at  the  point x  at  time t.  The
constant c depends on the properties of the bar (c is the thermal conductivity divided by the product of
the specific  heat and the material  density).  The ends of  the bar are kept at the constant temperature 0.
The  initial  temperature  of  the  bar  at x  is f HxL.  The  goal  is  to  determine  the  temperature  of  the  bar  for

t > 0.

Separation of variables is a well-known method for solving PDEs. The solution is usually in the form
of  an  infinite  sum.  The  solution  of  this  problem,  using  the  method  of  separation  of  variables,  is  as
follows (Dennemeyer, 1968, p. 309):

Chapter 27  •  Partial Differential Equations 893



uHx, tL =‚
n=1

¶

AAn expI-c vn2 tM + HnHtLE sinHvn xL, vn =
n p

a
, An =

2

a
‡
0

a

f HxL sinHvn xL „x,

FnHtL =
2

a
‡
0

a

FHx, tL sinHvn xL „x, HnHtL = ‡
0

t

FnHtL expA-c vn2Ht - tLE „t.

‡ Calculating the General Term

Consider the following example:

a = 1; c = 1; F = 0; f = x H1 - xL;

First, calculate the coefficients:

vn = n p ê a;

An = SimplifyB
2

a
‡

0

a

f Sin@vn xD „x, n œ IntegersF

-
4 I-1 + H-1LnM

n3 p3

Fn =
2

a
‡

0

a

F Sin@vn xD „x 0

Hn = ‡
0

t

HFn ê. t Ø tL ExpA-c vn
2 Ht - tLE „t 0

Here is the nth term of the series solution:

term = IAn ExpA-c vn
2 tE + HnM Sin@vn xD

-
4 I-1 + H-1LnM ‰-n2 p2 t Sin@n p xD

n3 p3

If  exact  integration with Integrate  does  not  succeed,  we  can use NIntegrate.  Exact  integration is
handy because we have to do only one integration for a general n,  and from the result we obtain all of
the  coefficients  we  are  going  to  use.  If  we  have  to  use  numerical  integration,  we  must  separately
integrate each coefficient we need.

‡ Choosing an Approximation

How many terms from the infinite series should we choose so that the results would be precise enough?
We  investigate  the  solution  when x = 0.5.  By  making  experiments  with  series  of  different  lengths,  we
would find that to obtain the correct value 0.25 for uH0.5, 0L to six decimal places, we need 63 terms; here
are the corresponding values of uH0.5, tL for t = 0, 0.1, 0.2, 0.3, 0.4, and 0.5:

Table@Sum@term ê. x Ø 0.5, 8n, 63<D, 8t, 0, 0.5, 0.1<D

80.25, 0.0961619, 0.0358408, 0.0133581, 0.00497868, 0.00185559<
If we are satisfied with five correct decimals for uH0.5, 0L, then 31 terms suffice. For four-digit precision,
13 terms suffice.

We  choose  to  take  15  terms  and  form  an  approximate  solution  (note  that  the  terms  corresponding
with even n values are zero):

894 Mathematica Navigator



uappr1@x_, t_D = Sum@term, 8n, 15<D

8 ‰-p2 t Sin@p xD
p3

+
8 ‰-9 p2 t Sin@3 p xD

27 p3
+

8 ‰-25 p2 t Sin@5 p xD
125 p3

+
8 ‰-49 p2 t Sin@7 p xD

343 p3
+

8 ‰-81 p2 t Sin@9 p xD
729 p3

+
8 ‰-121 p2 t Sin@11 p xD

1331 p3
+

8 ‰-169 p2 t Sin@13 p xD
2197 p3

+
8 ‰-225 p2 t Sin@15 p xD

3375 p3

‡ Using the Solution

Calculate some numerical values:

Table@uappr1@0.5, tD, 8t, 0, 0.5, 0.1<D

80.249969, 0.0961619, 0.0358408, 0.0133581, 0.00497868, 0.00185559<
Note that the exact value of uH0.5, 0L  is 0.25 according to the initial condition, so the approximate value
0.249969 is quite accurate. Here is a plot of the approximate solution:

Plot3D@uappr1@x, tD, 8t, 0, 0.5<, 8x, 0, 1<, PlotRange Ø All,
AxesLabel Ø 8"t", "x", ""<, Ticks Ø 880, 0.5<, 80, 1<, 80, 0.2<<D

To manipulate the time evolution of the solution, do as follows:

Manipulate@Plot@Evaluate@uappr1@x, tDD, 8x, 0, 1<, PlotRange Ø 80, 0.26<,
Ticks Ø 881<, 80.1, 0.2<<, ImageSize Ø 200D, 8t, 0, 0.5<, SaveDefinitions Ø TrueD

Here we used Evaluate to speed up the computation. In a printed material, it may be also useful to see
a collection of plots:

GraphicsArray@Partition@Table@Plot@uappr1@x, tD, 8x, 0, 1<, PlotRange Ø 80, 0.26<,
Ticks Ø 881<, 80.1, 0.2<<D, 8t, 0, 0.45, 0.05<D, 5D, ImageSize Ø 420D

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

1

0.1

0.2

Chapter 27  •  Partial Differential Equations 895



27.2.2  1D Hyperbolic Problems

‡ Series Solution

Consider the following wave problem:

ut t - c2 ux x = FHx, tL, 0 < x < a, t > 0,

uHx, 0L = f HxL, utHx, 0L = gHxL, uH0, tL = uHa, tL = 0.

One  interpretation  of  the  model  is  as  follows.  The  value  of uHx, tL  is  the  transverse  displacement  of  a
homogeneous thin string at time t of the point on the string with the abscissa of x. The string is assumed
to  be  perfectly  flexible  and  subject  to  uniform  tension.  In  addition  to  the  tension,  an  external  force
transverse FHx, tL  (force/unit  mass)  is  acting  on  the  string;  one  example  is  gravity.  The  constant c2

depends on the properties of the string (c2  is the tension divided by the linear density of the string). The
ends of the string are fastened at x = 0 and x = a. The string is pulled aside according to the function f HxL
and then released at the speed gHxL. The problem is to determine the subsequent motion of the string.

Using  the  method  of  separation  of  variables  (Dennemeyer,  1968,  pp.  170-175),  we  obtain  the
following solution:

uHx, tL =‚
n=1

¶

@An cosHc vn tL + Bn sinHc vn tL + HnHtLD sinHvn xL, vn =
n p

a
,

An =
2

a
‡
0

a

f HxL sinHvn xL „x, Bn =
2

n p c
‡
0

a

gHxL sinHvn xL „x,

FnHtL =
2

a
‡
0

a

FHx, tL sinHvn xL „x, HnHtL =
1

c vn
‡
0

t

FnHtL sin@c vnHt - tLD „t.

‡ Calculating the General Term

Consider the following example:

a = 1; c = 1; F = -9.80665; f = 10 x2 H1 - xL2; g = 0;

(9.80665 is acceleration due to gravity.) First we calculate the coefficients:

vn = n p ê a;

An = SimplifyB
2

a
‡

0

a

f Sin@vn xD „x, n œ IntegersF

40 I-1 + H-1LnM I-12 + n2 p2M
n5 p5

Bn =
2

n p c
‡

0

a

g Sin@vn xD „x 0

Fn = SimplifyB
2

a
‡

0

a

F Sin@vn xD „x, n œ IntegersF

-6.24311 + 6.24311 H-1Ln

n

896 Mathematica Navigator



Hn =
1

c vn

‡
0

t

HFn ê. t Ø tL Sin@c vn Ht - tLD „t

-1.98724 + 1.98724 H-1Ln + I1.98724 - 1.98724 H-1LnM Cos@n p tD
n3 p

Here is the nth term of the series solution:

term = HAn Cos@c vn tD + Bn Sin@c vn tD + HnL Sin@vn xD

40 I-1 + H-1LnM I-12 + n2 p2M Cos@n p tD
n5 p5

+

-1.98724 + 1.98724 H-1Ln + I1.98724 - 1.98724 H-1LnM Cos@n p tD
n3 p

Sin@n p xD

‡ Choosing an Approximation

Approximately  150  terms  are  needed  for  six-digit  precision;  here  are  the  corresponding  values  of
uH0.5, tL for t = 0, 0.4, ..., 2.4:

Table@Sum@term ê. x Ø 0.5, 8n, 150<D, 8t, 0, 2.4, 0.4<D

80.625, -0.703533, -2.69653, -2.69653, -0.703533, 0.625, -0.703533<
If we want five-digit precision, approximately 65 terms are needed, and approximately 30 terms suffice
for four-digit precision.

We choose 30 terms from the series and form an approximation to the solution:

Style@uappr2@x_, t_D = Sum@term, 8n, 30<D êê N êê Chop, 8D êê Text

H0.55693 Cos@3.14159 tD+ 0.31831 H-3.97449+ 3.97449 Cos@3.14159 tDLL Sin@3.14159 xD+
H-0.0826504 Cos@9.42478 tD+ 0.0117893 H-3.97449+ 3.97449 Cos@9.42478 tDLL Sin@9.42478 xD+
H-0.0196371 Cos@15.708 tD+ 0.00254648 H-3.97449+ 3.97449 Cos@15.708 tDLL Sin@15.708 xD+
H-0.00733557 Cos@21.9911 tD+ 0.000928017 H-3.97449+ 3.97449 Cos@21.9911 tDLL Sin@21.9911 xD+
H-0.00348614 Cos@28.2743 tD+ 0.000436639 H-3.97449+ 3.97449 Cos@28.2743 tDLL Sin@28.2743 xD+
H-0.00191901 Cos@34.5575 tD+ 0.000239151 H-3.97449+ 3.97449 Cos@34.5575 tDLL Sin@34.5575 xD+
H-0.00116594 Cos@40.8407 tD+ 0.000144884 H-3.97449+ 3.97449 Cos@40.8407 tDLL Sin@40.8407 xD+
H-0.00076035 Cos@47.1239 tD+ 0.000094314 H-3.97449+ 3.97449 Cos@47.1239 tDLL Sin@47.1239 xD+
H-0.000522953 Cos@53.4071 tD+ 0.0000647893 H-3.97449+ 3.97449 Cos@53.4071 tDLL Sin@53.4071 xD+
H-0.000374899 Cos@59.6903 tD+ 0.0000464076 H-3.97449+ 3.97449 Cos@59.6903 tDLL Sin@59.6903 xD+
H-0.000277833 Cos@65.9734 tD+ 0.000034371 H-3.97449+ 3.97449 Cos@65.9734 tDLL Sin@65.9734 xD+
H-0.000211572 Cos@72.2566 tD+ 0.0000261617 H-3.97449+ 3.97449 Cos@72.2566 tDLL Sin@72.2566 xD+
H-0.000164807 Cos@78.5398 tD+ 0.0000203718 H-3.97449+ 3.97449 Cos@78.5398 tDLL Sin@78.5398 xD+
H-0.000130865 Cos@84.823 tD+ 0.0000161718 H-3.97449+ 3.97449 Cos@84.823 tDLL Sin@84.823 xD+
H-0.000105637 Cos@91.1062 tD+ 0.0000130514 H-3.97449+ 3.97449 Cos@91.1062 tDLL Sin@91.1062 xD

‡ Using the Solution

First, we calculate some numerical values:

Table@uappr2@0.5, tD, 8t, 0, 2.4, 0.4<D

80.624953, -0.703626, -2.69652, -2.69652, -0.703626, 0.624953, -0.703626<

The  exact  value uH0.5, 0L  is  0.625  according  to  the  initial  condition uHx, 0L = 10 x2H1 - xL2.  We  plot  the
movement of the center point uH0.5, tL when t is in the interval H0, 10L:

Plot@Evaluate@uappr2@0.5, tDD, 8t, 0, 10<, AspectRatio Ø 0.3D

2 4 6 8 10

-3.0
-2.5
-2.0
-1.5
-1.0

0.5

Chapter 27  •  Partial Differential Equations 897



Here is a plot of the solution for t in H0, 4L:
Plot3D@Evaluate@uappr2@x, tDD, 8t, 0, 4<, 8x, 0, 1<,

AxesLabel Ø 8"t", "x", ""<, Ticks Ø 880, 1, 2, 3, 4<, 80, 1<, 8-3, 0<<D

A manipulation is as follows:

Manipulate@Plot@Evaluate@uappr2@x, tDD, 8x, 0, 1<, PlotRange Ø 8-3.3, 0.7<,
Ticks Ø 881<, 8-3<<, ImageSize Ø 200D, 8t, 0, 1.95<, SaveDefinitions Ø TrueD

Here is a collection of plots:

GraphicsArray@
Partition@Table@Plot@Evaluate@uappr2@x, tDD, 8x, 0, 1<, PlotRange Ø 8-3.3, 0.7<,

Ticks Ø NoneD, 8t, 0, 2, 0.1<D, 7D, ImageSize Ø 420D

27.2.3  2D Hyperbolic Problems in Cartesian Coordinates

‡ Series Solution

Consider the following wave problem:

ut t - c2Iux x + uy yM = FIx, y, tM, 0 < x < a, 0 < y < b, t > 0,

uIx, y, 0M = f Ix, yM, utIx, y, 0M = gIx, yM,
uI0, y, tM = uIa, y, tM = uHx, 0, tL = uHx, b, tL = 0.

898 Mathematica Navigator



Using the method of  separation of variables (Dennemeyer,  1968,  pp. 191-194,  263-264),  we obtain the
following solution:

uIx, y, tM = ‚
m=1

¶

‚
n=1

¶

@Amn cosHwmn tL + Bmn sinHwmn tL + HmnHtLD fmnIx, yM,

fmnIx, yM = sinHvm xL sinIwn yM, vm =
m p

a
, wn =

n p

b
, lmn = vm2 + wn2, wmn = c lmn ,

Amn =
4

a b
‡
0

a

‡
0

b

f Ix, yM fmnIx, yM „x „y, Bmn =
4

a bwmn
‡
0

a

‡
0

b

gIx, yM fmnIx, yM „x „y,

FmnHtL =
4

a b
‡
0

a

‡
0

b

FIx, y, tM fmnIx, yM „x „y, HmnHtL =
1

wmn
‡
0

t

FmnHtL sin@wmnHt - tLD „t.

‡ Calculating the General Term

Consider the following example:

a = 1; b = 1; c = 1; F = 0; f = 10 x y H1 - xL H1 - yL; g = 0;

First, we calculate the coefficients:

vm =
m p

a
; wn =

n p

b
; lmn = vm

2 + wn
2; wmn = c lmn ;

fmn = Sin@vm xD Sin@wn yD;

Amn = SimplifyB
4

a b
‡

0

a

‡
0

b

f fmn „y „x, 8m, n< œ IntegersF

160 I-1 + H-1LmM I-1 + H-1LnM
m3 n3 p6

Bmn =
4

a b wmn

‡
0

a

‡
0

b

g fmn „y „x 0

Fmn =
4

a b
‡

0

a

‡
0

b

F fmn „y „x 0

Hmn =
1

wmn

‡
0

t

HFmn ê. t Ø tL Sin@wmn Ht - tLD „t 0

Here is the Hm, nLth term of the series solution:

term = HAmn Cos@wmn tD + Bmn Sin@wmn tD + HmnL fmn êê Simplify

160 I-1 + H-1LmM I-1 + H-1LnM CosB m2 + n2 p tF Sin@m p xD Sin@n p yD
m3 n3 p6

‡ Choosing an Approximation

The  values  of uH0.5, 0.5, tL  for t  =  0,  0.3,  0.6,  0.9,  1.2,  and  1.5  are  as  follows  if  we  use  55  as  the  upper
bound for both m and n:

Table@Evaluate@Sum@term ê. 8x Ø 0.5, y Ø 0.5<, 8m, 55<, 8n, 55<DD, 8t, 0, 1.5, 0.3<D

80.624996, 0.202005, -0.650998, -0.394842, 0.355062, 0.659583<

Chapter 27  •  Partial Differential Equations 899



These  values  for  the  upper  bounds  seem  to  suffice  for  five-digit  precision  (for  six-digit  precision,  it
seems  that  the  upper  bound  for m  and n  has  to  be  approximately  130).  For  four-  and  three-digit
precision, 25 and 15, respectively, suffice as the upper bound.

We  choose  25  as  the  upper  bound  for m  and n  (this  gives  us  a  total  of  625  terms,  many  of  which,
however, are zero) and form an approximation to the solution:

uappr3@x_, y_, t_D = Sum@term, 8m, 25<, 8n, 25<D êê N;

Short@uappr3@x, y, tD, 5D

0.665703 Cos@4.44288 tD Sin@3.14159 xD Sin@3.14159 yD +

á167à+ 2.72672 μ 10-9 Cos@111.072 tD Sin@78.5398 xD Sin@78.5398 yD
‡ Using the Solution

First, we calculate the solution at the point (0.5, 0.5) for some values of t:

Table@uappr3@0.5, 0.5, tD, 8t, 0, 1.5, 0.3<D

80.625036, 0.202054, -0.651003, -0.394831, 0.355097, 0.659562<
The exact value when t is 0 is 0.625 according to the initial condition. Then we plot the movement of the
point uH0.5, 0.5, tL when t is in the interval H0, 20L:

Plot@Evaluate@uappr3@0.5, 0.5, tDD, 8t, 0, 20<, AspectRatio Ø 0.2, ImageSize Ø 300D

5 10 15 20

-0.6
-0.4
-0.2

0.2
0.4
0.6

Here is a manipulation to show the surface profile for t in H0, 1.4L when y is 0.5:

Manipulate@Plot@Evaluate@uappr3@x, 0.5, tDD, 8x, 0, 1<, PlotRange Ø 0.71,
Ticks Ø None, ImageSize Ø 200D, 8t, 0, 1.4<, SaveDefinitions Ø TrueD

Here we only show a collection of plots:

900 Mathematica Navigator



GraphicsArray@Partition@
Table@Plot@Evaluate@uappr3@x, 0.5, tDD, 8x, 0, 1<, PlotRange Ø 0.71, Ticks Ø NoneD,
8t, 0, 1.4, 0.1<D, 5D, ImageSize Ø 420D

Next, we show the whole surface:

Manipulate@Plot3D@Evaluate@uappr3@x, y, tDD, 8x, 0, 1<, 8y, 0, 1<, PlotRange Ø 0.71,
Boxed Ø False, Axes Ø False, BoxRatios Ø 81, 1, 1<, ImageSize Ø 200,
PlotRegion Ø 880, 1<, 8-0.4, 1.3<<D, 8t, 0, 1.4<, SaveDefinitions Ø TrueD

Here we only show a collection of plots:

Plot3D@Evaluate@uappr3@x, y, ÒDD, 8x, 0, 1<, 8y, 0, 1<,
PlotRange Ø 0.71, Boxed Ø False, Axes Ø False, BoxRatios Ø 81, 1, 1<,
PlotRegion Ø 880, 1<, 8-0.4, 1.3<<, ImageSize Ø 100D & êü 80, 0.2, 0.4, 0.6<

: , , , >

27.2.4  2D Hyperbolic Problems in Polar Coordinates

‡ Series Solution

Consider the following circularly symmetric wave problem in polar coordinates:

ut t - c2Hur r + ur ê rL = FHrL, 0 < r < a, t > 0,

uHr, 0L = f HrL, utHr, 0L = gHrL, uHa, tL = 0.

Chapter 27  •  Partial Differential Equations 901



By  the  method  of  separation  of  variables  (Dennemeyer,  1968,  pp.  201-202),  we  obtain  the  following
solution:

uHr, tL =‚
n=1

¶

@An cosHvn tL + Bn sinHvn tL + HnHtLD J0HwnL,

vn =
c xn

a
, wn =

r xn

a
, un =

2

a2 J1HxnL2
,

An = un‡
0

a

r f HrL J0HwnL „ r, Bn =
un

vn
‡
0

a

r gHrL J0HwnL „ r,

Gn = un‡
0

a

r FHrL J0HwnL „ r, HnHtL =
2 Gn

vn2
sin2Hvn t ê 2L.

Here, J0 and J1 are Bessel functions of the first kind of order zero and one, and xn is the nth zero of J0.

‡ Calculating the General Term

Consider the following example:

a = 1; c = 1; F = 0; f = 1 - r2; g = 0;

First, we calculate the coefficients:

xn = BesselJZero@0, nD;

vn =
c xn

a
; wn =

r xn

a
; un =

2

a2 BesselJ@1, xnD
2

;

An = un ‡
0

a

r f BesselJ@0, wnD „r

4 BesselJ@2, BesselJZero@0, nDD
BesselJ@1, BesselJZero@0, nDD2 BesselJZero@0, nD2

Bn =
un

vn

‡
0

a

r g BesselJ@0, wnD „r 0

Gn = un ‡
0

a

r F BesselJ@0, wnD „r 0

Hn =
2 Gn

vn
2

SinB
vn t

2
F

2

0

Here is the nth term of the series solution:

term = HAn Cos@vn tD + Bn Sin@vn tD + HnL BesselJ@0, wnD

H4 BesselJ@0, r BesselJZero@0, nDD
BesselJ@2, BesselJZero@0, nDD Cos@t BesselJZero@0, nDDL ë

IBesselJ@1, BesselJZero@0, nDD2 BesselJZero@0, nD2M
% êê TraditionalForm

4 J0Ir j0,nM J2I j0,nM cosIt j0,nM

J1I j0,nM2 j0,n
2

902 Mathematica Navigator



‡ Choosing an Approximation

Here are values of uH0, tL for t = 0, 0.2, 0.4, ..., 1, using 100 terms:

Table@Evaluate@Sum@term ê. r Ø 0, 8n, 100<D êê ND, 8t, 0, 1, 0.2<D

80.999997, 0.919997, 0.679997, 0.279996, -0.280007, -0.999731<
It  turns  out  that  the  use  of  100  terms  from  the  series  solution  does  not  quite  suffice  for  five-digit
precision. Approximately 50 terms suffice for four-digit precision, and 30 terms are sufficient for three-
digit precision. We take 30 terms:

Style@uappr4@r_, t_D = Sum@term, 8n, 30<D êê N, 8D êê Text

1.10802 BesselJ@0., 2.40483 rDCos@2.40483 tD- 0.139778 BesselJ@0., 5.52008 rDCos@5.52008 tD+
0.0454765 BesselJ@0., 8.65373 rDCos@8.65373 tD- 0.0209909 BesselJ@0., 11.7915 rDCos@11.7915 tD+
0.0116362 BesselJ@0., 14.9309 rDCos@14.9309 tD- 0.00722118 BesselJ@0., 18.0711 rDCos@18.0711 tD+
0.00483787 BesselJ@0., 21.2116 rDCos@21.2116 tD- 0.00342568 BesselJ@0., 24.3525 rDCos@24.3525 tD+
0.00252953 BesselJ@0., 27.4935 rDCos@27.4935 tD- 0.00193015 BesselJ@0., 30.6346 rDCos@30.6346 tD+
0.00151221 BesselJ@0., 33.7758 rDCos@33.7758 tD- 0.00121077 BesselJ@0., 36.9171 rDCos@36.9171 tD+
0.000987185 BesselJ@0., 40.0584 rDCos@40.0584 tD- 0.000817394 BesselJ@0., 43.1998 rDCos@43.1998 tD+
0.000685835 BesselJ@0., 46.3412 rDCos@46.3412 tD- 0.000582113 BesselJ@0., 49.4826 rDCos@49.4826 tD+
0.000499091 BesselJ@0., 52.6241 rDCos@52.6241 tD- 0.000431745 BesselJ@0., 55.7655 rDCos@55.7655 tD+
0.000376465 BesselJ@0., 58.907 rDCos@58.907 tD- 0.000330609 BesselJ@0., 62.0485 rDCos@62.0485 tD+
0.000292208 BesselJ@0., 65.19 rDCos@65.19 tD- 0.000259772 BesselJ@0., 68.3315 rDCos@68.3315 tD+
0.000232161 BesselJ@0., 71.473 rDCos@71.473 tD- 0.000208491 BesselJ@0., 74.6145 rDCos@74.6145 tD+
0.000188066 BesselJ@0., 77.756 rDCos@77.756 tD- 0.000170336 BesselJ@0., 80.8976 rDCos@80.8976 tD+
0.000154861 BesselJ@0., 84.0391 rDCos@84.0391 tD- 0.000141285 BesselJ@0., 87.1806 rDCos@87.1806 tD+
0.000129319 BesselJ@0., 90.3222 rDCos@90.3222 tD- 0.000118724 BesselJ@0., 93.4637 rDCos@93.4637 tD

‡ Using the Solution

Here are some values of the solution:

Table@uappr4@0, tD, 8t, 0, 1, 0.2<D

80.999943, 0.919941, 0.679934, 0.279917, -0.280132, -0.998375<
The exact value of uH0, 0L is 1 according to the initial condition. Here is the movement of the center point
when t is in the interval H0, 30L:

Plot@Evaluate@uappr4@0, tDD, 8t, 0, 30<, AspectRatio Ø 0.2, ImageSize Ø 280D

5 10 15 20 25 30
-1.0
-0.5

0.5
1.0

Next, we show the form of the surface for r in H-1, 1L for various values of t:

Manipulate@Plot@Evaluate@uappr4@r, tDD, 8r, -1, 1<, PlotRange Ø 1.25,
Ticks Ø None, ImageSize Ø 200, MaxRecursion Ø ControlActive@0, 2DD,

8t, 0, 2.5<, SaveDefinitions Ø TrueD

Chapter 27  •  Partial Differential Equations 903



Here we only show a collection of plots:

GraphicsArray@Partition@
Table@Plot@Evaluate@uappr4@r, tDD, 8r, -1, 1<, PlotRange Ø 1.25, Ticks Ø NoneD,
8t, 0, 1.1, 0.1<D, 6D, ImageSize Ø 420D

Next, we show the whole surface. To speed up the manipulation, we only take the first 10 terms of the
series solution and ask not to refine the plot (MaxRecursion Ø 0):

Manipulate@ParametricPlot3D@Evaluate@8r Cos@qD, r Sin@qD, Take@uappr4@r, tD, 10D<D,
8r, 0, 1<, 8q, 0, 2 p<, PlotRange Ø 1.25, Boxed Ø False, Axes Ø False,
ImageSize Ø 200, MaxRecursion Ø 0, PlotRegion Ø 880, 1<, 8-0.6, 1.4<<D,

8t, 0, 2.5<, SaveDefinitions Ø TrueD

Here we only show a collection of plots:

ParametricPlot3D@Evaluate@8r Cos@qD, r Sin@qD, Take@uappr4@r, ÒD, 10D<D,
8r, 0, 1<, 8q, 0, 2 p<, PlotRange Ø 1.25, Boxed Ø False, Axes Ø False,
PlotRegion Ø 88-0.3, 1.3<, 8-0.6, 1.4<<, ImageSize Ø 100D & êü 80, 0.35, 0.7, 1.05<

: , , , >

27.2.5  2D Elliptic Problems

‡ Series Solution

Consider the following elliptic problem:

ux x + uy y = 0, 0 < x < a, 0 < y < b,

uI0, yM = uIa, yM = uHx, bL = 0, uHx, 0L = f HxL.

904 Mathematica Navigator



One  interpretation  of  the  model  is  as  follows.  A  thin  rectangular  homogeneous  thermally  conducting

plate  lies  in  the Ix, yM  plane  and  occupies  the  rectangle 0 § x § a, 0 § y § b.  The  value  of uIx, yM  is  the

steady-state temperature of the plate at point Ix, yM. The faces of the plate are insulated, and no internal

sources or sinks of heat are present. The edge y = 0 is kept at temperature f HxL,  whereas the remaining

edges are kept at zero temperature.

The  series  solution  by  the  method  of  separation  of  variables  is  as  follows  (Dennemeyer,  1968,  pp.
147-148; the solution is derived later):

uIx, yM =‚
n=1

¶

An sinHvn xL sinhIvnIb - yMM, vn =
n p

a
, An =

2

a sinhHvn bL ‡0
a

f HxL sinHvn xL „x.

‡ Calculating the General Term

Consider the following example:

a = 1; b = 1; f = 4 x H1 - xL;

Calculate the coefficient and the nth term of the series:

vn = n p ê a;

An = SimplifyB
2

a Sinh@vn bD
‡

0

a

f Sin@vn xD „x, n œ IntegersF

-
16 I-1 + H-1LnM Csch@n pD

n3 p3

term = An Sin@vn xD Sinh@vn Hb - yLD

-
16 I-1 + H-1LnM Csch@n pD Sin@n p xD Sinh@n p H1 - yLD

n3 p3

‡ Choosing an Approximation

To get six-digit precision, approximately 65 suffices for the upper bound of n. Here are the correspond-

ing values of uI0.5, yM for y = 0, 0.1, ..., 0.5:

Table@Sum@term, 8n, 65<D ê. x Ø 0.5, 8y, 0, 0.5, 0.1<D

81., 0.739132, 0.542517, 0.395755, 0.28663, 0.205315<
For five- and four-digit precision, approximately 20 and 10 terms suffice, respectively.

We choose 10 terms from the series and form an approximate solution:

uappr5@x_, y_D = Sum@term, 8n, 1, 10<D êê N

0.0893647 Sin@3.14159 xD Sinh@3.14159 H1. - 1. yLD +

6.16932 μ 10-6 Sin@9.42478 xD Sinh@9.42478 H1. - 1. yLD +

2.48851 μ 10-9 Sin@15.708 xD Sinh@15.708 H1. - 1. yLD +

1.69356 μ 10-12 Sin@21.9911 xD Sinh@21.9911 H1. - 1. yLD +

1.48804 μ 10-15 Sin@28.2743 xD Sinh@28.2743 H1. - 1. yLD
‡ Using the Solution

Some numerical values are as follows:

Table@uappr5@0.5, yD, 8y, 0, 0.5, 0.1<D

81.00049, 0.73915, 0.542518, 0.395755, 0.28663, 0.205315<

Chapter 27  •  Partial Differential Equations 905



The exact value of uH0.5, 0L is 1 (see the boundary condition). Next, we plot the solution:

Plot3D@Evaluate@uappr5@x, yDD, 8x, 0, 1<, 8y, 0, 1<, ViewPoint Ø 82.0, -2.4, 0.9<,
AxesLabel Ø 8"x", "y", ""<, Ticks Ø 880, 1<, 80, 1<, 80, 1<<D

‡ Derivation of the Separable Solution

As an example of the method of separation of variables, we solve the elliptic problem considered at the

beginning  of  this  section.  We  try  to  find  the  solution  in  the  form uIx, yM = XHxLYIyM  (i.e.,  in  a  form  in

which the variables x  and y  are  separated).  For  the homogeneous boundary conditions to  be  satisfied,

we set XH0L = XHaL = 0 and YHbL = 0. For the PDE to be satisfied, we must have X Y + X Y = 0. This can
also be written as X êX = -Y êY. Because this must hold for all x and y, both X êX and -Y êY must be

the same constant; let us denote it -l. We get two ODEs, X êX = -l and Y êY = l. The general solution
of the first equation is as follows:

Remove@"Global`*"D

solx = DSolve@8X''@xD + l X@xD ã 0<, X, xDP1T

:X Ø FunctionB8x<, C@1D CosBx l F + C@2D SinBx l FF>
From the boundary conditions for X, we get the following conditions:

8X@0D ã 0, X@aD ã 0< ê. solx

:C@1D ã 0, C@1D CosBa l F + C@2D SinBa l F ã 0>

Thus, C[1] is 0. To get a nontrivial solution, we do not choose C[2] to be 0 but rather l  to be n p ê a;

we denote vn = n p ê a. Thus, we get XHxL = d1 sinHvn xL. For Y, we get the following solution:

soly = DSolve@8Y''@yD - l Y@yD ã 0, Y@bD ã 0<, Y@yD, yDP1T êê ExpToTrig êê FullSimplify

:Y@yD Ø 2 ‰-b l C@2D SinhBHb - yL l F>
Thus,  we can write YIyM = d2 sinhAvnIb - yME.  We denote unIx, yM = An sinHvn xL sinhAvnIb - yME  and take an

infinite  sum  of  these  terms  to  get  the  superposition uIx, yM =⁄n=1¶ unIx, yM.  This  satisfies  all  other

conditions  but  still  not  the  condition uHx, 0L = f HxL.  We  form  the  equation uHx, 0L = f HxL,  multiply  this

equation by sinHvm xL, and then integrate both sides for x from 0 to a. From the resulting infinite sum on

the left-hand side, only the mth term is nonzero, and it is a ê 2. This can be seen as follows:

SimplifyB‡
0

a

SinB
m p x

a
F SinB

n p x

a
F „x, 8m, n< œ IntegersF 0

SimplifyB‡
0

a

SinB
m p x

a
F

2

„x, m œ IntegersF
a

2

We then know that Am sinhHvm bL a ê 2 = Ÿ0a f HxL sinHvm xL „x.  From this equation, we can solve Am,  and so

we get the solution mentioned previously.

906 Mathematica Navigator



27.2.6  3D Elliptic Problems

‡ Series Solution

Consider the following elliptic problem:

ux x + uy y + uz z = 0, 0 < x < a, 0 < y < b, 0 < z < c,

uI0, y, zM = uIa, y, zM = uHx, 0, zL = uHx, b, zL = uIx, y, cM = 0, uIx, y, 0M = f Ix, yM.
Here, we find the steady-state temperature in a solid, the bottom of which (at z = 0) is kept at a tempera-

ture f Ix, yM  and  the  other  sides  at  a  temperature  0.  Using  the  method  of  separation  of  variables,  we

obtain the following solution (Dennemeyer, 1968, pp. 150-151):

uIx, y, zM = ‚
m=1

¶

‚
n=1

¶

Amn sinHvm xL sinIwn yM sinhHwmnHc - zLL, vm =
m p

a
, wn =

n p

b
,

An =
4

a b sinhHwmn cL ‡0
a

‡
0

b

f Ix, yM sinHvm xL sinIwn yM „x „y, wmn = vm2 + wn2 .

‡ Calculating the General Term

Consider the following example:

a = b = c = 1; f = 20 x y H1 - xL H1 - yL;

The highest temperature, 1.25, is at the center of the bottom. Calculate the general term:

vm =
m p

a
; wn =

n p

b
; wmn = vm

2 + wn
2 ;

Amn = SimplifyB
4

a b Sinh@wmn cD
‡

0

a

‡
0

b

f Sin@vm xD Sin@wn yD „y „x, 8m, n< œ IntegersF

320 I-1 + H-1LmM I-1 + H-1LnM CschB m2 + n2 pF
m3 n3 p6

term = Amn Sin@vm xD Sin@wn yD Sinh@wmn Hc - zLD

1

m3 n3 p6
320 I-1 + H-1LmM I-1 + H-1LnM

CschB m2 + n2 pF Sin@m p xD Sin@n p yD SinhB m2 p2 + n2 p2 H1 - zLF
‡ Choosing an Approximation

To get an answer at six-digit precision, the upper bound for m and n must be approximately 65:

Table@Evaluate@Sum@term, 8m, 65<, 8n, 65<D ê. 8x Ø 0.5, y Ø 0.5<D, 8z, 0, 1, 0.2<D

81.25, 0.534528, 0.222296, 0.0897094, 0.0316101, 0.<
For five- and four-digit precision, the upper bound should be approximately 35 and 15, respectively.

We take 15 as the upper value for both m and n:

uappr5@x_, y_, z_D = Sum@term, 8m, 15<, 8n, 15<D êê N;

Chapter 27  •  Partial Differential Equations 907



Short@uappr5@x, y, zD, 6D

0.0313243 Sin@3.14159 xD Sin@3.14159 yD Sinh@4.44288 H1. - 1. zLD +á62à+

2.66686 μ 10-36 Sin@47.1239 xD Sin@47.1239 yD Sinh@66.6432 H1. - 1. zLD
‡ Using the Solution

The steady-state temperature at some points along a vertical line inside the solid is as follows:

Table@uappr5@0.5, 0.5, zD, 8z, 0, 1, 0.2<D

81.24969, 0.534528, 0.222296, 0.0897094, 0.0316101, 0.<
(The exact value at the bottom of the solid is 1.25.) We plot the temperature along this line:

Plot@uappr5@0.5, 0.5, zD, 8z, 0, 1<, AxesLabel Ø 8"z", "temp"<D

0.2 0.4 0.6 0.8 1.0
z

0.2

0.4

0.6

0.8

1.0

1.2

temp

We also show a contour plot at the height z = 0.02 (we plot the contours only in the region 0 < x < 0.5,
0 < y < 0.5):

ContourPlot@Evaluate@uappr5@x, y, 0.02DD, 8x, 0, 0.5<, 8y, 0, 0.5<,
Contours Ø Range@0.1, 1.1, 0.2D, FrameLabel Ø 8"x", "y"<, RotateLabel Ø FalseD

Then we plot surfaces of constant value (again in the region 0 < x < 0.5, 0 < y < 0.5) (for ContourPlot3D,

see Section 5.4.2, p. 149):

908 Mathematica Navigator



ContourPlot3D@Evaluate@uappr5@x, y, zDD, 8x, 0, 0.5<, 8y, 0, 0.5<, 8z, 0, 0.6<,
Contours Ø Range@0.1, 1.1, 0.2D, Axes Ø True, AxesLabel Ø 8"x", "y", "z"<,
AxesEdge Ø 88-1, -1<, 81, -1<, 81, 1<<, ViewPoint Ø 83.1, -1.3, -0.2<,
ImageSize Ø 200, Ticks Ø 880, 0.2, 0.4<, Range@0, 0.5, 0.1D, Range@0, 0.6, 0.1D<D

Here we can see the surfaces where the temperature is 0.1 (the highest surface), 0.3, 0.5, 0.7, 0.9, and 1.1
(the lowest surface).

27.3  Numerical Solutions

27.3.1  Parabolic and Hyperbolic Problems

‡ Method of Lines

NDSolve  uses  the method of lines and is  typically suitable for  solving problems of parabolic  or hyper-

bolic  type.  The  problem  may  also  consist  of  several  equations  with  several  dependent  variables.  The
command  is  not  suitable  for  elliptic  problems;  for  2D  elliptic  problems,  we  present  a  finite  difference

method in Section 27.3.4, p. 921.

In problems with one space and one time variable, initial and boundary conditions can be given on
three  sides  in  a  rectangular  region  of  the  space-time  plane.  The  boundary  conditions  may  contain
derivatives,  and they may be  time dependent.  The  problem can include periodic  boundary conditions
such as uH-1, tL = uH1, tL.

Here are typical commands for problems with one equation of parabolic or hyperbolic type:

sol = u[x, t] /. NDSolve[eqns, u[x, t], {x, a, b}, {t, c, d}]P1T  Solve the problem
Plot3D[sol, {x, a, b}, {t, c, d}]  Plot the solution

Next,  we  show  several  examples  of  using NDSolve.  In  Section  27.3.2,  we  will  demonstrate  the
working of  the method of lines.  After that,  it  may be easier to understand the options of NDSolve;  the
options are considered in Section 27.3.3.

For advanced information about NDSolve, see tutorialêNDSolveOverview.

‡ Example 1: A 1D Heat Problem

We solve the same problem that we solved in Section 27.2.1, p. 894:

Chapter 27  •  Partial Differential Equations 909



eqns = 8 t u@x, tD - x,x u@x, tD ã 0, u@x, 0D ã x H1 - xL, u@0, tD ã 0, u@1, tD ã 0<;

sol = u@x, tD ê. NDSolve@eqns, u@x, tD, 8x, 0, 1<, 8t, 0, 0.5<DP1T

InterpolatingFunction@880., 1.<, 80., 0.5<<, <>D@x, tD
The result of NDSolve is a 2D interpolating function (see Section 24.2.2, p. 800). Here is the solution:

Plot3D@sol, 8t, 0, 0.5<, 8x, 0, 1<, PlotRange Ø All,
AxesLabel Ø 8"t", "x", ""<, Ticks Ø 880, 0.5<, 80, 1<, 80.1, 0.2<<D

In Section 27.2.1, we obtained the following values by the method of separation of variables, using 63
terms:

80.25, 0.0961619, 0.0358408, 0.0133581, 0.00497868, 0.00185559<
These numbers  were of  approximately  six-digit  precision.  Here are the corresponding values from the
solution given by NDSolve:

Table@sol ê. x Ø 0.5, 8t, 0, 0.5, 0.1<D

80.25, 0.0961717, 0.0359048, 0.0133206, 0.00494963, 0.00182372<
The  numbers  are  of  approximately  two-digit  precision.  To  get  a  more  accurate  result,  we  can  set  the
goals for precision and accuracy:

sol2 = u@x, tD ê. NDSolve@eqns, u@x, tD,
8x, 0, 1<, 8t, 0, 0.5<, PrecisionGoal Ø 6, AccuracyGoal Ø 6DP1T;

Now we get numbers of approximately four-digit precision:

Table@sol2 ê. x Ø 0.5, 8t, 0, 0.5, 0.1<D

80.25, 0.0961619, 0.0358402, 0.0133585, 0.00497952, 0.00185651<

‡ Example 2: A 1D Wave Problem

We solve the same problem that we solved in Section 27.2.2, p. 896:

eqns = 9 t,t u@x, tD - x,x u@x, tD ã -9.80665`20, u@x, 0D ã 10 x2 H1 - xL2,

Derivative@0, 1D@uD@x, 0D ã 0, u@0, tD ã 0, u@1, tD ã 0=;

Note that Derivative is handy for specifying both the orders of the derivative and the point at which it

is calculated (see Section 19.1.1, p. 618). We could also have written (D[u[x, t], t] /. t Ø 0) == 0. The

solution is as follows:

sol = u@x, tD ê. NDSolve@eqns, u@x, tD, 8x, 0, 1<, 8t, 0, 4<, PrecisionGoal Ø 3DP1T

InterpolatingFunction@880., 1.<, 80., 4.<<, <>D@x, tD

910 Mathematica Navigator



Plot3D@sol, 8t, 0, 4<, 8x, 0, 1<, AxesLabel Ø 8"t", "x", ""<,
Ticks Ø 880, 1, 2, 3, 4<, 80, 1<, 8-3, 0<<D

In  Section 27.2.2,  we  obtained the  following values  via  the  method of  separation of  variables  using
150 terms:

80.625, -0.703533, -2.69653, -2.69653, -0.703533, 0.625, -0.703533<
These numbers  were of  approximately  six-digit  precision.  Here are the corresponding values from the
solution given by NDSolve:

Table@sol ê. x Ø 0.5, 8t, 0, 2.4, 0.4<D

80.625, -0.703436, -2.69782, -2.69656, -0.704925, 0.624696, -0.702448<
The numbers have approximately three digits of precision.

‡ Example 3: A 2D Wave Problem

We solve the same problem that we solved in Section 27.2.3, p. 899:

eqns = 8 t,t u@x, y, tD - H x,x u@x, y, tD + y,y u@x, y, tDL ã 0,
u@x, y, 0D ã 10 x y H1 - xL H1 - yL, Derivative@0, 0, 1D@uD@x, y, 0D ã 0,
u@0, y, tD ã u@1, y, tD ã u@x, 0, tD ã u@x, 1, tD ã 0<;

sol = u@x, y, tD ê. NDSolve@eqns, u@x, y, tD, 8x, 0, 1<, 8y, 0, 1<, 8t, 0, 1.4<DP1T

InterpolatingFunction@880., 1.<, 80., 1.<, 80., 1.4<<, <>D@x, y, tD
Plot the surface at times t = 0, 0.2, 0.4, and 0.6:

Plot3D@Evaluate@sol ê. t Ø ÒD, 8x, 0, 1<, 8y, 0, 1<,
PlotRange Ø 0.71, Boxed Ø False, Axes Ø False, BoxRatios Ø 81, 1, 1<,
PlotRegion Ø 880, 1<, 8-0.4, 1.3<<, ImageSize Ø 100D & êü 80, 0.2, 0.4, 0.6<

: , , , >

‡ Example 4: A System of Equations

In the following example, we have two dependent variables, u and v:

eqns = 9 t u@x, tD - x,x u@x, tD ã v@x, tD, t,t v@x, tD - x,x u@x, tD ã 0,

u@x, 0D ã x H1 - xL, u@0, tD ã 0, u@1, tD ã 0, v@x, 0D ã 10 x2 H1 - xL2,

Derivative@0, 1D@vD@x, 0D ã 0, v@0, tD ã 0, v@1, tD ã 0=;

sol = 8u@x, tD, v@x, tD< ê. NDSolve@eqns, 8u@x, tD, v@x, tD<, 8x, 0, 1<, 8t, 0, 4<DP1T

8InterpolatingFunction@880., 1.<, 80., 4.<<, <>D@x, tD,
InterpolatingFunction@880., 1.<, 80., 4.<<, <>D@x, tD<

Chapter 27  •  Partial Differential Equations 911



Plot3D@Ò, 8t, 0, 4<, 8x, 0, 1<, PlotRange Ø All, AxesLabel Ø 8"t", "x", ""<D & êü sol

: , >

27.3.2  Method of Lines

‡ Method of Lines

When using the method of lines, a typical situation is as follows:

Graphics@8Table@Line@880, i<, 810, i<<D, 8i, 5<D,
Thickness@MediumD, Line@8810, 0<, 80, 0<, 80, 6<, 810, 6<<D,
Text@u@x, 0D ã f@xD, 8-0.3, 3<, 81, 0<D, Text@u@0, tD ã b0@tD, 85, -0.3<, 80, 1<D,
Text@u@a, tD ã b1@tD, 85, 6.2<, 80, -1<D<, ImageSize Ø 180D

uHx , 0L f Hx L

uH0, t L b0Ht L

uHa, t L b1Ht L

The x  axis goes from bottom to top and the t axis from left to right. At t = 0, we have initial conditions
such  as uHx, 0L = f HxL.  At x = 0  and x = a,  we  have  boundary  conditions  such  as uH0, tL = b0HtL  and

uHa, tL = b1HtL [periodic boundary conditions of the form uH0, tL = uHa, tL can also be given].

Divide  the  interval @0, aD  into n  subintervals  of  length h = a ên  with  the  points xi = i h, i = 0, 1, …, n.

Let uiHtL  be  the  solution along the  line x = xi;  that  is, uiHtL = uIxi, tM.  To  derive  differential  equations  for

the uiHtL  functions,  approximate  the  spatial  derivatives ux  and uxx  by  finite  differences.  Here  are

examples of such approximations:

uxHx, tL > ui+1HtL - ui-1HtL
2 h

, uxxHx, tL > ui+1HtL - 2 uiHtL + ui-1HtL
h2

, i = 1, …, n - 1.

Thus, if the PDE is FHx, t, u, ux, uxx, ut, uttL = 0, we obtain a system of n - 1 simultaneous ODEs:

F xi, t, uiHtL,
ui+1HtL - ui-1HtL

2 h
,

ui+1HtL - 2 uiHtL + ui-1HtL
h2

, ui
£HtL, ui HtL = 0, i = 1, …, n - 1.

The solutions along the lines x = 0 and x = a are known from the boundary conditions, and from the
initial  conditions  we  get  initial  conditions  for  the  ODEs.  The  simultaneous  system can  then  be  solved
using NDSolve.

912 Mathematica Navigator



‡ Example: The Wave Equation

Let us see how the method of lines proceeds by solving the following familiar wave problem:

ut t - c2 ux x = FHx, tL, 0 < x < a, t > 0,

uHx, 0L = f HxL, utHx, 0L = gHxL, uH0, tL = uHa, tL = 0.

Define

a = 1; c = 1; F = -9.80665; f = 10 x2 H1 - xL2; g = 0;

n = 10; h = a ê n; vars = Table@ui@tD, 8i, 0, n<D;

Create the set of space-discretized differential equations from ut t - c2 ux x = FHx, tL:

eqns = TableBui ''@tD - c2
ui-1@tD - 2 ui@tD + ui+1@tD

h2
ã F ê. x Ø i h, 8i, 1, n - 1<F

8-100 Hu0@tD - 2 u1@tD + u2@tDL + u1
££@tD ã -9.80665,

-100 Hu1@tD - 2 u2@tD + u3@tDL + u2
££@tD ã -9.80665,

-100 Hu2@tD - 2 u3@tD + u4@tDL + u3
££@tD ã -9.80665,

-100 Hu3@tD - 2 u4@tD + u5@tDL + u4
££@tD ã -9.80665,

-100 Hu4@tD - 2 u5@tD + u6@tDL + u5
££@tD ã -9.80665,

-100 Hu5@tD - 2 u6@tD + u7@tDL + u6
££@tD ã -9.80665,

-100 Hu6@tD - 2 u7@tD + u8@tDL + u7
££@tD ã -9.80665,

-100 Hu7@tD - 2 u8@tD + u9@tDL + u8
££@tD ã -9.80665,

-100 Hu8@tD - 2 u9@tD + u10@tDL + u9
££@tD ã -9.80665<

Form the initial conditions from uHx, 0L = f HxL and utHx, 0L = gHxL:
inits1 = Table@ui@0D ã f ê. x Ø i h, 8i, 1, n - 1<D

:u1@0D ã
81

1000
, u2@0D ã

32

125
, u3@0D ã

441

1000
, u4@0D ã

72

125
,

u5@0D ã
5

8
, u6@0D ã

72

125
, u7@0D ã

441

1000
, u8@0D ã

32

125
, u9@0D ã

81

1000
>

inits2 = Table@Derivative@1D@uiD@0D ã g ê. x Ø i h, 8i, 1, n - 1<D

8u1
£@0D ã 0, u2

£@0D ã 0, u3
£@0D ã 0, u4

£@0D ã 0,
u5

£@0D ã 0, u6
£@0D ã 0, u7

£@0D ã 0, u8
£@0D ã 0, u9

£@0D ã 0<
Add the boundary conditions u0HtL = 0 and unHtL = 0. In this way, we get a differential-algebraic system.

Solve the system when t is, for example, in the interval H0, 4L:
sol = NDSolve@8eqns, inits1, inits2, u0@tD ã 0, un@tD ã 0<, vars, 8t, 0, 4<DP1T

8u0@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u1@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u2@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u3@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u4@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u5@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u6@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u7@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u8@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u9@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD,
u10@tD Ø InterpolatingFunction@880., 4.<<, <>D@tD<

Thus,  now  we  know  approximate  values  of  the  solution  along  the  lines x = xi, i = 0, 1, …, n.  Plot  the

solution along these lines:

Chapter 27  •  Partial Differential Equations 913



ParametricPlot3D@Evaluate@Table@8t, i h, ui@tD ê. sol<, 8i, 0, n<DD,
8t, 0, 4<, AxesLabel Ø 8t, x, ""<, BoxRatios Ø 81, 1, 0.4<,
Ticks Ø 880, 1, 2, 3, 4<, 80, 1<, 8-3, 0<<D

0
1

2
3

4

t

0

1

x
-3

0

To get a surface plot, tabulate the solution along the lines:

ListPlot3DATable@vars ê. sol, 8t, 0, 4, 0.1<D¨,

DataRange Ø 880, 4<, 80, 1<<, Ticks Ø 880, 1, 2, 3, 4<, 80, 1<, 8-3, 0<<E

‡ Approximating Derivatives with Finite Differences

Mathematica has a command to calculate various finite difference approximations of derivatives.

NDSolve`FiniteDifferenceDerivative[m, grid, values, DifferenceOrder Ø n]  Calculate an
nth-order finite difference approximation for the values of the mth-order derivative of a function
that takes on values on grid; the default value of n is 4

As an example, let the values of a function f HtL at the points i h, i = 0, 1, …, 5, be as follows:

h =.; f =.; grid = h Range@0, 5D

80, h, 2 h, 3 h, 4 h, 5 h<
values = f êü grid

8f@0D, f@hD, f@2 hD, f@3 hD, f@4 hD, f@5 hD<
Here are the second-order approximations for the first-order derivative:

NDSolve`FiniteDifferenceDerivative@1, grid, values, DifferenceOrder Ø 2D êê
Simplify êê TraditionalForm

:-
3 f H0L- 4 f HhL+ f H2 hL

2 h
,

f H2 hL- f H0L
2 h

,
f H3 hL- f HhL

2 h
,

f H4 hL- f H2 hL
2 h

,
f H5 hL- f H3 hL

2 h
,

f H3 hL- 4 f H4 hL+ 3 f H5 hL
2 h

>

At points x = h, 2 h, 3 h, and 4 h we got the familiar difference formula, but note that we also got second-
order approximations at x = 0 and x = 5 h. Next we calculate the fourth-order approximations; this is the
default, so we do not need the option:

914 Mathematica Navigator



NDSolve`FiniteDifferenceDerivative@1, grid, valuesD êê Simplify êê TraditionalForm

:-
25 f H0L- 48 f HhL+ 36 f H2 hL- 16 f H3 hL+ 3 f H4 hL

12 h
,
-3 f H0L- 10 f HhL+ 18 f H2 hL- 6 f H3 hL+ f H4 hL

12 h
,

f H0L- 8 f HhL+ 8 f H3 hL- f H4 hL
12 h

,
f HhL- 8 f H2 hL+ 8 f H4 hL- f H5 hL

12 h
,

-

f HhL- 6 f H2 hL+ 18 f H3 hL- 10 f H4 hL- 3 f H5 hL
12 h

,
3 f HhL- 16 f H2 hL+ 36 f H3 hL- 48 f H4 hL+ 25 f H5 hL

12 h
>

At x = 2 h  and 3 h  we got the usual fourth-order approximation, but note that we also got fourth-order
approximations at x = 0, h, 4 h, and 5 h.

Here are formulas for second- and fourth-order approximations of the second-order derivative:

NDSolve`FiniteDifferenceDerivative@2, grid, values, DifferenceOrder Ø 2D êê
Simplify êê TraditionalForm

:
2 f H0L- 5 f HhL+ 4 f H2 hL- f H3 hL

h2
,

f H0L- 2 f HhL+ f H2 hL

h2
,

f HhL- 2 f H2 hL+ f H3 hL

h2
,

f H2 hL- 2 f H3 hL+ f H4 hL

h2
,

f H3 hL- 2 f H4 hL+ f H5 hL

h2
, -

f H2 hL- 4 f H3 hL+ 5 f H4 hL- 2 f H5 hL

h2
>

NDSolve`FiniteDifferenceDerivative@2, grid, valuesD êê Simplify êê TraditionalForm

:
45 f H0L- 154 f HhL+ 214 f H2 hL- 156 f H3 hL+ 61 f H4 hL- 10 f H5 hL

12 h2
,

10 f H0L- 15 f HhL- 4 f H2 hL+ 14 f H3 hL- 6 f H4 hL+ f H5 hL

12 h2
, -

f H0L- 16 f HhL+ 30 f H2 hL- 16 f H3 hL+ f H4 hL

12 h2
,

-

f HhL- 16 f H2 hL+ 30 f H3 hL- 16 f H4 hL+ f H5 hL

12 h2
,

f H0L- 6 f HhL+ 14 f H2 hL- 4 f H3 hL- 15 f H4 hL+ 10 f H5 hL

12 h2
,

-10 f H0L+ 61 f HhL- 156 f H2 hL+ 214 f H3 hL- 154 f H4 hL+ 45 f H5 hL

12 h2
>

If the grid and the function values are numerical, we get numerical approximations of derivatives. As
an example,  we calculate fourth-order approximations of the second-order derivative of sinHxL  at some
given points:

grid = Range@0, p, p ê 10D; values = Table@Sin@xD, 8x, 0., p, p ê 10<D;

fdd = NDSolve`FiniteDifferenceDerivative@2, grid, valuesD

80.0044102, -0.309449, -0.587722, -0.80893, -0.950954,
-0.999893, -0.950954, -0.80893, -0.587722, -0.309449, 0.0044102<

The approximations are quite near the true values:

H-valuesL - fdd

8-0.0044102, 0.00043234, -0.0000630593, -0.0000867937, -0.000102032, -0.000107283,
-0.000102032, -0.0000867937, -0.0000630593, 0.00043234, -0.0044102<

‡ Example: Using Higher-Order Approximations

Let us now again solve the wave problem we considered previously:

ut t - c2 ux x = FHx, tL, 0 < x < a, t > 0,

uHx, 0L = f HxL, utHx, 0L = gHxL, uH0, tL = uHa, tL = 0.

Define, as previously,

Chapter 27  •  Partial Differential Equations 915



a = 1; c = 1; F = -9.80665; f = 10 x2 H1 - xL2; g = 0;

n = 10; h = a ê n; vars = Table@ui@tD, 8i, 0, n<D;

Create  a  set  of  space-discretized  differential  equations  from ut t - c2 ux x = FHx, tL,  now  by  using  fourth-

order finite differences for spatial derivatives:

Heqns = Thread@D@vars, t, tD -
c^2 NDSolve`FiniteDifferenceDerivative@2, Range@0., a, a ê nD, varsD ã

Table@F ê. x Ø i h, 8i, 0, n<DDL êê TraditionalForm

9-375. u0HtL+ 1283.33 u1HtL- 1783.33 u2HtL+ 1300. u3HtL- 508.333 u4HtL+ 83.3333 u5HtL+ u0
££HtL -9.80665,

-83.3333 u0HtL+ 125. u1HtL+ 33.3333 u2HtL- 116.667 u3HtL+ 50. u4HtL- 8.33333 u5HtL+ u1
££HtL -9.80665,

8.33333 u0HtL- 133.333 u1HtL+ 250. u2HtL- 133.333 u3HtL+ 8.33333 u4HtL+ u2
££HtL -9.80665,

8.33333 u1HtL- 133.333 u2HtL+ 250. u3HtL- 133.333 u4HtL+ 8.33333 u5HtL+ u3
££HtL -9.80665,

8.33333 u2HtL- 133.333 u3HtL+ 250. u4HtL- 133.333 u5HtL+ 8.33333 u6HtL+ u4
££HtL -9.80665,

8.33333 u3HtL- 133.333 u4HtL+ 250. u5HtL- 133.333 u6HtL+ 8.33333 u7HtL+ u5
££HtL -9.80665,

8.33333 u4HtL- 133.333 u5HtL+ 250. u6HtL- 133.333 u7HtL+ 8.33333 u8HtL+ u6
££HtL -9.80665,

8.33333 u5HtL- 133.333 u6HtL+ 250. u7HtL- 133.333 u8HtL+ 8.33333 u9HtL+ u7
££HtL -9.80665,

8.33333 u6HtL- 133.333 u7HtL+ 250. u8HtL- 133.333 u9HtL+ 8.33333 u10HtL+ u8
££HtL -9.80665,

-8.33333 u5HtL+ 50. u6HtL- 116.667 u7HtL+ 33.3333 u8HtL+ 125. u9HtL- 83.3333 u10HtL+ u9
££HtL -9.80665,

83.3333 u5HtL- 508.333 u6HtL+ 1300. u7HtL- 1783.33 u8HtL+ 1283.33 u9HtL- 375. u10HtL+ u10
££HtL -9.80665=

However, from the boundary conditions we know that u0HtL = 0  and u10HtL = 0 :

eqnsP1T = u0@tD ã 0; eqnsP11T = un@tD ã 0;

Form the initial conditions from uHx, 0L = f HxL and utHx, 0L = gHxL, as previously:

inits1 = Table@ui@0D ã f ê. x Ø i h, 8i, 1, n - 1<D;

inits2 = Table@Derivative@1D@uiD@0D ã g ê. x Ø i h, 8i, 1, n - 1<D;

Solve the differential-algebraic system when t is, for example, in the interval H0, 4L:
sol = NDSolve@8eqns, inits1, inits2<, vars, 8t, 0, 4<DP1T;

Plot the solution:

ListPlot3DATable@vars ê. sol, 8t, 0, 4, 0.1<D¨,

DataRange Ø 880, 4<, 80, 1<<, Ticks Ø 880, 1, 2, 3, 4<, 80, 1<, 8-3, 0<<E

916 Mathematica Navigator



27.3.3  Options

‡ Options of NDSolve

The  options  of NDSolve  were  mentioned  in Section  26.4.1,  p. 865,  in  the  context  of  ODEs.  The  same

options  can  also  be  used  for  PDEs.  The  meanings  of  some  options,  however,  are  somewhat  new.  In
particular, some options accept a several-component  list as a value; this reflects the number of indepen-

dent  variables.  Which  value  belongs  to  which  variable  is  inferred  from  the  order  of  the  independent
variables in NDSolve.

Options of NDSolve when solving PDEs:

WorkingPrecision  Precision used in internal computations; examples of values:
MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the solution at each point
considered should be of the order 10-p;  examples of values: Automatic (usually means 4), 6, {6, 8}

AccuracyGoal  If the value of the option is a, the absolute error of the solution at each point
considered should be of the order 10-a;  examples of values: Automatic (usually means 4), 6, {6, 8}

Method  Method to use; possible values: Automatic (means "Adams" for nonstiff and "BDF" for stiff
problems), "Adams", "BDF", "ExplicitRungeKutta", "ImplicitRungeKutta",
"SymplecticPartitionedRungeKutta", "MethodOfLines"

StartingStepSize  Initial step size used; examples of values: Automatic, 0.01, {0.01, 0.02}

MaxStepSize  Maximum size of each step; examples of values: Automatic, 0.01, {0.01, 0.03}

MaxStepFraction  Maximum fraction of the solution interval to cover in each step; examples of
values: 1/10, 0.05

MaxSteps  Maximum number of steps to take; examples of values: 10000, 20000, {1000, 5000}

NormFunction  Norm to use for error estimation in systems of equations; default value: Automatic

(mostly means ¶), 1, 2, ¶
DependentVariables  List of all dependent variables; default value: Automatic

InterpolationOrder  The continuity degree of the final output; examples of values: Automatic, All

(the same as the underlying method used)
SolveDelayed  Whether the derivatives are solved symbolically at the beginning (False) or at each

step (True); possible values: False, True

Compiled  Whether to compile the equations; possible values: Automatic, True, False

StepMonitor  Command to be executed after each step of the method; examples of values: None,
Sow[ListPlot[u[x, t], PlotRange Ø {-3, 1}]

EvaluationMonitor  Command to be executed after each evaluation of the equation; examples of
values: None, Sow[ListPlot[u[x, t], PlotRange Ø {-3, 1}]

The Method  option  now determines  the  method used to  solve  the  space-discretized  system.  To  use
some special options of the method of lines, we have to use "MethodOfLines".

With StartingStepSize, MaxStepSize,  and MaxSteps,  we  can  specify  properties  of  the  steps
separately for each independent variable. If one value is given, it is used for all variables.

To  determine  a  suitable spatial  grid  (the  lines), NDSolve  uses  spatial  error  estimates  on  the  initial
conditions. A suitable temporal grid is determined by the adaptive ODE methods.

Chapter 27  •  Partial Differential Equations 917



‡ Using the StepMonitor Option

Consider again the familiar wave problem:

eqns = 9 t,t u@x, tD - x,x u@x, tD ã -9.80665`20, u@x, 0D ã 10 x2 H1 - xL2,

Derivative@0, 1D@uD@x, 0D ã 0, u@0, tD ã 0, u@1, tD ã 0=;

To see the state of the computation for various values of t, use the StepMonitor option. The default is to
treat the value of the solution for a given t as an interpolating function so that we can, for example, plot
the solution for a given t:

8sol, 8plots<< =
Reap@NDSolve@eqns, u, 8x, 0, 1<, 8t, 0, 4<, PrecisionGoal Ø 3, StepMonitor ß

Sow@Plot@u@x, tD, 8x, 0, 1<, PlotRange Ø 8-3.2, 0.7<, ImageSize Ø 200DDDD;

Now  the  variable plots  contains  the  plots  of  the  solution  for  all  the  values  of t  that NDSolve  used
during the solution. With Show[plots]  we can show all the curves in one plot. To get an animation of
the plots, do as follows:

ListAnimate@plots, AnimationRunning Ø FalseD

‡ Special Options of the Method of Lines

The method of lines has some special options. They can be asked as follows:

Options@NDSolve`MethodOfLinesD

8DifferentiateBoundaryConditions Ø True, DiscretizedMonitorVariables Ø False,
ExpandEquationsSymbolically Ø False, Method Ø Automatic,
SpatialDiscretization Ø TensorProductGrid, TemporalVariable Ø Automatic<

Here are three of the special options:

Some special options of the method of lines:

"SpatialDiscretization"  What method to use for spatial discretization; possible value:
"TensorProductGrid"

"DifferentiateBoundaryConditions"  Whether to differentiate the boundary conditions with
respect to the temporal variable; possible values: True, False

"DiscretizedMonitorVariables"  Whether to interpret, for a given t, the dependent variable
(given, for example, in monitors such as StepMonitor) as an interpolating function (False) or as a
list of values (True); possible values: False, True

Currently,  the  only  method  implemented  for "SpatialDiscretization"  is  the
"TensorProductGrid" method. It uses discretization methods for each spatial dimension and then uses
an  outer  tensor  product  of  these  grids  to  derive  a  grid  for  multiple  spatial  dimensions  on rectangular
regions. In the next subsection, we consider the options of the "TensorProductGrid" method.

918 Mathematica Navigator



To  handle  the  boundary  conditions,  we  have  two  methods;  the  method  can  be  selected  with  the
"DifferentiateBoundaryConditions"  option.  In  the  first  method~this  is  the  default~the  boundary
conditions  are  differentiated  with  respect  to  the  temporal  variable  and  the  resulting  differential
equations are added to the set of ODEs. In the second method, the boundary conditions are either used
as  such  [in  simple  cases  such  as uH0, tL = b0HtL]  or  discretized  (if  they  contain  spatial  derivatives);  this

leads to algebraic equations so that the result is a differential-algebraic system.

If "DiscretizedMonitorVariables" has the default value False, we can use, in StepMonitor, Plot

to plot the solution for the various values of t; see a previous example. If the value of the option is True,
then we can, in StepMonitor, use ListPlot to plot the points.

The special options of the method of lines are written as suboptions of the Method option as follows:
Method Ø {"MethodOfLines", specOpts}; see examples in the next subsection.

‡ Special Options of the Tensor Product Grid

The "TensorProductGrid" method has the following special options:

Options@NDSolve`MethodOfLines`TensorProductGridD

8AccuracyGoal Ø Automatic, Coordinates Ø Automatic,
DifferenceOrder Ø Automatic, MaxPoints Ø Automatic, MaxStepSize Ø Automatic,
MinPoints Ø Automatic, MinStepSize Ø Automatic, PrecisionGoal Ø Automatic,
StartingPoints Ø Automatic, StartingStepSize Ø Automatic<

Two  of  these  options  are  explained  here.  These  options  are  written  as  suboptions  of  the
"SpatialDiscretization" option; see the examples that follow.

Some special options of "TensorProductGrid":

"DifferenceOrder"  The order of finite difference approximation to use for spatial discretization;
examples of values: Automatic (usually means 4), 2, 4, 6, "Pseudospectral"

"MinPoints"  The minimum number of points to be used for each dimension in the grid; examples
of values: Automatic, 300

As an example of the use of these options, consider the familiar wave problem:

eqns = 9 t,t u@x, tD - x,x u@x, tD ã -9.80665`20, u@x, 0D ã 10 x2 H1 - xL2,

Derivative@0, 1D@uD@x, 0D ã 0, u@0, tD ã 0, u@1, tD ã 0=;

sol = u ê. NDSolve@eqns, u, 8x, 0, 1<, 8t, 0, 4<DP1T

NDSolve::eerr :

Warning: Scaled local spatial error estimate of 17.55676955558677` at t = 4.` in the

direction of independent variable x is much greater than prescribed error

tolerance. Grid spacing with 25 points may be too large to achieve the desired

accuracy or precision. A singularity may have formed or you may want to specify

a smaller grid spacing using the MaxStepSize or MinPoints method options. à
InterpolatingFunction@880., 1.<, 80., 4.<<, <>D

Chapter 27  •  Partial Differential Equations 919



Plot3D@sol@x, tD, 8t, 0, 4<, 8x, 0, 1<,
AxesLabel Ø 8"t", "x", ""<, Ticks Ø 880, 1, 2, 3, 4<, 80, 1<, 8-3, 0<<D

Although the solution seems to be good, we got a warning that the spatial error at the end of the time
interval  is  not  small  enough.  Recall  that  to  determine  a  suitable  spatial  grid  (the  lines), NDSolve  uses
spatial error estimates on the initial conditions. In addition to this a priori error estimation, an a posteriori
error  estimation  at  the  end  of  the  time  interval  is  also  carried  out.  In  our  example,  this a  posteriori
checking revealed that the spatial error exceeds the tolerance. We can ask for the number of points used
in each dimension:

<< DifferentialEquations`InterpolatingFunctionAnatomy`

Length êü InterpolatingFunctionCoordinates@solD

825, 66<
Thus, from the x interval H0, 1L NDSolve used 25 points~that is, the method of lines used 25 lines (this is
the default)~whereas from the t interval H0, 4L NDSolve  used 66 points~that is, the ODEs were solved
by using 66 time points. The warning message states that 25 points may be too few, giving rise to a too
large  grid  spacing.  The  reason  may  be  a  singularity.  If  this  is  not  the  case,  to  resolve  the  problem we
could try the MaxStepSize or MinPoints option.

Let us try the MinPoints option and require the use of at least 300 spatial points:

sol = u ê. NDSolve@eqns, u, 8x, 0, 1<, 8t, 0, 4<, Method Ø 8"MethodOfLines",
"SpatialDiscretization" Ø 8"TensorProductGrid", "MinPoints" Ø 300<<DP1T

InterpolatingFunction@880., 1.<, 80., 4.<<, <>D
The problem disappeared. We can see that now 301 spatial points and 265 temporal points were used:

Length êü InterpolatingFunctionCoordinates@solD

8301, 265<
Note  that  to  use  the "MinPoints"  option,  we  have  to  also  use  the Method  option,  although  the
"MethodOfLines"  is  the  only  method  available,  and  we  have  to  specify  to  use  the
"TensorProductGrid" method, although this is the only spatial discretization method available.

Another  possibility to resolve the problem of a  too large local  spatial  error may be to use a  higher-
order difference approximation for the spatial derivatives (the default is to use fourth-order approxima-

tion). This works in our example:

sol = u ê. NDSolve@eqns, u, 8x, 0, 1<, 8t, 0, 4<, Method Ø 8"MethodOfLines",
"SpatialDiscretization" Ø 8"TensorProductGrid", "DifferenceOrder" Ø 8<<DP1T

InterpolatingFunction@880., 1.<, 80., 4.<<, <>D
Using "DifferenceOrder" Ø "Pseudospectral"  also  resolves  the  problem.  Still  another  possibility  to
resolve the problem is to lower the precision requirement from the default value 4:

u ê. NDSolve@eqns, u, 8x, 0, 1<, 8t, 0, 4<, PrecisionGoal Ø 3DP1T

InterpolatingFunction@880., 1.<, 80., 4.<<, <>D

920 Mathematica Navigator



27.3.4  2D Elliptic Problems

‡ A Finite Difference Method

Consider the following elliptic problem:

ux x + uy y = FIx, yM, x0 < x < x1, y0 < y < y1,

uIx, y1M = a1HxL,
uIx0, yM = b0IyM, uIx1, yM = b1IyM,

uIx, y0M = a0HxL.
To derive a finite difference method for this problem, we divide the interval Hx0, x1L into nx  subintervals

of  length hx,  the  interval Iy0, y1M  into ny  subintervals  of  length hy,  and  then  obtain  a  mesh  of

Hnx + 1L Iny + 1M  points.  Denote  the  value  of u  at  a  mesh  point  with ui,j.  Then  approximate  the  partial

derivatives  with  finite  differences  at  the  mesh  points.  The  following  formula  uses  the  familiar  finite
difference approximation of a second-order derivative:

1

hx
2
Iui+1,j - 2 ui,j + ui-1,jM +

1

hy
2
Iui,j+1 - 2 ui,j + ui,j-1M = Fi,j.

In  this  way,  we  obtain  a  system  of Hnx - 1L Iny - 1M  linear  equations.  The  boundary  conditions  can  be

inserted  into  these  equations  or  used  as  further  equations.  The  solution  of  the  linear  system  is  an
approximate solution of the original problem.

‡ Example

As an example, we solve the following elliptic problem:

ux x + uy y = 0, 0 < x < 1, 0 < y < 1,

uHx, 0L = 4 xH1 - xL, uHx, 1L = uI0, yM = uI1, yM = 0.

This is the same problem for which we considered the series solution in Section 27.2.5, p. 904. We use 30

subintervals in both directions:

Remove@"Global`*"D

F = 0; a0 = 4 x H1 - xL; a1 = 0; b0 = 0; b1 = 0;
x0 = 0; x1 = 1; y0 = 0; y1 = 1; nx = 30; ny = 30;

Calculate the mesh points and define the variables:

hx = NAHx1 - x0L ë nxE; hy = NAHy1 - y0L ë nyE;

Do@xi = x0 + i hx, 8i, 0, nx<D;
Do@hj = y0 + j hy, 8j, 0, ny<D;
vars = Table@ui,j, 8i, 0, nx<, 8j, 0, ny<D;

Apply the boundary conditions:

bound1 = TableA9ui,0 ã a0 ê. x Ø xi, ui,ny
ã a1 ê. x Ø xi=, 8i, 0, nx<E;

bound2 = Table@8u0,j ã b0 ê. y Ø hj, unx,j ã b1 ê. y Ø hj<, 8j, ny - 1<D;

Use  the  finite  difference  approximations  of  the  partial  derivatives  and  write  down  the  corresponding
linear equations:

Chapter 27  •  Partial Differential Equations 921



eqns = TableB
ui+1,j - 2 ui,j + ui-1,j

hx
2

+
ui,j+1 - 2 ui,j + ui,j-1

hy
2

ã F ê. 8x Ø xi, y Ø hj<,

8i, nx - 1<, 8j, ny - 1<F;

We are ready to solve the problem:

sol = vars ê. Solve@Flatten@8eqns, bound1, bound2<D, Flatten@varsDDP1T;

A  neat  way  to  represent  the  solution  is  to  form  an  interpolating  function  from  the  solution  with

ListInterpolation (see Section 24.2.2, p. 800):

uappr = ListInterpolation@sol, 88x0, x1<, 8y0, y1<<D

InterpolatingFunction@880., 1.<, 80., 1.<<, <>D
Plot3D@uappr@x, yD, 8x, 0, 1<, 8y, 0, 1<, ViewPoint Ø 82.0, -2.4, 0.9<,

AxesLabel Ø 8"x", "y", ""<, Ticks Ø 880, 1<, 80, 1<, 80, 1<<D

Tabulate some values:

Table@uappr@0.5, yD, 8y, 0, 0.5, 0.1<D

81., 0.739267, 0.542751, 0.396036, 0.286914, 0.205572<
To investigate the precision of the numerical solution, we show the most accurate values of uI0.5, yM, y =

0, 0.1, ..., 0.5, that we obtained by the series solution in Section 27.2.5:

81., 0.739132, 0.542517, 0.395755, 0.28663, 0.205315<
The  values  we  obtained  using  30  and  30  subintervals  (961  variables  and  equations)  seem  to  be  of
approximately three-digit precision. If we use 60 and 60 subintervals (3721 variables and equations), we
get nearly four-digit precision.

922 Mathematica Navigator



28
Difference Equations

Introduction 923

28.1  Solving Difference Equations 924

28.1.1  One Linear Equation 924 RSolve

28.1.2  Two Linear Equations 929 RSolve

28.1.3  Some Techniques 931 SeriesCoefficient, ZTransform, cobwebPlot

28.1.4  Nonlinear Equations 933 RSolve

28.2  The Logistic Equation 935

28.2.1  Trajectories 935 logisticPlot

28.2.2  Bifurcation Diagrams 941 bifurcation

28.2.3  Equilibrium and Periodic Points 943

28.2.4  Lyapunov Exponents 947 lyapunovExponent

28.3  More about Discrete Systems 950

28.3.1  A Predator-Prey Model 950 predatorPreyPlot

28.3.2  Estimation of Difference Equations 954

28.3.3  Fractals and More 958 mandelbrot, LSystemPlot, CellularAutomaton, TuringMachine

Introduction

Don’t let pessimistic statistics about the future worry you. Remember in 1850
 it was predicted that if the traffic kept increasing at the same rate, the entire

 surface of the earth would be covered in six feet of horse manure by 1970.

For  solving  difference  or  recurrence  equations,  we  have RSolve.  It  can  solve  all  constant  coefficient
linear  equations,  many  variable  coefficient  linear  equations,  and also  quite  a  few nonlinear  equations.
Note,  however,  that  nonlinear  difference  equations  are  much  more  difficult  to  solve  than  nonlinear
differential equations. For example, a solution for the logistic difference equation is only known for two
positive values of  the parameter of  the model.  We can study nonlinear equations by other means,  and
we will encounter interesting features such as bifurcation, cycles, and chaos.

Here,  we  also  consider  some  other  discrete  systems,  namely  fractals,  Lindenmayer  systems,  and
cellular automata.

A  good  short  introduction  to  linear  difference  equations  is  in Spiegel  (1971).  More  comprehensive
treatments  of  difference  equations  can  be  found  in Sandefur  (1990), Kelley  and  Peterson  (2001),  and
Martelli (1999). For difference equations with Mathematica, see Kulenovic and Merino (2002).



28.1  Solving Difference Equations

28.1.1  One Linear Equation

‡ Solving a Difference Equation

RSolve  solves  difference  equations  or  recurrence  equations.  It  is  used in  the  same way that DSolve  is
used for differential equations. The following box shows typical examples of the use of RSolve:

RSolve[eqn, y[n], n]  Give the general solution
RSolve[{eqn, inits}, y[n], n]  Solve an initial value problem

An example of a difference equation is Fn = Fn-1 + Fn-2, with initial conditions F1 = 1 and F2 = 1; this

equation  defines  the  Fibonacci  numbers.  In Mathematica,  the  equation  is  written  as F[n] ã F[n-1] +

F[n-2]  and  the  initial  conditions  as F[1] ã 1  and F[2] ã 1  (remember  that  all  equations  have  to  be
defined with ==).

RSolve  can  solve  all  linear  constant  coefficient  difference  equations  and  systems  of  such  equations
(the  solution  is  sought  with  matrix  powers). RSolve  can  also  solve  many  linear  variable  coefficient
difference equations in which the coefficients are polynomial or rational. Furthermore, RSolve can solve

many nonlinear difference equations, and it can solve q-difference equations~with terms such as yIq xM
and yIq2 xM~and some partial difference equations.

‡ Constant Coefficient Equations

We ask for a general solution to a first-order constant coefficient difference equation:

eqn = y@n + 1D ã 4 ê 5 y@nD + 1 ê 5;

RSolve@eqn, y@nD, nD

::y@nD Ø 1 -
4

5

n

+
5

4

1-n

C@1D>>
Here, C[1] is an arbitrary constant. Now we give an initial value:

RSolve@8eqn, y@0D ã 0<, y@nD, nD

::y@nD Ø 1 -
4

5

n

>>
The indices can be written in various forms in the equation. The equation of the preceding example

can also be written as follows:

eqn2 = y@nD ã 4 ê 5 y@n - 1D + 1 ê 5;

RSolve@eqn2, y@nD, nD

::y@nD Ø 1 -
4

5

n

+
5

4

1-n

C@1D>>
As with DSolve, the solution can also be requested as a pure function:

RSolve@eqn, y, nD

::y Ø FunctionB8n<, 1 -
4

5

n

+
5

4

1-n

C@1DF>>

924 Mathematica Navigator



This solution has the advantage that it can easily be inserted into the equation to check the correctness of
the solution:

eqn ê. % êê Simplify 8True<

‡ Calculating Values

If  we  calculate  with  the  solution,  it  may  be  useful  to  ask  for  the  value  of yn  (as  was  the  case  with

DSolve). We continue with the preceding example:

sol = y@nD ê. RSolve@8eqn, y@0D ã 2<, y@nD, nDP1T êê FullSimplify

1 +
4

5

n

Once we have the solution, values yn can be calculated and plotted:

vals = Table@8n, sol<, 8n, 0, 20<D;

ListLinePlot@vals, Mesh Ø AllD

0 5 10 15 20

1.2

1.4

1.6

1.8

2.0

Note,  however,  that  if  you calculate  a  large  number  of  values,  it  is  often more efficient  to  calculate
values directly from the recursive relation. One way to implement this is the following:

y = 2.; Prepend@Table@y = 4 ê 5 y + 1 ê 5, 86<D, 2.D

82., 1.8, 1.64, 1.512, 1.4096, 1.32768, 1.26214<
y =.

Another way is to define a recursive function (see Section 18.5.1, p. 596):

z@0D = 2.;
z@n_D := z@nD = 4 ê 5 z@n - 1D + 1 ê 5

Then use it:

Table@z@nD, 8n, 0, 6<D

82., 1.8, 1.64, 1.512, 1.4096, 1.32768, 1.26214<
Remove@zD

However, the most compact and fastest way to calculate the values of a difference equation is the use of

NestList (see Section 18.3.3, p. 575):

NestList@4 ê 5 Ò + 1 ê 5 &, 2., 6D

82., 1.8, 1.64, 1.512, 1.4096, 1.32768, 1.26214<
If the values of n are needed, you can get them in one of the following ways:

8Range@0, 6D, NestList@4 ê 5 Ò + 1 ê 5 &, 2., 6D<¨
880, 2.<, 81, 1.8<, 82, 1.64<, 83, 1.512<, 84, 1.4096<, 85, 1.32768<, 86, 1.26214<<
NestList@8ÒP1T + 1, 4 ê 5 ÒP2T + 1 ê 5< &, 80, 2.<, 6D

880, 2.<, 81, 1.8<, 82, 1.64<, 83, 1.512<, 84, 1.4096<, 85, 1.32768<, 86, 1.26214<<

Chapter 28  •  Difference Equations 925



‡  A Set of Trajectories

A direction field may be informative; it  shows the direction of movement at several points. First, write

the equation in the form yn+1 - yn = f In, ynM, and then plot a direction field of I1, f M. In our example, the

equation yn+1 =
4
5

yn +
1
5

 can be written as yn+1 - yn = -
1
5

yn +
1
5

:

<< VectorFieldPlots`

VectorFieldPlot@81, -1 ê 5 y + 1 ê 5<, 8n, 0, 20<, 8y, 0, 1.5<,
PlotPoints Ø 11, Axes Ø True, AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 250D

5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

1.4

We  then  plot  a  set  of  solutions  starting  from  various  points.  The  solution  of  the  equation  with  a
general starting value y0 is as follows:

sol = y@nD ê. RSolve@8eqn, y@0D ã y0<, y@nD, nDP1T

1 -
4

5

n

+
4

5

n

y0

Compute a set of solutions using various starting points:

solset = Table@Table@8n, sol<, 8n, 0, 20<D, 8y0, 0, 1.4, 0.2<D;

Show the solutions:

ListLinePlot@solset, Mesh Ø All, PlotRange Ø All, PlotStyle Ø Black, ImageSize Ø 250D

5 10 15 20

0.2

0.4

0.6

0.8

1.0

1.2

1.4

‡ Variable Coefficient Equations

We try some variable coefficient equations:

926 Mathematica Navigator



RSolve@8y@n + 1D ã Hn + 1L y@nD, y@0D ã 1<, y@nD, nD

88y@nD Ø Gamma@1 + nD<<
RSolve@8y@n + 1D ã a y@nD + b n, y@0D ã c<, y@nD, nD êê FullSimplify

::y@nD Ø

an Kb + H-1 + aL2 c - J 1

a
Nn

b H1 + H-1 + aL nLO

H-1 + aL2
>>

RSolve@8y@n + 1D ã y@nD ê Hn + 1L + 1, y@0D ã 1<, y@nD, nD êê FullSimplify

::y@nD Ø
1 + Subfactorial@-2D - H-1Ln Gamma@2 + nD Subfactorial@-2 - nD

Gamma@1 + nD >>

‡ Fibonacci Numbers

The first few Fibonacci numbers are as follows:

F@1D = 1; F@2D = 1;
F@n_D := F@nD = F@n - 1D + F@n - 2D

Table@F@nD, 8n, 15<D

81, 1, 2, 3, 5, 8, 13, 21, 34, 55, 89, 144, 233, 377, 610<
Remove@FD

We can see that the solution of the equations for FHnL is really the nth Fibonacci number:

RSolve@8F@nD ã F@n - 1D + F@n - 2D, F@1D ã F@2D ã 1<, F@nD, nD

88F@nD Ø Fibonacci@nD<<

‡ Chebyshev Polynomials

Consider the following second-order equation:

eqn = T@n + 2D - 2 x T@n + 1D + T@nD ã 0;

With  initial  conditions T0HxL = 1  and T1HxL = x,  it  defines  Chebyshev  polynomials.  The  solution  is  as

follows:

sol = T@nD ê. RSolve@8eqn, T@0D ã 1, T@1D ã x<, T@nD, nDP1T

1

2
x - -1 + x2

n

+ x + -1 + x2
n

This is not of the familiar form TnHxL = cosHn arccosHxLL,  but for given values of n  we can verify that the

expressions agree:

Table@sol ã Cos@n ArcCos@xDD, 8n, 0, 5<D êê Simplify

8True, True, True, True, True, True<
Note that Mathematica has the built-in ChebyshevT[n,x].

‡ Partial Difference Equations

With RSolve we can also solve partial difference equations:

RSolve@y@m + 1, nD + a y@m, n + 1D ã b, y@m, nD, 8m, n<D

::y@m, nD Ø

K1 - J- 1

a
NmO H-aL-1+m a b

1 + a
+ H-aL-1+m C@1D@m + nD>>

Here, C[1] in an undetermined function.

Chapter 28  •  Difference Equations 927



As  another  example,  consider  a  game played by  persons  A and B  (see Spiegel,  1971,  pp.  186,  211).
Person A [B] needs k [m] points in order to win the game. The probability of A [B] getting one point is p

[q = 1 - p].  What  is  the  probability  that  A wins?  Let uk,m  be  this  probability.  By  considering separately

the events that {A wins the first point and then wins the game} and {A loses the first point and then wins
the  game},  we  get  at  once uk,m = p uk-1,m + q uk,m-1.  This  is  a  partial  difference  equation.  We  have  the

boundary conditions uk,0 = 0 for k ¥ 0 and u0,m = 1 for m > 0.

To solve the partial  difference equation,  define the generating function GkHtL  = ⁄m=0¶ uk,m tm  for k ¥ 0.

We try to find a closed-form expression for GkHtL. Then we expand it as a series and read the coefficient

of tm; this coefficient is uk,m. Assume k ¥ 1, multiply the difference equation by tm, and sum from 1 to ¶:

‚
m=1

¶

uk,m tm = p ‚
m=1

¶

uk-1,m tm + q ‚
m=1

¶

uk,m-1 tm.

This can be written as GkHtL - uk,0 = pAGk-1HtL - uk-1,0E + q t GkHtL, or, using the boundary conditions, GkHtL =
p Gk-1HtL  + q t GkHtL.  So  we  arrived at  a  difference  equation for GkHtL.  From the  boundary  conditions  we

also get the initial condition G0HtL =⁄m=1¶ tm = t
1-t

. The solution of the difference equation is as follows:

sol = G@kD ê. RSolve@8G@kD ã p G@k - 1D + H1 - pL t G@kD, G@0D ã t ê H1 - tL<, G@kD, kDP1T

-

t K p

1+I-1+pM t
Ok

-1 + t

Find the coefficient of tm in the series expansion of GkHtL; this is uk,m:

u@k_, m_, p_D = SeriesCoefficient@sol, 8t, 0, m<D êê Simplify

1 -
H1 - pLm pk Gamma@k + mD Hypergeometric2F1@1, k + m, 1 + m, 1 - pD

Gamma@kD Gamma@1 + mD
Plot this probability as a function of p when k = 20 and m = 10:

Plot@u@20, 10, pD, 8p, 0, 1<D

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

We see that if person A needs 20 points to win and person B only needs 10 points, it is nearly impossible
for  A to win if  his  or her probability of  getting 1 point  is  less  than approximately 0.5;  however,  if  this
probability is at least 0.8, then A wins almost always.

‡ Q-Difference Equations

In a q-difference equation, the values of the function in the difference equation are not given at succes-

sive  integers  such as  in yHn + 1L = a yHnL + b.  Instead,  we  can have  equations  such as yH2 nL = a yHnL + b n

or, more generally, yIq nM = a yHnL + b. Here is an example:

928 Mathematica Navigator



RSolve@y@q nD ã 2 y@nD + n, y@nD, nD

::y@nD Ø -
2

Log@nD

Log@qD - n

-2 + q
+ 2

-1+
Log@nD

Log@qD C@1D>>

An equivalent way to write the equation is as follows:

RSolve@y@nD ã 2 y@n ê qD + n ê q, y@nD, nD

::y@nD Ø -
2

Log@nD

Log@qD - n

-2 + q
+ 2

-1+
Log@nD

Log@qD C@1D>>

Next, we solve an initial value problem:

sol = y@nD ê. RSolve@8y@2 nD ã 2 y@nD + n, y@1D ã 1<, y@nD, nDP1T êê Simplify

n Log@4 nD
Log@4D

28.1.2  Two Linear Equations

RSolve[eqns, {x[n], y[n]}, n]  Solve two difference equations

‡ A Constant Coefficient System

Consider the following system:

eqns = 8x@n + 1D ã H7 x@nD + 4 y@nDL ê 10,
y@n + 1D ã H-3 x@nD + 6 y@nDL ê 10<;

Here is the coefficient matrix:

A = 1 ê 10 887, 4<, 8-3, 6<<;

Its eigenvalues and their absolute values are as follows:

Eigenvalues@AD : 1

20
13 + Â 47 ,

1

20
13 - Â 47 >

Abs@%D êê N 80.734847, 0.734847<
Because the common absolute value is smaller than 1, the trajectories are spirals approaching the origin
(Kelley and Peterson, 2001, p. 148).

Solve the system with general starting values a and b:

vars = 8x@nD, y@nD<;
inits = 8x@0D ã a, y@0D ã b<;

sol@a_, b_D =
vars ê. RSolve@Join@eqns, initsD, vars, nDP1T êê ComplexExpand êê FullSimplify

: 1

47
2-në2 33 në2 5-n 47 a CosBn ArcCotB 13

47

FF + 47 Ha + 8 bL SinBn ArcCotB 13

47

FF ,

1

47
2-në2 33 në2 5-n 47 b CosBn ArcCotB 13

47

FF - 47 H6 a + bL SinBn ArcCotB 13

47

FF >

Calculate a trajectory of 20 steps from the starting point H60, 60L by using the solution:

xy = Table@sol@60., 60.D, 8n, 0, 20<D;

Chapter 28  •  Difference Equations 929



The trajectory can also be calculated directly from the difference equations:

xy = NestList@A.Ò &, 860., 60.<, 20D;

Plot the trajectory in the Ix, yM plane:

ListLinePlot@xy, Mesh Ø All, PlotRange Ø All, AspectRatio Ø AutomaticD

-10 10 20 30 40 50 60

-20

20

40

60

To plot the components as functions of n, write the following:

8xx, yy< = xy¨; tt = Range@0, 20D;

xt = 8tt, xx<¨; yt = 8tt, yy<¨;

ListLinePlot@8xt, yt<, Mesh Ø All, PlotStyle Ø 8Black, Gray<, PlotRange Ø AllD

5 10 15 20
-20

20

40

60

‡ A Set of Trajectories

We continue the preceding example by plotting a direction field. To this end, we write the equations in

the form xn+1 - xn = f In, xn, ynM, yn+1 - yn = gIn, xn, ynM and then plot a direction field of I f , gM:
<< VectorFieldPlots`

VectorFieldPlot@8-3 x + 4 y, -3 x - 4 y< ê 10, 8x, -60, 60<,
8y, -60, 60<, PlotPoints Ø 11, Axes Ø True, ImageSize Ø 160D

-60 -40 -20 20 40 60

-60

-40

-20

20

40

60

Then we calculate some trajectories from a set of starting points:

solset = NestList@Function@8z<, A.zD, Ò, 20D & êü 8860, 60<, 830, 60<,
8-60, 60<, 8-60, 30<, 8-60, -60<, 8-30, -60<, 860, -60<, 860, -30<<;

930 Mathematica Navigator



The trajectories are displayed as follows:

ListLinePlot@solset, Mesh Ø All, AspectRatio Ø Automatic,
PlotRange Ø All, PlotStyle Ø Black, ImageSize Ø 160D

-60 -40 -20 20 40 60

-60

-40

-20

20

40

60

28.1.3  Some Techniques

‡ Using Generating Functions

One method of  solving difference  equations  is  the  use  of  generating functions.  Consider,  for  example,
the  equation yn+1 = a yn + b.  Define  the  generating  function GHtL =⁄n=0¶ yn tn.  Multiply  both  sides  of  the

equation by tn and sum from 0 to ¶:

⁄n=0¶ yn+1 tn = a⁄n=0¶ yn tn + b⁄n=0¶ tn.

Because the left-hand side can be written as 1
t
⁄n=1¶ yn tn, we get the equation

1
t
IGHtL - y0M = a GHtL + b 1

1-t
.

The solution of this equation for GHtL is as follows:

eqn =
1

t
HG - y0L ã a G + b

1

1 - t
;

Gsol = G ê. Solve@eqn, GDP1T

b t + y0 - t y0

H-1 + tL H-1 + a tL
The coefficient of the term tn in the series expansion of this expression is yn, which is also the solution of

the difference equation:

SeriesCoefficient@Gsol, 8t, 0, n<D

H-1 + anL b + H-1 + aL an y0

-1 + a

(We considered SeriesCoefficient in Section 19.2.2, p. 627.) This expression is in agreement with the

solution given by RSolve:

eqn = 8y@n + 1D ã a y@nD + b, y@0D ã y0<;

RSolve@eqn, y@nD, nD êê Simplify

::y@nD Ø
H-1 + anL b + H-1 + aL an y0

-1 + a
>>

Chapter 28  •  Difference Equations 931



‡ Using the Z-Transform

Difference equations can also be solved with the Z-transform (see Section 20.4.2, p. 672), in a way that is

similar to how differential equations can be solved with the Laplace transform. To solve the difference
equation of the Fibonacci numbers, we rewrite the equation and the initial values as follows:

eqn = F@n + 2D ã F@n + 1D + F@nD;
inits = 8F@0D Ø 0, F@1D Ø 1<;

Take the Z-transform of the equation:

ZTransform@eqn, n, zD

-z2 F@0D - z F@1D + z2 ZTransform@F@nD, n, zD ã

-z F@0D + ZTransform@F@nD, n, zD + z ZTransform@F@nD, n, zD
Use the initial conditions:

zeqn = % ê. inits

-z + z2 ZTransform@F@nD, n, zD ã ZTransform@F@nD, n, zD + z ZTransform@F@nD, n, zD
Solve the Z-transform:

Solve@zeqn, ZTransform@F@nD, n, zDD

::ZTransform@F@nD, n, zD Ø
z

-1 - z + z2
>>

Find the inverse Z-transform:

sol = F@nD ê. InverseZTransform@%, z, nDP1T

-J 1

2
J1 - 5 NNn

+ J 1

2
J1 + 5 NNn

5

‡ Cobweb Plot

The cobweb  is  an  interesting  way  to  illustrate  how  the  values  computed  from  a  difference  equation
proceed. Consider the equation yn+1 = -0.8 yn + 0.2, y0 = 0.6. Calculate and plot some values:

vals = 8Range@0, 20D, NestList@-0.8 Ò + 0.2 &, 0.6, 20D<¨;

ListLinePlot@vals, Mesh Ø AllD

5 10 15 20
-0.2

0.2

0.4

0.6

We then introduce the program cobwebPlot:

cobwebPlot@f_, y_, y0_, n_, a_, b_, opts___D := Module@8x = y0<,
Plot@8y, f<, 8y, a, b<, Epilog ß

Line@Join@88y0, 0<<, Flatten@Table@88x, x = f ê. y Ø x<, 8x, x<<, 8n<D, 1DDD, optsDD

932 Mathematica Navigator



Here, f  is  the  right-hand-side  function  of  the  difference  equation yn+1 = f IynM;  in  the  previous

example, f  is |0.8 y + 0.2.  In addition, y0  is  the starting value, n  is  the number of values to be calcu-

lated (in addition to y0), (a, b) is the interval in which the figure is plotted, and opts is a set of options of
Plot. For our example, the figure is displayed as follows:

cobwebPlot@-0.8 y + 0.2, y, 0.6, 20, -0.4, 0.7,
PlotRange Ø 8-0.30, 0.43<, ImageSize Ø 200, AspectRatio Ø AutomaticD

-0.4 -0.2 0.2 0.4 0.6

-0.3

-0.2

-0.1

0.1

0.2

0.3

0.4

In the figure, the functions y  and f IyM  are plotted. The starting point for the cobweb is H0.6, 0L. From

this point on, follow the broken line. Each time you meet a vertical line, the point where this line (or its
extension) intersects the x  axis  represents the next value of  the solution sequence.  The horizontal  lines
lead you to the consecutive vertical lines. The figure shows the convergence of the sequence to a point.

28.1.4  Nonlinear Equations

‡ Example 1

Several  nonlinear  difference  equations  can  also  be  solved.  An  example  is  an  equation  of  the  form
expr1 = expr2  in  which  the  two  expressions  contain  products,  quotients,  and  powers  (not  sums).  For

example,

sol = RSolve@8y@n + 2D y@nD ã y@n + 1D, y@0D ã a, y@1D ã b<, y@nD, nD

::y@nD Ø ‰

1

3
- 3 Log@aD+2 3 Log@bD SinB n p

3
F
a

CosB n p

3
F>>

The equation could have been reduced, with a logarithmic transform, to a linear one. The solution has
period six:

Table@y@nD ê. solP1T ê. 8a Ø 1, b Ø 2<, 8n, 0, 17<D

:1, 2, 2, 1,
1

2
,

1

2
, 1, 2, 2, 1,

1

2
,

1

2
, 1, 2, 2, 1,

1

2
,

1

2
>

Here is another example:

sol = RSolve@8y@n + 2D ã y@n + 1D y@nD, y@0D ã a, y@1D ã b<, y@nD, nD

::y@nD Ø ‰
Fibonacci@nD J-LogB- a F+Log@bDN J- a NLucasL@nD>,

:y@nD Ø ‰
1

2
Fibonacci@nD I-Log@aD+2 Log@bDM

a
LucasL@nD

2 >>

‡ Example 2

This example is a homogeneous constant coefficient Riccati equation:

Chapter 28  •  Difference Equations 933



sol = RSolve@8y@n + 1D y@nD + p y@n + 1D + q y@nD ã 0, y@0D ã a<, y@nD, nD

::y@nD Ø

J- p

q
N-n Hp + qL a

p + q + a - J- q

p
Nn

a

>>

The equation could have been reduced, with the transformation yn =
1
zn

, to a linear one.

‡ Example 3

Now we have an equation that contains a convolution:

eqns = 8y@n + 1D ã Sum@y@iD y@n - iD, 8i, 0, n<D, y@0D ã a<

:y@1 + nD ã ‚
i=0

n

y@iD y@-i + nD, y@0D ã a>

sol = RSolve@eqns, y@nD, nD

::y@nD Ø
a1+n Binomial@2 n, nD

1 + n
>>

‡ Example 4

If  we  solve  the  equation f HxL = 0  with  Newton’s  method xi+1 = xi - f IxiM ë f £IxiM,  we  get  a  difference

equation. For example, to calculate the square root of a,  define f HxL = x2 - a.  We can solve the resulting

difference equation:

sol = x@nD ê. RSolve@8x@n + 1D ã x@nD - Hx@nD^2 - aL ê H2 x@nDL, x@0D ã x0<, x@nD, nDP1T

a CothB2n ArcCothB x0

a

FF

Here are the first few values calculated by Newton’s method, when a = 10 and x0 = 5:

Table@sol ê. 8a Ø 10., x0 Ø 5<, 8n, 1, 6<D êê Chop

83.5, 3.17857, 3.16232, 3.16228, 3.16228, 3.16228<

‡ Example 5: The Logistic Equation

The most famous nonlinear difference equation is the logistic equation:

eqns = 8y@n + 1D ã a y@nD H1 - y@nDL, y@0D ã a<;

The solution of  this equation is  unknown, except for  two positive values of  the parameter a, a = 2 and
a = 4  (see Kelley  and  Peterson,  2001,  p.  173).  In  addition, Mathematica knows  the  solution  for  one
negative value of a, a = -2:

Off@Solve::ifunD

RSolve@eqns ê. a Ø 2, y@nD, nD ::y@nD Ø
1

2
I1 - H1 - 2 aL2nM>>

RSolve@eqns ê. a Ø 4, y@nD, nD ::y@nD Ø
1

2
I1 - CosA2n ArcCos@1 - 2 aDEM>>

RSolve@eqns ê. a Ø -2, y@nD, nD ::y@nD Ø
1

2
1 + 2 CosB2n ArcCosB1

2
H-1 + 2 aLFF >>

A realization of the solution for a = 2 is as follows:

vals = NestList@2 Ò H1 - ÒL &, 0.001, 15D;

934 Mathematica Navigator



ListLinePlotA8Range@0, 15D, vals<¨, Mesh Ø AllE

2 4 6 8 10 12 14

0.1

0.2

0.3

0.4

0.5

The solution for a = 4 behaves completely differently.  To calculate the values accurately,  we start  with
70 digits of precision:

vals = NestList@4 Ò H1 - ÒL &, 0.001`70, 100D;

ListLinePlotA8Range@0, 100D, vals<¨, Mesh Ø All, AspectRatio Ø 0.2, ImageSize Ø 340E

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

The values seem to develop rather chaotically. For a = -2, the solution is also very unpredictable:

vals = NestList@-2 Ò H1 - ÒL &, 0.001`70, 100D;

ListLinePlotA8Range@0, 100D, vals<¨, Mesh Ø All, AspectRatio Ø 0.2, ImageSize Ø 340E

20 40 60 80 100
-0.5

0.5

1.0

1.5

Next, we study the logistic equation in more detail.

Remove@"Global`*"D

28.2  The Logistic Equation

28.2.1  Trajectories

‡ The Logistic Model

Most nonlinear difference equations cannot be solved to a closed-form expression. We have to resort to
other means of investigating them. As an example of nonlinear equations, we consider in this section the

famous logistic  model yn+1 = a yn I1 - yn M.  The methods presented for  this  model  may also be used for

other nonlinear models.

A logistic equation is often written as follows:

eqn = z@n + 1D - z@nD ã k z@nD HK - z@nDL

-z@nD + z@1 + nD ã k HK - z@nDL z@nD

This can be reduced to the standard form by making the change of variable zn =
1+k K

k
yn:

Chapter 28  •  Difference Equations 935



eqn ê. z@n_D Ø H1 + k KL y@nD ê k êê FullSimplify

H1 + k KL HH1 + k KL H-1 + y@nDL y@nD + y@1 + nDL
k

ã 0

Now denote 1 + k K = a.

‡ Sensitivity to Numerical Inaccuracies

For some values of the parameter a, the logistic model yn+1 = a yn I1 - yn M is very sensitive to numerical

inaccuracies.  To  see  this,  we  calculate  100  values  from  the  model  with a = 4,  first  by  using  normal
decimal numbers and then by using high-precision numbers.  In the latter case,  we start with numbers
that have a precision of 65 digits:

vals1 = NestList@4 Ò H1 - ÒL &, 0.01, 100D;
vals2 = NestList@4 Ò H1 - ÒL &, 0.01`65, 100D;

Look at the first values of both sequences and check the precision of these numbers:

First êü 8vals1, vals2<

80.01, 0.0100000000000000000000000000000000000000000000000000000000000000000<
Precision êü % 8MachinePrecision, 65.<

Look also at the last values of both sequences:

Last êü 8vals1, vals2< 80.224142, 0.598853<
Precision êü % 8MachinePrecision, 6.57132<

The last values differ quite a lot. Plot both sequences:

ListLinePlot@8vals1, vals2<, Mesh Ø All,
PlotStyle Ø 88<, Thickness@MediumD<, AspectRatio Ø 0.18, ImageSize Ø 400D

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

Values corresponding to vals2 are thick. From approximately iteration 50 on, the values differ greatly.

In calculating vals2,  we started with numbers having 65 digits of precision. During the calculation,
many digits were lost so that the last value 0.598853 only has a precision of approximately 6.6. Look at
some elements of vals2:

vals2PRange@11, 101, 10DT êê Column

0.795153962639835871590214931241869487846764589973828228345435

0.079928330294288105693881796743983767625329841330740139

0.945561800274275776014142302425504943869633496313

0.475000242034523846035444265579554668408401

0.211350171669276541289296563478707914

0.647005629669639008172470697581

0.830552409049308180739491

0.609007649692576357

0.290999858817

0.598853

936 Mathematica Navigator



These values clearly show the loss of significant digits during the iteration. Approximately six digits are
lost during each 10 iterations.

High-precision numbers were considered in Section 12.2.2, p. 406. Recall that when we calculate with

such numbers, Mathematica  takes care that all the digits in the result are correct. Thus, we know that all
the  digits  of vals2  are  correct.  This  means  that  the  values  in vals1  are  incorrect  from approximately
iteration  50  on.  This  demonstrates  the  sensitivity  to  numerical  inaccuracies  of  the  logistic  model  for
some  values  of  the  parameter a.  Thus,  if  we  calculate  long  sequences  from  the  logistic  model,  it  is
important to use a high enough precision during the calculation.

From  the  plot  of vals2,  we  see  that  the  series  behaves  quite  chaotically.  It  is  known  that chaotic
models are very sensitive to numerical inaccuracies. It can be shown that the logistic model is chaotic for
a  from  approximately  3.57  to  4,  although  inside  this  interval  there  are  also  some  small  nonchaotic
intervals.

‡ Sensitivity to Initial Values

Chaotic  models  are  also  very  sensitive  to  the  initial  value.  To  show  this,  compute,  with a = 4,  50

iterations using starting points 0.02 + 10-i, i = 1, …, 25. Then plot the 20th value of each of the 25 series.
Also plot the 50th value of each of the 25 series:

vals = Table@NestList@4 Ò H1 - ÒL &, 0.02`50 + 10^-i, 50D, 8i, 25<D;

8ListPlot@valsPAll, 20T, PlotRange Ø 8-0.05, 1.05<, PlotLabel Ø "20th value"D,
ListPlot@valsPAll, 50T, PlotRange Ø 8-0.05, 1.05<, PlotLabel Ø "50th value"D<

:

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

20th value

,

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

50th value

>

From the first  plot,  we see that  even if  the starting point  differs  from 0.02  by 10-7  or  more (see the
first  seven  points  in  the  plot),  the  value  of y20  significantly  differs  from  the  value  that  results  when

starting from 0.02.  From the second plot,  we see that  if  the starting point  differs from 0.02 by 10-16  or
more, the value of y50 differs significantly from the value that results when starting from 0.02.

‡ Trajectories

Now that  we know about  the numerical  sensitivity of  the logistic  model,  we can study its  behavior in
more detail.

From  a  direction  field,  we  get  an  impression  of  the  solution.  Write  the  equation  in  the  form

yn+1 - yn = a ynI1 - ynM - yn, and assume that a = 1.5:

<< VectorFieldPlots`

Chapter 28  •  Difference Equations 937



VectorFieldPlot@81, 1.5 y H1 - yL - y<, 8n, 0, 20<, 8y, 0, 0.5<,
PlotPoints Ø 11, Axes Ø True, AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 250D

5 10 15 20

0.1

0.2

0.3

0.4

0.5

To plot sets of trajectories, we write the following program:

logisticPlot@a_, n_, y01_, y02_, dy0_, opts___D :=

ListLinePlotA

TableA8Range@0, nD, NestList@a Ò H1 - ÒL &, y0, nD<¨, 8y0, y01, y02 + 10^-5, dy0<E,

Mesh Ø All, PlotStyle Ø Black, PlotRange Ø All, optsE

In  the  program,  we  first  calculate  a  solution  set  by  starting  from  various  points  and  iterating  the
equation n times. The starting points are chosen between y01 and y02 in steps of dy0. When a = 1.5, we
get the following trajectories:

logisticPlot@1.5, 30, 0.001, 0.41, 0.025, AspectRatio Ø 0.25, ImageSize Ø 400D

5 10 15 20 25 30

0.1

0.2

0.3

0.4

All  trajectories  in  this  figure  seem  to  approach  a  certain  value.  When a = 3.3,  the  trajectories  seem  to
approach a cycle of two points:

logisticPlot@3.3, 30, 0.01, 0.31, 0.05, AspectRatio Ø 0.25, ImageSize Ø 400D

5 10 15 20 25 30

0.2

0.4

0.6

0.8

For a = 3.52, we get a cycle of four points:

938 Mathematica Navigator



logisticPlot@3.52, 30, 0.01, 0.31, 0.05, AspectRatio Ø 0.25, ImageSize Ø 400D

5 10 15 20 25 30

0.2

0.4

0.6

0.8

When a = 3.7, the trajectories appear to be chaotic:

logisticPlot@3.7`100, 30, 0.01`100, 0.31`100,
0.05`100, AspectRatio Ø 0.25, ImageSize Ø 400D

5 10 15 20 25 30

0.2

0.4

0.6

0.8

1.0

To  calculate  the  values  accurately,  we  started  with  100  digits  of  precision.  This  precision  suffices  to
calculate 160 values accurately.

‡ Cobwebs

We previously plotted a cobweb in Section 28.1.3, p. 932. We repeat the program here.

cobwebPlot@f_, y_, y0_, n_, a_, b_, opts___D := Module@8x = y0<,
Plot@8y, f<, 8y, a, b<, Epilog ß

Line@Join@88y0, 0<<, Flatten@Table@88x, x = f ê. y Ø x<, 8x, x<<, 8n<D, 1DDD, optsDD

Now we investigate the logistic  model  by using the same values  of a  as  used previously.  Again,  to
calculate the values accurately for a = 3.7, we start with 50 digits of precision:

Chapter 28  •  Difference Equations 939



GraphicsArray@88cobwebPlot@1.5 y H1 - yL, y, 0.03, 20, 0, 0.4D,
cobwebPlot@3.3 y H1 - yL, y, 0.03, 20, 0, 0.9D<,

8cobwebPlot@3.52 y H1 - yL, y, 0.08, 30, 0, 0.95D,
cobwebPlot@3.7`50 y H1 - yL, y, 0.02`50, 40, 0, 1D<<, ImageSize Ø 400D

0.1 0.2 0.3 0.4

0.1

0.2

0.3

0.4

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

From these figures we can see the same things as we did with the trajectories: convergence to a point, a
two-point cycle, a four-point cycle, and chaos.

With  the  following  manipulation  we  can  interactively  study the  behavior  of  the  cobweb.  Here, a  is
the parameter of the logistic model, y0  is the starting point, iters  is the numbers of iterations done, and

drop  is  the  number  of  initial  iterations  dropped from the  iterations  (to  better  see  the  limiting  behavior
like cycles).

Manipulate@Module@8x = SetPrecision@y0, 70D, a1 = SetPrecision@a, 70D<,
Plot@8y, a y H1 - yL<, 8y, 0, 1<, Epilog ß Line@Drop@Join@88y0, 0<<,

Flatten@Table@88x, x = a1 y H1 - yL ê. y Ø x<, 8x, x<<, 8iters<D, 1DD, 2 dropDD,
AspectRatio Ø Automatic, ImageSize Ø 250DD,

88a, 3.8<, 0, 4, Appearance Ø "Labeled"<, 88y0, 0.1<, 0, 1, Appearance Ø "Labeled"<,
88iters, 50<, 0, 100, 1, Appearance Ø "Labeled"<,
8drop, 0, iters, 1, Appearance Ø "Labeled"<D

940 Mathematica Navigator



28.2.2  Bifurcation Diagrams

‡ Limit Values

The bifurcation  diagram  or final-state  diagram  shows  the  long-run  values  calculated  from  the  difference
equation  when  a  parameter  of  the  model  gets  a  range  of  values.  The  trajectories  calculated  in  Section
28.2.1  showed that  for  different  values  of  the parameter a,  the logistic  model  behaves very differently.
We say that a bifurcation occurs for a certain value of the parameter if the behavior of the final values
undergoes a qualitative change at this point.

To prepare a bifurcation diagram, first choose a set of values of the parameter, then directly calculate
a long sequence from the difference equation for these values, and lastly plot the limit values. Therefore,
first we write a function to calculate limit values (Dickau, 1997):

limits = Compile@8a<, 8a, Ò< & êü Union@Drop@NestList@a Ò H1 - ÒL &, 0.5, 1000D, 301DDD;

The  function limits  calculates  the  limit  values  for  a  single  value  of a. NestList  does  most  of  the
work:  We  iterate  the  recursion  function  1000  times  starting  from  0.5.  Of  these  values,  the  first  301~
considered to be transient~are  dropped.  Of the remaining 700 values we drop duplicates with Union;
lastly, with Map, we attach the value of a to each limit value of y. We have compiled the function limits

to speed up this process (compiling was explained in Section 17.2.3, p. 528). (If your computer is not fast

and does not have much RAM, you may prefer to replace 1000 with a smaller value such as 600.)

Try the function for a = 1.3:

limits@1.3D 881.3, 0.230769<<
The approximate limiting value is 0.230769. Try a = 3.3:

limits@3.3D

883.3, 0.479427<, 83.3, 0.479427<, 83.3, 0.479427<,
83.3, 0.823603<, 83.3, 0.823603<, 83.3, 0.823603<<

Here we see the two points forming a cycle. Each point appears three times: Union has found that all 16
digits are not the same. Consider a = 3.7:

limits@3.7D êê Length 700

All 700 values are different. Indeed, for this value of a, the system behaves chaotically.

Normal  decimal  numbers  are  used  in limit.  If  we  remember  the  numerical  problems  of  a  chaotic
logistic  model,  we may wonder  whether the limiting points  are correct  at  all.  Contrary to expectation,
the  bifurcation  diagram  obtained  with limit  correctly  displays  all  of  the  essential  things.  We  could
write a function such as the following:

limits2@a_D := 8a, Ò< & êü Union@Drop@NestList@a Ò H1 - ÒL &, 0.5`400, 1000D, 301DD;

High-precision numbers are used here (the starting value 0.5 has 400 digits of precision!). However, the
bifurcation diagrams obtained with limit  and limit2  differ  very little:  Only close examination of the
chaotic  region  reveals  some  slight  differences.  Thus,  we  can  be  satisfied  with limit,  particularly
because it is many times faster than limit2 and uses much less memory.

‡ Bifurcation Diagram

Now we form a function to calculate the limit values for a range of values for a:

Chapter 28  •  Difference Equations 941



bifurcation@a0_, a1_, n_D := Flatten@Table@limits@aD, 8a, a0, a1, Ha1 - a0L ê n<D, 1D

The function bifurcation  constructs, for n + 1 values of a  between a0  and a1,  the corresponding set

of limit values of y  for the logistic model.  As an example, we take 801 values of a  in the interval (0,  4)

and  plot  the  corresponding  limit  points  of  the  recursion  formula  (if  your  computer  has  limited
resources,  replace  800  with  a  smaller  value  such  as  400).  Note  that  the  next  two  figures  and  similar
figures later are of low quality because Mathematica 6 is not able to print small enough points.

points = bifurcation@0, 4, 800D;

ListPlot@points, PlotStyle Ø PointSize@0.001D,
AxesOrigin Ø 80, -0.02<, AxesLabel Ø 8a, y<, ImageSize Ø 400D

1 2 3 4
a

0.2

0.4

0.6

0.8

1.0

y

The  figure  shows  that  for 0 < a < 1,  the  limit  value  is  0,  and  for 1 < a < 3,  it  is  another  value
(depending on a). Then we have cycles of 2, 4, 8, … points, and for approximately 3.6 < a < 4, the model
behaves  chaotically.  For a > 4,  the  limit  value  is -¶.  Next,  we  take  a  closer  look  at  the  interesting
interval H3.5, 4L:

points = bifurcation@3.5, 4, 800D;

ListPlot@points, PlotStyle Ø PointSize@0.001D,
AxesOrigin Ø 83.5, 0<, ImageSize Ø 400D

942 Mathematica Navigator



3.6 3.7 3.8 3.9 4.0

0.2

0.4

0.6

0.8

1.0

We  see  that  after  the  chaotic  region  begins  at  approximately  3.57,  here  and  there  we  suddenly  again
have small intervals of periodic behavior.

28.2.3  Equilibrium and Periodic Points

‡ Equilibrium Points

The bifurcation diagram shows limit values, but we also want to know their mathematical expressions.
Thus,  now  we  calculate  equilibrium  points  and  points  that  make  up  periods  of  various  lengths.  With
them, we can plot a better bifurcation diagram for a < 3.57.

Consider  the  difference  equation yn+1 = f IynM.  If f IynM = yn,  then yn+1 = yn  and  the  state  remains  the

same. Such a yn is an equilibrium point. For the logistic equation, the equilibrium points are as follows:

f@y_D := a y H1 - yL

sol1 = Solve@f@yD ã y, yD :8y Ø 0<, :y Ø
-1 + a

a
>>

An  equilibrium  point y*  is  asymptotically  stable  if … f £Iy*M … < 1.  For  the  logistic  model,  we  have  the

following:

f'@yD ê. sol1 êê Simplify 8a, 2 - a<

Assume  that a > 0.  Points y* = 0  and y* = 1 -
1
a

 are  asymptotically  stable  if » a » < 1  and » 2 - a » < 1,

respectively~that  is,  if 0 < a < 1  and 1 < a < 3,  respectively.  We  plot  these  equilibrium  points  in  their
regions of stability:

Chapter 28  •  Difference Equations 943



8p1 = Plot@y ê. sol1P1T, 8a, 0, 1<D, p2 = Plot@y ê. sol1P2T, 8a, 1, 3<D<

:
0.2 0.4 0.6 0.8 1.0

-1.0

-0.5

0.5

1.0

,

1.5 2.0 2.5 3.0

0.1

0.2

0.3

0.4

0.5

0.6

>

‡ 2-Periodic Points

Consider  again  the  difference  equation yn+1 = f IynM,  and  calculate yn+2 = f I f IynMM.  If f I f IynMM = yn,  we

have yn+2 = yn,  which  means  that  the  same  point  appears  by  doing  two  iterations.  Such  a  point yn  is

called  a 2-periodic  point,  and  the  points yn  and f IynM  form  a  cycle.  To  find  the  2-periodic  points  of  the

logistic model, first calculate f I f IyMM:

f2@y_D = f@f@yDD a2 H1 - yL y H1 - a H1 - yL yL
Then solve the equation f I f IyMM = y:

sol2 = Solve@f2@yD ã y, yD êê FullSimplify

:8y Ø 0<, :y Ø
-1 + a

a
>, :y Ø

1 + a - H-3 + aL H1 + aL
2 a

>, :y Ø
1 + a + H-3 + aL H1 + aL

2 a
>>

The first two points are the equilibrium points (they are, of course, also 2-periodic points). The last two
points are genuine 2-periodic points; they exist if a > 3. We pick these points:

sol2a = Take@sol2, 83, 4<D;

A 2-periodic point is asymptotically stable if the absolute value of the derivative of f I f IyMM is less than

1 at the 2-periodic points. The derivatives are as follows:

df2 = f2'@yD ê. sol2a êê Simplify

94 + 2 a - a2, 4 + 2 a - a2=
Thus,  the 2-periodic points are asymptotically stable if … 4 + 2 a - a2 … < 1.  We solve this inequality,  also

taking into account the requirement a > 3:

Reduce@Abs@df2P1TD < 1 && a > 3, aD 3 < a < 1 + 6

% êê N 3. < a < 3.44949

For example, when a = 3.3, the equilibrium and 2-periodic points are as follows:

y2 = sol2 ê. a Ø 3.3

88y Ø 0<, 8y Ø 0.69697<, 8y Ø 0.479427<, 8y Ø 0.823603<<
From a cobweb plot (see Section 28.2.1, p. 939), we can see the 2-periodic points and how the sequence

yn+2 = f I f IynMM approaches one of the 2-periodic points:

944 Mathematica Navigator



Show@cobwebPlot@f2@yD ê. a Ø 3.3, y, 0.09, 40, 0, 1D,
Graphics@8Red, PointSize@MediumD, Point@8y, y<D ê. y2P83, 4<T<D, ImageSize Ø 200D

0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

We plot the points that form the cycle:

p3 = Plot@y ê. sol2a, 8a, 3, 1 + Sqrt@6D<D

3.1 3.2 3.3 3.4

0.6

0.7

0.8

‡ 4-Periodic Points

To calculate 4-periodic points, define the 4-times nested function:

f4@y_D = f@f@f@f@yDDDD

a4 H1 - yL y H1 - a H1 - yL yL I1 - a2 H1 - yL y H1 - a H1 - yL yLM
I1 - a3 H1 - yL y H1 - a H1 - yL yL I1 - a2 H1 - yL y H1 - a H1 - yL yLMM

We can solve the condition of 4-periodic points:

sol4 = Solve@f4@yD ã y, yD;

However,  the  solution  is  not  (and  cannot  be)  expressed  as  closed-form  formulas  but,  rather,  as Root-
objects. Here is one of the roots:

Style@sol4P5T, 7D

9y Ø RootA1 + a2
+ a2 I-1 - a - a2

- a3M Ò1 + a3 I2 + a + 4 a2
+ a3

+ 2 a4M Ò12
+ a3 I-1 - 5 a2

- 4 a3
- 5 a4

- 4 a5
- a6M Ò13

+

a5 I2 + 6 a + 4 a2
+ 14 a3

+ 5 a4
+ 3 a5M Ò14

+ a6 I-4 - a - 18 a2
- 12 a3

- 12 a4
- 3 a5M Ò15

+

a6 I1 + 10 a2
+ 17 a3

+ 18 a4
+ 15 a5

+ a6M Ò16
+ a8 I-2 - 14 a - 12 a2

- 30 a3
- 6 a4M Ò17

+

a9 I6 + 3 a + 30 a2
+ 15 a3M Ò18

+ a9 I-1 - 15 a2
- 20 a3M Ò19

+ a11 H3 + 15 aL Ò110
- 6 a12

Ò111
+ a12

Ò112 &, 1E=

For a given value of a, we can ask for the solution:

sol4 ê. a Ø 3.52

88y Ø 0<, 8y Ø 0.715909<, 8y Ø 0.424275<, 8y Ø 0.859816<, 8y Ø 0.373084<,
8y Ø 0.512076<, 8y Ø 0.823301<, 8y Ø 0.879487<, 8y Ø 0.0489016 - 0.0232193 Â<,
8y Ø 0.0489016 + 0.0232193 Â<, 8y Ø 0.165614 - 0.0737384 Â<,
8y Ø 0.165614 + 0.0737384 Â<, 8y Ø 0.505554 - 0.173586 Â<, 8y Ø 0.505554 + 0.173586 Â<,
8y Ø 0.985956 - 0.00678703 Â<, 8y Ø 0.985956 + 0.00678703 Â<<

Here are the equilibrium and 2-periodic points:

sol2 ê. a Ø 3.52

88y Ø 0<, 8y Ø 0.715909<, 8y Ø 0.424275<, 8y Ø 0.859816<<

Chapter 28  •  Difference Equations 945



Thus,  it  follows  that  the  4-periodic  points  are  the  next  four  points:  0.373084,  0.512076,  0.823301,  and
0.879487. We select these solutions from sol4:

sol4a = Take@sol4, 85, 8<D;

To find the values of a for which the 4-periodic points are asymptotically stable, we have to find the

values of a  for which the absolute value of the derivative of f I f I f I f IyMMMM  at the 4-periodic points is less

than 1. At a = 1 + 6 , the derivatives are 1:

df4 = f4'@yD;

Hdf4 ê. a Ø 1. + Sqrt@6DL ê. Hsol4a ê. a Ø 1. + Sqrt@6DL

81., 1., 1., 1.<
At a = 3.5, the derivatives are -0.0305:

Hdf4 ê. a Ø 3.5L ê. Hsol4a ê. a Ø 3.5L

8-0.0305, -0.0305, -0.0305, -0.0305<
At a = 3.544, the derivatives are almost -1:

Hdf4 ê. a Ø 3.544L ê. Hsol4a ê. a Ø 3.544L

8-0.997943, -0.997943, -0.997943, -0.997943<
To find the value for which the derivatives are exactly -1, we solve an equation:

a4 = a ê. FindRoot@Hdf4 ê. sol4aP1TL ã -1, 8a, 3.544, 3.545<D

3.54409

Thus,  the  4-periodic  points  are  asymptotically  stable  for 1 + 6 < a < 3.54409.  We  plot  the  4-periodic

points in this interval:

p4 = Plot@Evaluate@y ê. sol4aD, 8a, 1 + Sqrt@6D, a4<D

3.48 3.50 3.52 3.54

0.5

0.6

0.7

0.8

‡ 8-Periodic Points

To find 8-periodic points, the method we have used does no more work; the algebra is too demanding.
We proceed in a different way. Define first the 8-times nested function and its derivative:

f8@a_, y_D = Nest@f, y, 8D;

df8@a_?NumericQ, y_D = D@f8@a, yD, yD;

Define then a function that gives, for a given a, the 8-periodic point near y0:

period8@a_?NumericQ, y0_D := y ê. FindRoot@f8@a, yD ã y, 8y, y0<DP1T

For example, for a = 3.55, the 8-periodic point that is near 0.35 is as follows:

period8@3.55, 0.35D 0.3548

To find the last value of a for which the 8-periodic points are stable, we find the value of a for which
the derivative of f8 at an 8-periodic point is -1:

946 Mathematica Navigator



a8 = a ê. FindRoot@df8@a, period8@a, 0.35DD ã -1, 8a, 3.55, 3.56<D

3.56441

So, the 8-periodic points are stable in 3.54409 < a < 3.56441.

From the second bifurcation diagram in Section 28.2.2,  p. 942,  we can see that  8-periodic points are

near the points 0.35, 0.37, 0.50, 0.55, 0.81, 0.83, 0.88, and 0.89. To plot the 8-periodic points as functions of
a,  we  produce  eight  figures  that  correspond  with  these  eight  starting  values  (the  plotting  takes  some
time):

GraphicsArray@Partition@p5 = Plot@period8@a, ÒD, 8a, a4, a8<D & êü
80.35, 0.37, 0.50, 0.55, 0.81, 0.83, 0.88, 0.89<, 4D, ImageSize Ø 400D

3.550 3.555 3.560

0.355

0.360

3.550 3.555 3.560

0.366
0.368
0.370
0.372
0.374

3.545 3.550 3.555 3.560

0.495
0.500
0.505
0.510
0.515
0.520

3.550 3.555 3.560

0.530
0.535
0.540
0.545
0.550

3.550 3.555 3.560

0.810
0.812
0.814
0.816
0.818
0.820

3.550 3.555 3.560

0.825

0.830

0.835

3.5503.5553.560

0.8815
0.8820
0.8825
0.8830
0.8835
0.8840

3.550 3.555 3.560

0.885
0.886
0.887
0.888
0.889
0.890

‡ A Bifurcation Diagram

Now we can combine all of the plots to produce a better bifurcation diagram for 0 < a < 3.56441:

Show@p1, p2, p3, p4, p5, PlotRange Ø All, AxesOrigin Ø 80, -0.02<, ImageSize Ø 250D

0.5 1.0 1.5 2.0 2.5 3.0 3.5

0.2

0.4

0.6

0.8

28.2.4  Lyapunov Exponents

‡ Calculating the Lyapunov Exponent

The Lyapunov exponent gives still another view of a difference equation. It shows stability and instability
and  measures  the  sensitive  dependence  on  initial  conditions.  It  is  defined,  for  a  given a,  by

l = limnØ¶
1
n
⁄i=0
n-1 log À f £IyiM À,  where 9yi=  is  the  sequence  calculated  from  the  iteration  formula

yi+1 = f IyiM.  In  numerical  calculations,  we  approximate  the  limit  by  calculating  only  a  finite  sequence.

Because the derivative of the right-hand-side function of the logistic model is aI1 - 2 yM, we can write the

following function to calculate the Lyapunov exponent for a given a:

Chapter 28  •  Difference Equations 947



lyapunovExponent = Compile@8a, 8n, _Integer<<,
With@8p = NestList@a Ò H1 - ÒL &, 0.6, n - 1D<, Total@Log@Abs@a H1 - 2 pLDDD ê nDD;

Note that because p is a list, a (1 - 2 p) is the list of values 9 f £Iy0M, …, f £Iyn-1M=.

‡ Numerical Questions

When  calculating  the  Lyapunov  exponent,  we  again  face  the  numerical  problems  if  the  system  is
chaotic.  To  examine  the  effect  of  loss  of  precision  for  an a  for  which  the  system  is  chaotic,  we  define
another function in which we use high-precision numbers:

lyapunovExponent2@a_, n_D :=
With@8p = NestList@a Ò H1 - ÒL &, 0.6`1150, n - 1D<, Total@Log@Abs@a H1 - 2 pLDD ê nDD

We calculate the same exponent with both functions by using 2000 calculated values:

lyapunovExponent@3.7, 2000D 0.357374

lyapunovExponent2@3.7`1150, 2000D 0.3457317224630509

The  latter  result  has  no  rounding  errors,  and all  decimals  are  correct  (the  result,  of  course,  contains  a
truncation error due to the finiteness of the sum). The difference of the results is approximately 0.01; this
cannot be regarded as very small, but at least if we are interested in plotting the exponent, using normal
decimal numbers may give acceptable results.

To  examine  the  convergence  of  the  Lyapunov exponent,  we  calculate  estimates of  the exponent  for
a = 3.3 and a = 3.7 using sequences of length 1000, 2000, ..., 100,000:

ListPlot@Table@lyapunovExponent@Ò, nD, 8n, 1000, 100 000, 1000<D, PlotRange Ø All,
ImageSize Ø 180, Ticks Ø 88850, 50 000<, 8100, 100 000<<, Automatic<D & êü 83.3, 3.7<

:

50000 100000

-0.6180

-0.6175

,

50000 100000

0.352

0.354

0.356

>

It  seems  that  for  an a  for  which  the  system  is  not  chaotic,  the  estimate  of  the  exponent  converges
rapidly,  and  that  for  plotting  purposes,  where  approximately  two  correct  decimals  suffice,  a  few
thousand values give satisfactory results. For an a for which the system is chaotic, the estimate does not
converge  as  rapidly,  but  for  plotting  purposes,  perhaps  20,000  values  suffice.  Next,  when  we  plot  the
Lyapunov exponent, we use 30,000 values.

‡ Plotting the Lyapunov Exponent

We plot, for the logistic model, the Lyapunov exponent as a function of a when a is in H0, 4L:

948 Mathematica Navigator



Plot@lyapunovExponent@a, 30 000D, 8a, 0, 4<, AspectRatio Ø 0.35,
ImageSize Ø 400, PlotRange Ø 88-0.05, 4.05<, 8-6.1, 1.1<<D

1 2 3 4

-6

-5

-4

-3

-2

-1

1

For values of a  for  which the system has a stable equilibrium point or a  stable cycle,  the Lyapunov
exponent l  is  negative.  For  these a  values,  the  trajectories  are  not  sensitive  to  initial  conditions.  At
bifurcation  points,  we  have l  =  0.  For  values  of a  for  which  the  system  is  chaotic,  the  exponent  is
positive. For these a values, the trajectories are sensitive to initial conditions.

As noted previously, for l > 0,  the numeric behavior of the sequence is problematic, and the plot is
not accurate. However, the plot does describe the overall behavior of the Lyapunov exponent. As with
the  bifurcation  diagram,  we  take  a  closer  look  at  the  exponent  when 3.5 < a < 4  (with  my  somewhat
slow computer, the preparation of this plot took approximately 7 minutes):

Plot@lyapunovExponent@a, 30 000D, 8a, 3.5, 4<, PlotPoints Ø 200, AspectRatio Ø 0.35,
PlotRange Ø 8-1.15, 0.85<, AxesOrigin Ø 83.5, 0<, ImageSize Ø 400D

3.6 3.7 3.8 3.9 4.0

-1.0

-0.5

0.5

For  more  about  studying  the  logistic  model,  function  iteration,  and  chaos  with Mathematica,  see
Wagon (2000)  and Maeder  (1995b);  from www.mathematica-journal.com/issue/v5i2 ,  you can load the
programs  of  the  article  of  Maeder  (1995b). Knapp and Sofroniou (1997)  use  external  C programs with
MathLink to perform the heavy calculations needed to produce the bifurcation diagrams and plots of the
Lyapunov exponent. Kaplan and Glass (1995) provide an introduction to nonlinear time series analysis.

Chapter 28  •  Difference Equations 949



28.3  More about Discrete Systems

28.3.1  A Predator-Prey Model

‡ A Predator-Prey Model

In Section  26.3.2,  p. 853,  we  analyzed  a  predator-prey  model  governed  by  the  differential  equations

x£HtL = xHtL Ip - q yHtLM  and y£HtL = yHtL H-P + Q xHtLL.  By  approximating  the  derivatives  by  divided  differ-

ences,  we  could  introduce  the  discrete-time  model xn+1 - xn  = xnIp - q ynM, yn+1 - yn  = ynH-P + Q xnL.
However,  it  turns  out  that  this  model  does  not  have  realistic  properties.  Indeed,  predators  and  prey
fluctuate in a growing manner, and the trajectories are outgoing spirals.

Other  discrete-time  predator-prey  models  have  been  introduced,  one  of  which  is  the  following:

xn+1 = a xnI1 - xn - ynM, yn+1 = b xn yn (see Kelley and Peterson [2001, p. 184] or Martelli [1999, p. 246]). We

assume that a > 0 and b > 0 and begin to analyze the model.

‡ Equilibrium Points

Define the right-hand-side expressions:

f = a x H1 - x - yL;
g = b x y;

Calculate the equilibrium points:

equi = Solve@8x ã f, y ã g<, 8x, y<D

:8x Ø 0, y Ø 0<, :x Ø 1 -
1

a
, y Ø 0>, :y Ø 1 -

1

a
-

1

b
, x Ø

1

b
>>

We denote these points with e1, e2, and e3. The Jacobian is as follows:

jac = D@8f, g<, 88x, y<<D

88-a x + a H1 - x - yL, -a x<, 8b y, b x<<
Calculate the eigenvalues of the Jacobian at e1:

eig1 = Eigenvalues@jac ê. equiP1TD 80, a<
An equilibrium point is asymptotically stable if the spectral radius (the largest of the absolute values of
the eigenvalues) is less than 1. Thus, e1 is asymptotically stable if 0 < a < 1.

Calculate the eigenvalues of the Jacobian at e2:

eig2 = Eigenvalues@jac ê. equiP2TD êê Simplify

:2 - a,
H-1 + aL b

a
>

The  requirement  that  the  absolute  values  of  the  eigenvalues  are  less  than  1  is  in  simplified  form  as
follows:

Reduce@Abs@eig2P1TD < 1 && Abs@eig2P2TD < 1 && b > 0, 8a, b<, RealsD

1 < a < 3 && 0 < b <
a

-1 + a

950 Mathematica Navigator



Thus, the point e2  is asymptotically stable if 1 < a < 3 and 0 < b <
a
a-1

. In this region, the x coordinate of

e2 or a-1
a

 is positive (the y coordinate is 0).

Consider the point e3:

eig3 = Eigenvalues@jac ê. equiP3TD

:-a + 2 b - a2 + 4 a b + 4 b2 - 4 a b2

2 b
,

-a + 2 b + a2 + 4 a b + 4 b2 - 4 a b2

2 b
>

Compute the conditions under which the absolute values of these are less than 1:

Reduce@Abs@eig3P1TD < 1 && Abs@eig3P2TD < 1 && b > 0, 8a, b<, RealsD

1 < a § 3 &&
a

-1 + a
< b §

a

2 H-1 + aL +
1

2

a3

H-1 + aL2
»»

3 < a < 9 &&
3 a

3 + a
< b §

a

2 H-1 + aL +
1

2

a3

H-1 + aL2

Here, the upper bound of b can be simplified as follows:

FullSimplifyB
a

2 H-1 + aL
+

1

2

a3

H-1 + aL2
, a > 1F

a

2 J-1 + a N
Thus,  the  requirement  is  that  either  {1 < a < 3  and a

a-1
< b <

a

2 a -1
}  or  {3 < a < 9  and

3 a
3+a

< b <
a

2 a -1
}.

In summary, the situation is as follows:

p1 = Plot@8a ê Ha - 1L, a ê H2 HSqrt@aD - 1LL<, 8a, 1, 3<D;
p2 = Plot@83 a ê H3 + aL, a ê H2 HSqrt@aD - 1LL<, 8a, 3, 9<D;

Show@p1, p2, Ticks Ø 881, 3, 9<, 81, 2, 3<<, PlotRange Ø 80, 3.6<,
AxesLabel Ø 8a, b<, AxesOrigin Ø 80, 0<, ImageSize Ø 220,
Epilog Ø 8Line@881, 0<, 81, 3.6<<D, Line@883, 0<, 83, 3 ê 2<<D,

Text@"e1 stable", 80.57, 1.5<, 80, 0<, 80, 1<D,
Text@"e2 stable", 82.1, 0.8<D, Text@"e3 stable", 83.15, 1.77<D<D

1 3 9
a

1

2

3

b

e 1
st

ab
le

e2 stable

e3 stable

Chapter 28  •  Difference Equations 951



‡ Bifurcations

Let  us  investigate  how  the  trajectories  behave  for  various  values  of a  and b.  First,  we  define  the  pro-

grams limits and bifurcation anew so that they compute both x and y values:

limits = CompileA8a, b<,

Drop@NestList@8a ÒP1T H1 - ÒP1T - ÒP2TL, b ÒP1T ÒP2T< &, 80.4, 0.4<, 600D, 301D¨E;

limits2@a_, b_D := With@8lims = limits@a, bD<,
88a, Ò< & êü Union@limsP1TD, 8a, Ò< & êü Union@limsP2TD<D

bifurcation@a0_, a1_, n_, b_D :=

Flatten@Ò, 1D & êü ITable@limits2@a, bD, 8a, a0, a1, Ha1 - a0L ê n<D¨M

For  example,  when b = 1.6,  we  expect,  from  the  previous  figure,  that  when a  grows  from  0,  the
trajectory approaches first e1, then e2, then e3, and then after that it will behave in some other way. The

bifurcation diagrams for x and y confirm this:

8xx, yy< = bifurcation@0., 4., 400, 1.6D;

8ListPlot@xx, PlotRange Ø All, AxesOrigin Ø 80, -0.02<,
PlotStyle Ø AbsolutePointSize@0.2D, AxesLabel Ø 8a, x<, ImageSize Ø 200D,

ListPlot@yy, PlotRange Ø All, AxesOrigin Ø 80, -0.002<,
PlotStyle Ø AbsolutePointSize@0.2D, AxesLabel Ø 8a, y<, ImageSize Ø 200D<

:

1 2 3 4
a

0.2

0.4

0.6

0.8

1.0

x

,

1 2 3 4
a

0.02

0.04

0.06

0.08

y

>

In the case in which b = 3.1, we have interesting behavior near a = 4:

8xx, yy< = bifurcation@0., 4.2, 200, 3.1D;

8ListPlot@xx, PlotRange Ø All, AxesOrigin Ø 80, -0.02<,
PlotStyle Ø AbsolutePointSize@0.2D, AxesLabel Ø 8a, x<, ImageSize Ø 200D,

ListPlot@yy, PlotRange Ø All, AxesOrigin Ø 80, -0.02<,
PlotStyle Ø AbsolutePointSize@0.2D, AxesLabel Ø 8a, y<, ImageSize Ø 200D<

:

1 2 3 4
a

0.1

0.2

0.3

0.4

0.5

0.6

0.7

x

,

1 2 3 4
a

0.1

0.2

0.3

0.4

0.5

0.6

y

>

952 Mathematica Navigator



‡ Trajectories

predatorPreyPlot@a_, b_, n_, x0_, y0_, opts___D :=
ListLinePlot@NestList@8a ÒP1T H1 - ÒP1T - ÒP2TL, b ÒP1T ÒP2T< &, 8x0, y0<, nD,

Mesh Ø All, PlotRange Ø All, optsD

With this program, we can plot trajectories of the predator-prey model. For example, when a = 3 and
b = 1.6, the equilibrium points are as follows:

equi ê. 8a Ø 3., b Ø 1.6<

88x Ø 0, y Ø 0<, 8x Ø 0.666667, y Ø 0<, 8y Ø 0.0416667, x Ø 0.625<<
The trajectory approaches the last point, e3:

predatorPreyPlot@3, 1.6, 50, 0.6, 0.02, AxesLabel Ø 8x, y<D

0.62 0.64 0.66 0.68
x

0.025

0.030

0.035

0.040

y

We then consider some cases in which b = 3.1. First, here are plots for a = 1.4 and a = 2.5:

8predatorPreyPlot@1.4, 3.1, 30, 0.3, 0.1D, predatorPreyPlot@2.5, 3.1, 60, 0.4, 0.25D<

:

0.24 0.25 0.26 0.27 0.28 0.29 0.30

0.02

0.04

0.06

0.08

0.10

,

0.30 0.32 0.34 0.36 0.38 0.40

0.26

0.28

0.30

0.32

0.34

>

In  the  first  plot,  the  trajectory  approaches e2,  and  in  the  second  plot,  the  trajectories  approach e3  as  a

spiral. Next, we use the value a = 3 (b still has the value 3.1):

8predatorPreyPlot@3, 3.1, 200, 0.32, 0.33D,
ListPlot@

Take@NestList@83 ÒP1T H1 - ÒP1T - ÒP2TL, 3.1 ÒP1T ÒP2T< &, 80.32, 0.33<, 600D, -400D,
PlotStyle Ø PointSize@TinyDD<

:

0.30 0.35 0.40

0.30

0.35

0.40

,

0.30 0.35 0.40

0.30

0.35

0.40

>

In the first plot, the trajectories approach a cycle whose center is e3.  The cycle can be seen more clearly

from the  second plot,  where  we  have  dropped  some early  points  and plotted  only  the  points,  not  the
connecting lines. The limiting points seem to be on a closed curve. A more detailed study would reveal
that  the  points  evolve  around  the  cycle  with  an  approximate  period  of  6.  Lastly,  we  use  the  values
a = 3.1 and a = 4.2:

Chapter 28  •  Difference Equations 953



8predatorPreyPlot@3.1, 3.1, 100, 0.32, 0.34D,
predatorPreyPlot@4.2`150, 3.2`150, 200, 0.32`150, 0.43`150D<

:

0.30 0.35 0.40 0.45

0.30

0.35

0.40

0.45

,

0.2 0.3 0.4 0.5 0.6 0.7 0.8

0.2

0.3

0.4

0.5

0.6

>

In the first plot, we have a 6-cycle, whereas the second plot shows chaotic behavior.

28.3.2  Estimation of Difference Equations

‡ Return Plot

A useful way to explore a data set is to plot a return plot. If we have data y1, …, yn, then the return plot

simply contains points at Iyi, yi+1M, i = 1, …, n - 1. If we assume that the data are generated by a differ-

ence equation model yi+1 = f IyiM, then the return plot contains the points Iyi, f IyiMM, which means that the

points are on the curve f IyM.  For example, if the model is yi+1 = 3.7 yiI1 - yiM  (a logistic model), then the

points in the return plot are on the curve 3.7 yI1 - yM.
Let  us  compare  three  series.  The  first  series  contains  white  noise  (i.e.,  random  numbers  from  a

normal  distribution;  the  distribution  has  mean  1  and  standard  deviation  0.5).  The  second  series  is
obtained  from  the  linear  difference  equation yn+1 = 1.1 yn, y0 = 1,  and  the  third  is  obtained  from  the

logistic difference equation yn+1 = 3.7 ynI1 - ynM, y0 = 0.02. The series are as follows:

ss = Array@s, 3D; s@1D = RandomReal@NormalDistribution@1, 0.5D, 850<D;
s@2D = NestList@1.1 Ò &, 1, 50D;
s@3D = NestList@3.7 Ò H1 - ÒL &, 0.02, 50D;

ListLinePlot@Ò, Mesh Ø AllD & êü ss

:

10 20 30 40 50

0.5

1.0

1.5

2.0

,

10 20 30 40 50

20

40

60

80

100

120

,

10 20 30 40 50

0.2

0.4

0.6

0.8

>

For each sequence, we produce the return plot:

pairs = TableA8Drop@s@iD, -1D, Drop@s@iD, 1D<¨, 8i, 3<E;

954 Mathematica Navigator



ListPlot@Ò, AspectRatio Ø AutomaticD & êü pairs

:

0.5 1.0 1.5 2.0

0.5

1.0

1.5

2.0

,

20 40 60 80 100

20

40

60

80

100

,

0.2 0.4 0.6 0.8

0.2

0.4

0.6

0.8

>

The points in the first figure do not have a clear form, but they are concentrated around the point (1, 1).
The  points  in  the  second figure  are  on the  line 1.1 y,  whereas  the  points  in  the  third  figure  are  on the

curve 3.7 yI1 - yM.
If  we have data and we are searching a  difference equation model for  it,  a  return plot may give us

information about a suitable difference equation model. Indeed, one possibility to estimate a first-order

difference  equation  is  to  fit  a  function  to  the  paired  observations.  If  a  fit  is f IyM,  then  an  approximate

difference  equation  model  is yn+1 = f IynM.  This  model  may  be  good  enough,  or  it  can  be  used  as  a

starting point for nonlinear fitting to get an even better model. Two examples follow.

‡ Drug in the Blood

A drug dosage of  1  mg was injected into the blood, and the amount of the drug still  in the blood was
measured after 1, 2, …, 12 days. The measurements and the return plot are as follows (the data are not
real):

drug = 81, 0.739, 0.537, 0.394, 0.298,
0.211, 0.161, 0.112, 0.088, 0.060, 0.048, 0.032, 0.023<;

pairs = 8Drop@drug, -1D, Drop@drug, 1D<¨;

9ListLinePlotA8Range@0, 12D, drug<¨, Mesh Ø AllE,

ListPlot@pairs, AspectRatio Ø AutomaticD=

:

2 4 6 8 10 12

0.2

0.4

0.6

0.8

1.0

,

0.2 0.4 0.6 0.8 1.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

>

Fit a linear function to the pairs:

f = Fit@pairs, 8y<, yD 0.735232 y

A possible difference equation model is thus yn+1 = 0.735232 yn.

To validate the model, calculate predictions from the model:

g = Function@8y<, Evaluate@fDD Function@8y<, 0.735232 yD

Chapter 28  •  Difference Equations 955



pred = NestList@g, 1, 12D

81, 0.735232, 0.540565, 0.397441, 0.292211, 0.214843, 0.157959,
0.116137, 0.0853872, 0.0627794, 0.0461574, 0.0339364, 0.0249511<

The differences between the data and the predictions are negligible:

ListPlot@drug - predD

2 4 6 8 10 12

-0.004

-0.002

0.002

0.004

0.006

We can be satisfied with the model.

In  this  example,  a  slightly  better  model  can  be  obtained using nonlinear  fitting.  A linear  difference
equation can be solved, and then it is straightforward to use FindFit. In the drug example, the solution
of the difference equation is as follows:

sol = y@nD ê. RSolve@8y@n + 1D ã a y@nD, y@0D ã 1<, y@nD, nDP1T an

We estimate the parameter a (for nonlinear fitting, see Section 25.1.3, p. 818):

FindFitA8Range@0, 12D, drug<¨, sol, a, nE 8a Ø 0.734947<
Thus, a slightly better model would be yn+1 = 0.734947 yn.

‡ Yeast Culture: First Estimation

Consider  the  example  of  yeast  culture  (Pearl,  1927)  that  we  discussed  in Section  26.4.5,  p. 878.  The

measurements and the return plot are as follows:

yeast = 89.6, 18.3, 29.0, 47.2, 71.1, 119.1, 174.6, 257.3, 350.7,
441.0, 513.3, 559.7, 594.8, 629.4, 640.8, 651.1, 655.9, 659.6, 661.8<;

pairs = 8Drop@yeast, -1D, Drop@yeast, 1D<¨;

8p1 = ListLinePlot@yeast, Mesh Ø AllD, ListPlot@pairs, AspectRatio Ø AutomaticD<

:

5 10 15

100

200

300

400

500

600

,

100 200 300 400 500 600

100

200

300

400

500

600

>

A quadratic fit may be adequate for the pairs:

f = Fit@pairs, 8y, y^2<, yD 1.55769 y -0.000852666 y2

Thus,  a  possible  difference  equation  model  would  be yn+1  = 1.55769 yn | 0.000852666 yn2.  We  can  also

write this equation in the form yn+1 = yn + k ynIK - ynM:
SolveAlways@f ã y + k y HK - yL, 8y<D

88K Ø 654.049, k Ø 0.000852666<<

956 Mathematica Navigator



Thus, we have the logistic model yn+1 = yn + 0.000852666 ynI654.049 - ynM.
To validate the model, calculate predictions from it:

pred = NestList@Function@8y<, Evaluate@fDD, 9.6, 18D;

Plot the data and the predictions:

Show@p1, ListPlot@predDD

5 10 15

100

200

300

400

500

600

The unconnected points  of  the predictions differ  too much from the connected data points,  and so we
have to conclude that our model is not adequate.

pred =.

‡ Yeast Culture: Second Estimation

We use the preliminary model obtained previously as a starting point to nonlinear optimization to find

a better logistic model yn+1 = yn + k ynIK - ynM. First, define the right-hand side of the equation:

eqn = Ò + k Ò HK - ÒL &;

Then define the following functions:

pred@eqn_, data_D := NestList@eqn, dataP1T, Length@dataD - 1D
crit@eqn_, data_D := Total@Hdata - pred@eqn, dataDL^2D

Here, pred  calculates  predictions  from  the  equation,  and crit  defines  a  least-squares  criterion  to  be
minimized. Now use FindMinimum:

est = FindMinimum@crit@eqn, yeastD, 8k, 0.0008, 0.0009<, 8K, 654, 655<D

83756.96, 8k Ø 0.000999256, K Ø 643.887<<
This gives the model yn+1 = yn + 0.000999256 yn I643.887 - ynM.

To validate the model, calculate predictions from it:

Show@p1, ListPlot@pred@eqn ê. estP2T, yeastDDD

5 10 15

100

200

300

400

500

600

The  model  seems  to  be  acceptable.  (Remember  from Section  26.4.5,  p. 878,  that  a  continuous  logistic

model was very good.)

Chapter 28  •  Difference Equations 957



28.3.3  Fractals and More

‡ Fractals

Among  fractal  images,  Mandelbrot  figures  are  the  best  known.  They  are  based  on  the  nonlinear
difference  equation zi+1 = zi

2 + c  for  different  complex  numbers c.  The  values  of zi  may  tend  toward

infinity,  but the numbers c  for which the values do not tend toward infinity constitute the Mandelbrot
set. Here is a program for investigating whether a point belongs to the Mandelbrot set:

mandelbrot = Compile@88c, _Complex<<,
Module@8z = 0 + 0. I, n = 0<, While@Abs@zD < 2 && n < 50, z = z^2 + c; n++D; nDD;

We have compiled the function mandelbrot  to speed up the execution (compiling was explained in

Section 17.2.3, p. 528). We have given the complex number 0 + 0. Â as the starting value for z so that the

compiler  understands  that z  is  a  complex  variable.  The  program  returns,  for  a  given  number c,  the
number of iterations (n)  needed for the absolute value of z  to exceed 2; at most, 50 iterations are done.
The points c for which the full 50 iterations can be done are considered to belong to the Mandelbrot set.
For example, the point 0.2 + Â does not belong to the Mandelbrot set, but the point 0.2 + 0.2 Â does:

mandelbrot@0.2 + ID 4

mandelbrot@0.2 + 0.2 ID 50

Giving c complex values x + Â y for many x and y, we get the corresponding numbers of iterations n.

These numbers can then be plotted with DensityPlot to get a Mandelbrot image. We give two versions
of a Mandelbrot image, having different colorings:

DensityPlot@mandelbrot@x + I yD, 8x, -2, 1<, 8y, -1.5, 1.5<, ColorFunction Ø Ò,
Mesh Ø False, PlotPoints Ø 200, ImageSize Ø 200D & êü 8Automatic, Hue<

: , >

We could also use FixedPointList:

mandelbrot2 = Compile@88c, _Complex<<,
Length@FixedPointList@Ò^2 + c &, 0., 50, SameTest Ø HAbs@Ò2D > 2.0 &LDDD;

However, this program is somewhat slower than the program that uses While.

958 Mathematica Navigator



‡ Lindenmayer Systems

L-systems or  Lindenmayer  systems generate,  from  an  initial  object  or axiom,  a  sequence  of  lines  and
branches. The system is described with the aid of a few characters:

F go from the current point with the current step to a new point
| turn left by a given angle
+ turn right by a given angle
[ save the current point and step
] recall the last saved point and step
X do nothing

The  initial  object  consists  of  a  sequence  of  these  characters,  such  as  the  single  character  F.  The
development of the system is determined by one or more replacement rules; for example, F Ø F [ | F ] F [
+ F ] F. The rules are applied recursively a given number of times.

The  following  implementation  of  L-systems  is  adapted  from Trott  (2004a,  pp.  366-392);  see  also
Wagon  (2000,  pp.  167-185).  Unfortunately,  we  do  not  have  the  space  to  explain  the  workings  of  the
programs.

LSystemPoints@axiom_, rules_, iterations_, a_D :=
Module@8point = 80, 0<, step = 80, 1<, memory = 8<, toleft, toright, f, characters<,

toleft = 88Cos@-aD, Sin@-aD<, 8-Sin@-aD, Cos@-aD<<;
toright = 88Cos@aD, Sin@aD<, 8-Sin@aD, Cos@aD<<;
f@x_D := Which@

x ã "F", point = point + step,
x ã "-", step = toleft.step; Null,
x ã "+", step = toright.step; Null,
x ã "@", memory = Append@memory, 8point, step<D; Null,
x ã "D", 8point, step< = Last@memoryD;

memory = Most@memoryD;
Apply@Sequence, 8"split", point<D,

x ã "X", NullD;
characters = Flatten@Nest@HÒ ê. rulesL &, axiom, iterationsDD;
Select@Prepend@f@ÒD & êü characters, 80, 0<D, Ò =!= Null &DD

LSystemLines@ls_D := Module@8a, b, c<,
a = 8Ò - 1, Ò + 1< & êü Position@ls, "split"D;
b = Partition@Flatten@81, a, Length@lsD<D, 2D;
c = Take@ls, ÒD & êü b;
Line êü cD

LSystemPlot@axiom_, rules_, iterations_, a_D :=
With@8ls = LSystemPoints@axiom, rules, iterations, aD<,

Graphics@LSystemLines@lsD, AspectRatio Ø AutomaticDD;

With L-systems, we can get many figures resembling plants. Here are some examples:

Chapter 28  •  Difference Equations 959



GraphicsRow@
8LSystemPlot@8"F"<, 8"F" Ø Characters@"FF+@+F-F-FD-@-F+F+FD"D<, 4, Pi ê 8.D,

LSystemPlot@8"X"<,
8"F" Ø 8"F", "F"<, "X" Ø Characters@"F@-XD@+XDFX"D<, 6, Pi ê 8.D,

LSystemPlot@8"X"<, 8"F" Ø 8"F", "F"<, "X" Ø Characters@"F+@@XD-XD-F@-FXD+X"D<,
5, Pi ê 8.D<, ImageSize Ø 420D

‡ Cellular Automata and Turing Machines

Cellular  automata  (see Wolfram,  2002)  are  based  on  recursive  rules:  The  next  step  depends  on  the
previous step.

CellularAutomaton[rule, init, n]  Generate a list that represents the evolution of the cellular
automaton rule rule from initial condition init for n steps

To generate three steps of cellular automaton rule 30, starting from a single 1 surrounded by 0’s, write

CellularAutomaton@30, 881<, 0<, 3D êê MatrixForm

0 0 0 1 0 0 0

0 0 1 1 1 0 0

0 1 1 0 0 1 0

1 1 0 1 1 1 1

Now we generate 40 steps:

ArrayPlot@CellularAutomaton@30, 881<, 0<, 40DD

For Turing machines, see TuringMachine in the Documentation Center.

960 Mathematica Navigator



29
Probability

Introduction 961

29.1  Random Numbers and Sampling 962

29.1.1  Uniform Random Numbers 962 RandomInteger, RandomReal, SeedRandom, BlockRandom

29.1.2  Sampling 965 RandomChoice, RandomSample

29.2  Discrete Probability Distributions 966

29.2.1  Probability Distributions 966 Mean, Variance, PDF, CDF, Quantile, ExpectedValue, etc.

29.2.2  Univariate Discrete Distributions 969 BinomialDistribution, PoissonDistribution, etc.

29.2.3  The Binomial Distribution 971 BinomialDistribution

29.2.4  Multivariate Discrete Distributions 973 MultinomialDistribution, etc.

29.3  Continuous Probability Distributions 976

29.3.1  Univariate Continuous Distributions 976 GammaDistribution, NormalDistribution, etc.

29.3.2  The Normal Distribution 980 NormalDistribution

29.3.3  Multivariate Continuous Distributions 984 MultinormalDistribution, etc.

29.4  Stochastic Processes 987

29.4.1  Random Walks and Brownian Motion 987 randomWalk, coinTossing, brownianMotion, etc.

29.4.2  Discrete-Time Markov Chains 992 dtMarkovChain, etc.

29.4.3  Continuous-Time Markov Chains 997 poissonProcess, ctMarkovChain, etc.

Introduction

The generation of random numbers is too important to be left to chance.~Robert R. Coveyou

Mathematica  has  a  wealth  of  information  about  most  standard  probability  distributions.  For  each
distribution,  we  can  ask  for  cumulative  distribution  function,  probability  density  function,  quantiles,
mean,  variance,  random  numbers,  and  so  on.  As  examples  of  discrete,  continuous,  and  multivariate
distributions,  we  consider  in  more  detail  the  binomial,  multinomial,  normal,  and  bivariate  normal
distributions.  Recall  that  we  have  considered  the  calculation  of  the  distribution  of  sums  of  random

variables in Section 18.5.1, p. 602, by writing recursive programs for convolutions and in Section 19.2.2,

p. 628, by using probability-generating functions.

One very useful property of Mathematica  is the ease of random number generation; this makes it very
convenient to perform simulations. We will give several examples of simulation, particularly when we
consider stochastic processes. A variety of processes are simulated, from a simple random walk to coin
tossing,  gambler’s  ruin,  Brownian motion,  discrete-time Markov process,  Poisson process,  birth-death
process,  and  M/M/1  queue.  From  the  simulations,  we  can  see  how  realizations  of  the  processes  are
displayed.



29.1  Random Numbers and Sampling

29.1.1  Uniform Random Numbers

‡ Generating Uniform Random Numbers

With Mathematica,  we  can  generate  integer,  real,  and  complex  pseudorandom  numbers.  They  are,
respectively, from distributions that are uniformly distributed over a set of consecutive integers, over a
real interval, and over a rectangle in the complex plane. The commands are as follows:

RandomInteger[] (Ÿ6)  A uniform integer random number from 80, 1<
RandomInteger[b]  A uniform integer random number from 80, 1, …, b<
RandomInteger[{a, b}]  A uniform integer random number from 8a, a + 1, …, b<

RandomReal[] (Ÿ6)  A uniform real random number from @0, 1D
RandomReal[b]  A uniform real random number from @0, bD
RandomReal[{a, b}]  A uniform real random number from @a, bD

RandomComplex[] (Ÿ6)  A uniform complex random number from the unit square
RandomComplex[b]  A uniform complex random number from the rectangle defined by 0 and b

RandomComplex[{a, b}]  A uniform complex random number from the rectangle defined by a and b

In addition, we can add a second argument to tell how many random numbers we would like to get.
As an example, we show how to get lists or matrices of real random numbers; even higher-dimensional
arrays  of  random  numbers  can  be  asked  for.  Integer  and  complex  random  numbers  can  be  obtained
similarly.

RandomReal[b, n]  A list of n uniform random numbers from @0, bD
RandomReal[{a, b}, n]  A list of n uniform random numbers from @a, bD
RandomReal[b, {m, n}]  A matrix of (m n) uniform random numbers from @0, bD
RandomReal[{a, b}, {m, n}]  A matrix of (m n) uniform random numbers from @a, bD
Recall from Section 12.1.1 that we also have RandomPrime.

By  default,  a  cellular-automata-based  random  number  generator  called "ExtendedCA"  is  used.
According  to  the  documentation,  this  generator  produces  an  extremely  high  level  of  randomness.  See
tutorialêRandomNumberGeneration for details about generating uniform random numbers.

‡ Integer Random Numbers

Let DUHa, bL be the integer-valued uniform distribution among the integers a, a + 1, …, b. The probability
function  of  this  distribution  is PHX = kL  = 1 ê Hb - a + 1L  when k  = a, a + 1,  …, b.  First,  we  generate  20
random numbers from DUH0, 1L~that is, random numbers being 0 or 1 with probability 1 ê 2:

RandomInteger@1, 20D

81, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1, 0, 1, 0, 0, 1, 0, 0<

This sequence can be interpreted as being a realization of 20 coin tosses (0 could mean a head and 1 a
tail).  Next,  we  generate  20  random numbers  from DUH1, 6L~that  is, PHX = kL = 1 ê 6, k  =  1,  2,  …,  6.  An
interpretation of the simulation is that we throw a die 20 times:

962 Mathematica Navigator



RandomInteger@81, 6<, 20D

86, 4, 6, 5, 5, 1, 2, 6, 2, 3, 3, 5, 3, 5, 6, 6, 5, 4, 3, 6<

‡ Real Random Numbers

A real uniform distribution over @a, bD is sometimes denoted as UHa, bL. The probability density function
of  this  distribution  is 1 ê Hb - aL  for a § x § b  and  0  otherwise.  Here  are  random  numbers  from  the
distribution UH0, 1L:

RandomReal@1, 6D

80.701228, 0.143366, 0.731902, 0.410061, 0.858202, 0.693984<

We also generate random numbers from the distributions UH1, 10L and UH-1, 1L:
RandomReal@81, 10<, 6D

85.8545, 9.33834, 6.70059, 8.04156, 4.49274, 3.37093<
RandomReal@8-1, 1<, 6D

8-0.129994, 0.76516, 0.566518, -0.519139, 0.4803, -0.197397<

Next, we ask for real random numbers from UH0, 1L with a precision of 20:

RandomReal@1, 3, WorkingPrecision Ø 20D

80.24965256350185449509, 0.40653546880408769238, 0.89580367807447865401<

‡ Complex Random Numbers

Uniform complex random numbers are uniformly distributed in a rectangle in the complex plane. Here
are uniform complex random numbers from the unit square, which means that the real and imaginary
parts are distributed as UH0, 1L:

RandomComplex@1 + I, 3D

80.705152 + 0.398677 Â, 0.444455 + 0.895985 Â, 0.372455 + 0.0818215 Â<

Next, we generate complex random numbers with real parts distributed as UH5, 6L and imaginary parts
as UH3, 4L:

RandomComplex@85 + 3 Â, 6 + 4 Â<, 3D

85.09451 + 3.18198 Â, 5.65826 + 3.55053 Â, 5.21453 + 3.22406 Â<

The WorkingPrecision option can also be used.

‡ Controlling the Random Numbers

SeedRandom[]  Reseed the random number generator with the time of day and certain attributes of
the current Mathematica session

SeedRandom[n]  Reseed the random number generator with the integer n
SeedRandom[Method Ø "meth"]  Use the given method to generate the random numbers; possible

methods: "ExtendedCA" (extended cellular automaton generator; the default), "Congruential"

(linear congruential generator; for low-quality randomness), "Legacy" (default generators from
before Mathematica 6.0), "MersenneTwister" (Mersenne twister shift register generator), "MKL"

(Intel MKL generator; in Intel-based systems), "Rule30CA" (Wolfram Rule 30 generator)
SeedRandom[n, Method Ø "meth"]  Reseed the random number generator with the integer n and use

the given method to generate the random numbers

Chapter 29  •  Probability 963



Each time we generate a sequence of random numbers, we get a different sequence because Mathemat-
ica  uses  a  different  seed for  the numbers  each time (the seed is  based on the time of  day measured in
small fractions of a second and certain attributes of the current Mathematica session):

RandomReal@1, 6D

80.0409815, 0.560409, 0.920074, 0.952521, 0.449596, 0.902222<
RandomReal@1, 6D

80.684339, 0.310975, 0.191823, 0.499712, 0.353737, 0.688333<

If we want the same sequence several times, we can set the seed with SeedRandom[n]:

SeedRandom@15D; RandomReal@1, 6D

80.958907, 0.71308, 0.17847, 0.427434, 0.298721, 0.15273<
SeedRandom@15D; RandomReal@1, 6D

80.958907, 0.71308, 0.17847, 0.427434, 0.298721, 0.15273<

BlockRandom[expr] (Ÿ6)  Save the states of all random number generators, then evaluate expr, and
lastly restore the states of all random number generators

With BlockRandom,  we  can  do  subsidiary  random  number  generations  in  such  a  way  that  these
random numbers do not affect the forthcoming random numbers. To see the effect of this command, do
the following two computations:

SeedRandom@15D; 8a = RandomReal@D, b = RandomReal@D<

80.958907, 0.71308<
SeedRandom@15D;
8a = RandomReal@D, BlockRandom@8RandomReal@D, RandomReal@D<D, b = RandomReal@D<
80.958907, 80.71308, 0.17847<, 0.71308<

In both cases, the values of a and b are the same, despite the fact that in the second calculation we made
some subsidiary generations.

‡ Testing the Equality of Two Expressions

Random numbers can be used~in addition to simulation~in the testing of the equality of two complex
expressions. As an example, consider the following integral:

math = Integrate@Sin@a x^nD, 8x, 0, ¶<, Assumptions Ø n > 1 && a > 0D

a-1ën GammaB1 +
1

n
F SinB

p

2 n
F

Spiegel (1999), formula 18.51, gives the following value for the integral:

spiegel = 1 ê Hn a^H1 ê nLL Gamma@1 ê nD Sin@p ê H2 nLD;

Mathematica is able to show that the two expressions are equal:

FullSimplify@math - spiegelD 0

Another way to test the equality of the two expressions is to insert random numbers in place of a and n
and check whether the difference of the expressions is practically zero:

math - spiegel ê. 8a Ø RandomReal@D, n Ø RandomInteger@81, 10<D<

0.

By  repeating  this  command  several  times,  we  could  observe  that  the  result  is  always  approximately
zero, and this confirms the equality of the two expressions.

964 Mathematica Navigator



29.1.2  Sampling

‡ Sampling with Replacement

RandomChoice[list, n] (Ÿ6)  Take, with replacement, n random elements from list (RandomÖ

Choice[list] takes one element)
RandomChoice[list, {m, n}]  Generate m samples of size n

RandomChoice[weights Ø list, n]  Give each element a weight (e.g., probability)
RandomChoice[weights Ø list, {m, n}]  Give each element a weight

If list  contains k  elements,  then  each  time  an  element  is  chosen  from list,  each  element  has  the
probability  of 1 ê k  of  becoming  chosen  into  the  sample.  Thus, RandomChoice  performs  sampling  with
replacement so that an element of the given list can be in the sample several times.

For example, we throw a die 10 times both with RandomInteger and with RandomChoice:

RandomInteger@81, 6<, 10D

84, 1, 1, 2, 5, 4, 1, 6, 2, 5<
RandomChoice@Range@6D, 10D

82, 4, 5, 3, 1, 5, 4, 4, 2, 5<

Next, we throw a die 3 times and repeat this experiment 6 times:

RandomChoice@Range@6D, 86, 3<D

884, 4, 2<, 82, 5, 5<, 85, 4, 1<, 84, 4, 3<, 82, 2, 1<, 86, 2, 1<<

Now we throw a biased coin for which the probability of heads (or 0) is 0.6 and that of tails (or 1) 0.4:

RandomChoice@80.6, 0.4< Ø 80, 1<, 10D

80, 1, 0, 0, 1, 0, 0, 0, 0, 0<

The weights are automatically normalized so that we can also write the following:

RandomChoice@86, 4< Ø 80, 1<, 10D

80, 1, 1, 0, 0, 0, 0, 1, 0, 0<

The  weights  make  it  possible  to  sample  with  replacement  from  any  discrete  distribution  with  finite
domain.

Choose characters randomly:

RandomChoice@CharacterRange@"a", "z"D, 10D

8b, d, u, o, f, n, y, y, q, h<

Choose randomly one of Olli, Heikki, and Ulla:

RandomChoice@8"Olli", "Heikki", "Ulla"<D Olli

The sample is, with high probability, each time different. If we want to get the same sample several
times, we can use SeedRandom similarly as with the uniform random numbers.

‡ Sampling without Replacement

RandomSample[list, n] (Ÿ6)  Take, without replacement, n elements from list

RandomSample[weights Ø list, n]  Give each element a weight (e.g., probability)

Chapter 29  •  Probability 965



This command performs sampling without replacement so that an element of the given list cannot be
in the sample more than once.

In the popular lotto game in Finland, seven numbers are randomly chosen from numbers 1, 2, …, 39.
Now we do such a lottery:

RandomSample@Range@39D, 7D 827, 8, 2, 13, 11, 24, 21<

‡ Random Permutations

RandomSample[list]  Give a random permutation of the elements of list

RandomSample[weights Ø list]  Give a random permutation by giving each element a weight

Here is a random permutation:

RandomSample@Range@0, 9DD 83, 6, 1, 8, 9, 2, 5, 7, 4, 0<

Divide 20 elements randomly into four groups:

Partition@RandomSample@Range@20DD, 5D

881, 7, 15, 20, 13<, 812, 17, 14, 2, 11<, 88, 9, 10, 3, 5<, 84, 18, 6, 16, 19<<

29.2  Discrete Probability Distributions

29.2.1  Probability Distributions

Mathematica  defines  many discrete  and continuous  probability  distributions.  We now begin  to  explore
these distributions. As an introduction, we briefly study the binomial distribution.

‡ Example: The Binomial Distribution

Let X  be  the  number  of sixes  when  a  die  is  tossed  six  times; X  has  the  binomial  distribution  with

parameters 6 and 1
6

:

dist = BinomialDistribution@6, 1 ê 6D

BinomialDistributionB6,
1

6
F

Ask for the mean, variance, and standard deviation:

8Mean@distD, Variance@distD, StandardDeviation@distD<

:1,
5

6
,

5

6
>

The probability density function (PDF) and cumulative distribution function (CDF) at k are as follows:

8PDF@dist, kD, CDF@dist, kD<

:
56-k Binomial@6, kD

46 656
, BetaRegularizedB

5

6
, 6 - Floor@kD, 1 + Floor@kDF>

Calculate the numerical values of the density and distribution functions:

t1 = Table@8k, PDF@dist, kD<, 8k, 0, 6<D êê N

880., 0.334898<, 81., 0.401878<, 82., 0.200939<, 83., 0.0535837<,
84., 0.00803755<, 85., 0.000643004<, 86., 0.0000214335<<

966 Mathematica Navigator



t2 = Table@8k, CDF@dist, kD<, 8k, 0, 6<D êê N

880., 0.334898<, 81., 0.736776<, 82., 0.937714<,
83., 0.991298<, 84., 0.999336<, 85., 0.999979<, 86., 1.<<

Plot the functions:

ListPlot@Ò, PlotRange Ø 8-0.05, 1.05<D & êü 8t1, t2<

:

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

,

1 2 3 4 5 6

0.2

0.4

0.6

0.8

1.0

>

‡ Properties of Distributions

For each univariate  distribution (both discrete  and continuous),  we can ask for  the following informa-

tion. In place of dist, simply write a particular distribution, such as BinomialDistribution[6, 1/6].

Mean[dist], Variance[dist], StandardDeviation[dist],
Skewness[dist], Kurtosis[dist]

PDF[dist, x]  Value of the probability density function at x

CDF[dist, x]  Value of the cumulative distribution function at x

Quantile[dist, q]  The q quantile
InverseCDF[dist, q]  The inverse of the CDF

ExpectedValue[f, dist]  Expected value of a pure function f

ExpectedValue[f, dist, x]  Expected value of a function f of x

CharacteristicFunction[dist, t]  Value of the characteristic function at t

Let X  be  a  random  variable.  The  mean m  and  the  variance s2  are  the  expected  values  of X  and

HX - mL2. The standard deviation s is the square root of the variance.

Skewness  is  the  expected value of HX - mL3 ës3.  A positive  [negative]  skewness  indicates  a  distribu-

tion with a long right [left] tail; symmetric distributions have a skewness of 0.

Kurtosis is the expected value of HX - mL4 ës4. Kurtosis measures the concentration of the distribution

around  the  peak  and  in  the  tails  versus  the  concentration  in  the  flanks.  The  kurtosis  of  all  normal
distributions is 3. A kurtosis larger than 3 indicates a distribution that is more peaked and has heavier
tails  than  a  normal  distribution  with  the  same variance,  whereas  a  kurtosis  smaller  than  3  indicates  a
distribution that is flatter.

The  CDF  is F(x) = P(X § x).  The  PDF  in Mathematica  means,  for  continuous  random  variables,  the
derivative  of  the  CDF  and,  for  discrete  variables,  the  function  often  called  the  probability  function  or
probability mass function. In mathematical terms, the PDF in Mathematica  is f(x) = F´(x)  if X  is continu-

ous and f(x) = P(X = x) if X is discrete.

For probability distributions, Quantile and InverseCDF are the same (Quantile can also be used for
data). For continuous distributions, the q quantile is the value x such that F(x) = q. For discrete distribu-

tions,  the q  quantile  is  the  smallest  integer x  such  that F(x) ¥ q.  For  most  discrete  distributions,  a
symbolic,  closed-form expression is  not  available  for  the quantile  function;  however,  numerical  values
of quantiles can always be calculated.

Chapter 29  •  Probability 967



In ExpectedValue, the option Assumptions can be used.

The characteristic function is the expected value of ‰i t x for real t.

In addition, we have an undocumented command for the domain of a distribution:

DistributionDomain@BinomialDistribution@n, pDD

Range@0, nD

‡ Random Numbers from Distributions

Random numbers from discrete distributions:
RandomInteger[dist]  A random number from the distribution
RandomInteger[dist, n]  A list of n random numbers
RandomInteger[dist, {m, n}]  A matrix of (m n) random numbers

Random numbers from continuous distributions:
RandomReal[dist]  A random number from the distribution
RandomReal[dist, n]  A list of n random numbers
RandomReal[dist, {m, n}]  A matrix of (m n) random numbers

Recall from a course of probability that we can get random numbers from a distribution by calculat-
ing the inverse CDF (or the quantile function) at points that are random numbers from the continuous
uniform  distribution  of H0, 1L.  Here,  we  calculate  random  numbers  from  an  exponential  distribution
both by using RandomReal and by using the quantile function:

RandomReal@ExponentialDistribution@0.5D, 6D

82.24403, 1.78748, 0.265188, 0.912953, 0.833566, 1.24243<
Quantile@ExponentialDistribution@0.5D, RandomReal@1, 6DD

82.61057, 0.121715, 3.80131, 1.26564, 1.43354, 3.50496<

For  details  about  generating  random  numbers  from  various  distributions,  see  the  document
tutorialêRandomNumberGeneration.

‡ Tabulating Distributions

When we later list univariate distributions, we use the following function, which shows the name of the
distribution and the PDF, CDF, mean, and variance:

listDistributions@distributions_ListD :=
8Apply@StringDrop@ToString@ÒP0TD, -12D, ÒD, PDF@Ò, xD,

CDF@Ò, xD, Mean@ÒD, Variance@ÒD< & êü distributions

All  names  of  distributions  end  with Distribution.  The  previous  function  shortens  the  names  by
dropping  the  “Distribution,”  to  make  room  in  a  table.  The  table  is  produced  with  the  following
function:

tabulateDistributions@list_, opts___D := TraditionalForm@
Grid@Join@8Style@Ò, BoldD & êü 8"Distribution", "PDF", "CDF", "Mean", "Variance"<<,

listD, Alignment Ø Center, Dividers Ø 8False, 82 Ø True, -1 Ø True<<, optsDD

968 Mathematica Navigator



29.2.2  Univariate Discrete Distributions

‡ Discrete Distributions with a Finite Domain

Mathematica has the following univariate discrete probability distributions with a finite domain:

discr1 = 8DiscreteUniformDistribution@8m, n<D,
BernoulliDistribution@pD, BinomialDistribution@n, pD,
BetaBinomialDistribution@a, b, nD, HypergeometricDistribution@n, K, ND<;

They could be tabulated with the programs we presented in Section 29.2.1:

tabulateDistributions@listDistributions@discr1D, Spacings Ø 81, 0.3<D

However,  we  do  not  show  the  result  here.  Instead,  we  present  a  table  in  which  we  have  somewhat
simplified and rearranged the expressions:

Distribution PDF CDF Mean Variance

DiscreteUniform@8m, n<D 1
n-m+1

dx-mt+1
n-m+1

m § x < n

1 x ¥ n

m+n
2

Hn-mL Hn-m+2L
12

BernoulliApE q x 0

p x 1

q 0 § x < 1

1 x ¥ 1
p p q

BinomialAn, pE n

x
px qn-x IqHn - dxt, dxt + 1L n p n p q

BetaBinomial@a, b, nD n

x
BIx+a,n-x+bM

BIa,bM *
n a
a+b

n a b In+a+bM
Ia+bM2 Ia+b+1M

Hypergeometric@n, K, ND
K

x

N-K

n-x

N

n

* n K
N

n K
N
J1 -

K
N
N N-n
N-1

As we stated in Section 29.2.1, the names of the distributions are shortened by dropping “DistribuÖ

tion”.  Also, 1 - p  is  replaced  with q.  For  some  distributions,  the  CDF  takes  a  lot  of  space  and  is  not

shown. Here, dxt is Floor[x], B is the Beta, and Iq is the BetaRegularized function.

The domains (or ranges of values) of these discrete distributions are as follows:

• Discrete uniform distribution: 8m, m + 1, …, n<
• Bernoulli distribution: 80, 1<
• Binomial and beta binomial distribution: 80, 1, …, n<
• Hypergeometric distribution: {maxH0, K + n - NL, …, minHK, nL}
Many discrete distributions can be interpreted in terms of some experiments.

In the discrete uniform distribution, the experiment has n equally probable outcomes m, m + 1, …, n.
An example is die tossing with m = 1 and n = 6.

With the Bernoulli distribution, we have two outcomes, 1 (success) and 0 (failure), which occur with

probabilities p and 1 - p, respectively. An example is coin tossing with p =
1
2

.

Chapter 29  •  Probability 969



The binomial distribution is the distribution of the successes in n trials, with each trial being a success

or failure with probabilities p  and 1 - p.  An example is p =
1
6

,  corresponding with tossing a die n  times

and counting the 6’s.

The beta binomial distribution emerges when we consider the parameter p  in the binomial distribu-

tion  to  be  a  random  variable  having  the  Beta(a, b)  distribution.  A  similar  interpretation  holds  for  the
beta negative binomial distribution.

The hypergeometric distribution may be interpreted as follows: From an urn containing N  balls~K
of  them  being  black  and N - K  being  white~we  pick,  without  replacement, n  balls  and  count  the
number of black balls.

‡ Discrete Distributions with an Infinite Domain

Mathematica has the following univariate discrete probability distributions with an infinite domain:

discr2 = 8GeometricDistribution@pD, NegativeBinomialDistribution@n, pD,
BetaNegativeBinomialDistribution@a, b, nD, PoissonDistribution@mD,
LogSeriesDistribution@qD, ZipfDistribution@rD<;

They could be tabulated with the programs we presented in Section 29.2.1:

tabulateDistributions@listDistributions@discr2D, Spacings Ø 81, 0.3<D

However,  we  present  here  a  table  in  which  we  have  somewhat  simplified  and  rearranged  the
expressions:

Distribution PDF CDF Mean Variance

GeometricApE p qx 1 - qdxt+1
q

p

q

p2

NegativeBinomialAn, pE n + x - 1

n - 1
pn qx IpHn, dxt + 1L n q

p

n q

p2

BetaNegativeBinomial@a, b, nD n + x - 1

n - 1
BIn+a,x+bM

BIa,bM *
n b

a-1

n b Hn+a-1L Ia+b-1M
Ha-1L2 Ha-2L

Poisson@mD ‰-m
mx

x!
QHdxt + 1, mL m m

LogSeries@qD -1

logH1-qL
qx

x
*

-q

H1-qL logH1-qL
-q Aq+logH1-qLE
H1-qL2 log2H1-qL

Zipf@rD 1

zIr+1M
1

xr+1
Hdxt

Hr+1L

zIr+1M
zIrM

zIr+1M , r > 1
zIr-1M
zIr+1M - K zIrM

zIr+1M O
2
, r > 2

Here, 1 - p is replaced with q. For some distributions, the CDF takes a lot of space and is not shown.

Here, dxt  is Floor[k], B  is  the Beta, z  is  the Zeta, Ip  is  the BetaRegularized, Q  is  the

GammaRegularized, and H is the HarmonicNumber function.

The domains (or  ranges of  values) of  the geometric,  negative binomial,  beta negative binomial,  and
Poisson distribution are 80, 1, 2, …<, whereas the domain of the logarithmic series and Zipf distribution
is 81, 2, …<.

In the geometric  distribution,  we repeat an experiment and count the number of  failures before the
first  success.  In  the  negative  binomial  distribution,  we  count  the  number  of  failures  before  the nth
success.

As an example of the discrete distributions, we next consider in more detail the binomial distribution.

970 Mathematica Navigator



29.2.3  The Binomial Distribution

‡ PDF

Toss a die 120 times and count the occurrences of sixes:

dist = BinomialDistribution@120, 1 ê 6.D;

Ask for some properties:

8Mean@distD, Variance@distD, Skewness@distD, Kurtosis@distD<

820., 16.6667, 0.163299, 3.01<

Probabilities  can be  plotted as  points  and also as  bars.  To plot  the bar  chart,  we add,  in t2,  a  third
element of 1 that defines the width of a bar:

t1 = Table@8i, PDF@dist, iD<, 8i, 0, 40<D;
t2 = Table@8i, PDF@dist, iD, 1<, 8i, 0, 40<D;

<< BarCharts`

8ListPlot@t1, PlotRange Ø All, Filling Ø Axis, ImageSize Ø 200D,
GeneralizedBarChart@t2, ImageSize Ø 200D <

: , >

In Section  11.2.3,  p. 384,  we  presented  a  dynamic  interface  to  study  the  probabilities  of  binomial

distributions.

‡ CDF and Quantiles

The  value  of  CDF  at  a  point x  is  the  probability  that  we  will  obtain  at  most x  sixes.  The  value  of  the
quantile function at q is the smallest integer x such that FHxL ¥ q.

8Plot@CDF@dist, xD, 8x, -2, 40<D,
Plot@Quantile@dist, qD, 8q, 0, 1<, PlotRange Ø 80, 40<D<

:

10 20 30 40

0.2

0.4

0.6

0.8

1.0

,

0.0 0.2 0.4 0.6 0.8 1.0

10

20

30

40

>

What is the probability that we will obtain at most 30 sixes?

CDF@dist, 30D 0.992859

Chapter 29  •  Probability 971



What is the probability that we obtain 10 to 30 sixes? The probability is most easily calculated with the
CDF, but we can also use the PDF:

CDF@dist, 30D - CDF@dist, 9D 0.990158

Sum@PDF@dist, kD, 8k, 10, 30<D 0.990158

Ask for some quantiles:

Quantile@dist, ÒD & êü 80.5, 0.9, 0.95, 0.99, 0.999<

820, 25, 27, 30, 33<

For example, the 0.5 quantile (or the median) is 20. This means that 20 is the smallest integer x satisfying
FHxL ¥ 0.5. Indeed, FH19L < 0.5 but FH20L ¥ 0.5:

8CDF@dist, 19D, CDF@dist, 20D< 80.462038, 0.559339<

Because  the  median  is  20,  we  know  that  when  we  do  repeatedly  the  experiment  of  tossing  a  die  120
times, in approximately half of the experiments the number of sixes is at most 20 and in approximately
half of the cases it is more than 20.

‡ Expectations

Calculate the first and second moments of a general binomial distribution:

dist = BinomialDistribution@n, pD;

m1 = Simplify@ExpectedValue@k, dist, kD, 0 < p < 1D n p

m2 = Simplify@ExpectedValue@k^2, dist, kD, 0 < p < 1D n p H1 + H-1 + nL pL

The variance can then be calculated in two ways:

m2 - m1^2 êê Simplify -n H-1 + pL p

Simplify@ExpectedValue@Hk - m1L^2, dist, kD, 0 < p < 1D -n H-1 + pL p

Of course, the easiest way to calculate the mean and variance is as follows:

8Mean@distD, Variance@distD< 8n p, n H1 - pL p<

‡ Characteristic Function

Ask for the characteristic function of the general binomial distribution:

char = CharacteristicFunction@dist, tD I1 - p + ‰Â t pMn

Then calculate some raw moments:

Table@Limit@D@char, 8t, k<D, t Ø 0D ê I^k, 8k, 4<D êê FullSimplify

8n p, n p H1 + H-1 + nL pL, n p H1 + H-1 + nL p H3 + H-2 + nL pLL,
n p H1 + H-1 + nL p H7 + H-2 + nL p H6 + H-3 + nL pLLL<

From the characteristic function we can get the moment-generating function:

mom = char ê. t Ø -I t I1 - p + ‰t pMn

We can also get the probability-generating function:

prob = char ê. t Ø -I Log@zD H1 - p + p zLn

The coefficients in the series expansion of the probability-generating function are the probabilities of the
distribution:

972 Mathematica Navigator



CoefficientList@prob ê. 8n Ø 6, p Ø 1. ê 6<, zD

80.334898, 0.401878, 0.200939, 0.0535837, 0.00803755, 0.000643004, 0.0000214335<

From the probability-generating function, we can also calculate the mean and the variance:

m1 = D@prob, zD ê. z Ø 1 n p

HD@prob, z, zD ê. z Ø 1L + m1 - m1^2 êê Simplify -n H-1 + pL p

‡ Random Numbers

Toss a die six times and count the occurrence of sixes. Simulate this experiment 20 times:

dist = BinomialDistribution@6, 1 ê 6D;

SeedRandom@1D; RandomInteger@dist, 20D

82, 0, 2, 0, 0, 0, 1, 0, 1, 1, 0, 2, 1, 0, 3, 2, 2, 1, 0, 0<

We got 2 sixes in the first try of six tosses, 0 sixes in the second try, and so on.

Next, we do 100,000 tries of tossing a die six times:

SeedRandom@1D; t1 = RandomInteger@dist, 10^5D;

The frequencies of the results 1, 2, …, 6 are as follows:

freq = Tally@t1D êê Sort

880, 33 516<, 81, 40 327<, 82, 19 979<, 83, 5290<, 84, 821<, 85, 65<, 86, 2<<

We succeeded in getting two results in which all six throws were sixes. Look at the following:

Position@t1, 6D 8813 127<, 899 323<<

Thus,  the  two  remarkable  results  occurred  on  the  13,127th  and  99,323rd  tries.  Calculate  relative
frequencies by dividing the frequencies by 100,000:

freqPAll, 2T ê 100 000.

80.33516, 0.40327, 0.19979, 0.0529, 0.00821, 0.00065, 0.00002<

These numbers are quite close to the exact probabilities:

Table@PDF@dist, iD, 8i, 0, 6<D êê N

80.334898, 0.401878, 0.200939, 0.0535837, 0.00803755, 0.000643004, 0.0000214335<

29.2.4  Multivariate Discrete Distributions

‡ Properties of Multivariate Distributions

The MultivariateStatistics`  package  defines  several  multivariate  distributions  and  their  properties.  The
following information exists for multivariate discrete and continuous distributions:

In the MultivariateStatistics` package:

Mean, Variance, StandardDeviation, Skewness, Kurtosis,
PDF, CDF, ExpectedValue, CharacteristicFunction,
RandomInteger (for discrete distributions), RandomReal (for continuous distributions)

Chapter 29  •  Probability 973



These are otherwise the same commands mentioned for univariate distributions in Section 29.2.1, p.

967,  but Quantile  and InverseCDF  are lacking. In place of Quantile,  we can use, for the multinormal

and  multivariate t  distributions, EllipsoidQuantile.  In  addition,  for  multivariate  distributions,  we
have the following:

In the MultivariateStatistics` package:

Covariance[dist]  Covariance matrix
Correlation[dist]  Correlation matrix
MultivariateSkewness[dist]  Multivariate coefficient of skewness
MultivariateKurtosis[dist]  Multivariate coefficient of kurtosis

‡ Multivariate Discrete Distributions

In the MultivariateStatistics` package:

MultinomialDistribution[n, p]  (p is a vector)
NegativeMultinomialDistribution[n, p]  (p is a vector)
MultiPoissonDistribution[m0, m]  (m is a vector)

Here is an example of the PDF of a multinomial distribution:

<< MultivariateStatistics`

PDF@MultinomialDistribution@n, 8p1, p2, p3<D, 8k1, k2, k3<D

IfBk1 + k2 + k3 ã n, Multinomial@k1, k2, k3D p1
k1 p2

k2 p3
k3, 0F

This  can be  interpreted as  follows.  Repeat  an experiment  independently n  times.  Each experiment can
have three results, 1, 2, and 3, with probabilities p1, p2 , and p3, respectively. The previous probability is

the probability of getting k1 times result 1, k2 times result 2, and k3 times result 3.

Here is an example of the PDF of a negative multinomial distribution:

PDF@NegativeMultinomialDistribution@n, 8p1, p2, p3<D, 8k1, k2, k3<D

Multinomial@-1 + n, k1, k2, k3D p1
k1 p2

k2 H1 - p1 - p2 - p3Ln p3
k3

This  can  be  interpreted  as  follows.  Repeat  an  experiment  independently.  Each  experiment  can  be  a
success or one of three modes of failure. The failures have probabilities p1, p2 , and p3, respectively. The

experiments are repeated until we have gotten n successes. The previous probability is the probability of
getting k1 times failure 1, k2 times failure 2, and k3 times failure 3.

Here is an example of the PDF of a multiple Poisson distribution:

PDF@MultiPoissonDistribution@m0, 8m1, m2<D, 8k1, k2<D

‰-m0-m1-m2 HypergeometricUB-k1, 1 - k1 + k2, -
m1 m2

m0
F m1

k1 m2
k2 J- m1 m2

m0
N-k1

Gamma@1 + k1D Gamma@1 + k2D
Next, we consider the multinomial distribution in more detail.

‡ The Multinomial Distribution

We toss a die three times. The numbers of the results 1, 2, …, 6 form a multinomial distribution:

<< MultivariateStatistics`

974 Mathematica Navigator



dist = MultinomialDistribution@3, Table@1 ê 6, 86<DD

MultinomialDistributionB3, :
1

6
,

1

6
,

1

6
,

1

6
,

1

6
,

1

6
>F

The PDF is as follows:

PDF@dist, Table@ki, 8i, 6<DD

IfAk1 + k2 + k3 + k4 + k5 + k6 ã 3, 6-k1-k2-k3-k4-k5-k6 Multinomial@k1, k2, k3, k4, k5, k6D, 0E
For example, the probability of getting 0, 1, 0, 0, 2, 0 times the results 1, 2, 3, 4, 5, 6, respectively, is

PDF@dist, 80, 1, 0, 0, 2, 0<D
1

72

All possible different results are

Style@dom = DistributionDomain@distD, 6D
883, 0, 0, 0, 0, 0<, 80, 3, 0, 0, 0, 0<, 80, 0, 3, 0, 0, 0<, 80, 0, 0, 3, 0, 0<, 80, 0, 0, 0, 3, 0<, 80, 0, 0, 0, 0, 3<, 82, 1, 0, 0, 0, 0<,
82, 0, 1, 0, 0, 0<, 82, 0, 0, 1, 0, 0<, 82, 0, 0, 0, 1, 0<, 82, 0, 0, 0, 0, 1<, 81, 2, 0, 0, 0, 0<, 81, 0, 2, 0, 0, 0<, 81, 0, 0, 2, 0, 0<,
81, 0, 0, 0, 2, 0<, 81, 0, 0, 0, 0, 2<, 80, 2, 1, 0, 0, 0<, 80, 2, 0, 1, 0, 0<, 80, 2, 0, 0, 1, 0<, 80, 2, 0, 0, 0, 1<,
80, 1, 2, 0, 0, 0<, 80, 1, 0, 2, 0, 0<, 80, 1, 0, 0, 2, 0<, 80, 1, 0, 0, 0, 2<, 80, 0, 2, 1, 0, 0<, 80, 0, 2, 0, 1, 0<,
80, 0, 2, 0, 0, 1<, 80, 0, 1, 2, 0, 0<, 80, 0, 1, 0, 2, 0<, 80, 0, 1, 0, 0, 2<, 80, 0, 0, 2, 1, 0<, 80, 0, 0, 2, 0, 1<,
80, 0, 0, 1, 2, 0<, 80, 0, 0, 1, 0, 2<, 80, 0, 0, 0, 2, 1<, 80, 0, 0, 0, 1, 2<, 81, 1, 1, 0, 0, 0<, 81, 1, 0, 1, 0, 0<,
81, 1, 0, 0, 1, 0<, 81, 1, 0, 0, 0, 1<, 81, 0, 1, 1, 0, 0<, 81, 0, 1, 0, 1, 0<, 81, 0, 1, 0, 0, 1<, 81, 0, 0, 1, 1, 0<,
81, 0, 0, 1, 0, 1<, 81, 0, 0, 0, 1, 1<, 80, 1, 1, 1, 0, 0<, 80, 1, 1, 0, 1, 0<, 80, 1, 1, 0, 0, 1<, 80, 1, 0, 1, 1, 0<,
80, 1, 0, 1, 0, 1<, 80, 1, 0, 0, 1, 1<, 80, 0, 1, 1, 1, 0<, 80, 0, 1, 1, 0, 1<, 80, 0, 1, 0, 1, 1<, 80, 0, 0, 1, 1, 1<<

Here are their probabilities:

Style@pr = PDF@dist, ÒD & êü dom, 7D

:
1

216
,

1

216
,

1

216
,

1

216
,

1

216
,

1

216
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

72
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
,

1

36
>

pr êê Total 1

The mean and variance vectors are as follows:

8Mean@distD, Variance@distD<

::
1

2
,

1

2
,

1

2
,

1

2
,

1

2
,

1

2
>, :

5

12
,

5

12
,

5

12
,

5

12
,

5

12
,

5

12
>>

We repeat four times the experiment of tossing a die three times. Here are the results:

RandomInteger@dist, 84<D

881, 0, 0, 0, 1, 1<, 80, 0, 2, 1, 0, 0<, 81, 0, 0, 1, 1, 0<, 82, 0, 0, 0, 0, 1<<

The covariance and correlation matrices are as follows:

MatrixForm êü 8Covariance@distD, Correlation@distD<

:

5

12
-

1

12
-

1

12
-

1

12
-

1

12
-

1

12

-
1

12

5

12
-

1

12
-

1

12
-

1

12
-

1

12

-
1

12
-

1

12

5

12
-

1

12
-

1

12
-

1

12

-
1

12
-

1

12
-

1

12

5

12
-

1

12
-

1

12

-
1

12
-

1

12
-

1

12
-

1

12

5

12
-

1

12

-
1

12
-

1

12
-

1

12
-

1

12
-

1

12

5

12

,

1 -
1

5
-

1

5
-

1

5
-

1

5
-

1

5

-
1

5
1 -

1

5
-

1

5
-

1

5
-

1

5

-
1

5
-

1

5
1 -

1

5
-

1

5
-

1

5

-
1

5
-

1

5
-

1

5
1 -

1

5
-

1

5

-
1

5
-

1

5
-

1

5
-

1

5
1 -

1

5

-
1

5
-

1

5
-

1

5
-

1

5
-

1

5
1

>

Chapter 29  •  Probability 975



Here are the multivariate coefficients of skewness and kurtosis:

8MultivariateSkewness@distD, MultivariateKurtosis@distD<

:
20

3
,

95

3
>

29.3  Continuous Probability Distributions

29.3.1  Univariate Continuous Distributions

‡ Properties of Continuous Distributions

For univariate continuous distributions, we can use the same commands Mean, Variance, and so on that

were mentioned in Section 29.2.1, p. 967:

Mean[dist], Variance[dist], StandardDeviation[dist],
Skewness[dist], Kurtosis[dist]

PDF[dist, x]  Value of the probability density function at x

CDF[dist, x]  Value of the cumulative distribution function at x

Quantile[dist, q]  The q quantile
InverseCDF[dist, q]  The inverse of the CDF

ExpectedValue[f, dist]  Expected value of a pure function f

ExpectedValue[f, dist, x]  Expected value of a function f of x

CharacteristicFunction[dist, t]  Value of the characteristic function at t

RandomReal[dist]  A random number from the distribution
RandomReal[dist, n]  A list of n random numbers
RandomReal[dist, {m, n}]  A matrix of (m n) random numbers

We now introduce the continuous distributions of Mathematica.  We have classified the distributions
as follows:

• Distributions with a finite domain
• Distributions with a half-infinite domain
• Distributions with an infinite domain
• Statistical distributions

‡ Continuous Distributions with a Finite Domain

Mathematica has the following continuous distributions with a finite domain:

cont1 = 8UniformDistribution@8a, b<D, TriangularDistribution@8a, b<D,
TriangularDistribution@8a, b<, cD, BetaDistribution@a, bD<;

They could be tabulated with the program we presented in Section 29.1.3:

tabulateDistributions@listDistributions@cont1D, Spacings Ø 81, 0.3<D

However, we present here a table in which we have somewhat simplified the expressions:

976 Mathematica Navigator



Distribution PDF CDF Mean Variance

Uniform@8a, b<D μ 1

b-a
a § x § b

x-a

b-a
a § x § b

1 x > b

a+b
2

Ib-aM2

12

Triangular@8a, b<D
4 Hx-aL
Ib-aM2

a § x §
a+b
2

4 Ib-xM
Ib-aM2

a+b
2

< x § b

2 J x-a
b-a

N2 a § x §
a+b
2

1 - 2 J b-x
b-a

N2 a+b
2

< x § b

1 x > b

a+b
2

Ib-aM2

24

Triangular@8a, b<, cD
2 Hx-aL

Ib-aM Hc-aL a § x § c

2 Ib-xM
Ib-aM Ib-cM c < x § b

Hx-aL2
Ib-aM Hc-aL a § x § c

1 -
Ib-xM2

Ib-aM Ib-cM c < x § b

1 x > b

a+b+c
3

Ia-bM2+Ha-cL2+Ib-cM2

36

Beta@a, bD 1

BIa,bM xa-1H1 - xLb-1 IxHa, bL a

a+b

a b

Ia+bM2 Ia+b+1M

Note again that here the names of the distributions are shortened by dropping “Distribution” from
the names. Recall that B  is the Beta  function and Ix  the BetaRegularized  function. The domain of the

uniform and both triangular distributions is the interval @a, bD, and the domain of the beta distribution is
@0, 1D.

If c = Ha + bL ê 2, then the triangular distribution with parameters 8a, b< and c (having the peak at x = cL
reduces to the symmetric triangular distribution with parameter 8a, b<.
‡ Continuous Distributions with a Half-Infinite Domain

Mathematica has the following continuous distributions with a half-infinite domain:

cont2 = 8ExponentialDistribution@lD, RayleighDistribution@sD,
WeibullDistribution@a, lD, ParetoDistribution@k, aD, GammaDistribution@a, lD,
HalfNormalDistribution@qD, LogNormalDistribution@m, sD,
MaxwellDistribution@sD, InverseGaussianDistribution@m, lD<;

They could be tabulated with

tabulateDistributions@listDistributions@cont2D, Spacings Ø 81, 0.3<D

but we present here a table in which we have somewhat simplified and rearranged the expressions:

Distribution PDF CDF Mean Variance

Exponential@lD l ‰-x l 1 - ‰-l x
1
l

1

l2

Rayleigh@sD x

s2
‰
-
1

2
J x
s
N2 1 - ‰

-
1

2
J x
s
N2 p

2
s I2 -

p

2
Ms2

Weibull@a, lD a

l
J x
l
Na-1 ‰-J

x

l
Na

1 - ‰
-J x

l
Na

l GJ1 +
1
a
N l2 BGJ1 +

2
a
N - GJ1 +

1
a
N2F

Pareto@k, aD a

k
J k
x
Na+1 1 - J k

x
Na, x > k a k

a-1
, a > 1 a k2

Ha-1L2 Ha-2L , a > 2

Gamma@a, lD 1
l GHaL J

x
l
Na-1 ‰-

x

l QJa, 0, x
l
N a l a l2

HalfNormal@qD 2 q
p
‰
-

q x

p

2

erf q x

p

1
q

p-2

2 q2

Chapter 29  •  Probability 977



LogNormal@m, sD 1

2 p s x
‰
-

logHxL-m

2 s

2

1
2
+
1
2

erf
logHxL-m

2 s

‰m+
1

2
s2 ‰2 m+s

2 I‰s2 - 1M

Maxwell@sD 2 x2

p s3
‰
-

x

2 s

2

* 2
2

p

s J3 -
8
p
Ns2

InverseGaussian@m, lD l

2 p x x
‰
-

l

2 x
J x-m

m
N2

* m
m3

l

Remember that Q is the GammaRegularized function. The domain of the Pareto distribution is Hk, ¶L,
whereas the domain of all the other distributions is H0, ¶L.

The lognormal distribution is the distribution followed by the exponential of a normally distributed
random variable.

‡ Continuous Distributions with an Infinite Domain

Here are continuous distributions for which the domain is the interval H-¶, ¶L:
cont3 = 8NormalDistribution@m, sD, LaplaceDistribution@m, bD,

LogisticDistribution@m, bD, CauchyDistribution@a, bD,
ExtremeValueDistribution@a, bD, GumbelDistribution@a, bD<;

They could be tabulated with

tabulateDistributions@listDistributions@cont3D, Spacings Ø 81, 0.3<D

but we present here a table in which we have somewhat simplified and rearranged the expressions:

Distribution PDF CDF Mean Variance

Normal@m, sD 1

2 p s

‰
-

x-m

2 s

2

1
2
+
1
2

erf
x-m

2 s

m s2

Laplace@m, bD 1
2 b

‰
-

»x-m»

b

1
2
‰
x-m

b x § m

1 -
1
2
‰

m-x

b x > m

m 2 b2

Logistic@m, bD 1
b
‰
-
x-m

b K1 + ‰
-
x-m

b O
-2

K1 + ‰
-
x-m

b O
-1

m
p2

3
b2

Cauchy@a, bD 1

p b
B1 + J x-a

b
N2F-1 1

2
+
1
p

tan-1J x-a
b
N | |

ExtremeValue@a, bD 1
b
‰
-
x-a

b
-‰

-
x-a

b

‰-‰
-
x-a

b
a + ˝ b

p2

6
b2

Gumbel@a, bD 1
b
‰
x-a

b
-‰

x-a

b

1 - ‰-‰
x-a

b
a - ˝ b

p2

6
b2

Note  that  the  second  parameter  in  the  normal  distribution  is  the  standard  deviation  and  not  the
variance. The standard normal distribution with mean 0 and standard deviation 1 can be represented as
NormalDistribution[].

The mean and variance do not exist for the Cauchy distribution.

978 Mathematica Navigator



The  extreme  value  distribution  is  the  limiting  distribution  for  the  largest  values  in  large  samples
drawn  from  a  variety  of  distributions,  including  the  normal  distribution.  The  limiting  distribution  for
the smallest values in such samples is the Gumbel distribution. The ˝ in the mean of the extreme value
and Gumbel distribution is EulerGamma.

‡ Statistical Distributions

Here are well-known statistical distributions:

cont4a = 8ChiSquareDistribution@nD, ChiDistribution@nD,
StudentTDistribution@nD, FRatioDistribution@m, nD<;

They could be tabulated with

tabulateDistributions@listDistributions@cont4aD, Spacings Ø 81, 0.3<D

but we present here a table in which we have somewhat simplified and rearranged the expressions:

Distribution PDF CDF Mean Variance

ChiSquare@nD 1

2 GI n
2
M
I x
2
M
n

2
-1

‰-
x

2 QI n
2

, 0, x
2
M n 2 n

Chi@nD 2

GI n
2
M
J x2
2
N
n-1

2
‰-

x2

2 QJ n
2

, 0, x
2

2
N 2

GJ n+1
2
N

GI n
2
M

n - 2
GJ n+1

2
N2

GI n
2
M2

StudentT@nD 1

BJ n
2
,
1

2
N

nn

In+x2Mn+1
1
2
+
sgnHxL
2

I n

n+x2
,1
I n
2

, 1
2
M 0, n > 1

n
n-2

, n > 2

FRatio@m, nD 1

BIm
2
,
n

2
M

mm nn xm-2

Hn+mxLm+n I mx

n+mx
Im
2

, n
2
M n

n-2
, n > 2 2 n2 Hm+n-2L

mHn-2L2 Hn-4L , n > 4

Here, B  is  the Beta  function, Q  is  the GammaRegularized,  and Ip  is  the BetaRegularized  function.

The domain of the c2 and F-ratio distributions is H0, ¶L, and that of the Student t distribution is H-¶, ¶L.
The c2HnL  distribution  (with  degrees  of  freedom n)  is  followed  by  the  sum  of  the  squares  of n

independent NH0, 1L  random variables.  The cHnL distribution is  the  distribution of  the  square  root  of  a
c2HnL  random variable.  If X has the NH0, 1L  and Z  the c2HnL  distribution and X  and Z  are independent,

then Xì Z ên  has a tHnL distribution. The F-ratio distribution is followed by the ratio of two indepen-

dent c2 variables divided by their respective degrees of freedom.

The limit of a Student tHnL distribution when n Ø ¶ is the standard normal distribution:

Limit@PDF@StudentTDistribution@nD, xD, n Ø ¶D

‰
-

x2

2

2 p

In addition,  we have the following noncentral  statistical  distributions that  are derived from normal
distributions with nonzero means:

cont4b = 8NoncentralChiSquareDistribution@n, lD,
NoncentralStudentTDistribution@n, lD, NoncentralFRatioDistribution@m, n, lD<;

As  an  example  of  the  continuous  distributions,  we  next  consider  in  more  detail  the  normal
distribution.

Chapter 29  •  Probability 979



29.3.2  The Normal Distribution

‡ Probabilities

Note  that  the  parameters  of  the  normal  distribution  in Mathematica  are  the  mean  and  the  standard
deviation of the distribution (in some books, the second parameter is the variance). Here are plots of the
PDF, CDF, and quantile function of a normal distribution with mean 2 and standard deviation 1.5:

dist = NormalDistribution@2, 1.5D;

8Plot@PDF@dist, xD, 8x, -3, 7<D, Plot@CDF@dist, xD, 8x, -3, 7<D,
Plot@Quantile@dist, qD, 8q, 0, 1<, PlotRange Ø 8-3, 7<D<

:

-2 2 4 6

0.05

0.10

0.15

0.20

0.25

,

-2 2 4 6

0.2

0.4

0.6

0.8

1.0

,

0.2 0.4 0.6 0.8 1.0
-2

2

4

6

>

What is the probability of getting a value in the interval H-1, 3L? The most convenient way to answer
this question is to use the distribution function, but we can also integrate the density function over the
interval:

CDF@dist, 3D - CDF@dist, -1D 0.724757

Integrate@PDF@dist, xD, 8x, -1, 3<D 0.724757

What is a value of x such that we obtain, with probability p, at most the value x? A quantile provides

the solution to this problem:

Quantile@dist, ÒD & êü 80.5, 0.9, 0.95, 0.99, 0.999<

82., 3.92233, 4.46728, 5.48952, 6.63535<

We can check that, for example, the 0.95-quantile is correct:

CDF@dist, % êê LastD 0.999

The quantile function of a general random distribution is as follows:

Quantile@NormalDistribution@m, sD, qD

m + 2 s InverseErf@-1 + 2 qD

‡ Tabulating Probabilities

For situations in which we do not have access to Mathematica, we can prepare a table of probabilities (for

Grid, see Section 15.2.1, p. 470):

tt = Table@NumberForm@CDF@NormalDistribution@0, 1D, y + xD, 4D,
8y, 0.0, 3.9, 0.1<, 8x, 0, 0.09, 0.01<D;

rowLabels = Style@Ò, BoldD & êü Range@0.0, 3.9, 0.1D;
colLabels = Style@Ò, BoldD & êü Range@0, 9D;

tt2 = ArrayFlattenA9888""<<, 8colLabels<, 88""<<<,

98rowLabels<¨, tt, 8rowLabels<¨=,

888""<<, 8colLabels<, 88""<<<=E;

Text@Style@Grid@tt2, Spacings Ø 81, 0<, Alignment Ø Decimal, Dividers Ø
882 Ø True, 12 Ø True<, 82 Ø True, 12 Ø True, 22 Ø True, 32 Ø True, 42 Ø True<<D, 6DD

980 Mathematica Navigator



0 1 2 3 4 5 6 7 8 9
0. 0.5 0.504 0.508 0.512 0.516 0.5199 0.5239 0.5279 0.5319 0.5359 0.
0.1 0.5398 0.5438 0.5478 0.5517 0.5557 0.5596 0.5636 0.5675 0.5714 0.5753 0.1
0.2 0.5793 0.5832 0.5871 0.591 0.5948 0.5987 0.6026 0.6064 0.6103 0.6141 0.2
0.3 0.6179 0.6217 0.6255 0.6293 0.6331 0.6368 0.6406 0.6443 0.648 0.6517 0.3
0.4 0.6554 0.6591 0.6628 0.6664 0.67 0.6736 0.6772 0.6808 0.6844 0.6879 0.4
0.5 0.6915 0.695 0.6985 0.7019 0.7054 0.7088 0.7123 0.7157 0.719 0.7224 0.5
0.6 0.7257 0.7291 0.7324 0.7357 0.7389 0.7422 0.7454 0.7486 0.7517 0.7549 0.6
0.7 0.758 0.7611 0.7642 0.7673 0.7704 0.7734 0.7764 0.7794 0.7823 0.7852 0.7
0.8 0.7881 0.791 0.7939 0.7967 0.7995 0.8023 0.8051 0.8078 0.8106 0.8133 0.8
0.9 0.8159 0.8186 0.8212 0.8238 0.8264 0.8289 0.8315 0.834 0.8365 0.8389 0.9
1. 0.8413 0.8438 0.8461 0.8485 0.8508 0.8531 0.8554 0.8577 0.8599 0.8621 1.
1.1 0.8643 0.8665 0.8686 0.8708 0.8729 0.8749 0.877 0.879 0.881 0.883 1.1
1.2 0.8849 0.8869 0.8888 0.8907 0.8925 0.8944 0.8962 0.898 0.8997 0.9015 1.2
1.3 0.9032 0.9049 0.9066 0.9082 0.9099 0.9115 0.9131 0.9147 0.9162 0.9177 1.3
1.4 0.9192 0.9207 0.9222 0.9236 0.9251 0.9265 0.9279 0.9292 0.9306 0.9319 1.4
1.5 0.9332 0.9345 0.9357 0.937 0.9382 0.9394 0.9406 0.9418 0.9429 0.9441 1.5
1.6 0.9452 0.9463 0.9474 0.9484 0.9495 0.9505 0.9515 0.9525 0.9535 0.9545 1.6
1.7 0.9554 0.9564 0.9573 0.9582 0.9591 0.9599 0.9608 0.9616 0.9625 0.9633 1.7
1.8 0.9641 0.9649 0.9656 0.9664 0.9671 0.9678 0.9686 0.9693 0.9699 0.9706 1.8
1.9 0.9713 0.9719 0.9726 0.9732 0.9738 0.9744 0.975 0.9756 0.9761 0.9767 1.9
2. 0.9772 0.9778 0.9783 0.9788 0.9793 0.9798 0.9803 0.9808 0.9812 0.9817 2.
2.1 0.9821 0.9826 0.983 0.9834 0.9838 0.9842 0.9846 0.985 0.9854 0.9857 2.1
2.2 0.9861 0.9864 0.9868 0.9871 0.9875 0.9878 0.9881 0.9884 0.9887 0.989 2.2
2.3 0.9893 0.9896 0.9898 0.9901 0.9904 0.9906 0.9909 0.9911 0.9913 0.9916 2.3
2.4 0.9918 0.992 0.9922 0.9925 0.9927 0.9929 0.9931 0.9932 0.9934 0.9936 2.4
2.5 0.9938 0.994 0.9941 0.9943 0.9945 0.9946 0.9948 0.9949 0.9951 0.9952 2.5
2.6 0.9953 0.9955 0.9956 0.9957 0.9959 0.996 0.9961 0.9962 0.9963 0.9964 2.6
2.7 0.9965 0.9966 0.9967 0.9968 0.9969 0.997 0.9971 0.9972 0.9973 0.9974 2.7
2.8 0.9974 0.9975 0.9976 0.9977 0.9977 0.9978 0.9979 0.9979 0.998 0.9981 2.8
2.9 0.9981 0.9982 0.9982 0.9983 0.9984 0.9984 0.9985 0.9985 0.9986 0.9986 2.9
3. 0.9987 0.9987 0.9987 0.9988 0.9988 0.9989 0.9989 0.9989 0.999 0.999 3.
3.1 0.999 0.9991 0.9991 0.9991 0.9992 0.9992 0.9992 0.9992 0.9993 0.9993 3.1
3.2 0.9993 0.9993 0.9994 0.9994 0.9994 0.9994 0.9994 0.9995 0.9995 0.9995 3.2
3.3 0.9995 0.9995 0.9995 0.9996 0.9996 0.9996 0.9996 0.9996 0.9996 0.9997 3.3
3.4 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9997 0.9998 3.4
3.5 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 0.9998 3.5
3.6 0.9998 0.9998 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.6
3.7 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.7
3.8 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 0.9999 3.8
3.9 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 3.9

0 1 2 3 4 5 6 7 8 9

‡ Confidence Intervals

What  is  an  interval Hm - as, m + asL  such  that  a  normal  random  variable  with  mean m  and  standard
deviation s  is  in  that  interval  with  probability p?  If FHxL  is  the  CDF  of  the  normal  distribution,  the

constant satisfies the equation FHm + asL - FHm - asL = p. By symmetry, FHm - asL = 1 - FHm + asL, so we

get the equation FHm + asL = I1 + pM ë2. Thus, m + as is the I1 + pM ë2 quantile. This quantile is as follows:

dist = NormalDistribution@m, sD;

Quantile@dist, H1 + pL ê 2D m + 2 s InverseErf@pD
Thus, we get a as the solution of an equation:

Solve@m + a s ã %, aD ::a Ø 2 InverseErf@pD>>
Calculate the value of a for some values of p:

% ê. p Ø 80.5, 0.9, 0.95, 0.99, 0.999<

88a Ø 80.67449, 1.64485, 1.95996, 2.57583, 3.29053<<<

Check, for example, the last value of a:

CDF@dist, m + 3.29053 sD - CDF@dist, m - 3.29053 sD 0.999

‡ Expectations and Characteristic Function

Calculate the first and second moments of a general normal distribution:

m1 = ExpectedValue@x, dist, xD m

m2 = ExpectedValue@x^2, dist, xD m2 +s2

Chapter 29  •  Probability 981



The variance can then be calculated in two ways:

m2 - m1^2 s2

ExpectedValue@Hx - m1L^2, dist, xD s2

Of course, the easiest way to calculate the mean and variance is as follows:

8Mean@distD, Variance@distD< 9m, s2=
Ask for the characteristic function of the general normal distribution:

char = CharacteristicFunction@dist, tD ‰
Â t m-

t2 s2

2

Calculate some raw moments:

Table@Limit@D@char, 8t, k<D, t Ø 0D ê I^k, 8k, 4<D êê FullSimplify

9m, m2 + s2, m3 + 3 m s2, m4 + 6 m2 s2 + 3 s4=

‡ Normal Approximation

A binomial distribution with parameters n  and p  can be approximated with a normal distribution with

mean np  and  variance npq,  if n  is  large.  Let  us  toss  a  die  100  times  and  count  sixes.  Here  are  the

probabilities of getting 0, 1, ..., 30 sixes (the probability of getting more than 30 sixes is practically zero):

dist = BinomialDistribution@100, 1 ê 6D;

t1 = Table@8i, N@PDF@dist, iDD, 1<, 8i, 0, 30<D;

The 1 as the third element of the sublists is the width of the bars in a bar chart to be plotted next.  We
also plot the PDF of the approximating normal distribution:

apprN = NormalDistributionB100 μ
1

6
, SqrtB100 μ

1

6
μ

5

6
FF;

<< BarCharts`

Show@GeneralizedBarChart@t1, BarStyle Ø LightGrayD,
Plot@PDF@apprN, xD, 8x, 0, 30<D, ImageSize Ø 200D

As is seen, the binomial distribution is close to the normal distribution.

‡ Random Numbers

Now we generate 100 observations from a normal distribution with mean 2 and standard deviation 1.5.
We plot both the original observations and the sorted observations. Most observations can be seen to be
close to the mean 2:

dist = NormalDistribution@2, 1.5D;

982 Mathematica Navigator



SeedRandom@1D; t1 = RandomReal@dist, 100D;

8ListPlot@t1D, ListPlot@Sort@t1D, PlotStyle Ø PointSize@TinyDD<

:

20 40 60 80 100

2

4

6

,

20 40 60 80 100

2

4

6

>

By  the  way,  at support.wolfram.com/mathematica/graphics/decorations/probabilityplot.html
[Note:  This  document  no  longer  exists],  you can find a  program that  plots  sorted data on a probability
graph  paper  where  the y  axis  is  scaled  according  to  a  given  distribution  (normal  distribution  is  the

default). Normally distributed data are near to a straight line on such a paper:

NormalProbabilityPlot@t1, ImageSize Ø 200, PlotStyle Ø PointSize@SmallDD

0 2 4 6

1

5
10

25

50

75

90
95

99

We also plot a histogram:

<< Histograms`

Histogram@t1, Ticks Ø 8Range@-2, 7, 1D, Automatic<D

-1 0 1 2 3 4 5 6 7

5

10

15

20

‡ Truncated Normal Distribution

A truncated normal distribution is otherwise like the normal distribution but the domain is truncated to
nonnegative  reals.  Thus,  to  get  the  PDF  of  the  truncated  normal  distribution,  divide  the  PDF  of  the
normal distribution by the probability that the normally distributed variable is nonnegative:

PDFTrN =

PDF@NormalDistribution@m, sD, xD ê H1 - CDF@NormalDistribution@m, sD, 0DL êê Simplify

‰
-
Hx-mL2

2 s2 2

p

s 1 + ErfB m

2 s

F

Calculate the CDF of the truncated normal distribution:

Chapter 29  •  Probability 983



CDFTrN = Integrate@PDFTrN ê. x Ø t, 8t, 0, x<D

1 +

ErfcB x-m

2 s

F

-2 + ErfcB m

2 s

F

To calculate the quantile function, solve an equation:

QuantileTrN = x ê. Solve@CDFTrN ã p, xDP1T êê Simplify

Solve::ifun : Inverse functions are being used by Solve, so some

solutions may not be found; use Reduce for complete solution information. à

m + 2 s InverseErfcBH-1 + pL -2 + ErfcB
m

2 s

F F

To calculate random numbers from the truncated normal distribution, evaluate the quantile function at
uniform random numbers:

ListPlot@QuantileTrN ê. 8m Ø 10, s Ø 6, p Ø RandomReal@1, 1000D<,
PlotRange Ø All, PlotStyle Ø PointSize@SmallDD

200 400 600 800 1000

5

10

15

20

25

29.3.3  Multivariate Continuous Distributions

‡ Multivariate Continuous Distributions

In the MultivariateStatistics` package:

MultinormalDistribution[m, S] m = mean vector, S = covariance matrix
MultivariateTDistribution[R, m] R = correlation matrix, m = dof
WishartDistribution[S, m] S  = scale matrix, m = dof
HotellingTSquareDistribution[p, m] p = dimensionality parameter, m = dof

QuadraticFormDistribution[{A, b, c}, {m, S}]  Distribution of z A z + b z + c, where z has the
multinormal distribution with parameters m and S

Here,  dof  is  degrees  of  freedom.  The  multinormal  and  the  multivariate t  distribution  are  vector-
valued distributions, the Wishart distribution is a matrix-valued distribution, and the Hotelling T2  and
the quadratic form distribution are scalar-valued distributions.

For  the  multivariate  continuous  distributions,  we  can  apply  the  same Mean, Variance, PDF, CDF,

RandomReal, Covariance, Correlation, etc. that were mentioned in Section 29.2.4, p. 973. Only for the

Hotelling T2  distribution,  we  can  use Quantile.  For  the  multinormal  and  multivariate t  distributions,
we have, in place of Quantile, EllipsoidQuantile; its inverse is EllipsoidProbability.

984 Mathematica Navigator



In the MultivariateStatistics` package:

EllipsoidQuantile[dist, q]  Ellipsoid containing 100 q% of the probability

EllipsoidProbability[dist, ellipsoid]  Probability of the ellipsoid

‡ The Bivariate Normal Distribution

Consider a bivariate normal distribution with means 1 and 2, variances 2 and 1, and covariance 1 ê 2:

<< MultivariateStatistics`

dist = MultinormalDistribution@81, 2<, 882, 1 ê 2<, 81 ê 2, 1<<D;

Ask for some information:

8Mean@distD, Variance@distD< 881, 2<, 82, 1<<
MatrixForm êü 8Covariance@distD, Correlation@distD<

:
2

1

2

1

2
1

,

1
1

2 2

1

2 2

1
>

Ask for the PDF:

f = PDF@dist, 8x, y<D

‰
1

2
K-I-1+xM K 4

7
I-1+xM- 2

7
I-2+yMO-K- 2

7
I-1+xM+ 8

7
I-2+yMO I-2+yMO

7 p

Plot the PDF both as a surface and as contours:

8Plot3D@f, 8x, -2.5, 4.5<, 8y, -0.5, 4.5<, BoxRatios Ø 87, 5, 3<D,
ContourPlot@f, 8x, -2.5, 4.5<, 8y, -0.5, 4.5<, AspectRatio Ø AutomaticD<

: , >

We plot the CDF (this plotting takes some time):

Plot3D@Evaluate@CDF@dist, 8x, y<D êê ND,
8x, -2, 4<, 8y, 0, 4<, BoxRatios Ø 87, 5, 3<D êê Timing

:66.5047, >

Chapter 29  •  Probability 985



With the CDF, we can calculate the probabilities of the form PIX § x, Y § yM. For example, here is the

probability that X § 2 and Y § 3:

CDF@dist, 82., 3.<D 0.669716

An ellipsoid centered on the mean that encompasses 99% of the probability is given as follows:

e99 = EllipsoidQuantile@dist, 0.99D

Ellipsoid@81, 2<, 84.50868, 2.70237<, 880.92388, 0.382683<, 8-0.382683, 0.92388<<D
p1 = Graphics@8e99, Point@81, 2<D<, Axes Ø TrueD

-2 2 4
-1

1

2

3

4

5

The ellipsoid really does contain 99% of the probability:

EllipsoidProbability@dist, e99D 0.99

We plot the ellipsoids that encompass 100 p% of the probability, for p = 0.04, 0.09, 0.14, 0.19, ..., 0.94, 0.99:

Graphics@Table@EllipsoidQuantile@dist, pD, 8p, 0.04, 0.99, 0.05<D, Axes Ø TrueD

-2 2 4
-1

1

2

3

4

5

Lastly,  we  generate  1000  random  two-component  vectors  and  plot  them  together  with  the  99%
ellipsoid:

SeedRandom@1D;
Show@p1, ListPlot@RandomReal@dist, 1000D, PlotStyle Ø PointSize@SmallDDD

-2 2 4
-1

1

2

3

4

5

Of the points, 7 are outside the 99% region. Theoretically, the region should contain approximately 990
points out of 1000.

986 Mathematica Navigator



29.4  Stochastic Processes

29.4.1  Random Walks and Brownian Motion

‡ 1D Random Walk

In  a  simple  random  walk,  we  start  from  the  point  0  and at  each  step  we  move  one  unit  either  left  or
right. With RandomChoice we can generate the steps:

SeedRandom@1D; steps = RandomChoice@8-1, 1<, 20D

81, 1, -1, 1, -1, -1, -1, 1, -1, 1, -1, -1, -1, -1, -1, -1, -1, 1, 1, 1<

Use Accumulate to sum the steps up and thus to get the realization of the random walk. In addition, we
have to add the starting point 0 to the walk:

walk = Join@80<, Accumulate@stepsDD

80, 1, 2, 1, 2, 1, 0, -1, 0, -1, 0, -1, -2, -3, -4, -5, -6, -7, -6, -5, -4<

To plot the random walk, it is useful to show the time on the x axis and the movement on the y axis:

ListLinePlotA8Range@0, 20D, walk<¨, Mesh Ø AllE

5 10 15 20

-6

-4

-2

2

So we arrive at the following program for a simple random walk:

randomWalk@n_, opts___D :=

ListLinePlotA8Range@0, nD, Join@80<, Accumulate@RandomChoice@8-1, 1<, nDDD<¨, optsE

Next, we simulate 2000 steps:

SeedRandom@1D; randomWalk@2000, AspectRatio Ø 0.2, ImageSize Ø 400D

500 1000 1500 2000

-40

-20

20

40

60

Next, we do 20 simulations of 2000 steps:

SeedRandom@1D; Show@Table@randomWalk@2000, PlotStyle Ø Hue@RandomReal@DDD, 820<D,
PlotRange Ø All, AspectRatio Ø 0.2, ImageSize Ø 400D

500 1000 1500 2000

-100

-50

50

Chapter 29  •  Probability 987



The  following  code  (taken  from  the  documentation  of Mathematica)  produces  a  dynamic  plot  that
shows a random walk going forever (to stop the walk, delete the plot):

DynamicModuleA8n = 199, data = Accumulate@RandomChoice@8-1, 1<, 200DD<,

DynamicAListLinePlotAn = n + 1; 8Range@n - 199, nD, data = Append@Rest@dataD,

Last@dataD + RandomChoice@8-1, 1<DD<¨, AxesOrigin Ø 8n - 199, 0<EEE

‡ Coin Tossing

Here we simulate  coin tossing and investigate how the relative frequency of  heads evolves as we toss
the  coin  increasingly  more  times.  It  is  expected that  the  relative  frequency approaches  the  value  0.5  if
the coin is unbiased.

coinTossing@n_, opts___D := ListLinePlot@
Accumulate@RandomChoice@80, 1<, nDD ê Range@nD, AxesOrigin Ø 80, 0.5<, optsD

Here, we first generate a list of heads and tails; let us say that 1 means heads and 0 tails. Cumulative
sums  are  then  calculated,  and  relative  frequencies  of  heads  are  obtained  from  the  cumulative  sums.
Note  that  by  dividing  the  cumulative  sums  with Range[n],  we  divide  an n  list  by  another n  list;  the
division is automatically done element by element so that the result is a list of relative frequencies. As
an  example,  we  toss  a  coin  5000  times  and  so  calculate  a  sequence  of  empirical  estimates  for  the
probability of a head:

SeedRandom@5D; coinTossing@5000, AspectRatio Ø 0.2, ImageSize Ø 400, Filling Ø 0.5D

As we see, the convergence to 0.5 may not be especially fast. It is better to just trust that the probability
is 0.5.

‡ Gambler’s Ruin

Suppose you have $ k and your friend has $ HK - kL. You play the following game. You toss a coin. If the
result is heads, your friend gives you $1,  but if  the result is tails,  you have to give your friend $1. The
game stops when either of the players has lost the last dollar. Let us simulate this game.

Consider the following example:

NestList@Ò + H-1L^RandomInteger@D &, 0, 10D

80, 1, 2, 1, 0, -1, 0, 1, 0, 1, 0<

Note  that RandomInteger[]  is  0  or  1,  with  each  having  the  probability  of 1 ê 2.  We  see  that
(-1)^RandomInteger[]  is then 1 or -1. The previous command thus adds to the current state #  a step
of  1  or -1.  The  result  is  a  random  walk.  To  stop  the  walk  when  the  walk  reaches  0  or K,  we  use
FixedPointList with a stopping test:

gamblersRuin@k_, K_, opts___D :=

WithA8gr = FixedPointList@Ò + H-1L^RandomInteger@D &, k,

1000, SameTest Ø HÒ2 ã 0 »» Ò2 ã K &LD<,

ListLinePlotA8Range@0, Length@grD - 1D, gr<¨, optsEE

988 Mathematica Navigator



Recall  that in SameTest, #2  refers to the latest value.  In the previous program, we use at most 1000
steps. As an example, suppose both you and your friend have $10 initially:

SeedRandom@11D; gamblersRuin@10, 20, Mesh Ø AllD

10 20 30 40

2

4

6

8

10

12

Sorry, you lost. Next, we show 20 paths:

SeedRandom@4D;
Show@Table@gamblersRuin@10, 20, PlotStyle Ø Hue@RandomReal@DDD, 820<D,

PlotRange Ø All, AxesOrigin Ø 80, 0<, AspectRatio Ø 0.25, ImageSize Ø 400D

50 100 150 200 250

5

10

15

20

You won 13 times and lost 7 times. One game lasted for approximately 270 iterations.

Now we simulate the game 10,000 times and only show the frequencies of the duration of the game:

SeedRandom@1D; tt = Table@FixedPointList@Ò + H-1L^RandomInteger@D &,
10, 1000, SameTest Ø HÒ2 ã 0 »» Ò2 ã 20 &LD, 810 000<D;

ListPlot@Sort@Tally@HLength êü ttL - 1DD,
Filling Ø Axis, AspectRatio Ø 0.3, ImageSize Ø 400D

We see that most games last at most for approximately 200 iterations, but in this simulation one game
lasted for more than 800 iterations.

‡ 2D and 3D Random Walk

In  two  dimensions,  we  can  consider  several  different  random  walks.  In  the  following  plots,  the  last
position is shown as a red point:

Chapter 29  •  Probability 989



8SeedRandom@2D; With@8rw = Accumulate@RandomChoice@8-1, 1<, 82000, 2<DD<,
Graphics@8Line@rwD, Red, PointSize@LargeD, Point@Last@rwDD<,

Axes Ø True, ImageSize Ø 200DD,
SeedRandom@4D; With@8rw = Accumulate@

RandomChoice@881, 0<, 80, 1<, 8-1, 0<, 80, -1<<, 2000DD<,
Graphics@8Line@rwD, Red, PointSize@LargeD, Point@Last@rwDD<,

Axes Ø True, ImageSize Ø 200DD<

:
-100 -80 -60 -40 -20

-20

-10

10

20

30

,

-10 10 20 30 40 50 60

-10

10

20

30

>

8SeedRandom@3D; With@8rw = Accumulate@RandomChoice@8-1, 0, 1<, 82000, 2<DD<,
Graphics@8Line@rwD, Red, PointSize@LargeD, Point@Last@rwDD<,

Axes Ø True, ImageSize Ø 200DD,
SeedRandom@2D; With@8rw = Accumulate@8Cos@ÒD, Sin@ÒD< & êü RandomReal@2 p, 2000DD<,

Graphics@8Line@rwD, Red, PointSize@LargeD, Point@Last@rwDD<,
Axes Ø True, ImageSize Ø 200DD<

:

10 20 30 40 50

10

20

30

,

-30 -20 -10 10 20

-10

-5

5

10

15

20

>

In the last figure, the random walk goes, from the current point, one unit in a random direction.

The following code produces a dynamic plot that shows a 2D random walk going forever (to stop the
walk, delete the plot):

DynamicModule@8data = 880, 0<<<, Dynamic@
Graphics@8new = Last@dataD + RandomChoice@881, 0<, 80, 1<, 8-1, 0<, 80, -1<<D;

Line@data = Append@data, newDD, Red, PointSize@LargeD,
Point@newD<, Axes Ø True, AxesOrigin Ø 80, 0<DDD

Similarly, we can simulate a random walk in three dimensions:

990 Mathematica Navigator



SeedRandom@10D; With@8rw = Accumulate@RandomChoice@8-1, 1<, 8500, 3<DD<,
Graphics3D@8Line@rwD, Red, PointSize@LargeD, Point@Last@rwDD<, ImageSize Ø 160DD

‡ Brownian Motion

A Brownian motion or a Wiener process is a continuous-time continuous-state process. Realizations of a
Brownian motion are continuous, but they are nowhere differentiable. An approximating discretization
has to be done for simulation purposes.  The following approximation is from Cox and Miller (1965, p.
205):

brownianMotion@m_, s_, t_, n_, opts___D :=

WithA8d = s Sqrt@tD, p = 0.5 H1 + m Sqrt@tD ê sL<,

ListLinePlotA8Range@0, n t, tD, NestList@Ò + If@Random@D § p, d, -dD &, 0, nD<¨,

PlotLabel Ø Row@8"d = ", d, ", p = ", p<D, optsEE

This program simulates a Brownian motion where the state XHtL at time t has the normal distribution
with mean m t and variance s2 t. The approximate process moves n times a small step t. At each step, the
next  value  of  the  process  is  the  previous  value  plus  either d  or -d,  with  probabilities p  and 1 - p,

respectively.  Here, d = s t  and p = 0.5 J1 +
m

s
t N.  The  time  step t  should  be  small  so  that d  is

considerably larger than t. The probability p should not differ much from 0.5. The Brownian motion is,

mathematically, the result of the discretization if t approaches 0.

First, we show a path where the drift m is 0:

SeedRandom@2D; brownianMotion@0, 0.5, 0.01, 2000, AspectRatio Ø 0.25, ImageSize Ø 400D

5 10 15 20
-0.5

0.5

1.0

1.5

2.0

2.5

d = 0.05, p = 0.5

Next, we draw 20 paths with a drift of 0.3:

Chapter 29  •  Probability 991



SeedRandom@2D; Show@
Table@brownianMotion@0.3, 0.5, 0.01, 2000, PlotStyle Ø Hue@RandomReal@DDD, 820<D,
PlotRange Ø All, AspectRatio Ø 0.25, ImageSize Ø 340D

5 10 15 20

2

4

6

8

10

12

d = 0.05, p = 0.53

29.4.2  Discrete-Time Markov Chains

‡ Precipitation Data

There is a precipitation monitor at the Snoqualmie Falls in western Washington. It defines a day as wet
if the precipitation is as least 0.01 inches. Such days are denoted by 1. Other days are denoted by 0; let us
call these days dry. The file precipitation  (available on the CD-ROM of this book) contains codes for all
days of January for the 36 years from 1948 to 1983. The data are reprinted with permission from Guttorp
(1995, p. 17, Figure 2.1); copyright CRC Press, Boca Raton, Florida.

I have saved the file in the MNata folder of my Documents folder. We read the file (see Section 4.2.1, p.

100) and prepare a table for the data:

prec = Import@"êUsersêheikkiêDocumentsêMNDataêprecipitation", "Table"D;

prec2 = ArrayFlattenA9888""<<, 8Range@31D<<, 98Range@1948, 1983D<¨, prec==E;

Style@Grid@prec2, Spacings Ø 80.2, 0.25<,
ItemSize Ø 883.5, 81.4<<<, Dividers Ø 82 Ø True, 2 Ø True<D, 6D

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

1948 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 1 0 1 1 1 1 0 0 0 1 1 1

1949 1 1 0 0 1 1 1 1 0 0 0 0 0 1 0 0 1 0 1 0 1 0 0 0 0 1 1 0 0 1 0

1950 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0

1951 1 1 1 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0

1952 0 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 1

1953 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1954 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1

1955 1 1 0 1 1 0 0 0 0 0 0 1 1 1 1 1 1 0 0 1 0 1 1 1 1 0 0 1 0 1 1

1956 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 0 0

1957 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 0 1 1 1 1 1 0 0 0 0 0 0 1 1

1958 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 1 1 1 1

1959 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1

1960 0 1 0 0 1 1 1 1 0 1 1 1 0 0 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0

1961 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1 1 0 0 0 1 1 1 1

1962 0 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 0 0 0

1963 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 0 1 0 0 0 0 0 0 1 0 0 0 0 0 1 1

1964 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1

1965 1 1 1 1 1 1 1 1 0 0 0 0 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0

1966 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1

1967 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 0 0

1968 1 0 1 1 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 1

1969 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 0 0 1 0 1 0 1 1 1 1

1970 0 0 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1

1971 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0

1972 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0

1973 1 1 0 1 1 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 0 1 1 0

1974 0 0 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1975 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 0

1976 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 1 1 0 0 1 0 0 0 0 0

1977 1 1 1 0 0 0 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 0 0 0 0 1 1

1978 0 1 1 1 1 1 1 1 1 1 1 0 1 1 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1

1979 0 0 0 0 0 0 0 0 1 1 1 1 0 1 1 1 0 1 1 1 0 0 1 1 0 1 1 0 0 0 0

1980 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0 0 0 1 0 0 0 0 0 0 1

1981 0 0 0 0 1 1 0 1 1 0 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0

1982 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1

1983 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 0 1 1 1 1 1 1 0 1 0 0

992 Mathematica Navigator



We see that the first 12 days of January 1948 were wet, the next 7 days dry, and so on. Here is a plot of
the data. Each black square denotes a wet day:

ArrayPlotAprec, Mesh Ø True, Frame Ø True,

FrameTicks Ø 98Range@3, 35, 5D, Range@1950, 1980, 5D<¨, None, None, Range@5, 30, 5D=,

ImageSize Ø 180E

1950

1955

1960

1965

1970

1975

1980

5 10 15 20 25 30

‡ Runs

With Split, we can find runs, which are sequences of like values. For example, here are the seven runs
of January 1948:

Split@precP1TD

881, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1<,
80, 0, 0, 0, 0, 0, 0<, 81<, 80<, 81, 1, 1, 1<, 80, 0, 0<, 81, 1, 1<<

Next, we calculate the numbers of runs for all 36 Januaries:

Length êü HSplit êü precL

87, 16, 6, 6, 8, 3, 5, 13, 6, 13, 8, 5, 11, 7, 9, 11, 7,
6, 11, 6, 11, 11, 6, 5, 6, 10, 2, 4, 7, 5, 12, 11, 11, 9, 5, 8<

Calculate the mean number of runs per month:

Total@%D ê 36. 7.97222

What  would the  expected number  of  runs  be  if  the  weather  were  to  change randomly from day to
day? If the probability of a wet day is p and there are n days, the expected number of runs is as follows:

expRuns@n_, p_D := 1 + 2 Hn - 1L p H1 - pL

We have a total of 1116 days, out of which 791 are wet days:

8ndays, nwet< = 8Length@Flatten@precDD, Total@Flatten@precDD<

81116, 791<

We estimate the probability of a wet day:

probDry = nwet ê ndays êê N 0.708781

The expected number of runs in a month for random weather is thus approximately the following:

expRuns@31, probDryD 13.3846

Chapter 29  •  Probability 993



The actual mean number was only approximately eight. This is an indication that the weather does not
change randomly.  The weather on a certain day has a  tendency to remain stable for a few days. Next,
we estimate the transition probabilities.

‡ Estimating the Transition Probabilities

The data for January 1948 are as follows:

d = precP1T

81, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0, 0, 1, 1, 1<

With ReplaceList,  we  can  easily  obtain  information  about  all  kinds  of  transitions.  For  example,  we
form a list consisting of as many ones as there are pairs 80, 0< in the list:

ReplaceList@d, 8___, 0, 0, ___< Ø 1D 81, 1, 1, 1, 1, 1, 1, 1<

The three underscores (___) mean zero or more elements (see Section 16.1.3, p. 500). A pair 80, 0< means

a transition from a dry day to another dry day. The sum of the ones is the number of such pairs of days:

Total@ReplaceList@d, 8___, 0, 0, ___< Ø 1DD 8

Similarly, we can find the numbers of other kinds of transitions. We write a function for doing this:

transitions@d_ListD := Total@ReplaceList@d, Ò Ø 1DD & êü
88___, 0, 0, ___<, 8___, 0, 1, ___<, 8___, 1, 0, ___<, 8___, 1, 1, ___<<

For example,

transitions@dD 88, 3, 3, 16<

To get the numbers of transitions for all years, we use Map:

transitions@ÒD & êü prec

888, 3, 3, 16<, 810, 7, 8, 5<, 82, 2, 3, 23<, 83, 2, 3, 22<, 83, 4, 3, 20<, 80, 1, 1, 28<,
83, 2, 2, 23<, 87, 6, 6, 11<, 83, 2, 3, 22<, 88, 6, 6, 10<, 83, 4, 3, 20<,
81, 2, 2, 25<, 86, 5, 5, 14<, 86, 3, 3, 18<, 88, 4, 4, 14<, 810, 5, 5, 10<,
81, 3, 3, 23<, 84, 2, 3, 21<, 83, 5, 5, 17<, 82, 2, 3, 23<, 82, 5, 5, 18<,
81, 5, 5, 19<, 86, 3, 2, 19<, 86, 2, 2, 20<, 85, 2, 3, 20<, 86, 4, 5, 15<,
87, 1, 0, 22<, 84, 1, 2, 23<, 88, 3, 3, 16<, 812, 2, 2, 14<, 83, 6, 5, 16<,
811, 5, 5, 9<, 89, 5, 5, 11<, 89, 4, 4, 13<, 85, 2, 2, 21<, 81, 3, 4, 22<<

With Transpose, we can form separate lists for the four kinds of transitions:

8t00, t01, t10, t11< = %¨;

For example,

t00

88, 10, 2, 3, 3, 0, 3, 7, 3, 8, 3, 1, 6, 6, 8, 10,
1, 4, 3, 2, 2, 1, 6, 6, 5, 6, 7, 4, 8, 12, 3, 11, 9, 9, 5, 1<

We calculate the sum of each kind of transition:

Total@ÒD & êü %% 8186, 123, 128, 643<

Thus, we know that there were 186 transitions 0 Ø 0 (from a dry day to another dry day), 123 transitions
0 Ø  1,  128 transitions 1 Ø  0,  and 643 transitions 1 Ø  1.  Overall,  there were 186 + 123 = 309 transitions
from a dry day and 128 + 643 = 771 transitions from a wet day. It is thus natural to estimate the probabil-
ity of 0 Ø 0 as 186 ê 309 = 0.602, of 0 Ø 1 as 123 ê 309 = 0.398, of 1 Ø 0 as 128 ê 771 = 0.166, and of 1 Ø 1 as
643 ê 771  =  0.834.  (The  same  estimates  could  also  be  obtained  by  the  method of  maximum likelihood.)
Thus, we arrive at the following transition matrix:

994 Mathematica Navigator



P = 880.602, 0.398<, 80.166, 0.834<<;

‡ Predicting

Suppose  Monday  is  dry;  the  initial  distribution  is  thus 81, 0<.  We  predict  the  weather  for  Tuesday,
Wednesday, Thursday, and Friday:

TableForm@Table@81, 0<.MatrixPower@P, iD, 8i, 0, 4<D, TableHeadings Ø
88"Monday", "Tuesday", "Wednesday", "Thursday", "Friday"<, 8"PHdryL", "PHwetL"<<D

PHdryL PHwetL
Monday 1. 0.

Tuesday 0.602 0.398

Wednesday 0.428472 0.571528

Thursday 0.352814 0.647186

Friday 0.319827 0.680173

The predictions converge to a limit, which is achieved to six-digit precision in 18 steps:

81, 0<.MatrixPower@P, 18D 80.294326, 0.705674<

‡ Stationary Distribution

The stationary distribution is obtained with the aid of the following linear equations:

eqns = Thread@8r1, r2<.P ã 8r1, r2<D

80.602 r1 + 0.166 r2 ã r1, 0.398 r1 + 0.834 r2 ã r2<

One of these equations can be dropped, and the equation r1 + r2 ã 1 has to be taken into account:

Solve@Prepend@Most@eqnsD, r1 + r2 ã 1DD

88r1 Ø 0.294326, r2 Ø 0.705674<<

This  solution  is  the  same  as  the  limit  we  obtained  previously.  A  general  program  to  calculate  the
stationary distribution is as follows:

stationaryDistribution@P_?MatrixQ, s0_, s1_D :=

ModuleA8st = Array@v, 8s1 - s0 + 1<D, eqn<,

eqn = Prepend@Most@Thread@st.P ã stDD, Total@stD ã 1D;

8Range@s0, s1D, st ê. Solve@eqn, stDP1T<¨E

Here, P  is  the  transition  matrix,  and s0  and s1  are  the  minimum  and  the  maximum  state,  respec-

tively. For example,

stationaryDistribution@P, 0, 1D 880, 0.294326<, 81, 0.705674<<

‡ Simulating the Process

By using the following functions, we can simulate a discrete-time Markov chain:

dtMarkovChainStep@dist_?VectorQD :=
With@8r = RandomReal@D<, Position@dist, x_ ê; x ¥ r, 81<, 1DP1, 1TD

dtMarkovChainPath@x0_, P_?MatrixQ, n_D :=

8Range@0, nD, NestList@dtMarkovChainStep@HAccumulate êü PLPÒTD &, x0 + 1, nD - 1<¨

dtMarkovChain@x0_, P_?MatrixQ, n_, opts___D :=
ListLinePlot@dtMarkovChainPath@x0, P, nD,

AxesOrigin Ø 80, -0.2<, PlotRange Ø 8-0.2, Length@PD - 0.8<, optsD

Chapter 29  •  Probability 995



The program dtMarkovChainStep calculates the next state of the process. The states are numbered 1,
2, .... The input for this function is a cumulative distribution dist for the next state. For example, if dist

is 80.3, 0.8, 1<, the next state is 1, 2, or 3 with probabilities 0.3, 0.5, and 0.2, respectively. With the help of
Position,  the program searches for the positions of the cumulative distribution in which the cumula-

tive probability is at least a given uniform random number. The {1} in Position means that the search
is done at the first level of dist. This specification is unnecessary, but because we use a fourth argument
in Position,  we  have  to  write  something as  the third argument.  The fourth argument 1  specifies  that
we,  in  fact,  only  need  the  first  position  that  satisfies x ¥ r.  The  result  of  this Position  could  be,  for
example, {{2}}. Finally, taking the part P1, 1T gives the position as a number, for example, 2.

The  program dtMarkovChainPath  generates n  steps  for  a  chain  with  initial  state x0  and  transition
matrix P.  The  function  first  calculates  the  cumulative  distribution Accumulate/@P  for  the  rows  of  the
transition matrix.  In NestList,  the current state is denoted by #.  From this state,  we go on to the next
state  according to  a  cumulative  distribution,  which is  the #th  row of  the cumulative  transition matrix.
Thus,  the  next  state  is  given  by dtMarkovChainStep[(Accumulate/@P)P#T]. NestList  does  this
iteration n  times. The result is a list of states, and we subtract 1 from all of the states because we want
them to be numbered 0, 1, 2, .... Lastly, we add the ordinal numbers of the steps to the states.

For example, if the initial day is dry, the initial state is 0. Here are 10 simulated steps:

SeedRandom@1D; dtMarkovChainPath@0, P, 10D

880, 0<, 81, 1<, 82, 0<, 83, 1<, 84, 1<, 85, 1<, 86, 0<, 87, 0<, 88, 0<, 89, 0<, 810, 1<<

We see that the next day is wet, followed by a dry day and so on. Next, we simulate 100 steps, assuming
that the starting day is dry:

SeedRandom@1D; dtMarkovChain@0, P, 100, Mesh Ø All,
AspectRatio Ø 0.1, Ticks Ø 8Automatic, 80, 1<<, ImageSize Ø 420D

0 20 40 60 80 100

0

1

P =.

‡ An Example of Diffusion

We have n black and n white balls. They are put into urns A and B so that there are n balls in both urns.
Then we take, at times 1, 2, …, one ball at random from both urns, and then they are put back into the
urns: The ball taken from urn A is put into urn B, and the ball taken from urn B is put into urn A. This is
a simple model of diffusion.

We define the state of the system to be the number of black balls in urn A. The transition probabilities

are pi,i-1 = J i
n
N2, pi,i =

2 iIn-iM
n2

, and pi,i+1 = J n-i
n
N2. The transition matrix is as follows:

P@n_D := TableBWhichBj ã i - 1,
i

n

2

, j ã i,

2 i Hn - iL

n2
, j ã i + 1,

n - i

n

2

, True, 0F, 8i, 0, n<, 8j, 0, n<F

As  an  example,  suppose  we  have  50  black  and  50  white  balls.  Calculate  and  plot  the  stationary
distribution:

st = stationaryDistribution@P@50D êê N, 0, 50D;

996 Mathematica Navigator



ListPlot@st, PlotRange Ø AllD

10 20 30 40 50

0.05

0.10

0.15

We see that, with high probability, there are, in the long run, approximately 18 to 32 black balls in urn A.
Calculate the exact probability:

Sum@stPi, 2T, 8i, 19, 33<D 0.997476

We simulate 200 steps of the diffusion, assuming that there are initially 0 black balls in urn A:

SeedRandom@1D; dtMarkovChain@0, P@50D êê N, 200,
AspectRatio -> 0.2, ImageSize Ø 420, Epilog Ø Line@880, 25<, 8200, 25<<DD

0 50 100 150 200

10

20

30

40

50

29.4.3  Continuous-Time Markov Chains

‡ The Poisson Process

In  a  Poisson  process,  some  events  happen  as  time  goes  on.  For  example,  calls  arrive  at  a  database,
customers  arrive  at  a  service  point,  or  particles  arrive  at  a  particle  detector.  When  we  look  at  the
realization of a Poisson process, we should observe that the events are on the time axes randomly and
uniformly. The state of the process at time t is the number of events that have occurred up to that time.
A Poisson process is a special case of a continuous-time discrete-state Markov chain.

Let l be the expected number of events in a time unit. Then the number of events in a time interval of
length t  has  a  Poisson  distribution  with  mean l t,  and  the  interarrival  times  have  an  exponential
distribution with parameter l (i.e., with mean 1 êl); the interarrival times are independent.

A  Poisson  process  can  be  simulated  by  generating  the  interarrival  times  from  an  exponential
distribution:

poissonProcess@l_, n_, opts___D :=
With@8pp = Join@80<, Accumulate@RandomReal@ExponentialDistribution@lD, nDDD<,

Graphics@Table@Line@88ppPiT, i - 1<, 8ppPi + 1T, i - 1<<D, 8i, n<D, Axes Ø True, optsDD

Here,  we  first  calculate  the  cumulative  sums  of  the  interarrival  times,  resulting  in  a  list pp  of  the
instants of the events. The program draws, at levels 0, 1, 2, and so on, lines that have lengths that are the
interarrival times.

Let  us assume that,  on average,  four calls  arrive at  a database per minute.  The following is a simu-

lated sequence of 50 arrivals: 50 events occurred in approximately 12 minutes.

Chapter 29  •  Probability 997



SeedRandom@4D; poissonProcess@4, 50, AspectRatio Ø 0.3, ImageSize Ø 420D

2 4 6 8 10 12

10

20

30

40

50

‡ General Continuous-Time Markov Chains

Consider  a  continuous-time  discrete-state  process.  Let Ti j  be  the  time  the  system stays  at  state i  if  the

system then goes  to  state j.  Assume that  the  random variable Ti j  has  an  exponential  distribution with

parameter qi j  (or with mean 1 ë qi j)  and that these random variables are independent of each other and

also independent of the history of the process before arriving at state i (define qii = -⁄j i qi j). Collect the

parameters qi j  into a matrix Q,  which is called the rate matrix or the generator of the process. It can be

shown that the process is a continuous-time Markov chain. In addition, the system stays at state i for an

exponential  time  with  parameter qi =⁄k i qik  and  then  goes  to  state j  with  probability pi j = qi j ë qi  (if

qi = 0, then define pii = 1) (see Kulkarni, 1995, p. 245)

The following programs simulate n steps for a continuous-time Markov chain. The initial state is the
scalar x0, and the generator matrix is Q.

ctMarkovChainPath@x0_, Q_?MatrixQ, n_D :=
Module@8R = Q, m = Length@QD, q, P, cumP, t = 0, r, x = x0, tt = 80<, xx = 8x0<<,

Do@RPi, iT = 0, 8i, m<D;
q = Total@ÒD & êü R;
P = Table@If@qPiT 0, RPiT ê qPiT, Table@If@j i, 0, 1D, 8j, m<DD, 8i, m<D;
cumP = Accumulate êü P;
Do@If@qPx + 1T 0, t = t + RandomReal@ExponentialDistribution@qPx + 1TDD,

Print@"Absorption at ", xD; Break@DD;
r = RandomReal@D;
x = Position@cumPPx + 1T, z_ ê; z ¥ r, 81<, 1DP1, 1T - 1;
tt = 8tt, t<; xx = 8xx, x<, 8n<D;

8Flatten@ttD, Flatten@xxD<D

ctMarkovChain@x0_, Q_?MatrixQ, n_, opts___D := Module@8tt, xx<,
8tt, xx< = ctMarkovChainPath@x0, Q, nD;
Graphics@Table@Line@88ttPiT, xxPiT<, 8ttPi + 1T, xxPiT<<D, 8i, Length@ttD - 1<D,

Axes Ø True, AxesOrigin Ø 80, -0.2<, PlotRange Ø 8-0.2, Max@xxD + 0.1<, optsDD

The states are numbered 0, 1, and so on. The program first sets the diagonal elements of Q to 0 and
then calculates the qi  and pi j  numbers into vector q  and matrix P.  The rows of cumP  are the cumulative

sums of elements of the rows of P  (they are needed to generate the next state).  The vector q  is  used to
generate the exponential visiting times. The instances of events are gathered in the list tt, and the states
are gathered in the list xx.

As  examples  of  continuous-time  Markov  chains,  we  consider  the  Poisson  process,  a  birth-death
process, and the M/M/1 queue.

998 Mathematica Navigator



‡  The Poisson Process Revisited

In  a  Poisson  process,  the  state  goes  from i  to i + 1  when  the  next  event  happens  so  that Ti,i+1  is  an

exponential random variable with parameter l. Thus, if we generate at most m events, the generator can
be written as follows:

Q@l_, m_D := Table@Which@j ã i, -l, j ã i + 1, l, True, 0D, 8i, 0, m<, 8j, 0, m<D

Here is a small example of the generator:

Q@l, 4D êê Grid

-l l 0 0 0

0 -l l 0 0

0 0 -l l 0

0 0 0 -l l

0 0 0 0 -l

Here is a simulation:

SeedRandom@4D; ctMarkovChain@0, Q@4, 50D, 50, AspectRatio -> 0.3, ImageSize Ø 420D

0 2 4 6 8 10

10

20

30

40

50

‡ A Birth-Death Process

Consider a  population that  initially consists of x0  individuals.  The length of  the life  of  each individual

has  the  exponential  distribution  with  mean 1 ê m.  Each  individual  produces,  during  his  or  her  entire
lifetime,  descendants  in  such  a  way  that  the  time  between  successive  births  has  the  exponential
distribution with mean 1 êl. Such a process is a simple birth-death process with a state that is the size of

the population. This process was also considered in Section 27.1.1, p. 888.

To derive the generator matrix, note that the state goes from i to i + 1 if one of the i individuals gives
birth to a child so that Ti,i+1  is the minimum of i exponential random variables with parameter l; that is,

Ti,i+1 has an exponential distribution with parameter i l. Similarly, Ti,i-1 is exponentially distributed with

parameter i m.  Thus,  if  we  suspect  that  the  population will  not  exceed the value m,  the  generator  is  as
follows:

Q@l_, m_, m_D := Table@
Which@j ã i - 1, i m, j ã i, -i Hl + mL, j ã i + 1, i l, True, 0D, 8i, 0, m<, 8j, 0, m<D

Here is a small example:

Chapter 29  •  Probability 999



Q@l, m, 4D êê Grid

0 0 0 0 0

m -l - m l 0 0

0 2 m -2 Hl + mL 2 l 0

0 0 3 m -3 Hl + mL 3 l

0 0 0 4 m -4 Hl + mL
As  an  example,  let  the  average  lifetime  be  2  time  units  and  the  average  time  between  births,  for  a

given individual,  3  time units. Then 1 ê m = 2 and 1 êl = 3 so that m =
1
2

 and l =
1
3

.  Suppose we initially

have 20 individuals. We generate six steps:

SeedRandom@5D; ctMarkovChainPath@20, Q@1 ê 3, 1 ê 2, 50D, 6D

880, 0.428564, 0.429228, 0.525535, 0.663282, 0.743467, 0.865291<,
820, 19, 20, 21, 22, 23, 22<<

Thus,  at  time 0  we have 20  individuals,  at  time 0.4285 one of  these  individuals  dies,  at  time 0.4292 an
individual gives birth to a child, and so on. Here is a longer simulation in which the population dies out
at approximately t = 9:

SeedRandom@1D;
ctMarkovChain@20, Q@1 ê 3, 1 ê 2, 50D, 200, AspectRatio Ø 0.3, ImageSize Ø 420D
Absorption at 0

0 2 4 6 8

5

10

15

20

The population died out at approximately t = 9.

‡ The M/M/1 Queue

In an M/M/1 queuing model, customers arrive at a service place, and a single person does the serving.
Customers are served in the order of their arrival.  There is room for all  arriving customers to queue if
the server is busy, and all customers wait until they get service (i.e., customers cannot leave the place).
Customers arrive  as  a  Poisson process  with a  mean of l  customers  per  time unit.  The service time for
each customer has an exponential distribution with mean 1 ê m. The state of the system is the number of
customers  in  the  service  place  (customers  in  the  system  consist  of  the  one  receiving  service  and  the
others standing in the queue).

The state goes from i  to i + 1 if  a  new customer arrives so that Ti,i+1  has an exponential distribution

with  parameter l.  Similarly,  the  state  goes  from i  to i - 1  if  a  customer  is  served  so  that Ti,i-1  has  an

exponential  distribution with parameter m.  Thus,  if  we suspect that  the population will  not  exceed the
value m, the generator is as follows:

Q@l_, m_, m_D := Table@Which@i ã 0 && j ã 0, -l, j ã i - 1,
m, j ã i, -l - m, j ã i + 1, l, True, 0D, 8i, 0, m<, 8j, 0, m<D

Here is a small example:

1000 Mathematica Navigator



Q@l, m, 4D êê Grid

-l l 0 0 0

m -l - m l 0 0

0 m -l - m l 0

0 0 m -l - m l

0 0 0 m -l - m

We will simulate a queuing system in which customers arrive at the service point at the mean rate of
4.0 arrivals per hour (one customer every 15 minutes) and in which the server has a mean service rate of
4.55 customers per hour. This means that l = 4 and m = 4.55. One customer is then served in an average
of 1 ê 4.55 hour = 13.2 minutes. We simulate 100 events (arrivals and departures), when there are initially
0 customers:

SeedRandom@6D;
ctMarkovChain@0, Q@4., 4.55, 50D, 100, AspectRatio Ø 0.3, ImageSize Ø 420D

0 2 4 6 8 10 12 14

1

2

3

4

5

6

7

In the simulation, 100 events took approximately 15 hours to occur. The highest number of customers
in the service place was 7. By simulating more events we could observe that the length of the queue can
grow to large values so that it seems that one server is too few for this system: The queue is too long for
too large a portion of the time.

With  the  following  module,  we  can  calculate  various  average  values  if  the  system  has  reached  a
steady state:

steadyStateAverages@l_, m_D := ModuleA8r = l ê m, L, W, Wq, Lq<,

L = r ê H1 - rL; W = L ê l; Wq = W - 1 ê m; Lq = l Wq;

PrintA"L = ", L, " Hsteady-state mean number of customersL\n",

"Lq = ", Lq, " Hsteady-state mean length of the queueL\n",

"W = ", W, " Hsteady-state mean time in the systemL\n",

"Wq = ", Wq, " Hsteady-state mean time of queueingL\n",

"r = ", r, " Hsteady-state server utilizationL"EE

For our example, the averages are as follows:

steadyStateAverages@4.0, 4.55D

L = 7.27273 Hsteady-state mean number of customersL
Lq = 6.39361 Hsteady-state mean length of the queueL
W = 1.81818 Hsteady-state mean time in the systemL
Wq = 1.5984 Hsteady-state mean time of queueingL
r = 0.879121 Hsteady-state server utilizationL

Chapter 29  •  Probability 1001



Thus,  if  our  system  is  in  steady  state,  the  mean number  of  customers  in  the  system in  a  long  time
interval  should  be  near  7.3.  Approximately  6.4  customers  are  queuing,  and  they  each  spend  approxi-
mately  1.8  hours  in  the  system  (this  time  consists  of  queuing  time  and  service  time).  Queuing  takes
approximately 1.6 hours. The server is busy a fraction of 0.88 of the time. In steady state, the number of
customers in the system has the geometric distribution with parameter r: The probability of n customers
being in the system is H1 - rL rn, n = 0, 1, 2, ….

1002 Mathematica Navigator



30
Statistics

Introduction 1003

30.1  Descriptive Statistics 1004

30.1.1  Descriptive Statistics 1004 Mean, Median, Variance, Quantile, Skewness, Correlation, etc.

30.1.2  Exploratory Data Analysis 1009 FindClusters, Nearest

30.2  Frequencies 1011

30.2.1  Frequencies of Discrete Data 1011 Tally, Histogram

30.2.2  Frequencies of Continuous Data 1015 BinCounts, BinLists

30.3  Confidence Intervals 1020

30.3.1  Confidence Intervals for a Mean 1020 MeanCI, StudentTCI, NormalCI

30.3.2  Other Confidence Intervals 1022 MeanDifferenceCI, VarianceCI, VarianceRatioCI, etc.

30.4  Hypothesis Testing 1024

30.4.1  Tests for a Mean 1024 MeanTest, StudentTPValue, NormalPValue

30.4.2  Other Tests 1027 MeanDifferenceTest, VarianceTest, VarianceRatioTest, etc.

30.4.3  Analysis of Variance 1029 ANOVA

30.5  Regression 1030

30.5.1  Linear Regression 1030 Regress

30.5.2  Nonlinear Regression 1035 NonlinearRegress

30.5.3  Local Regression 1038 localRegress

30.6  Smoothing 1041

30.6.1  Smoothing with a Kernel 1041 ListCorrelate, ListConvolve

30.6.2  Other Methods of Smoothing 1044 MovingAverage, ExponentialMovingAverage, Fourier, etc.

30.7  Bayesian Statistics 1046

30.7.1  Introduction 1046

30.7.2  Using Integration 1049

30.7.3  Using Interpolation 1051 FunctionInterpolation

30.7.4  Gibbs Sampling 1053

30.7.5  Markov Chain Monte Carlo 1057 metropolis

 Introduction

A statistician was about to undergo a serious operation and asked the surgeon what his
 chances of survival were. “Your chances are excellent,” said the surgeon, “Nine people

 out of ten die from this operation, and the last nine patients I’ve operated on have died.”



With Mathematica,  we  can do  all  kinds  of  basic  statistical  analyses,  from descriptive statistics  to  maxi-
mum  likelihood,  frequencies,  confidence  intervals,  hypothesis  testing,  analysis  of  variance  (ANOVA),
and linear and nonlinear regression. Additional topics include finding clusters of data, smoothing data,
local regression analysis, and Bayesian statistics. Regarding the last topic, the power of Mathematica  for
integration, interpolation, and random number generation helps with the solving of statistical problems
that are related to Bayesian models. Two of the methods we consider are Gibbs sampling and Markov
chain Monte Carlo (MCMC).

Regarding fitting and regression, note that we have four commands. For linear models, we have Fit

(built-in)  and Regress  (in  the LinearRegression`  package);  the  latter  also  gives  statistical  information
about the fit. For nonlinear models, we have FindFit (built-in) and NonlinearRegress (in the Nonlinear-

Regression`  package);  the  latter  also  gives  statistical  information  about  the  fit. Fit  and FindFit  were

considered in Sections 25.1.1, p. 812, and 25.1.3, p. 818.

Estimation  of  differential  and difference  equation  models  was  considered in Sections  26.4.5,  p. 878,

and 28.3.2, p. 954.

Probability distributions were considered in Chapter 29. We have, for example, the normal, Student t,
chi-square,  and F-ratio  distributions.  The MultivariateStatistics`  package  contains  the  multinormal
distribution and other related distributions.

Note that the plotting of data was considered in Chapter 8. Some of the plots are especially useful in
statistical  reasoning.  These  plots  include  pairwise  scatter  plots,  quantile-quantile  plots,  histograms,
stem-and-leaf  plots,  dot  and  multiway  dot  plots,  and  box-and-whisker  plots.  Recall  also  probability

graph paper plots from Section 29.3.2, p. 983.

Application  packages  related  to  statistics  include  Experimental  Data  Analyst,  Statistical  Inference
Package, and Time Series. For more information about statistics with Mathematica,  see Abell,  Braselton,
and Rafter (1999) and Rose and Smith (2002).

30.1  Descriptive Statistics

30.1.1  Descriptive Statistics

‡ Location Statistics

For the sake of brevity, we have mostly not shown the argument of the commands. The argument, if not
shown, is a list of observations.

Mean Jm =
1
n
⁄xiN, TrimmedMean[data, f], TrimmedMean[data, {f1, f2}]

Commonest, Median, Quantile[list, q], Quartiles

GeometricMean IPxiM
1

n , HarmonicMean K n

⁄1ëxi
O, RootMeanSquare

1
n
⁄xi

2

The  mean m  is,  for  a  random  sample,  an  unbiased  estimate  of  the  population  mean m.  A  trimmed
mean is the mean of remaining entries, when a fraction f is removed from each end of the sorted list of
data.

1004 Mathematica Navigator



The commonest observation is the value with the highest frequency; this element is often called the
mode. Commonest gives a list because there can potentially be several elements, each having the highest
frequency. The median is the central value~that is, the observation in the center of the sorted observa-

tions (or the average of the two most central observations if there is an even number of observations).

The q quantile gives a value such that 100q% of the observations are at most this value (0 < q < 1). For
a list with n elements, the q  quantile is computed as Sort[list]PCeiling[n q]T  (note that the median
and  the  0.5  quantile  are  not  necessarily  the  same).  In  addition,  a  third  argument  in Quantile  can  be
used  to  define  the  method  used  to  calculate  the  quantile  in  more  detail  (see  the  documentation).  The
quartiles are the 0.25, 0.5, and 0.75 (interpolated) quantiles.

Here are examples:

d = 81, 1, 2, 2, 3, 4, 4, 4, 5, 5<;

8Mean@dD, Commonest@dD, Median@dD,
Quantile@d, 0.5D, Quantile@d, 0.9D, Quartiles@dD< êê N

83.1, 84.<, 3.5, 3., 5., 82., 3.5, 4.<<

Recall that in Section 8.4.2, p. 264, we considered box-and-whisker plots. Such a plot is simply a way

to show the quartiles and the minimum and maximum of the data.

‡ Dispersion and Shape Statistics

Variance Js2 = 1
n-1 ‚Ixi - mM2N, StandardDeviation HsL

MeanDeviation J 1
n ‚À xi - m ÀN, MedianDeviation,

QuartileDeviation, InterquartileRange

The sample variance s2 is, for a random sample, an unbiased estimate of the population variance s2.

The  median  deviation  is  the  median  of  the … xi - median …  values.  The  quartile  deviation  is  the

difference between the first and third quartiles, and interquartile range is half the quartile deviation.

Some  other  dispersion  statistics  can  be  calculated  with  the  aid  of  the  built-in  commands.  For

example,  the  maximum  likelihood  estimate  of  the  variance  is 1
n ‚Ixi - mM2.  It  can  be  calculated  from

n-1
n

s2.  The theoretical  variance of  the sample mean m  is s2 ën,  and an unbiased estimate of  this  is  the

variance of sample mean sm2 = s2 ën; standard error of sample mean is sm. Coefficient of variation is s êm.

CentralMoment[data, r] Jmr =
1
n ‚Ixi - mMrN

Skewness Im3 ëm2
3ê2M, Kurtosis Im4 ëm2

2M, QuartileSkewness

Skewness  describes  the  amount  of  asymmetry.  Kurtosis  measures the concentration of  data around
the peak and in the tails versus the concentration in the flanks.

‡ Method of Moments

Descriptive statistics can be used in estimating parameters of distributions with the method of moments.
As an example, generate some random data from an extreme value distribution:

dist = ExtremeValueDistribution@a, bD;

SeedRandom@1D; data = RandomReal@dist ê. 8a Ø 5, b Ø 3<, 100D;

Chapter 30  •  Statistics 1005



ListPlot@dataD

20 40 60 80 100

5

10

15

To calculate  estimates  of aand b  with  the  method of  moments,  calculate  the  first  two  moments  of  the
distribution and of the data:

8m1 = Mean@distD, m2 = Variance@distD + Mean@distD^2<

:a + EulerGamma b,
p2 b2

6
+ Ha + EulerGamma bL2>

8m1 = Mean@dataD, m2 = Mean@data^2D<

86.14438, 47.7309<

Equate the corresponding moments of distribution and data:

eqns = 8m1 ã m1, m2 ã m2<

:a + EulerGamma b ã 6.14438,
p2 b2

6
+ Ha + EulerGamma bL2 ã 47.7309>

We solve these equations with respect to a and b. We can first show the situation with a contour plot:

ContourPlot@8m1 ã m1, m2 ã m2<, 8a, 0, 9<, 8b, -6, 6<, Frame Ø False,
Axes Ø True, AxesLabel Ø 8a, b<, AspectRatio Ø 1 ê GoldenRatioD

2 4 6 8
a

-6

-4

-2

2

4

6

b

The  curves  seem  to  have  two  solutions.  In  one  of  the  solutions, a  is  approximately  5  and b  approxi-
mately 2.5. The other solution can be rejected because b is negative. Solve the equations:

Solve@8m1 ã m1, m2 ã m2<, 8a, b<D

88a Ø 4.72279, b Ø 2.46284<, 8a Ø 7.56597, b Ø -2.46284<<

The first solution gives the estimates of a and b.

‡ Method of Maximum Likelihood

At the same time,  we can also show how to estimate parameters  with the method of  maximum likeli-
hood. First, form the log-likelihood function:

logL = Total@Log@PDF@dist, dataDDD;

Here are the first and last terms of the sum of 100 terms:

8FirstülogL, LastülogL<

:LogB
‰
-‰

-16.3047+a

b +
-16.3047+a

b

b
F, LogB

‰
-‰

-0.530298+a

b +
-0.530298+a

b

b
F>

1006 Mathematica Navigator



We maximize the log-likelihood function with respect to a and b. To get good starting values, prepare a
contour plot:

ContourPlot@logL êê Evaluate, 8a, 0, 10<, 8b, 1, 6<, Contours Ø Range@-351, -251, 10DD

We can see that  at  the maximum, a  is  approximately  4.5  and b  approximately 2.5.  Find the maximum
either with FindMaximum or with NMaximize:

FindMaximum@logL, 88a, 4.5<, 8b, 2.5<<D

8-250.816, 8a Ø 4.69347, b Ø 2.56823<<
NMaximize@logL, 88a, 4, 5<, 8b, 2, 3<<D

8-250.816, 8a Ø 4.69347, b Ø 2.56823<<

‡ Autocorrelation

Autocorrelation is important in time series analysis. Let rk be the autocorrelation at lag k. An estimate of

rk  is rk =⁄t=1n-k Hxt - mL Ixt+k - mM ë⁄t=1n Hxt - mL2.  The following program calculates all  autocorrelations up

to lag k:

autocorrelation@list_, k_D := With@8diff = list - Mean@listD<,
Table@8i, Drop@diff, -iD.Drop@diff, iD ê Total@diff^2D<, 8i, 0, k<DD

As an example, we consider the same data as we did in Section 8.2.1, p. 249 (the data file environmen-

tal is on the CD-ROM that comes with this book):

data =
Rest@Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêenvironmental", "Table"DD;

The file  contains 111 observations of  ozone,  radiation,  temperature,  and wind. Extract  the components
of the data:

8no, ozone, radiation, temperature, wind< = data¨;

Consider the temperature:

ListLinePlot@temperature, Mesh Ø All, AspectRatio Ø 0.15, ImageSize Ø 400D

20 40 60 80 100

70

80

90

The estimated autocorrelation function is as follows:

Chapter 30  •  Statistics 1007



ac = autocorrelation@temperature êê N, 25D

880, 1.<, 81, 0.777313<, 82, 0.694894<, 83, 0.632474<, 84, 0.546984<,
85, 0.487101<, 86, 0.39759<, 87, 0.401579<, 88, 0.345652<, 89, 0.248692<,
810, 0.241805<, 811, 0.199781<, 812, 0.220929<, 813, 0.208489<,
814, 0.205918<, 815, 0.193053<, 816, 0.148181<, 817, 0.0833282<,
818, 0.0378245<, 819, 0.0199929<, 820, -0.029604<, 821, -0.0628506<,
822, -0.0468014<, 823, -0.0179397<, 824, -0.0147237<, 825, -0.0562379<<

Graphics@8AbsoluteThickness@1.2D, Line@88ÒP1T, 0<, Ò<D & êü ac<,
Axes Ø True, AspectRatio Ø 1 ê GoldenRatioD

5 10 15 20 25

0.2

0.4

0.6

0.8

1.0

‡ Multivariate Descriptive Statistics

Assume that the data are in the form of a matrix that contains as many rows as there are observations
and as many columns as there are variables. The rows are treated as independent identically distributed
multivariate observations. All the commands that we have considered in this section for univariate data,
except  for Commonest,  can  also  be  used  for  multivariate  data.  The  statistics  are  calculated  for  each
column of  the data separately.  As an example,  consider the same data for  which we previously calcu-

lated the autocorrelation function:

8no, ozone, radiation, temperature, wind< =

Rest@Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêenvironmental", "Table"DD¨;

Prepare a matrix from the values of ozone, radiation, temperature, and wind:

data = 8ozone, radiation, temperature, wind<¨;

Calculate some descriptive statistics:

Mean@dataD êê N 842.0991, 184.802, 77.7928, 9.93874<
Variance@dataD êê N 81107.29, 8308.74, 90.8203, 12.668<

Commonest has to be used with Map:

Commonest êü Idata¨M 8823<, 8238<, 881<, 811.5, 10.3<<
Recall  that in Section 8.2.1,  p. 249,  we considered scatter plots and scatter plot matrices. These plots

are useful when studying relationships among a number of dependent variables. In Section 8.2.2, p. 252,

we considered quantile-quantile plots for comparing the distributions of data sets.

‡ Dispersion and Association Statistics

Covariance[list1, list2]  Covariance coefficient between two lists
Covariance[matrix]  Covariance matrix for a matrix
Covariance[matrix1, matrix2]  Covariance matrix for two matrices

Correlation[list1, list2]  Correlation coefficient between two lists
Correlation[matrix]  Correlation matrix for a matrix
Correlation[matrix1, matrix2]  Correlation matrix for two matrices

1008 Mathematica Navigator



The formula covHX, YL = 1
n-1

⁄Ixi - mxM Iyi - myM  gives  the unbiased covariance of  two variables. The

correlation is covHX, YL ì varHXL varHYL . The Ii, jMth element of the covariance [correlation] matrix of a

matrix is the covariance [correlation] between the ith and jth columns of the matrix.  Calculate a single

covariance and a matrix of covariances:

Covariance@ozone, windD -72.5957

Covariance@dataD êê MatrixForm

1107.29 1056.58 221.521 -72.5957

1056.58 8308.74 255.468 -41.3213

221.521 255.468 90.8203 -16.8628

-72.5957 -41.3213 -16.8628 12.668

Similarly, we can calculate correlations:

Correlation@ozone, windD -0.612951

Correlation@dataD êê MatrixForm

1. 0.348342 0.698541 -0.612951

0.348342 1. 0.294088 -0.127366

0.698541 0.294088 1. -0.497146

-0.612951 -0.127366 -0.497146 1.

The Ii, jMth  element  of  the  covariance  [correlation]  matrix  of  two  matrices  is  the  covariance

[correlation] of the ith column of the first matrix and the jth column of the second matrix.

The MultivariateStatistics` package defines more descriptive statistics for multivariate data.

30.1.2  Exploratory Data Analysis

‡ Finding Clusters of Data

FindClusters[data] (Ÿ6)  Partition data into lists of similar elements
FindClusters[data, n]  Partition data into exactly n lists of similar elements

Options:
Method  The clustering method to use; possible values: Automatic, "Optimize", "Agglomerate"

DistanceFunction  The distance or dissimilarity measure to use; examples of values: Automatic,
EuclideanDistance, ManhattanDistance, ChebyshevDistance

RandomSeed  Starting value for the random number generation; examples of values: Automatic, 1

Generate some random data:

SeedRandom@5D; data = RandomInteger@80, 9<, 20D

80, 0, 3, 3, 4, 5, 1, 9, 1, 0, 5, 1, 8, 0, 5, 9, 5, 3, 7, 3<

Find clusters:

FindClusters@dataD

880, 0, 0, 0<, 83, 3, 4, 3, 3<, 85, 5, 5, 5<, 81, 1, 1<, 89, 8, 9, 7<<

We got five clusters. The order of the elements in the data may have an effect on the clusters found:

Chapter 30  •  Statistics 1009



FindClusters@data êê SortD

880, 0, 0, 0, 1, 1, 1<, 83, 3, 3, 3, 4, 5, 5, 5, 5<, 87, 8, 9, 9<<

We can also ask for a given number of clusters:

FindClusters@data, 3D

880, 0, 1, 1, 0, 1, 0<, 83, 3, 4, 5, 5, 5, 5, 3, 3<, 89, 8, 9, 7<<

As  another  example,  generate  a  set  of  number  pairs  by  joining  random  numbers  from  four  two-
variate normal distributions:

<< MultivariateStatistics`

SeedRandom@1D;
data = Flatten@RandomReal@MultinormalDistribution@Ò, 881, 0<, 80, 1<<D, 20D & êü

883, 3<, 85, 5<, 88, 2<, 89, 6<<, 1D;

Plot  the  default  clusters  (in  this  example,  we  get  two  clusters)  and  clusters  obtained  by  creating  four
clusters:

8ListPlot@FindClusters@dataDD,
ListPlot@FindClusters@data, 4DD<

:

2 4 6 8 10

2

4

6

8

,

2 4 6 8 10

2

4

6

8

>

See also the HierarchicalClustering` package.

‡ Picking the Nearest Points

Nearest[{a, b, …}, x] (Ÿ6)  Find the elements from a, b, …, to which x is nearest
Nearest[{a, b, …}, x, n]  Give the n nearest elements to x

Nearest[{a, b, …}, x, {n, r}]  Give up to the n nearest elements to x within a radius r

Nearest[{a, b, …}, x, {¶, r}]  Give all elements nearest to x within a radius of r

An option:
DistanceFunction  The distance measure to use; examples of values: Automatic,

EuclideanDistance, ManhattanDistance, ChebyshevDistance

Generate some random data:

SeedRandom@5D; data = RandomInteger@80, 9<, 20D

80, 0, 3, 3, 4, 5, 1, 9, 1, 0, 5, 1, 8, 0, 5, 9, 5, 3, 7, 3<

Pick the elements that are nearest to 2:

Nearest@data, 2D 83, 3, 1, 1, 1, 3, 3<

Pick all elements that are nearest to 2 within a radius of 2:

Nearest@data, 2, 8¶, 2<D 83, 3, 1, 1, 1, 3, 3, 0, 0, 4, 0, 0<

Generate random 2D data:

data = RandomReal@8-1, 1<, 83000, 2<D;

1010 Mathematica Navigator



Pick the 1000 nearest points by using various distance functions:

ListPlot@8data, Nearest@data, 80, 0<, 1000, DistanceFunction Ø ÒD<,
PlotStyle Ø 88PointSize@SmallD, Gray<, 8PointSize@SmallD, Black<<,
AspectRatio Ø AutomaticD & êü

8EuclideanDistance, ManhattanDistance, ChebyshevDistance<

:
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

,
-1.0 -0.5 0.5 1.0

-1.0

-0.5

0.5

1.0

>

Note that Nearest has more advanced uses. The following example is taken from
www.wolfram.com/products/mathematica/newin6:

SeedRandom@1D; data = Table@RandomReal@8-4, 4<, 2D Ø i, 8i, 30<D;

nf = Nearest@data, DistanceFunction Ø HNorm@Ò1 - Ò2, ¶D &LD

NearestFunction@830, 2<, <>D
ContourPlot@First@nf@8x, y<DD, 8x, -5, 5<, 8y, -5, 5<, Contours Ø Range@1 ê 2, 30D,

ColorFunction Ø "Pastel", Epilog Ø 8Red, PointSize@MediumD, Point@First êü dataD<,
PlotPoints Ø 50, ImageSize Ø 150D

30.2  Frequencies

30.2.1  Frequencies of Discrete Data

‡ Introduction

We  consider  calculating  frequencies  separately  for  data  arising  from  discrete  variables  and  for  data
arising from continuous variables. In the discrete case, we often would like to count the frequencies for
all different elements, and Tally is then the suitable command. In the continuous case, we would like to
group the elements into bins of intervals, and then we can use BinCounts. However, before we consider
these commands, we recall some basic data manipulation techniques and the plotting of histograms.

Chapter 30  •  Statistics 1011



‡ Data Manipulation

Manipulating rows and columns is frequently needed when working with data. This topic was consid-

ered in Section 21.2.2, p. 692; here, we recall some basic techniques.

dataPnT  Give row number n

dataPAll, nT  Give column number n

xy = Transpose[{x, y}]  Pair the corresponding elements of x and y

{x, y} = Transpose[xy]  Extract the first and second components of xy

In place of Transpose[{x, y}],  we can write {x, y}¨;  here, ¨  can be written as ÂtrÂ.  Suppose we
have separate lists for the independent and dependent variables:

x = 81, 2, 3, 4, 5<; y = 814, 12, 15, 16, 13<;

We want to pair the corresponding elements of x and y:

xy = 8x, y<¨ 881, 14<, 82, 12<, 83, 15<, 84, 16<, 85, 13<<
Then we extract the x and y values:

8x, y< = xy¨ 881, 2, 3, 4, 5<, 814, 12, 15, 16, 13<<
Now the value of x is 81, 2, 3, 4, 5, 6< and the value of y is 814, 12, 15, 16, 13<.
‡ Histograms

With Histogram  we can plot frequencies as histograms; Histogram  was introduced in Section 8.3.2,  p.

258. The data can be either raw data or frequencies. In the former case, the command first calculates the

frequencies.

In the Histograms` package:

Histogram[{x1, x2, … }]  Plot the frequencies of the given raw data
Histogram[{f1, …, fn}, FrequencyData Ø True, HistogramCategories Ø cats]  Plot the given

frequencies

Options:
HistogramCategories  How the data are categorized~that is, for which intervals the frequencies

are calculated; possible values: Automatic (use an internal algorithm), a positive integer n (use
exactly n categories of equal width, if ApproximateIntervals Ø False, and about n categories, if
ApproximateIntervals Ø True), or a list of cutoff values {b0, b1, …, bn} (calculate the frequencies

in the intervals [b0, b1), …, [bn-1, bn))

ApproximateIntervals  Whether interval boundaries should be approximated by simple numbers;
possible values: Automatic (usually means True), True, False

HistogramScale  Whether to scale the heights of the bars; examples of values: Automatic (means
False for categories with equal widths and True for categories with unequal widths), False (no
scaling: plot frequencies as such), True (scale by dividing the heights by the widths of the bars to
get a frequency density), 1 (scale to get the sum of the areas of the bars equal to 1 so that the
histogram approximates the PDF of the data; other constants can also be used)

HistogramRange  Range of data to be included in the histogram; examples of values: Automatic

(means that all data are included), {0, 10}

BarOrientation, BarStyle, BarEdgeStyle, BarEdges (see Section 8.3.1, p. 254)

1012 Mathematica Navigator



Histogram  also  has  the  options  of Graphics.  For Histogram,  the  default  value  of AspectRatio  is
1/GoldenRatio and that of Axes is True. Examples of the use of the package are presented next.

‡ Frequencies of Integer Data

Tally[list] (Ÿ6)  Calculate the frequencies of the distinct elements of list

Toss a die 20 times and calculate the frequencies:

SeedRandom@7D; a = RandomInteger@81, 6<, 20D

86, 1, 3, 3, 6, 4, 2, 1, 4, 5, 3, 4, 3, 2, 4, 2, 2, 6, 4, 3<
Tally@aD

886, 3<, 81, 2<, 83, 5<, 84, 5<, 82, 4<, 85, 1<<

Thus, 6, 1, 3, 4, 2, and 5 occurred 3, 2, 5, 5, 4, and 1 times, respectively. As we see, we get the elements in
the order they appear in the list. To get the elements in standard order, sort the list of the frequencies:

fr = Tally@a êê SortD

881, 2<, 82, 4<, 83, 5<, 84, 5<, 85, 1<, 86, 3<<

Plot the frequencies in one of the following ways:

<< Histograms`

8ListPlot@fr, Filling Ø Axis, AxesOrigin Ø 80, 0<D,
Histogram@a, HistogramCategories Ø Range@0.5, 6.5DD,
Histogram@frPAll, 2T, FrequencyData Ø True, HistogramCategories Ø Range@0.5, 6.5DD<

: ,

1 2 3 4 5 6

1

2

3

4

5

,

1 2 3 4 5 6
0

1

2

3

4

5

>

In the first and third plots, we used the frequencies fr, whereas in the second plot we used the original
data a. To get the correct x ticks to the histograms, we used the HistogramCategories option.

‡ Showing Zero Frequencies

Toss again a die 20 times and calculate the frequencies:

SeedRandom@27D; a = RandomInteger@81, 6<, 20D

85, 2, 2, 1, 1, 2, 2, 6, 1, 4, 1, 6, 4, 6, 6, 4, 5, 1, 4, 5<
fr = Tally@a êê SortD

881, 5<, 82, 4<, 84, 4<, 85, 3<, 86, 4<<

As we see, the result 3 did not appear at all.  Note that Tally  only reports nonzero frequencies. To get
frequencies that also contain possible zero frequencies, use Count:

fr2 = 8Ò, Count@a, ÒD< & êü Range@6D

881, 5<, 82, 4<, 83, 0<, 84, 4<, 85, 3<, 86, 4<<

Plot the frequencies in one of the following ways:

Chapter 30  •  Statistics 1013



8ListPlot@fr, Filling Ø Axis, AxesOrigin Ø 80, 0<D,
Histogram@a, HistogramCategories Ø Range@0.5, 6.5DD,
Histogram@fr2PAll, 2T,

FrequencyData Ø True, HistogramCategories Ø Range@0.5, 6.5DD<

: ,

1 2 3 4 5 6

1

2

3

4

5

,

1 2 3 4 5 6
0

1

2

3

4

5

>

‡ Frequencies of Nonnumerical Data

As an example of calculating frequencies of nonnumerical data, consider random characters:

chars = CharacterRange@"a", "z"D;
SeedRandom@4D; a = RandomChoice@chars, 40D
8j, f, q, w, r, n, k, f, m, q, w, r, v, j, z, i, e, n,

i, c, y, a, k, c, c, g, v, p, b, r, v, h, h, f, k, r, j, h, o, q<
Calculate the frequencies:

fr = Tally@a êê SortD

88a, 1<, 8b, 1<, 8c, 3<, 8e, 1<, 8f, 3<, 8g, 1<, 8h, 3<, 8i, 2<, 8j, 3<, 8k, 3<,
8m, 1<, 8n, 2<, 8o, 1<, 8p, 1<, 8q, 3<, 8r, 4<, 8v, 3<, 8w, 2<, 8y, 1<, 8z, 1<<

Then plot the frequencies:

9ListPlotAfrPAll, 2T, Filling Ø Axis, AxesOrigin Ø 80, 0<,

ImageSize Ø 200, Ticks Ø 98Range@Length@frDD, frPAll, 1T<¨, Automatic=E,

HistogramAfrPAll, 2T, FrequencyData Ø True, ImageSize Ø 200,

Ticks Ø 98Range@Length@frDD - 0.5, frPAll, 1T<¨, Automatic=E=

: ,

a b c e f g h i j k m n o p q r v w y z
0

1

2

3

4

>

If we would also like to get the zero frequencies, do as follows:

fr2 = 8Ò, Count@a, ÒD< & êü chars

88a, 1<, 8b, 1<, 8c, 3<, 8d, 0<, 8e, 1<, 8f, 3<, 8g, 1<, 8h, 3<,
8i, 2<, 8j, 3<, 8k, 3<, 8l, 0<, 8m, 1<, 8n, 2<, 8o, 1<, 8p, 1<, 8q, 3<,
8r, 4<, 8s, 0<, 8t, 0<, 8u, 0<, 8v, 3<, 8w, 2<, 8x, 0<, 8y, 1<, 8z, 1<<

Then plot the frequencies:

1014 Mathematica Navigator



9ListPlotAfr2PAll, 2T, Filling Ø Axis, AxesOrigin Ø 80, 0<,

ImageSize Ø 200, Ticks Ø 98Range@26D, chars<¨, Automatic=E,

HistogramAfr2PAll, 2T, FrequencyData Ø True, ImageSize Ø 200,

Ticks Ø 98Range@26D - 0.5, chars<¨, Automatic=E=

: ,

a b c d e f g h i j k l m n o p q r s t u v w x y z
0

1

2

3

4

>

30.2.2  Frequencies of Continuous Data

‡ Frequencies of 1D Real Data

For  a  1D  data  set,  to  count  the  number  of  elements  that  lie  in  successive  bins,  use  the  following
commands:

BinCounts[list] (Ÿ6)  Use successive integer bins (equivalent to BinCounts[list, 1])
BinCounts[list, d]  Use bins of width d (the first bin starts at Ceiling[Min[list] - d, d] and the

last bin ends at Floor[Max[list] + d, d])
BinCounts[list, {min, max}]  Use bins of width 1 from min to max

BinCounts[list, {min, max, d}]  Use bins of width d from min to max

BinCounts[list, {{b0, b1, …, bn}}]  Use bins [b0, b1), [b1, b2), … (b0 can be -¶ and bn +¶)

BinLists[list] (Ÿ6), etc.  To get the individual elements in the bins

As an example, consider the list a = 81, 1.4, 2, 3<.
• In BinCounts[a], the bins are @0, 1L (!), @1, 2L, @2, 3L, and @3, 4L.
• In BinCounts[a, 0.5], the bins are @0.5, 1L (!), @1, 1.5L, @1.5, 2L, @2, 2.5L, @2.5, 3L, and @3, 3.5L.
• In BinCounts[a, 2], the bins are @0, 2L and @2, 4L.
• In BinCounts[a, {1, 4}], the bins are @1, 2L, @2, 3L, and @3, 4L.
Generate 20 random numbers from the interval H0, 10L:
SeedRandom@4D; a = RandomReal@10, 20D êê Sort

81.06783, 1.29313, 1.86905, 2.15046, 2.17094, 2.94215,
3.11376, 3.16852, 3.61809, 3.70108, 3.7091, 5.66004, 5.74075,
6.27155, 6.54409, 6.67946, 7.89113, 7.91636, 8.72012, 8.97782<

Calculate the frequencies of numbers in integer bins:

BinCounts@aD 83, 3, 5, 0, 2, 3, 2, 2<

Here are the individual elements in each bin:

Chapter 30  •  Statistics 1015



BinLists@aD

881.06783, 1.29313, 1.86905<, 82.15046, 2.17094, 2.94215<,
83.11376, 3.16852, 3.61809, 3.70108, 3.7091<, 8<, 85.66004, 5.74075<,
86.27155, 6.54409, 6.67946<, 87.89113, 7.91636<, 88.72012, 8.97782<<

We got  but  eight  frequencies.  Indeed,  there  were no numbers  in the intervals @0, 1L  and @9, 10L.  To get
frequencies  for  all  intervals  of  interest~that  is,  also  possible  zero  frequencies  for  some  first  and  last
intervals~it is safe to define the whole interval:

fr = BinCounts@a, 80, 10<D 80, 3, 3, 5, 0, 2, 3, 2, 2, 0<

Draw a histogram in one of the following ways:

<< Histograms`

8Histogram@aD,
Histogram@a, HistogramCategories Ø Range@0, 10D,

HistogramRange Ø 80, 10<, Ticks Ø 8Range@0, 10D, Automatic<D,
Histogram@fr, FrequencyData Ø True, HistogramCategories Ø Range@0, 10D,

Ticks Ø 8Range@0, 10D, Automatic<D<

:

2 4 6 8 10

2

4

6

8

,

1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

,

1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

>

In the first and second plots, we used the original data, whereas in the third plot we used the frequen-

cies. In the first plot, we used automatically generated histogram categories, whereas in the second plot
we defined our own categories; in the second plot we also defined a suitable histogram range to get the
empty bars at the beginning and end.

Next, we ask for frequencies of numbers in the intervals @0, 2L, …, @8, 10L:
BinCounts@a, 80, 10, 2<D 83, 8, 2, 5, 2<

Now we ask for frequencies of numbers in the intervals @0, 3L, @3, 7L, and @7, 10L:
BinCounts@a, 880, 3, 7, 10<<D 86, 10, 4<

‡ Example: Normal Data

Generate a set of 1000 observations from the standard normal distribution:

SeedRandom@1D; data = RandomReal@NormalDistribution@0, 1D, 1000D;

Calculate the number of these observations falling in the intervals @-4, -3.75L, @-3.75, -3.5L, …, @3.75, 4L:
fr = BinCounts@data, 8-4, 4, 0.25<D

80, 0, 0, 0, 0, 6, 8, 9, 14, 30, 44, 57, 64, 85, 98,
106, 102, 98, 74, 51, 58, 43, 22, 16, 6, 4, 3, 0, 2, 0, 0, 0<

Check that all observations have been taken into account:

Total@frD 1000

Plot the frequencies. First, we use the original data:

1016 Mathematica Navigator



8Histogram@dataD,
Histogram@data, HistogramCategories Ø Range@-4, 4, 0.25DD,
Histogram@data, HistogramCategories Ø Range@-4, 4, 0.25D, HistogramRange Ø 8-4, 4<D<

:

-2 -1 0 1 2 3

20

40

60

80

,

-2 -1 0 1 2 3

20

40

60

80

100

,

-2 0 2 4

20

40

60

80

100

>

In the first plot, we have automatically generated histogram categories (they have width 0.2), whereas in
the second and third plots we use our own categories (that have width 0.25). In the third plot, we have
also  defined  our  own  histogram  range  to  get  a  somewhat  wider  domain.  Next,  we  use  the  calculated
frequencies:

Histogram@fr, FrequencyData Ø True,
HistogramCategories Ø Range@-4, 4, 0.25D, Ticks Ø 8Range@-4, 4D, Automatic<D

-3 -2 -1 0 1 2 3 4
0

20

40

60

80

100

The cumulative relative frequencies are as follows:

cumfr = Accumulate@frD ê 1000.

80, 0, 0, 0, 0, 0.006, 0.014, 0.023, 0.037, 0.067, 0.111, 0.168,
0.232, 0.317, 0.415, 0.521, 0.623, 0.721, 0.795, 0.846, 0.904,
0.947, 0.969, 0.985, 0.991, 0.995, 0.998, 0.998, 1., 1., 1., 1.<

Next, we first plot the relative frequencies and show them together with the probability density function
of the normal distribution; to get the histogram scaled so that the total area of the bars is 1, we use the
HistogramScale option. Then we plot the cumulative relative frequencies and the cumulative distribu-

tion function of the normal distribution:

8Show@Histogram@data, HistogramScale Ø 1, HistogramRange Ø 8-4, 4<,
HistogramCategories Ø Range@-4, 4, 0.25D, ImageSize Ø 200D,

Plot@PDF@NormalDistribution@0, 1D, xD, 8x, -4, 4<DD,
Show@Histogram@cumfr, FrequencyData Ø True,

HistogramCategories Ø Range@-4, 4, 0.25D, ImageSize Ø 200D,
Plot@CDF@NormalDistribution@0, 1D, xD, 8x, -4, 4<DD<

:

-2 0 2 4

0.1

0.2

0.3

0.4

,

-2 0 2 4
0.0

0.2

0.4

0.6

0.8

1.0

>

Chapter 30  •  Statistics 1017



‡ Frequencies of 2D Real Data

BinCounts[data, xbins, ybins]  Prepare a 2D frequency table from 2D data

Next, we generate 100 lists, with each list consisting of two random numbers from the interval H0, 10L:
SeedRandom@1D; b = RandomReal@10, 8100, 2<D;

To  state  it  another  way,  we  generated  100  observations,  with  each  observation  consisting  of  measure-

ments of  two variables.  Calculate a  2D table of  frequencies where 5 bins are used for the first variable
and 10 bins for the second variable:

MatrixForm@fb = BinCounts@b, 80, 10, 2<, 80, 10, 1<DD

5 0 3 2 1 3 1 0 0 1

3 6 1 0 3 4 1 3 5 1

2 4 3 2 1 4 1 2 1 0

3 2 4 3 2 2 0 0 2 4

2 1 0 0 1 4 3 3 1 0

This means that  there are 5 observations where the first variable is in @0, 2L  and the second variable in
@0, 1L.  There are 0 observations where the first variable is in @0, 2L  and the second variable in @1, 2L,  etc.
Plot the frequencies:

ArrayPlotAfb, FrameTicks Ø 98Range@0.5, 5.5D, Range@0, 10, 2D<¨,

False, False, 8Range@0.5, 10.5D, Range@0, 10D<¨=,

FrameLabel Ø 8x, None, None, y<, RotateLabel Ø False, ImageSize Ø 150E

0

2

4

6

8

10

0 1 2 3 4 5 6 7 8 9 10

x

y

We can also plot a 3D histogram (for another example, see Section 8.6.1, p. 280):

<< Histograms`

Histogram3D@b, HistogramCategories Ø 8Range@0, 10, 2D, Range@0, 10, 1D<,
BoxRatios Ø 85, 10, 5<, ImageSize Ø 150D

0

5

10

0

5

10

0

2

4

6

1018 Mathematica Navigator



Calculate the row sums of the frequencies:

f1 = Total êü fb 816, 27, 20, 22, 15<

The row sums are the frequencies of the first variable:

8b1, b2< = b¨;

BinCounts@b1, 80, 10, 2<D 816, 27, 20, 22, 15<

Calculate the column sums:

f2 = Total@fbD 815, 13, 11, 7, 8, 17, 6, 8, 9, 6<

The column sums are the frequencies of the second variable:

BinCounts@b2, 80, 10, 1<D 815, 13, 11, 7, 8, 17, 6, 8, 9, 6<

The total number of observations is 100:

ft = Total@%D 100

Thus, we arrive at the following frequency table:

ff = ArrayFlattenA99fb, 8f1<¨=, 88f2<, 88ft<<<=E
885, 0, 3, 2, 1, 3, 1, 0, 0, 1, 16<, 83, 6, 1, 0, 3, 4, 1, 3, 5, 1, 27<,
82, 4, 3, 2, 1, 4, 1, 2, 1, 0, 20<, 83, 2, 4, 3, 2, 2, 0, 0, 2, 4, 22<,
82, 1, 0, 0, 1, 4, 3, 3, 1, 0, 15<, 815, 13, 11, 7, 8, 17, 6, 8, 9, 6, 100<<

Grid@ff, Alignment Ø Right, ItemSize Ø 8881<, 1.8<<, Dividers Ø 8-2 Ø True, -2 Ø True<D

5 0 3 2 1 3 1 0 0 1 16

3 6 1 0 3 4 1 3 5 1 27

2 4 3 2 1 4 1 2 1 0 20

3 2 4 3 2 2 0 0 2 4 22

2 1 0 0 1 4 3 3 1 0 15

15 13 11 7 8 17 6 8 9 6 100

We can also add column and row labels:

clb = Table@Row@8"@", i, ",", i + 1, "L"<D, 8i, 0, 9<D

8@0,1L, @1,2L, @2,3L, @3,4L, @4,5L, @5,6L, @6,7L, @7,8L, @8,9L, @9,10L<
rlb = Table@Row@8"@", i, ",", i + 2, "L"<D, 8i, 0, 8, 2<D

8@0,2L, @2,4L, @4,6L, @6,8L, @8,10L<

ff = ArrayFlattenA

9888""<<, 8clb<, 88""<<<, 98rlb<¨, fb, 8f1<¨=, 888""<<, 8f2<, 88ft<<<=E;

Grid@ff, Alignment Ø 88Left, 8Right<<<, ItemSize Ø 2.8,
Dividers Ø 882 Ø True, -2 Ø True<, 82 Ø True, -2 Ø True<<D êê Text

@0,1L @1,2L @2,3L @3,4L @4,5L @5,6L @6,7L @7,8L @8,9L @9,10L
@0,2L 5 0 3 2 1 3 1 0 0 1 16

@2,4L 3 6 1 0 3 4 1 3 5 1 27

@4,6L 2 4 3 2 1 4 1 2 1 0 20

@6,8L 3 2 4 3 2 2 0 0 2 4 22

@8,10L 2 1 0 0 1 4 3 3 1 0 15

15 13 11 7 8 17 6 8 9 6 100

Chapter 30  •  Statistics 1019



‡ Frequencies of Multidimensional Real Data

BinCounts[data, xbins, ybins, …]  Prepare a multidimensional frequency table

In the next example, we have three variables:

SeedRandom@1D; b = RandomReal@10, 8100, 3<D;

MatrixForm@BinCounts@b, 80, 10, 2<, 80, 10, 1<, 80, 10, 5<D, TableDepth Ø 3D

0

2

0

1

1

1

0

3

1

2

2

2

1

1

1

4

1

0

0

1

1

0

1

3

0

2

1

0

5

0

0

0

0

1

1

0

1

3

0

0

0

0

1

1

1

2

3

1

0

1

3

2

0

0

1

2

2

0

0

0

2

0

1

2

0

2

2

2

2

1

0

1

0

0

1

0

0

1

0

0

2

1

1

2

0

1

1

0

1

0

1

1

0

0

2

3

1

1

0

2

30.3  Confidence Intervals

30.3.1  Confidence Intervals for a Mean

‡ Introduction

With  the HypothesisTesting`  package,  we  can  compute  confidence  intervals  for  a  mean,  for  the  differ-

ence of two means, for a variance, and for the ratio of two variances.  Recall that a confidence interval,
such as for the population mean, gives an interval within which the population mean lies with a given
probability~for  example,  0.95.  We assume that  the observations follow a normal distribution. We will
also present a confidence interval for the probability of success of independent trials.

We use the following terminology and notation: m is the population mean, m is the sample Mean, s2 is
the  population  variance, s2  is  the  sample Variance, s  is  the  population  standard  deviation, s  is  the

sample StandardDeviation, sm = sí n  is the standard deviation of sample mean, sm = sí n  is the

standard error of sample mean, and sm2 = s2 ën is the variance of sample mean.

‡ Confidence Intervals for a Mean

MeanCI[data]

StudentTCI[m, sm, n-1]

For the confidence interval of the population mean, we have two main commands. MeanCI  uses the
original data, whereas StudentTCI uses only computed values for the sample mean m, standard error of
sample mean sm,  and degrees of  freedom n - 1 (n  is  the size of  the sample).  These two commands use

the Student t distribution to calculate the confidence interval.

MeanCI[data, KnownVariance Ø s2]

NormalCI[m, sm]

1020 Mathematica Navigator



Sometimes  the  population  variance s2  is  known.  With MeanCI,  we  can  add  the  option
KnownVariance,  whereas NormalCI  is used if we input the sample mean and the standard deviation of
sample mean. These commands use the normal distribution to calculate the confidence interval.

The  confidence  level  is  0.95  by  default,  but  the  level  can  be  set  with  the  option ConfidenceLevel

(this holds true not only for the commands mentioned here but also for all commands used to calculate
confidence intervals).

‡ An Example

To illustrate these commands, we first generate data from a normal distribution with a mean of 50 and a
standard deviation of 3:

SeedRandom@1D;
data = RandomReal@NormalDistribution@50, 3D, 100D;

ListPlot@dataD

20 40 60 80 100

50

55

Thus,  in  this  demonstration  example,  we  know  that  the  population  mean  is  50  and  the  standard
deviation is 3. Now we proceed as if we did not know these values, and we calculate a 95% confidence
interval for the population mean:

<< HypothesisTesting`

MeanCI@dataD 849.3673, 50.5747<

Therefore, we know that with a probability of 0.95, the population mean is within this interval (from the
simulated  data,  we  have  the  knowledge that  the  population mean really  is  in  this  interval).  We could
also first calculate the sample mean and the standard error of sample mean:

8m, sm< = 8Mean@dataD, StandardDeviation@dataD ê Sqrt@100D<

849.971, 0.304251<

We then use StudentTCI:

StudentTCI@m, sm, 99D 849.3673, 50.5747<

For intervals other than 95%, we add the confidence level as an option:

MeanCI@data, ConfidenceLevel Ø 0.99D 849.1719, 50.7701<

If  we  know  that  the  population  standard  deviation  is  3  or  the  variance  is  9,  the  95%  confidence
interval is as follows:

MeanCI@data, KnownVariance Ø 9D 849.383, 50.559<

We could also use NormalCI:

NormalCI@m, Sqrt@9 ê 100DD 849.383, 50.559<

With NormalCI,  we  can  easily  calculate  the  well-known  confidence  intervals  for  the  normal
distribution:

NormalCI@0, 1, ConfidenceLevel Ø ÒD & êü 80.95, 0.99, 0.999<

88-1.95996, 1.95996<, 8-2.57583, 2.57583<, 8-3.29053, 3.29053<<

Chapter 30  •  Statistics 1021



‡  The Meaning of a Confidence Interval

If we have a 95% confidence interval, we know that there is a 5% probability that the population mean is
not  in  the  interval.  Thus,  if  we  take  100  samples  and  calculate  the  corresponding  95%  confidence
intervals, we can expect that approximately 5% of the intervals will not contain the population mean. To
illustrate this, we generate 100 samples of 100 observations:

SeedRandom@1D;
samples = RandomReal@NormalDistribution@50, 3D, 8100, 100<D;

Calculate for each sample the confidence interval:

cis = MeanCI@ÒD & êü samples;

Investigate how many of these intervals contain the population mean 50:

Length@Select@cis, ÒP1T < 50 < ÒP2T &DD 94

From the 100 samples,  94 generated a 95% confidence interval that actually contained the true popula-

tion mean 50. Here are all of the 100 confidence intervals:

showConfidenceIntervals@cis_, mu_, n_, opts___D := Graphics@
8Line@881, mu<, 8n, mu<<D, Table@Line@88i, cisPi, 1T<, 8i, cisPi, 2T<<D, 8i, n<D<,
Axes Ø 8False, True<, AspectRatio Ø 0.2, PlotRange Ø All, optsD;

showConfidenceIntervals@cis, 50, 100, ImageSize Ø 370D

48.5

49.0

49.5

50.0

50.5

51.0

51.5

Here are the confidence intervals  in ascending order according to the mean of the samples (the means
are shown with points):

me = 8Range@100D, Sort@Mean êü samplesD<¨;

showConfidenceIntervals@Sort@cis, Mean@Ò1D < Mean@Ò2D &D,
50, 100, Epilog Ø Point@meD, ImageSize Ø 370D

48.5

49.0

49.5

50.0

50.5

51.0

51.5

30.3.2  Other Confidence Intervals

‡ Confidence Intervals for the Difference between Two Means

MeanDifferenceCI[data1, data2]

If  the  populations  are  known  to  have  equal  variances,  we  can  add  the  option EqualVariances Ø

True. If we know this common value, we can simply add the option KnownVariance Ø s2. If the known
variances are different, we can add the option KnownVariance Ø {s1

2, s2
2}.

1022 Mathematica Navigator



‡  Confidence Intervals for a Variance

VarianceCI[data]

ChiSquareCI[s2, n-1]

The  first  command  uses  the  original  data,  whereas  the  other  uses  only  the  sample  variance s2  and
degrees  of  freedom.  The  default  confidence  level  is  0.95,  but  a  different  level  can  be  set  with
ConfidenceLevel. These two commands use the chi-square distribution.

As an example, we use the same simulated data that were calculated in the preceding section:

SeedRandom@1D;
data = RandomReal@NormalDistribution@50, 3D, 100D;

<< HypothesisTesting`

VarianceCI@dataD 87.13607, 12.492<

Thus, with a probability of 0.95, the population variance is within this interval (the true variance 9 really
is in this interval). We could also first calculate the sample variance and then use the other command:

var = Variance@dataD 9.25685

ChiSquareCI@var, 99D 87.13607, 12.492<

‡ Confidence Intervals for the Ratio of Two Variances

VarianceRatioCI[data1, data2]

FRatioCI[s1
2ës2

2, n1-1, n2-1]

The  first  command  uses  the  two  data  sets,  whereas  the  other  uses  only  the  ratio  of  the  sample

variances s1
2 ë s2

2  and  degrees  of  freedom  (n1 and n2  are  the  sizes  of  the  samples  from  the  two  popula-

tions). These two commands use the F-ratio distribution.

‡ Confidence Intervals for a Probability

Suppose we have made n independent trials, of which k have succeeded. The estimate of the probability
of  success is k ên.  The following module gives  an approximate 100 a%  confidence interval  for  the true
probability of success (Johnson, Kotz, and Kemp, 1992, p. 130). The probability of the true p being within

the computed interval is at least a.

probabilityCI@succ_, total_, a_D := Module@
8n1 = 2 succ, n2 = 2 Htotal - succ + 1L, n3 = 2 Hsucc + 1L, n4 = 2 Htotal - succL, q1, q2<,
q1 = Quantile@FRatioDistribution@n1, n2D, H1 - aL ê 2D;
q2 = Quantile@FRatioDistribution@n3, n4D, H1 + aL ê 2D;
8n1 q1 ê Hn2 + n1 q1L, n3 q2 ê Hn4 + n3 q2L<D

Generate a sequence of successes and failures by assuming that each trial succeeds with a probability
of 0.3:

SeedRandom@1D;
data2 = RandomInteger@BernoulliDistribution@0.3D, 100D
81, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1,

0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0,
0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 1,
0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0<

Calculate the number of successes:

Chapter 30  •  Statistics 1023



k = Total@data2D 24

Then calculate an approximate 95% confidence interval:

probabilityCI@k, 100, 0.95D 80.160225, 0.335735<

30.4  Hypothesis Testing

30.4.1  Tests for a Mean

‡ Tests for a Mean

With the HypothesisTesting`  package,  we can test  the mean, the difference of two means, the variance,
and the ratio of two variances. Recall that when testing, for example, the population mean, we want to
infer, on the basis of a sample from the population, whether the population mean is a certain value m or
whether it  is  different from that  value.  We assume that the data follow a normal distribution. We also
present  a  test  for  the  probability  of  success  of  independent  trials  and  a  test  for  goodness  of  fit.  The
material  in this section is  closely analogous to that of Section 30.3.  First,  we consider the testing of the
mean.

MeanTest[data, m]

StudentTPValue[Hm-mLêsm, n-1]

To test whether the population mean could be m, use one of the previous commands. MeanTest uses
the  original  data and the hypothetical  value m  of  the population mean,  whereas StudentTPValue  uses
only the value of the test statistic t = Hm - mL ê sm  and degrees of freedom n - 1.  The two commands use

the Student t distribution to perform the testing.

The result  of the testing is a p  value.  This is  the probability that if  the hypothetical  mean value m  is

true,  the  test  statistic t  (treated  as  a  random  variable)  has  a  value  at  least  as  extreme  as  its  computed
value. If the p value is sufficiently small~smaller than, for example, 0.05 (a significance level)~then the

hypothetical mean value m can be rejected: The observations do not give sufficient support for this mean
value.

MeanTest[data, m, KnownVariance Ø s2]

NormalPValue[Hm-mLêsm]

The commands (that use the normal distribution) can be used if the population variance is known. In
MeanTest  we can add the option KnownVariance,  whereas NormalPValue  is used if we input the value
of the test statistic.

‡ Options

Options for hypothesis testing:

SignificanceLevel  Significance level of the test; examples of values: None, 0.05, 0.01

TwoSided  Whether to perform a two-sided test; possible values: False, True

FullReport  Whether to include additional information; possible values: False, True

1024 Mathematica Navigator



These  options  can  be  used  for  all  hypothesis  test  commands  that  end  with Test.  We  can  add  a
significance  level  (e.g., SignificanceLevel Ø 0.05),  in  which  case  the  result  of  the  test  contains  the
conclusion whether the hypothesis is accepted or rejected at this significance level.

The default is a one-sided test. This means that we test whether, for example, the population mean is
m  against  the  alternative  that  the  population  mean is  greater  than m  or  against  the  alternative  that  the
population mean is smaller than m. If we want to test that the population mean is m against the alterna-

tive that the population mean is different from m, then we add the option TwoSided Ø True. This option
can also be used with the commands ending with PValue.

If  we  add the  option FullReport Ø True,  we  get,  in  addition  to  the p  value,  the  sample  mean,  the

value of the test statistic, and the distribution used in calculating the p value.

‡ An Example

To illustrate the testing of a mean, we use the same simulated data we used in Section 30.3:

SeedRandom@1D;
data = RandomReal@NormalDistribution@50, 3D, 100D;

8m, sm< = 8Mean@dataD, StandardDeviation@dataD ê Sqrt@100D<

849.971, 0.304251<

The  sample  mean  is  close  to  50.  We  test  whether  the  population  mean  could  be m = 50  against  the
alternative that the population mean is smaller than 50:

<< HypothesisTesting`

MeanTest@data, 50D OneSidedPValue Ø 0.462117

This probability is not small (not smaller than, for example, 0.05), and so we cannot reject the hypothesis
that  the  population  mean is  50  (from the  simulated  data,  we  have  the  knowledge  that  the  population
mean  really  is  50).  We  could  also  first  calculate  the  value  of  the  test  statistic t  from  the  values  of  the
sample mean m and the standard error of sample mean sm:

t = Hm - 50L ê sm -0.0953436

StudentTPValue@t, 99D OneSidedPValue Ø 0.462117

We can add a significance level as an option:

MeanTest@data, 50, SignificanceLevel Ø 0.05D

8OneSidedPValue Ø 0.462117,
Fail to reject null hypothesis at significance level Ø 0.05<

To test whether the population mean is 50 against the alternative that the population mean is other than
50, we write the following:

MeanTest@data, 50, TwoSided Ø TrueD TwoSidedPValue Ø 0.924235

This probability is again not small, and so we cannot reject the hypothesis that the population mean is
50. Then we ask for a full report:

MeanTest@data, 50, FullReport Ø TrueD

:FullReport Ø
Mean TestStat Distribution

49.971 -0.0953436 StudentTDistribution@99D,

OneSidedPValue Ø 0.462117>
If we know that the population standard deviation is 3 or the variance 9, we get the following p value:

MeanTest@data, 50, KnownVariance Ø 9D OneSidedPValue Ø 0.461485

Chapter 30  •  Statistics 1025



We could also use NormalCI:

NormalPValue@Hm - 50L ê Sqrt@9 ê 100DD OneSidedPValue Ø 0.461485

‡ Type I Error

If  we  accept  a  correct  hypothesis  or  reject  a  wrong  one,  we  make  a  correct  decision.  However,  if  we
reject a correct hypothesis or accept a wrong one, we make a wrong decision.

If we perform several tests and always use significance level 0.05 (i.e., we always reject the hypothe-

ses if the p value is smaller than 0.05), then we know that, in approximately 5% of the tests, we reject a

correct hypothesis. This is a type I error. To illustrate this error, we generate 100 samples of 100 observa-

tions from a normal distribution with mean 50:

SeedRandom@1D;
samples = RandomReal@NormalDistribution@50, 3D, 8100, 100<D;

Perform for each sample the test that tells us whether the population mean is 50 against the alternative
that the mean is other than 50:

pvalues1 =
TwoSidedPValue ê. Partition@MeanTest@Ò, 50, TwoSided Ø TrueD & êü samples, 1D;

Investigate the number of tests in which we draw the correct conclusion that the population mean is 50
when we use the significance level 0.05:

Length@Select@pvalues1, Ò ¥ 0.05 &DD 94

From the 100 samples, in 94 we draw the true conclusion that the population mean is 50. To plot the p

values, we write the following function:

showPValues@pvalues_, a_, n_, opts___D :=

GraphicsA9PointA8Range@nD, pvalues<¨E, Line@881, a<, 8n, a<<D=, Axes Ø True,

AxesOrigin Ø 80, -0.05<, AspectRatio Ø 0.2, PlotRange Ø All, optsE

Here are the p values for all 100 samples:

showPValues@pvalues1, 0.05, 100, ImageSize Ø 400D

20 40 60 80 100

0.2

0.4

0.6

0.8

1.0

We see that six p  values are below the significance level 0.05. In these cases, we made the type I error:

We rejected the correct hypothesis that the population mean is 50.

‡ Type II Error

A type II error  is made if the hypothesis is not true but we still accept it. To illustrate this error, we use
the 100 samples of  100 observations generated in the preceding example and test  whether the popula-

tion mean is 51 against the alternative that the mean is not 51. We know that in this case, the hypothesis
is wrong and should be rejected:

pvalues2 =
TwoSidedPValue ê. Partition@MeanTest@Ò, 51, TwoSided Ø TrueD & êü samples, 1D;

Length@Select@pvalues2, Ò < 0.05 &DD 91

1026 Mathematica Navigator



We rightly rejected the wrong hypothesis 91 times. Here are all of the p values:

showPValues@pvalues2, 0.05, 100, ImageSize Ø 400D

20 40 60 80 100

0.00

0.05

0.10

0.15

0.20

0.25

We see that nine points are above the significance level 0.05. In these cases, we made the type II error:
We accepted the wrong hypothesis, which was that the population mean is 51.

30.4.2  Other Tests

‡ Testing the Difference between Two Means

MeanDifferenceTest[data1, data2, d]

Here,  we  test  whether  the  difference  between two population means  could be d.  In  addition  to  the
options EqualVariances Ø True  and KnownVariance Ø s2  or KnownVariance Ø {s1

2, s2
2},  we can also

use the three options mentioned in Section 30.4.1,  p. 1024: SignificanceLevel Ø a, TwoSided Ø True,

and FullReport Ø True.

‡ Testing a Variance

VarianceTest[data, s2]

ChiSquarePValue[Hn-1L s2ës2, n-1]

To test whether the population variance could be s2, use one of these commands. As an example, we
use the simulated data that were calculated in Section 30.4.1 and test the hypothesis that the population
variance is 9 against the alternative that the variance is other than 9:

SeedRandom@1D;
data = RandomReal@NormalDistribution@50, 3D, 100D;

<< HypothesisTesting`

VarianceTest@data, 9, TwoSided Ø TrueD

TwoSidedPValue Ø 0.80553

We could also use the test statistic:

ChiSquarePValue@99 Variance@dataD ê 9, 99, TwoSided Ø TrueD

TwoSidedPValue Ø 0.80553

This  probability  is  not  small,  so  we cannot  reject  the  hypothesis  that  the  population variance  is  9  (the
true variance is 9 in this example).

‡ Testing the Ratio of Two Variances

VarianceRatioTest[data1, data2, r]

FRatioPValue[Is1
2ës2

2Mër, n1-1, n2-1]

Chapter 30  •  Statistics 1027



Use these commands to test whether the ratio of two population variances could be r.

‡ Testing a Probability

Suppose we have made n independent trials of which k have succeeded. The estimate of the probability
of success is k ên. The following module finds the p value to test the probability of success (Allen, 1990,

p. 508).

probabilityTest@succ_, total_, p0_, type_D := Module@8p1, p2<,
p1 = 1 - CDF@BinomialDistribution@total, p0D, succ - 1D;
p2 = CDF@BinomialDistribution@total, p0D, succD;
Which@type === g, p1, type === l,

p2, type === d, If@succ > total p0, 2 p1, 2 p2D, True, NullDD

Here, succ  is the number of successes, total  is the number of trials, p0  is the hypothetical value of
the  probability  of  success,  and type  is  the  type  of  the  alternative  hypothesis.  The  type  is g, l,  or d,
depending on whether the alternative hypothesis claims that the probability is greater than, less than, or
different from p0. As an example, we generate a sequence of successes and failures. Each trial succeeds
with a probability of 0.3:

SeedRandom@1D;
data2 = RandomInteger@BernoulliDistribution@0.3D, 100D;

Calculate the number of successes:

k = Apply@Plus, data2D 24

We test  whether the true probability of success is 0.3 against the alternative that the probability is less
than 0.3:

probabilityTest@k, 100, 0.3, lD 0.11357

This  probability  is  not  small,  so  we  cannot  reject  the  hypothesis  that  the  probability  of  success  is  0.3
(from the simulated observations, we know that the true probability is 0.3).

‡ Goodness-of-Fit Test

The chi-square distribution can be used to test whether a given set of observations may have arisen from
a certain distribution.  Note that plotting the data on probability graph paper may help in determining

whether the data follow a given distribution (see Section 29.3.2, p. 983).

When investigating days of absence at a firm during a period of 50 days, a statistician obtained the
following results (these are not real data):

obs = 888, 0<, 812, 1<, 814, 2<, 88, 3<, 83, 4<, 84, 5<, 81, 6<<;

This  means  that  there  were  8  days  with  no  absences,  12  days  with  one  absence,  and  so  on.  Do  these
observations follow a Poisson distribution? To find out, first separate the observed frequencies and the
values:

8obsfreq, obsval< = obs¨

888, 12, 14, 8, 3, 4, 1<, 80, 1, 2, 3, 4, 5, 6<<

Check that the number of days is 50:

n = Total@obsfreqD 50

Then calculate the mean number of absences per day:

lambda = Total@obsfreq obsvalD ê n êê N 2.04

1028 Mathematica Navigator



Thus, in the mean, there were 2.04 absences per day. Then we calculate the first six Poisson probabilities
with this parameter and multiply them by the number of days to obtain the expected frequencies:

expfreq = n Table@PDF@PoissonDistribution@lambdaD, iD, 8i, 0, 5<D

86.50144, 13.2629, 13.5282, 9.19917, 4.69158, 1.91416<

To these frequencies we add the expected frequency of at least six absences:

AppendTo@expfreq, n H1 - CDF@PoissonDistribution@lambdaD, 5DLD

86.50144, 13.2629, 13.5282, 9.19917, 4.69158, 1.91416, 0.902544<

All of the expected frequencies should be at least 5 for the test to be sufficiently accurate, so we combine
the last three classes to form one class:

expfreq = Append@Take@expfreq, 4D, Total@Take@expfreq, -3DDD

86.50144, 13.2629, 13.5282, 9.19917, 7.50828<

The sum of the expected frequencies is 50, as it should be:

Total@%D 50.

Similarly, we combine the last three observed frequencies:

obsfreq = Append@Take@obsfreq, 4D, Total@Take@obsfreq, -3DDD

88, 12, 14, 8, 8<

Now we calculate the chi-square statistic:

chi2 = Total@Hobsfreq - expfreqL^2 ê expfreqD 0.670651

Lastly,  we  calculate  the p  value,  which  shows  the  probability  of  getting  a  chi-square  value  at  least  as

extreme  as chi2.  The  parameter  of  the  chi-square  distribution  is  the  number  of  classes  minus  the
number of estimated parameters (in this example, we estimated one parameter, namely the parameter of
the Poisson distribution) minus 1:

1 - CDF@ChiSquareDistribution@5 - 1 - 1D, chi2D 0.880084

This probability is not small,  so we cannot reject the hypothesis that the observations follow a Poisson
distribution.

Note that to calculate the p value, we cannot here use the built-in command:

ChiSquarePValue@chi2, 5 - 1 - 1D OneSidedPValue Ø 0.119916

This is the probability of getting a chi-square value at most chi2.

30.4.3  Analysis of Variance (ANOVA)

In the ANOVA` package:

ANOVA[data]  Perform a one-way ANOVA
ANOVA[data, model, vars]  Perform a general ANOVA

With the PostTests  option,  we can tell  what  tests  we want to apply to find significant differences.
Possibilities  are Bonferroni, Duncan, StudentNewmanKeuls, Tukey,  and Dunnett. SignificanceLevel

has the default value 0.05.

ANOVA  is  a  way  to  investigate  whether  several  populations~having  normal  distributions  with
equal variances~have equal means.

Chapter 30  •  Statistics 1029



Consider  the  following example (Rohatgi,  1984,  p.  811).  When a  farmer  investigated  four  fertilizers
for soybeans, he received the following yields for plots of equal size:

fertilizer@1D = 847, 42, 43, 46, 44, 42<;
fertilizer@2D = 851, 58, 62, 49, 53, 51, 50, 59<;
fertilizer@3D = 837, 39, 41, 38, 39, 37, 42, 36, 40<;
fertilizer@4D = 842, 43, 42, 45, 47, 50, 48<;

We define the number of fertilizers and the number of plots for each fertilizer:

k = 4; n =.; n@1D = 6; n@2D = 8; n@3D = 9; n@4D = 7;

To do the one-way ANOVA, write the data as follows:

data = FlattenATableA8Table@i, 8n@iD<D, fertilizer@iD<¨, 8i, k<E, 1E
881, 47<, 81, 42<, 81, 43<, 81, 46<, 81, 44<, 81, 42<, 82, 51<,
82, 58<, 82, 62<, 82, 49<, 82, 53<, 82, 51<, 82, 50<, 82, 59<,
83, 37<, 83, 39<, 83, 41<, 83, 38<, 83, 39<, 83, 37<, 83, 42<, 83, 36<,
83, 40<, 84, 42<, 84, 43<, 84, 42<, 84, 45<, 84, 47<, 84, 50<, 84, 48<<

The results of ANOVA are as follows:

<< ANOVA`

ANOVA@data, PostTests Ø 8Bonferroni, Tukey<D

:ANOVA Ø

DF SumOfSq MeanSq FRatio PValue

Model 3 1015.51 338.503 31.6746 7.77406 μ 10-9

Error 26 277.859 10.6869

Total 29 1293.37

,

CellMeans Ø

All 45.4333

Model@1D 44.

Model@2D 54.125

Model@3D 38.7778

Model@4D 45.2857

,

PostTests Ø :Model Ø

Bonferroni 881, 2<, 81, 3<, 82, 3<, 82, 4<, 83, 4<<

Tukey 881, 2<, 81, 3<, 82, 3<, 82, 4<, 83, 4<<
>>

The p value is very small, which indicates that there are significant differences between the fertilizers.

Both the Tukey and the Bonferroni test arrived at the conclusion that fertilizers 1 and 2, 1 and 3, 2 and 3,
2 and 4, and 3 and 4 differ significantly. The tests did not find a significant difference between fertilizers
1 and 4.

For more information about ANOVA, see ANOVAêtutorialêANOVA.

30.5  Regression

30.5.1  Linear Regression

‡ Linear Regression

The  command Fit[data, basis, vars],  which  was  considered  in Section  25.1.1,  p. 812,  calculates

linear least-squares fits to data: It finds the linear combination of the functions in the basis that gives the
least squared error.

1030 Mathematica Navigator



The  command Regress  in  the LinearRegression`  package  does  the  same  but,  in  addition,  can  print
statistical information about the fit. Regress is used in the same way as Fit. For parameters that appear

nonlinearly, use NonlinearRegress (see Section 30.5.2, p. 1035). For local regression, see Section 30.5.3,

p. 1038.

In the LinearRegression` package:

Regress[data, basis, vars]  Fit data by a linear combination of functions of vars in basis

Options:
IncludeConstant  Whether a constant term is automatically included in the model; possible values:

True, False

Weights  List of weights for each data point or a pure function of the response; default value:
Automatic

ConfidenceLevel  Used for confidence intervals; examples of values: 0.95, 0.99

RegressionReport  Statistics to be included in output; default value: SummaryReport

BasisNames  Names of basis elements for table headings; default value: Automatic

Method  Method used to compute singular values; default value: Automatic

Tolerance  Numerical tolerance to use in computing singular values; default value: Automatic

Data are normally given in the form {{x1, f1}, {x2, f2}, … }.  An example of  the basis  is {1, x,

x^2}.

The default value of IncludeConstant is True, which means that the constant term is automatically
included even if it is not mentioned in the list of basis functions (Fit only uses the functions in the list of
basis functions). You have to write IncludeConstant Ø False if you do not want the constant term.

Next, we explain the use of the option RegressionReport.

‡ Obtainable Information

RegressionReport  controls  the  amount  of  information  that  is  printed.  The  default  value
SummaryReport  means  the  list {ParameterTable, RSquared, AdjustedRSquared, EstimatedVariance,
ANOVATable}. The command RegressionReportValues[Regress] gives all possible items. Here are the
items classified into groups (many of these items are explained in the following examples):

• To get the fit and information about the estimated parameters: BestFit, BestFitParameters,
ParameterTable, ParameterCITable, ParameterConfidenceRegion, CovarianceMatrix,
CorrelationMatrix

• To analyze variances: ANOVATable, EstimatedVariance, CoefficientOfVariation, RSquared,
AdjustedRSquared

• To analyze predictions: FitResiduals, PredictedResponse, SinglePredictionCITable,
MeanPredictionCITable

• To detect correlated errors: DurbinWatsonD

• To evaluate basis functions and detect collinearity: PartialSumOfSquares,
SequentialSumOfSquares, VarianceInflation, EigenstructureTable

• To detect outliers: HatDiagonal, JackknifedVariance, StandardizedResiduals,
StudentizedResiduals, CookD, PredictedResponseDelta, BestFitParametersDelta,
CovarianceMatrixDetRatio

• To get the catcher matrix: CatcherMatrix

Chapter 30  •  Statistics 1031



‡ An Example: Basic Information

Consider the example from Section 25.1.1, p. 813:

xx = Range@0, 50D; SeedRandom@2D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;

data = 8xx, 2 + xx - 0.004 xx^2 + 2 rand<¨;

p1 = ListLinePlot@data, Mesh Ø AllD

10 20 30 40 50

10

20

30

40

We could use Fit to calculate the least-squares fit. Try a second-order polynomial:

Fit@data, 81, x, x^2<, xD

1.48998 + 1.0506 x - 0.00531772 x2

We can also use Regress and get more information about the fit:

<< LinearRegression`

Regress@data, 81, x, x^2<, xD

:ParameterTable Ø

Estimate SE TStat PValue

1 1.48998 0.793743 1.87716 0.066581

x 1.0506 0.0734167 14.31 0.

x2 -0.00531772 0.00141999 -3.7449 0.000483345

,

RSquared Ø 0.973712, AdjustedRSquared Ø 0.972616, EstimatedVariance Ø 3.85756,

ANOVATable Ø

DF SumOfSq MeanSq FRatio PValue

Model 2 6858.35 3429.18 888.95 0.

Error 48 185.163 3.85756

Total 50 7043.51

>

ParameterTable  contains the estimates of the parameters and information to test whether a specific
parameter is zero against the alternative that the parameter is not zero. The test can be done with the t
statistic  and  the  corresponding p  value.  A  small p  value  (e.g.,  not  larger  than  0.05)  indicates  that  the

observations do not support the hypothesis that the parameter is zero. In our example, all p  values are

small, which tells us that all coefficients are statistically significantly different from zero.

RSquared~the  square  of  the  multiple  correlation  coefficient~is  also  called  the  coefficient  of
determination and is in the interval @0, 1D. It tells us how much the full, fitted model improves a reduced
model  that  only  contains  a  constant  term. EstimatedVariance  is  the  estimated  error  variance  or  the
residual mean square.

With ANOVATable,  we  can  test  the  null  hypothesis  that  the  data  could  be  described  by  a  model
containing only the constant term. A large F-ratio and a small p value indicate that we can reject the null

hypothesis.

1032 Mathematica Navigator



‡ More Information

Next, we ask for more information:

result = Regress@data, 81, x, x^2<, x,
RegressionReport Ø 8BestFit, BestFitParameters, ParameterCITable, DurbinWatsonD<D

:BestFit Ø 1.48998 + 1.0506 x - 0.00531772 x2,

BestFitParameters Ø 81.48998, 1.0506, -0.00531772<,

ParameterCITable Ø

Estimate SE CI

1 1.48998 0.793743 8-0.105945, 3.08591<
x 1.0506 0.0734167 80.902981, 1.19821<
x2 -0.00531772 0.00141999 8-0.0081728, -0.00246264<

,

DurbinWatsonD Ø 2.29017>
BestFit  gives the fit in the same form as Fit,  whereas BestFitParameters  gives only the parame-

ters. ParameterCITable contains 95% confidence intervals for the parameters.

The Durbin-Watson d statistic is between 0 and 4. Values near 2 mean uncorrelated errors (this is the
assumption  in  regression  analysis).  Values  that  are  less  than  2  mean  positive  correlation,  and  values
greater than 2 indicate negative correlation. In our model, the d  statistic is near 2, so the errors are not
correlated.

We show the data and the fit:

Show@p1, Plot@BestFit ê. result, 8x, 0, 50<D, ImageSize Ø 200D

10 20 30 40 50

10

20

30

40

Next, we continue the analysis of our example by studying the residuals, the confidence region of the
data, the confidence region of the fitted curve, and the confidence regions of the parameters.

‡ Residuals

The residuals are as follows:

res = FitResiduals ê. Regress@data, 81, x, x^2<, x, RegressionReport Ø FitResidualsD;

ListLinePlotA8xx, res<¨, Mesh Ø AllE

10 20 30 40 50

-4

-2

2

4

6

Chapter 30  •  Statistics 1033



‡ Confidence Region of the Data

With SinglePredictionCITable,  we can ask for the confidence interval for a single observed response  at
each of the values of the independent variables. In this way, we get a region that is likely to contain all
possible observations. First, we extract the components of the result: the observed values, the predicted
values, the standard errors of the predicted response, and the confidence intervals:

8observed, predicted, se, ci< =
HSinglePredictionCITable ê. Regress@data, 81, x, x^2<,

x, RegressionReport Ø SinglePredictionCITableDLP1T¨;

Then  we  plot  the  data,  the  predicted  values,  and  the  lower  and  upper  values  of  the  95%  confidence
intervals:

pred = 8xx, predicted<¨;
lowerCI = 8xx, First êü ci<¨;
upperCI = 8xx, Last êü ci<¨;

Graphics@8Point@dataD, Line@predD, Gray, Line@lowerCID, Line@upperCID<,
Axes Ø True, AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 200D

10 20 30 40 50

10

20

30

40

‡ Confidence Region of the Curve

With MeanPredictionCITable,  we  can ask  for  the  confidence  interval  for  the  mean response  at  each of
the  values  of  the  independent  variables.  In  this  way,  we  get  a  region  that  is  likely  to  contain  the
regression curve. We do as we did previously:

8observed, predicted, se, ci< = HMeanPredictionCITable ê.

Regress@data, 81, x, x^2<, x, RegressionReport Ø MeanPredictionCITableDLP1T¨;

lowerCI = 8xx, First êü ci<¨;
upperCI = 8xx, Last êü ci<¨;

Graphics@8Point@dataD, Line@predD, Gray, Line@lowerCID, Line@upperCID<,
Axes Ø True, AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 200D

10 20 30 40 50

10

20

30

40

1034 Mathematica Navigator



‡ Confidence Regions of the Parameters

The correlation matrix gives the correlations between the parameters:

Regress@data, 81, x, x^2<, x, RegressionReport Ø CorrelationMatrixD

:CorrelationMatrix Ø

1. -0.856214 0.7305

-0.856214 1. -0.967074

0.7305 -0.967074 1.

>

For  example,  the  coefficients  of  1  and x  have  a  negative  correlation -0.86,  whereas  1  and x2  have  a
positive correlation 0.73. The sign of the correlation can also be seen from the confidence regions of the
parameters. We plot the 95% confidence region of the coefficients of 1 and x:

cr = ParameterConfidenceRegion@81, x<D ê. Regress@data,
81, x, x^2<, x, RegressionReport Ø 8ParameterConfidenceRegion@81, x<D<D

Ellipsoid@81.48998, 1.0506<, 82.01141, 0.0955139<,
880.996865, -0.0791262<, 80.0791262, 0.996865<<D

Graphics@cr, Axes Ø True, AspectRatio Ø 1 ê GoldenRatioD

1 2 3

0.95

1.00

1.05

1.10

1.15

1.20

‡ Designed Regress

In the LinearRegression` package:

DesignedRegress[designmatrix, response]  Fit the model represented by designmatrix given
the vector response of response data

DesignMatrix[data, basis, vars]  Give the design matrix

30.5.2  Nonlinear Regression

‡ Nonlinear Regression

Recall  from Section  25.1.3,  p. 818,  that  we  have FindFit  for  nonlinear  fitting.  However,  if  you  want

statistical information about the fit, then use NonlinearRegress.

In the NonlinearRegression` package:

NonlinearRegress[data, funct, params, var]  When funct is an expression of the variable var

and contains the parameters params, find values for the parameters such that the function fits data

in the best way (in the sense of least squares)

Options:
WorkingPrecision  Precision used in internal computations; examples of values:

MachinePrecision, 20

PrecisionGoal  If the value of the option is p, the relative error of the c2 merit function should be of
the order 10-p;  examples of values: Automatic (usually means 8), 10

AccuracyGoal If the value of the option is a, the absolute error of the c2 merit function should be of
the order 10-a;  examples of values: Automatic (usually means 8), 10

Chapter 30  •  Statistics 1035



Method  Method used; possible values: Automatic (usually means "LevenbergMarquardt"),
"LevenbergMarquardt", "Gradient", "ConjugateGradient", "Newton", "QuasiNewton",
"NMinimize"

MaxIterations  Maximum number of iterations; examples of values: 100, 200

Weights  List of weights for each data point or a pure function; default value: Automatic

Tolerance  Numerical tolerance for certain matrix operations; default value: Automatic

Gradient  How the gradient is calculated; examples of values: Automatic, "Symbolic",
"FiniteDifference"

ConfidenceLevel  Used for confidence intervals; examples of values: 0.95, 0.99

RegressionReport  Statistics to be included in output; default value: SummaryReport

The method of finding the best parameters is based on the so-called c2  merit function, which is the
sum of the squares of the residuals.

The parameter specification params  is of the form {aspec, bspec, cspec, … }.  Each specification is
of one of the following forms:

• a  Start from 1.0 for parameter a

• {a, a0}  Start from a0

• {a, a0, a1}  Start  from a0  and a1 (this  form  must  be  used  if  symbolic  derivatives  of c2  with
respect to the parameters cannot be found)

• {a, a0, amin, amax}  Start from a0; stop iteration if it goes outside of [amin, amax]
• {a, a0, a1, amin, amax}  Start from a0 and a1; stop iteration if it goes outside of [amin, amax]

We can  have  constraints cons  for  the  parameters.  In  place  of funct  in  the  previous  box,  just  write
{funct, cons}.

‡ Obtainable Information

The RegressionReport  option  controls  the  amount  of  information  printed.  The  default  value
SummaryReport  means  the  list {BestFitParameters, ParameterCITable, EstimatedVariance,

ANOVATable, AsymptoticCorrelationMatrix, FitCurvatureTable}.  All  possible  items  can  be  seen
by  giving  the  command RegressionReportValues[NonlinearRegress].  Many  of  the  items  are  the
same for NonlinearRegress as they are for Regress, but the former also has five unique items, marked
with (nlr) here:

• To get the fit and information about the estimated parameters: BestFit, BestFitParameters,
ParameterTable, ParameterCITable, ParameterConfidenceRegion,
AsymptoticCovarianceMatrix (nlr), AsymptoticCorrelationMatrix (nlr)

• To analyze variances: ANOVATable, EstimatedVariance

• To analyze predictions: FitResiduals, PredictedResponse, SinglePredictionCITable,
MeanPredictionCITable

• To detect outliers: HatDiagonal, StandardizedResiduals

• To get other information: FitCurvatureTable (nlr), ParameterBias (nlr), StartingParameters

(nlr)

‡ An Example

We consider the same model of exponential growth as in Section 25.1.3, p. 819:

xx = Range@0, 10, 0.2D; SeedRandom@0D;
rand = RandomReal@NormalDistribution@0, 1D, 51D;

data = 8xx, Exp@0.3 + 0.2 xxD + 0.5 rand<¨;

1036 Mathematica Navigator



Calculate an exponential fit:

<< NonlinearRegression`

result = NonlinearRegress@data, Exp@a + b xD, 8a, b<, xD

:BestFitParameters Ø 8a Ø 0.202349, b Ø 0.212479<,

ParameterCITable Ø

Estimate Asymptotic SE CI

a 0.202349 0.0511552 80.0995487, 0.305149<
b 0.212479 0.00628525 80.199848, 0.225109<

,

EstimatedVariance Ø 0.207755,

ANOVATable Ø

DF SumOfSq MeanSq

Model 2 1272.17 636.084

Error 49 10.18 0.207755

Uncorrected Total 51 1282.35

Corrected Total 50 354.964

,

AsymptoticCorrelationMatrix Ø
1. -0.968294

-0.968294 1.
,

FitCurvatureTable Ø

Curvature

Max Intrinsic 0.0236575

Max Parameter-Effects 0.0385863

95. % Confidence Region 0.560193

>

For  information  about  curvature,  see NonlinearRegressionêtutorialêNonlinearRegression.  Plot  the  data  and
the fit:

Show@ListPlot@dataD, Plot@Exp@a + b xD ê. HBestFitParameters ê. resultL, 8x, 0, 10<DD

2 4 6 8 10

2

4

6

8

10

The residuals are as follows:

res = FitResiduals ê.
NonlinearRegress@data, Exp@a + b xD, 8a, b<, x, RegressionReport Ø FitResidualsD;

ListLinePlotA8xx, res<¨, Mesh Ø AllE

2 4 6 8 10

-1.0

-0.5

0.5

Chapter 30  •  Statistics 1037



30.5.3  Local Regression

‡ Introduction

Sometimes the form of the data is so complex or obscure that it  does not easily suggest a form for the
approximating  function~that  is,  a  parametric  family  of  functions.  In  such  situations,  a local  regression
may  be  suitable  (local  regression  or  locally  weighted  regression  falls  in  the  category  of nonparametric
regression).

In local regression, we choose a set of points from the range of the independent variable and fit a set
of low-order polynomials, with each polynomial describing the behavior of the data only near one of the
chosen  points  (this  is  achieved  by  appropriately  weighing  the  observations).  Each  polynomial  is
evaluated  at  the  corresponding  point,  and  so  we  obtain  smoothed  values.  When  these  points  are
connected, the result is a local regression curve. Each part of the curve describes the average behavior of
the data near that part.

In the following, we apply the local regression method described in Cleveland (1993, pp. 91-101); the
method is also called loess. According to Cleveland, the method has some desirable statistical properties,
is easy to compute (but computing intensive), and is easy to use.

‡ Explaining Ozone by Wind

To illustrate  the  method,  we  read the environmental  data  that  come  on  the  CD-ROM of  this  book (we

already  considered  this  data  set  in Section  8.2.1,  p. 249;  the  same data  are  also  analyzed  in Cleveland

(1994, pp. 172-175):

env =
Rest@Import@"êUsersêheikkiêDocumentsêMNDataêvisdataêenvironmental", "Table"DD;

The data have 111 observations, each of which contains the number of the observation and the value of
ozone, radiation, temperature, and wind. First, we separate the components:

8no, ozone, radiation, temperature, wind< = env¨;

We consider only wind and ozone:

data = 8wind, ozone<¨;

pdata = ListPlot@data, AspectRatio Ø 1, PlotRange Ø All, AxesOrigin Ø 80, 0<D

5 10 15 20

50

100

150

A descending  pattern  is  clear,  but  otherwise  the  form of  the  data  is  somewhat  obscure.  A  third-order
polynomial fit is quite good:

fit = Fit@data, 81, x, x^2, x^3<, xD

201.663 - 31.8806 x + 1.84631 x2 - 0.0350707 x3

1038 Mathematica Navigator



Show@pdata, Plot@fit, 8x, 2, 21<DD

5 10 15 20

50

100

150

‡ Local Regression

In the following box, we have a program to calculate a local regression curve:

<< LinearRegression`
T = Compile@8u<, If@Abs@uD < 1, H1 - Abs@uD^3L^3, 0DD;
ww = Compile@88i, _Integer<, 8x, _Real<, 8xx, _Real, 1<, 8q, _Integer<<,

T@Abs@xxPiT - xD ê Sort@Abs@xx - xDDPqTDD;

localRegress@data_, localpols_, a_, l_D := ModuleA8xx, ff, a, b, n, x, q, xwei, y<,

8xx, ff< = data¨; a = Min@xxD; b = Max@xxD; n = Length@xxD;
x = Range@a, b, Hb - aL ê Hlocalpols - 1LD; q = Floor@a nD;
xwei = 8Ò, Table@ww@i, Ò, xx, qD, 8i, n<D< & êü x;
Interpolation@
8ÒP1T, BestFit ê. Regress@data, y^Range@0, lD, y, Weights Ø ÒP2T + 10^-15,

RegressionReport Ø BestFitD ê. y Ø ÒP1T< & êü xweiDE

Now we try to  explain the program (you may want  to  first  move to Using the Program below and
then  come  back  here  later).  The  package LinearRegression`  has  to  be  loaded  because  we  use Regress

from  that  package;  we  cannot  use Fit  because Fit  does  not  have  an  option  to  weigh  the  data.  The

function T  is the key to use to weigh the data; it is I1 - » u »3M3  for » u » < 1 and 0 otherwise. It looks like

this:

Plot@T@uD, 8u, -1, 1<D

-1.0 -0.5 0.5 1.0

0.2

0.4

0.6

0.8

1.0

Most weight is given if the argument is near zero, and the weight is zero outside H-1, 1L. The function ww

then computes the weights for the data. The wind varies between the following values:

8Min@windD, Max@windD< 82.3, 20.7<

Consider, for example, the wind observations with ordering numbers 1, 5, 9, 3, and 7:

windP81, 5, 9, 3, 7<T 87.4, 8.6, 9.2, 12.6, 20.1<

We plot  the weights  of  these  observations as  functions of  the point  where the local low-order  polyno-

mial will be fitted:

Chapter 30  •  Statistics 1039



GraphicsRow@
Plot@ww@Ò, x, wind, 88D, 8x, 2.3, 20.7<, PlotRange Ø 880, 21<, 8-0.05, 1<<, Epilog Ø

8AbsolutePointSize@4D, Point@8windPÒT, 0<D<, Ticks Ø 8Range@5, 20, 5D, 81<<D & êü
81, 5, 9, 3, 7<, ImageSize Ø 420, Spacings Ø -40D

5 10 15 20

1

5 10 15 20

1

5 10 15 20

1

5 10 15 20

1

5 10 15 20

1

For example, the first observation with wind value 7.4 receives most weight when a low-order polyno-

mial  is  fitted  at  7.4.  For  polynomials  fitted  at  points  far  from  7.4,  the  first  observation  receives  less
weight.

Assume  that  we  have n  data  points.  Let DiHxL = … xi - x …  be  the  distance  between xi  and x,  and  let

DIiMHxL be the ith smallest of these distances. Let a § 1 be given, and let q be the product a n truncated to

an integer. The function ww  is TIDiHxL ëDIqMHxLM.  If a  is near 1, the smoothing of the data is strong. Lower

values of a smooth less.

The program localRegress calculates the weight for each data point xxPiT and for each point xPkT

where  a  local  polynomial  is  calculated  (this  is  quite  a computing-intensive  task,  and  to  speed  up  the
computations  we  have  compiled  the  functions T  and ww).  Local  polynomials  are  calculated  a  total  of
localpols  times.  For localRegress,  we  input  also a  and l; l  is  the  degree  of  the  local  polynomials
(either 1 or 2). The calculated points are connected by calculating a piecewise third-order interpolating

function through the points (see Section 24.2.1, p. 797).

‡ Using the Program

We  compute  a  local  regression  curve  by  computing  20  first-order  polynomials  (l = 1)  and  using  the
value 0.9 for a:

fit = localRegress@data, 20, 0.9, 1D

InterpolatingFunction@882.3, 20.7<<, <>D

The result is an interpolating function. Plot it and show the curve together with the data:

Show@pdata, Plot@fit@xD, 8x, 2.3, 20.7<DD

5 10 15 20

50

100

150

We  use  the following  program  to  compute  the  residuals  and  a  local  regression  curve  for  them  (by
calculating 20 local first-order polynomials with a = 0.8).

1040 Mathematica Navigator



showLocalResiduals@data_, fit_, opts___D := ModuleA8xx, ff, resf, res, resfit<,

8xx, ff< = data¨; resf = ff - Hfit@ÒD & êü xxL; res = 8xx, resf<¨;
Print@"Sum of squared residuals: ", resf.resfD;
resfit = localRegress@res, 20, 0.8, 1D;
Show@ListPlot@res, PlotRange Ø AllD,

Plot@resfit@xD, 8x, Min@xxD, Max@xxD<D, optsDE

showLocalResiduals@data, fit, AxesOrigin Ø 80, 0<D

Sum of squared residuals: 59 829.9

5 10 15 20

-40

-20

20

40

60

The local fit of the residuals should be near zero. We see that the local fit in the figure does not quite
satisfy this property. Accordingly, we calculate a new curve~now using a lower value for a~to adapt
the curve more closely to the data. Try the value a = 0.6:

fit = localRegress@data, 20, 0.6, 1D;

8Show@pdata, Plot@fit@xD, 8x, 2.3, 20.7<DD,
showLocalResiduals@data, fit, AxesOrigin Ø 80, 0<D<

Sum of squared residuals: 58 054.1

:

5 10 15 20

50

100

150

,
5 10 15 20

-40

-20

20

40

60

>

The fit seems good, and the local fit to the residuals is now practically zero.

Another  example  of  local  regression  is  provided  in Section  30.6.2,  p. 1044,  where  we  consider

smoothing.

30.6  Smoothing

30.6.1  Smoothing with a Kernel

‡ Using a Kernel

Suppose we have data 8x1, …, xn<  and we want  to  smooth the data with a kernel 8k1 ‚…, km<  (m < n)  by

forming the sums ⁄j=1m kj xi+j, i = 0, 1, …, n - m. For example, if n = 5 and m = 3, the result is the following

smoothed values:

Chapter 30  •  Statistics 1041



8k1, k2, k3<.Ò & êü 88x1, x2, x3<, 8x2, x3, x4<, 8x3, x4, x5<<

8k1 x1 + k2 x2 + k3 x3, k1 x2 + k2 x3 + k3 x4, k1 x3 + k2 x4 + k3 x5<

We can also use ListCorrelate:

ListCorrelate[kernel, list]  Form the correlation of kernel with list

ListConvolve[kernel, list]  Form the convolution of kernel with list

We can verify that we get with ListCorrelate the same result that we obtained previously:

ListCorrelate@8k1, k2, k3<, 8x1, x2, x3, x4, x5<D

8k1 x1 + k2 x2 + k3 x3, k1 x2 + k2 x3 + k3 x4, k1 x3 + k2 x4 + k3 x5<

On the other hand, ListConvolve gives the following result:

ListConvolve@8k1, k2, k3<, 8x1, x2, x3, x4, x5<D

8k3 x1 + k2 x2 + k1 x3, k3 x2 + k2 x3 + k1 x4, k3 x3 + k2 x4 + k1 x5<

Thus, ListConvolve[kernel, list] means ListCorrelate[Reverse[kernel], list]. Note that both
commands have more general forms and that they also apply to multidimensional kernels and data.

‡ Examples of Kernels

Moving averages are obtained by giving a constant kernel:

ListCorrelate@81, 1, 1< ê 3, 8x1, x2, x3, x4, x5<D êê Simplify

:
1

3
Hx1 + x2 + x3L,

1

3
Hx2 + x3 + x4L,

1

3
Hx3 + x4 + x5L>

The kernel 8-1, 1< gives successive differences:

ListCorrelate@8-1, 1<, 8x1, x2, x3, x4, x5<D

8-x1 + x2, -x2 + x3, -x3 + x4, -x4 + x5<

A Gaussian kernel is of the following form:

gaussianKernel@denom_, max_D :=
With@8t = Table@Exp@-n^2 ê denomD êê N, 8n, -max, max<D<, t ê Total@tDD

For example,

gk = gaussianKernel@3, 3D

80.0162712, 0.0861476, 0.234173, 0.326815, 0.234173, 0.0861476, 0.0162712<
ListPlot@gk, AxesOrigin Ø 80, 0<D

1 2 3 4 5 6 7

0.05

0.10

0.15

0.20

0.25

0.30

In the following example, we use the Gaussian kernel.

‡ An Example of Smoothing

We try to smooth noisy data. Our signal is as follows:

1042 Mathematica Navigator



s = Sin@5 μ 2 Pi tD - 0.8 Cos@9 μ 2 Pi tD;

signalPlot = Plot@s, 8t, 0, 1<, AspectRatio Ø 0.2, PlotStyle Ø Gray, ImageSize Ø 300D

0.2 0.4 0.6 0.8 1.0

-1.5
-1.0
-0.5

0.5
1.0
1.5

To generate noisy observations from this signal, we first sample the signal:

tt = Range@0, 1, 0.01D;
xx = s ê. t Ø tt;

Then we generate noise from a normal distribution with mean of 0 and standard deviation of 0.4:

SeedRandom@1D;
noise = RandomReal@NormalDistribution@0, 0.4D, 101D;

Add the noise to the signal and plot the resulting data:

xdata = xx + noise;

data = 8tt, xdata<¨;

dataPlot = ListPlot@data, AspectRatio Ø 0.2, ImageSize Ø 300D

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

We smooth the data using the Gaussian kernel we calculated previously:

smooth = ListCorrelate@gaussianKernel@3, 3D, xdataD;

When plotting the smoothed values, note that data are lost at both ends:

smoothPlot = ListLinePlotA8Range@0.03, 0.97, 0.01D, smooth<¨,

PlotStyle Ø 8Black, Thickness@MediumD<E;

We can compare the smoothed values with the data and with the signal:

Show@dataPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

Show@signalPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-1.5
-1.0
-0.5

0.5
1.0
1.5

Chapter 30  •  Statistics 1043



30.6.2  Other Methods of Smoothing

‡ Moving Averages

MovingAverage[data, r] (Ÿ6)  Simple r-term moving average
MovingAverage[data, {w0, …, wr}] (Ÿ6)  Use the given weights

MovingMedian[data, r] (Ÿ6)  Moving median using spans of r elements
ExponentialMovingAverage[data, a] (Ÿ6)  Exponential smoothing with smoothing constant a

A simple r-term moving average smoother calculates the average of all r successive terms. A moving
median  smoother  of  span r  calculates  the  median  of  all r  successive  terms. MovingAverage  and
MovingMedian give a list of length Length[data] | r + 1. Note that

• MovingAverage[data, r] is equivalent to ListCorrelate[Table[1/r, {r}], data].
• MovingAverage[data, wts] is equivalent to ListCorrelate[wts/Total[wts], data].

If 8x1, x2, …<  is the original set of data, then an exponential moving average smoother calculates the

values yt+1 = yt + aIxt+1 - ytM, t = 0, 1, …, y0 = x1,  for  a  smoothing constant a, 0 < a < 1.  The smaller a  is,

the stronger the smoothing. The list of smoothed values has the same length as the data.

The smoothing commands work for both univariate and multivariate data. The data only contain the
dependent variable(s), not the independent variable (such as time).

As an example, try exponential moving average:

es = ExponentialMovingAverage@xdata, 0.6D;

smoothPlot = ListLinePlotA8tt, es<¨, PlotStyle Ø 8Black, Thickness@MediumD<E;

Show@dataPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

Show@signalPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-1.5
-1.0
-0.5

0.5
1.0
1.5

‡ Local Regression

In Section  30.5.3,  p. 1038,  we  presented  a  program  to  calculate  a  local  regression  curve.  The  method

finds  a  smooth  curve  through  the  points  by  fitting  a  sequence  of  low-order  polynomials.  We  try  this
method with our data:

fit = localRegress@data, 30, 0.05, 1D

InterpolatingFunction@880., 1.<<, <>D

Plot the result and show the curve together with the data and also with the signal:

1044 Mathematica Navigator



smoothPlot = Plot@fit@xD, 8x, 0, 1<, PlotStyle Ø 8Black, Thickness@MediumD<D;

Show@dataPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

Show@signalPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-1.5
-1.0
-0.5

0.5
1.0
1.5

‡ Discrete Fourier Transform

The discrete Fourier transform (see Section 20.4.4, p. 675) can be used to smooth or filter data. First, we

calculate the Fourier transform of the y values and plot the absolute values of the transform:

fou = Fourier@xdataD;

ListPlotA8Range@0, 100D, Abs@fouD<¨,

PlotRange Ø All, AspectRatio Ø 0.2, ImageSize Ø 300E

20 40 60 80 100

1
2
3
4
5

We see two peaks at the frequencies 5 and 9 (and the corresponding symmetric peaks on the right-hand
side), which correspond with the frequencies 5 and 9 of the signal. All other frequencies can be consid-

ered to be caused by the noise.

We  try  to  filter  the  data  by  simply  replacing  with  zeros  all  of  the  values  of  the  Fourier  transform
except for the four peaks. We do this by replacing with zeros all frequencies whose absolute value is less
than, in this case, 2:

filtFou = Chop@fou, 2D

80, 0, 0, 0, 0, 4.84479 Â, 0, 0, 0, -3.97842, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, -3.97842, 0, 0, 0, -4.84479 Â, 0, 0, 0, 0<

Then we find the inverse transform:

filtData = 8tt, Chop@InverseFourier@filtFouDD<¨;

Next, we compare the filtered values with the data and the signal. The fit is very good:

smoothPlot = ListLinePlot@filtData, PlotStyle Ø 8Black, Thickness@MediumD<D;

Chapter 30  •  Statistics 1045



Show@dataPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-2

-1

1

2

Show@signalPlot, smoothPlotD

0.2 0.4 0.6 0.8 1.0

-1.5
-1.0
-0.5

0.5
1.0
1.5

30.7  Bayesian Statistics

30.7.1  Introduction

‡ Posterior Joint Density

Suppose  we  have  data Y = Iy1, y2, …M  and  we  want  to  describe  the  data  with  a  model  that  contains

unknown  parameters q = Ha, b, g, …L.  We  have  some  prior  information  about  the  parameters  in  the
form of a probability density function f HqL, which is called the prior (joint) density. In addition, we know

the conditional density f Iyi … qM.
We want to derive statistical information about q  based on the data Y.  The solution is sought in the

form  of  the  density f Hq » YL,  which  is  called  the posterior  (joint)  density.  From  this  density  we  can  then

calculate  the  mean,  variance,  and so  on  of q.  According  to  Bayes’  theorem, f Hq » YL = f HqL f HY » qL ë f HYL,
or,  in  terms  of  proportionality, f Hq » YL f HqL f HY » qL.  Assuming  independent  data  (conditionally  on q),

we have f HY » qL  = P f Iyi … qM,  which is often called the likelihood function.  Thus, we arrive at the formula

f Hq » YL f HqLP f Iyi … qM, which means that posterior prior ä likelihood.

‡ Example

Green  (2001,  p.  5)  considers  the  following  model.  Let  the  data Y = Iy1, …, ynM  come  from  a  normal

distribution: Iyi … m, sM  ~ NHm, sL,  where m ~ NJx, 1
k
N, 1

s2
~ GJa, 1

b
N;  assume  that m  and s-2  are  indepen-

dent  and  that x, k, a,  and b  are  known.  The  parameters  of  interest  are m  and s-2.  The  posterior  joint
density of these parameters is as follows:

f Im, s-2 … YM f Im, s-2M f IY » m, s-2M = f HmL f Is-2MP
i=1

n

f Iyi … m, sM.

To write down this expression, we denote the argument of the density of s-2  by s2i  (i  for inverse) so
that the prior joint density is as follows:

1046 Mathematica Navigator



prior = PDF@NormalDistribution@x, 1 ê kD, mD
PDF@GammaDistribution@a, 1 ê bD, s2iD êê PowerExpand

‰
-

1

2
k2 Im-xM2

-b s2i
ba k s2i-1+a

2 p Gamma@aD
To form the likelihood function f IY » m, s-2M, we look at the density function f Iyi … m, sM:

PDF@NormalDistribution@m, sD, yiD
‰
-
Hyi-mL2

2 s2

2 p s

If we denote ⁄yi with sum and ⁄yi
2 with sum2, we see that the likelihood function is as follows:

likelihood =
s2i

2 p

n

2

ExpB-
1

2
s2i Isum2 - 2 m sum + n m2MF

‰
-

1

2
Isum2-2 sum m+n m2M s2i H2 pL-në2 s2inë2

The posterior joint density f Im, s-2 … YM is now proportional to the following:

prior likelihood

‰
-

1

2
k2 Im-xM2

-b s2i-
1

2
Isum2-2 sum m+n m2M s2i H2 pL-

1

2
-

n

2 ba k s2i
-1+

n

2
+a

Gamma@aD
We can simplify this further by picking up only the terms that contain m or s-2:

pms2i = Select@%, ! FreeQ@Ò, mD »» ! FreeQ@Ò, s2iD &D

‰
-

1

2
k2 Im-xM2

-b s2i-
1

2
Isum2-2 sum m+n m2M s2i

s2i
-1+

n

2
+a

Thus, the posterior joint density is proportional to this expression.

‡ Posterior Marginal Densities

Posterior marginal  densities f Ha » YL, f Hb » YL  and  so  on  can  be  obtained  by  integrating  out  all  other

parameters from the posterior joint density. For example, f Ha » YL  = Ÿ-¶¶ „ b Ÿ-¶¶ „g… f Hq » YL.  We consider

four methods to calculate the posterior marginal densities: using integration, using interpolation, Gibbs
sampling, and Markov chain Monte Carlo.

Using integration (see Section 30.7.2, p. 1049). The integrals needed to calculate the marginal densities

are often tedious or difficult (or both) to handle with pencil and paper, but mathematical programs such
as Mathematica  should be tried. A program may be able to calculate difficult integrals, thereby reducing
the need to resort  to approximative methods. However, even Mathematica  may not be able to calculate
some of the integrals you need. Consider then the interpolation method.

Using interpolation  (see Section 30.7.3,  p. 1051).  This  method relies on Mathematica’s  ability to form a

representation of a complicated expression by interpolation. Indeed, FunctionInterpolation  samples
the expression at many points and forms an interpolating function that passes through these points (see

Section  24.4.2,  p. 807).  With  this  method,  we  can  get  numerical  but  accurate  representations  of  the

posterior marginal densities. If this method fails, try Gibbs sampling.

Chapter 30  •  Statistics 1047



Gibbs  sampling  (see Section  30.7.4,  p. 1053).  This  method  uses  the full  conditional  distributions  of  the

parameters  (the  conditional  distributions  of  each  parameter  given  the  other  parameters  and  the  data)
and  requires  that  random  numbers  from  these  distributions  be  generated.  The  posterior  marginal
densities  are  approximated by  using a  random sample  from the  full  conditional  distributions.  What  if
we do not have a random number generator for these distributions? Consider the next method.

Markov  chain  Monte  Carlo  (see Section  30.7.5,  p. 1057).  This  method  is  often  shortened  as  “MCMC.”

The  method  has  two  significant  advantages  over  Gibbs  sampling.  First,  MCMC  only  requires  the
expressions  of  the  full  conditional  densities  up  to  proportionality. Second,  random  numbers  are  not
required from these distributions. The posterior marginal densities are approximated by using random
numbers from a suitably selected distribution for which we have a random number generator.

Note  that  the  advanced  methods  of  integration  and  interpolation  of Mathematica  may  somewhat
reduce the need to resort to Gibbs sampling or MCMC.

‡ Data

In Sections 30.7.2  through 30.7.5,  we continue with the previous example.  The starting point  is  always
pms2i, which is the posterior joint density (up to proportionality) of the parameters m and s-2. The data
to be used are generated from NH15, 2L:

SeedRandom@1D; data = RandomReal@NormalDistribution@15, 2D, 20D

815.9714, 15.8183, 15.5238, 16.2713, 18.0886, 16.3536,
15.2614, 17.1973, 14.1665, 12.4085, 14.9703, 11.4765, 15.0413,
17.6238, 15.1955, 14.6172, 14.3047, 14.6287, 15.8166, 18.0261<

Calculate their sum and sum of squares:

8datasum = Total@dataD, datasum2 = Total@data^2D<

8308.761, 4819.95<

(The symbolic values of these sums were denoted by sum  and sum2  in the example.) Use the following
values of constants (which lead to [improper] noninformative priors):

vals = 8x Ø 0, k Ø 0, a Ø 0, b Ø 0, n Ø 20, sum Ø datasum, sum2 Ø datasum2<;

Non-Bayesian estimates of m and s are as follows:

8Mean@dataD, StandardDeviation@dataD<

815.4381, 1.67452<

‡ Posterior Joint Density of m and s-2

Given the data and the constants, we get the following expression for the posterior joint density of m and
s-2 in our example:

pms2i ê. vals ‰
-

1

2
I4819.95-617.523 m+20 m2M s2i

s2i9

Although the scaling constant of this density is lacking, we can still  plot its contours of constant value
because the forms of the contours do not depend on scaling:

1048 Mathematica Navigator



ContourPlotApms2i ê. vals, 8m, 14.5, 16.4<,

8s2i, 0.15, 0.63<, FrameLabel Ø 9"m", "s-2"=, RotateLabel Ø FalseE

30.7.2  Using Integration

‡ Calculating the Posterior Densities

We continue the example of Section 30.7.1, p. 1046, and try to calculate the posterior marginal densities

by direct integration. The marginal density of m, which is f Hm » YL, is proportional to the following:

Integrate@pms2i, 8s2i, 0, ¶<, Assumptions Ø 8a, b, m, k, x, s2i, n, sum, sum2< œ RealsD

IfBn > -2 a && 2 sum m < sum2 + 2 b + n m2,

2
n

2
+a

‰
-

1

2
k2 Im-xM2

Hsum2 + 2 b + m H-2 sum + n mLL-
n

2
-a

GammaB
n

2
+ aF,

IntegrateB‰-
1

2
k2 Im-xM2

-
1

2
Isum2+2 b-2 sum m+n m2M s2i

s2i
-1+

n

2
+a

, 8s2i, 0, ¶<, Assumptions Ø

Ha » b » m » k » x » s2i » n » sum » sum2L œ Reals && ! In > -2 a && 2 sum m < sum2 + 2 b + n m2MFF
To simplify  the  expression,  we make the assumptions given in the result  and,  at  the same time,  select
only the terms that contain m:

pm = Select@Integrate@pms2i, 8s2i, 0, ¶<,
Assumptions Ø n > -2 a && 2 sum m < sum2 + 2 b + n m^2D, ! FreeQ@Ò, mD &D

‰
-

1

2
k2 Im-xM2

Hsum2 + 2 b + m H-2 sum + n mLL-
n

2
-a

In  the  same  way,  we  get  that  the  marginal  density  of s-2,  which  is f Is-2 … YM,  is  proportional  to  the

following:

ps2i =
Select@Integrate@pms2i, 8m, -¶, ¶<, Assumptions Ø k^2 + n s2i > 0D, ! FreeQ@Ò, s2iD &D

‰

1

2
-k2 x2-sum2 s2i-2 b s2i+

Jk2 x+sum s2iN2

k2+n s2i
s2i

-1+
n

2
+a

k2 + n s2i

Next, we study these densities in more detail.

‡ Posterior Density of m

Calculate the scaling constant of f Hm » YL:
cm = 1 ê NIntegrate@pm ê. vals, 8m, 0, 30<D 1.93716 μ 1017

The posterior density of m is then the following:

Chapter 30  •  Statistics 1049



fm = cm pm ê. vals

1.93716 μ 1017

H4819.95 + m H-617.523 + 20 mLL10

Plot the density:

plotfm = Plot@fm, 8m, 13, 17<, PlotStyle Ø BlackD

14 15 16 17

0.2

0.4

0.6

0.8

1.0

From here on, we do not show some warning messages about valid limits of integration:

Off@NIntegrate::nlimD

Calculate the mean, median, and mode:

NIntegrate@m fm, 8m, 10, 20<D 15.4381

FindRoot@NIntegrate@fm, 8m, 10, medianm<D ã 0.5, 8medianm, 15, 16<D

8medianm Ø 15.4381<
FindMaximum@fm ê. m Ø modem, 8modem, 15<DP2T

8modem Ø 15.4381<

Calculate a 95% confidence interval:

q ê. 8FindRoot@NIntegrate@fm, 8m, 10, q<D ã 0.025, 8q, 14, 15<D,
FindRoot@NIntegrate@fm, 8m, q, 20<D ã 0.025, 8q, 16, 17<D<

814.6544, 16.2218<

‡ Posterior Densities of s-2, s2, and s

Calculate the scaling constant of f Is-2 … YM:
cs2i = 1 ê NIntegrate@ps2i ê. vals, 8s2i, 0, ¶<D 1.30675 μ 109

The posterior density of s-2 is then the following:

fs2i = cs2i ps2i ê. vals

2.92199 μ 108 ‰-26.6382 s2i s2i17ë2

(This is a gamma distribution.) Plot the density:

Plot@fs2i, 8s2i, 0, 0.8<D

0.2 0.4 0.6 0.8

0.5
1.0
1.5
2.0
2.5
3.0
3.5

1050 Mathematica Navigator



Actually,  we  are  interested  in  the  posterior  density  of s2  or s.  Because  the  cumulative  distribution

function  of s2  is Fs2HsL = PIs2 § sM = PJ 1
s2

¥
1
s
N = 1 - Fs-2J 1

s
N,  the  density  function  of s2  is

fs2HsL = 1

s2
fs-2J 1

s
N:

fs2 = fs2i ê. s2i Ø
1

s2

1

s22
;

Plot@fs2, 8s2, 0, 8<D

2 4 6 8

0.1

0.2

0.3

0.4

Calculate the posterior density of s:

fs = Ifs2 ê. s2 Ø s2M 2 s;

plotfs = Plot@fs, 8s, 1, 3<, PlotStyle Ø BlackD

1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

Its mean, median, and mode are as follows:

NIntegrate@s fs, 8s, 0, 10<D 1.74445

FindRoot@NIntegrate@fs, 8s, 0, medians<D ã 0.5, 8medians, 1, 2<D

8medians Ø 1.70449<
FindMaximum@fs ê. s Ø modes, 8modes, 1.5<DP2T

8modes Ø 1.63212<

Calculate a 95% confidence interval:

q ê. 8FindRoot@NIntegrate@fs, 8s, 0, q<D ã 0.025, 8q, 1, 1.5<D,
FindRoot@NIntegrate@fs, 8s, q, 10<D ã 0.025, 8q, 2, 2.5<D<

81.27346, 2.44576<

30.7.3  Using Interpolation

‡ Introduction

In Section 30.7.2, we succeeded in obtaining the posterior marginal densities of m and s-2  by integrating
the  posterior  joint  density.  If  the  integration  fails,  one  possibility  is  to  use  interpolation  to  get  a  close
approximation of the marginal densities. In our example, we define anew the posterior joint density that
we calculated in Section 39.7.1:

Chapter 30  •  Statistics 1051



p@m_, s2i_D = pms2i ê. vals

‰
-

1

2
I4819.95-617.523 m+20 m2M s2i

s2i9

‡ Posterior Density of m

Suppose  that  (contrary  to  reality) Mathematica  is  not  able  to  integrate  the  posterior  joint  density  with
respect to m  or s-2.  We move to numerical  integration.  To calculate the posterior density of m,  we first
define the numerical integral as a function of m:

pma@m_?NumberQD := NIntegrate@10^8 p@m, s2iD, 8s2i, 0.0001, 1<D

To help the numerical calculations, we multiplied the function by 108  and replaced the upper bound ¶

with 1. Now we can find a representation of the posterior density of m as an interpolating function (see

Section 24.4.2, p. 807):

pm = FunctionInterpolation@pma@mD, 8m, 10, 20<D

InterpolatingFunction@8810., 20.<<, <>D

Calculate the scaling constant:

cm = 1 ê NIntegrate@pm@mD, 8m, 10, 20<D 5.21308

The density and its mean are as follows:

fm = cm pm@mD;

Plot@fm, 8m, 13, 17<D

14 15 16 17

0.2

0.4

0.6

0.8

1.0

NIntegrate@m fm, 8m, 10, 20<D 15.4382

‡ Posterior Densities of s-2 and s

Similarly, we can calculate the posterior density of s-2:

ps2ia@s2i_?NumberQD := NIntegrate@10^8 p@m, s2iD, 8m, 10, 20<D

ps2i = FunctionInterpolation@ps2ia@s2iD, 8s2i, 0.0001, 4<D

InterpolatingFunction@880.0001, 4.<<, <>D

Calculate the scaling constant:

cs2i = 1 ê NIntegrate@ps2i@s2iD, 8s2i, 0.0001, 4<D 5.21319

The density is then as follows:

fs2i = cs2i ps2i@s2iD;

1052 Mathematica Navigator



Plot@fs2i, 8s2i, 0.0001, 0.8<D

0.2 0.4 0.6 0.8

0.5
1.0
1.5
2.0
2.5
3.0
3.5

The posterior density of s and its mean are as follows:

fs = Hfs2i ê. s2i Ø H1 ê s^2LL 2 ê s^3;

Plot@fs, 8s, 1, 3<D

1.5 2.0 2.5 3.0

0.2
0.4
0.6
0.8
1.0
1.2
1.4

NIntegrate@s fs, 8s, 0.1, 10<D 1.74446

30.7.4  Gibbs Sampling

‡ Full Conditional Distributions

Gibbs sampling is based on the full conditional distributions. They are the conditional distributions of each
parameter given the other parameters and the data. Thus, if the parameters are a, b, g, … and we have
data Y, then the full conditional distributions are the distributions of Ha » b, g, d, …, YL, Hb » a, g, d, …, YL,
Hg » a, b, d, …, YL, ….

Because f Ha » b, g, …, YL = f Ha, b, g, … » YL ë f Hb, g, … » YL  where  the  denominator  does  not  depend

on a,  then f Ha » b, g, …, YL f Ha, b, g, … » YL,  which means that f Ha » b, g, …, YL  is  proportional  to  the

terms of the posterior joint density that contain a.

‡ Full Conditional Distribution of m

In Section 30.7.1, p. 1047, f Im, s-2 … YM was proportional to

pms2i

‰
-

1

2
k2 Im-xM2

-b s2i-
1

2
Isum2-2 sum m+n m2M s2i

s2i
-1+

n

2
+a

Now  we  want  to  find  full  conditional  densities f Im … s-2, YM  and f Is-2 … m, YM.  First, f Im … s-2, YM  is

proportional to the terms of pms2i that contain m, which makes it proportional to the following:

pm = Select@pms2i, ! FreeQ@Ò, mD &D

‰
-

1

2
k2 Im-xM2

-b s2i-
1

2
Isum2-2 sum m+n m2M s2i

The exponent is a quadratic polynomial of m:

Collect@pmP2T, m, SimplifyD

1

2
m2 I-k2 - n s2iM + m Ik2 x + sum s2iM +

1

2
I-k2 x2 - sum2 s2i - 2 b s2iM

Chapter 30  •  Statistics 1053



Pick the coefficients of m2 and m:

8a = Coefficient@%, m^2D, b = Coefficient@%, mD<

:
1

2
I-k2 - n s2iM, k2 x + sum s2i>

More generally, consider a probability density function f HxL that is proportional to an expression of the

form ‰a x
2+b x+c  with a < 0.  Because a x2 + b x + c  = 1

2
Jx +

b
2 a
N2ìJ 1

2 a
N + d  for  a  constant d  that  does  not

depend on x, the random variable has a normal distribution with mean -
b
2 a

 and variance -
1
2 a

. Accord-

ingly, the full conditional distribution of m is the following normal distribution:

fm = NormalDistributionB
-b

2 a
,

-1

2 a
F êê Simplify

NormalDistributionB
k2 x + sum s2i

k2 + n s2i
,

1

k2 + n s2i
F

‡ Full Conditional Distribution of s-2

Recall f Im, s-2 … YM:

pms2i ‰
-

1

2
k2 Im-xM2

-b s2i-
1

2
Isum2-2 sum m+n m2M s2i

s2i
-1+

n

2
+a

The  density  function f Is-2 … m, YM  is  proportional  to  the  terms  of  this  expression  that  contain s-2.  The

density function of a general gamma distribution is proportional to the following:

Select@PDF@GammaDistribution@g, lD, xD, ! FreeQ@Ò, xD &D ‰
-

x

l x-1+g

We  now  see  that  the  full  conditional  distribution  of s-2  is  a  gamma  distribution  with  the  following
parameters:

8l = -1 ê Coefficient@pms2iP1, 2T, s2iD, g = 1 + Exponent@pms2i, s2iD< êê Simplify

:
2

sum2 + 2 b + m H-2 sum + n mL
,

n

2
+ a>

Thus, the full conditional distribution of s-2 is as follows:

fs2i = GammaDistribution@g, lD êê Simplify

GammaDistributionB
n

2
+ a,

2

sum2 + 2 b + m H-2 sum + n mL
F

‡ Gibbs Sampling

With  Gibbs  sampling,  we  need  to  generate  random  numbers  (or  sample  or  draw)  from  all  of  the  full
conditional distributions. This is easy if we can infer that each of these distributions is one of the well-
known distributions (as in our example) and we have a random number generator for it.

Gibbs  sampling  is  a  method  to  sample  the  posterior  joint  distribution.  The  sample  is  then  used  to
infer the form of the marginal densities. First, select initial values a0, b0, … for the parameters. In the ith

step, draw from each full conditional distribution in turn, using the values of the previous step and the

values  already  drawn  in  the  current  step.  Thus,  draw  from f Ia … bi-1, gi-1, di-1, …, YM,
f Ib … ai, gi-1, di-1, …, YM, f Ig … ai, bi, di-1, …, YM, … in turn until you have a random number from all full

conditional distributions. Then go to the next step.

1054 Mathematica Navigator



The values of the parameters from steps 0, 1, 2, and so on in Gibbs sampling form a Markov chain. It
can be shown that the chain converges to the posterior joint distribution and that the iterative sampling
scheme draws~in the limit~a value from this distribution. In practice, a sample from the posterior joint
distribution can be obtained by deleting some early draws and then considering the remaining draws to
be~approximately~draws  from  the  posterior  joint  distribution.  For  Gibbs  sampling,  see Gamerman
(1997) or Green (2001).

‡ An Example

In our example, we first insert the numerical values of the constants into the full conditional densities:

gm = fm ê. vals êê PowerExpand

NormalDistributionB15.4381,
1

2 5 s2i

F

gs2i = fs2i ê. vals

GammaDistributionB10,
2

4819.95 + m H-617.523 + 20 mL
F

We initialize Gibbs sampling with the sample values:

rm = Mean@dataD; rs2i = 1 ê Variance@dataD;

Then we do 11,000 iterations of Gibbs sampling and drop the first 1000 points:

SeedRandom@8D;
gibbs = Drop@Table@8rm = RandomReal@gm ê. s2i Ø rs2iD,

rs2i = RandomReal@gs2i ê. m Ø rmD<, 811 000<D, 1000D;

The points are as follows:

ListPlot@gibbs, AxesOrigin Ø 813, 0<, PlotStyle Ø PointSize@TinyD, ImageSize Ø 200D

14.0 14.5 15.0 15.5 16.0 16.5 17.0
0.0

0.2

0.4

0.6

0.8

‡ An Illustration

To illustrate the method, we plot the first 10 points (the starting point is large in the plot):

8gibbsm, gibbss2i< = gibbs¨;
mm = Flatten@Partition@Take@gibbsm, 11D, 2, 1DD;
ss =

Most@Prepend@Flatten@Partition@Take@gibbss2i, 11D, 2, 1DD, First@gibbss2iDDD;

mmss = 8mm, ss<¨;

Chapter 30  •  Statistics 1055



GraphicsA8Point@Take@mmss, 81, 20, 2<DD, Line@Most@mmssDD, Red,

AbsolutePointSize@5D, Point@First@mmssDD<, Axes Ø True, AxesLabel Ø 9"m", "s-2"=,

AxesOrigin Ø 814.7, 0.1<, AspectRatio Ø 1 ê GoldenRatio, ImageSize Ø 200E

14.8 15.0 15.2 15.4 15.6 15.8 16.0 16.2
m

0.2

0.3

0.4

0.5
s-2

‡ Posterior Histograms of m and s

The draws for m and s are as follows:

gibbss = 1 ê Sqrt@gibbss2iD;

ppp = ListPlotA8gibbsm, gibbss<¨, AxesOrigin Ø 813, 0.7<,

PlotStyle Ø PointSize@TinyD, PlotRange Ø All, ImageSize Ø 200E

14 15 16 17

1.0

1.5

2.0

2.5

3.0

3.5

The histograms for m and s are as follows:

<< Histograms`

8hm =
Histogram@gibbsm, HistogramScale Ø 1, HistogramCategories Ø Range@13, 18, 0.1DD,

hs = Histogram@gibbss, HistogramScale Ø 1, HistogramCategories Ø Range@0, 5, 0.1DD<

:

14 15 16 17

0.2

0.4

0.6

0.8

1.0

,

1 1.5 2 2.5 3 3.5

0.2
0.4
0.6
0.8
1.0
1.2
1.4

>

If  we compare the histograms with the exact densities  that we calculated in Section 30.7.2,  p. 1049,  we

can see a close agreement, which confirms that Gibbs sampling is a working method:

1056 Mathematica Navigator



8Show@hm, plotfmD, Show@hs, plotfsD<

:

14 15 16 17

0.2

0.4

0.6

0.8

1.0

,

1 1.5 2 2.5 3 3.5

0.2
0.4
0.6
0.8
1.0
1.2
1.4

>

The means and variances of the samples are

8Mean@gibbsmD, Variance@gibbsmD< 815.4336, 0.155218<
8Mean@gibbssD, Variance@gibbssD< 81.74527, 0.0918638<

For another example of Gibbs sampling, see tutorialêRandomNumberGeneration.

30.7.5  Markov Chain Monte Carlo

‡ The MCMC Method

The major advantage of MCMC is that we do not need to draw from the full conditional distributions as
in Gibbs sampling; we only need to evaluate  the full conditional densities at given points, and even the
scaling  constants  are  not  needed.  For  MCMC, see Gilks,  Richardson,  and Spiegelhalter  (1996), Gamer-
man (1997), or Green (2001).

MCMC has some variants.  The basic  method is  called the Metropolis  method,  and a generalization is
called the Metropolis-Hastings method. Actually, Gibbs sampling is also a variant of MCMC. We describe
here the random walk Metropolis method.

Suppose  the  parameters  of  interest  are a, b, g,  …,  and  let q = Ha, b, g, …L,  which  is  a d-vector.  We
have a posterior joint distribution f Hq » YL from which we want to draw in order to estimate the posterior

marginal distributions of the parameters [in the literature, f Hq » YL is often denoted by pHqL and called the

target distribution]. Let the successive draws be denoted as q1, q2, …. If we already have draws q1, …, qi,

then the next draw qi+1 is obtained as follows.

Choose an arbitrary (really!) d-variate distribution that is symmetric around zero (a d-variate normal
distribution with mean zero, for example), and draw a random number wi  from this density. Calculate

fi = qi + wi,  which  is  called  the proposal.  The  proposal  is  accepted  with  probability

min 91, f Ifi … YM ë f Iqi … YM=  [this  can  be  implemented  by  drawing  a  random  number  that  is  uniform  on

H0, 1L]. If the proposal is accepted, we set qi+1 = fi, but if the proposal is rejected, we set qi+1 = qi.

It  can  be  shown  that  this  Metropolis  method  generates  a  Markov  chain  that  converges  to  the
posterior  joint  distribution,  and  the  iterative  sampling  scheme  draws~in  the  limit~a  value  from  this
distribution. In practice, a sample from the posterior joint distribution can be obtained by deleting some
early  draws  and  then  considering  the  remaining  draws  to  be~approximately~draws  from  the
posterior joint distribution.

‡ Programming the MCMC Method

We  continue  studying  the  model  from Section  30.7.1,  p. 1046.  The  posterior  joint  density pIm, s-2 … YM
was shown to be proportional to the following:

Chapter 30  •  Statistics 1057



p@m_, s2i_D = pms2i ê. vals

‰
-

1

2
I4819.95-617.523 m+20 m2M s2i

s2i9

We calculate the ratio needed in the acceptance probability of the Metropolis method:

ratio@8m1_, s2i1_<, 8m2_, s2i2_<D = p@m2, s2i2D ê p@m1, s2i1D êê Simplify

‰
J2409.98-308.761 m1+10. m12N s2i1+J-2409.98+308.761 m2-10. m22N s2i2

s2i29

s2i19

Let q = Im, s-2M. We generate the proposals with a two-variate normal distribution that has independent

components with means of zero and known standard deviations:

proposal@q_, std_D := q + HRandomReal@NormalDistribution@0, ÒDD & êü stdL

The proposals may need to satisfy some restrictions. For example, a draw for s-2  has to be positive, so
in our example we write the following test:

test@f_D := If@fP2T > 0, True, FalseD

The Metropolis method can then be written as follows:

metropolisStep@q_, std_D := With@8f = proposal@q, stdD, r = RandomReal@D<,
If@test@fD, If@r § ratio@q, fD, f, qD, qDD

metropolis@initialState_, std_, steps_D :=
NestList@metropolisStep@Ò, stdD &, initialState, stepsD

Here, metropolisStep calculates one step of the method, and metropolis repeats the step a total of
steps times. In this way, we get a sequence of random vectors.

‡ Adjusting the Standard Deviations

The working of MCMC is greatly affected by the standard deviations of the distribution that gives the
proposals. In our example, we first try the standard deviations 2 (used to draw m) and 0.5 (used to draw
s-2). We start from the sample estimates and generate 500 draws:

m = Mean@dataD; s2i = 1 ê Variance@dataD;

SeedRandom@2D; 8metrom, metros2i< = metropolis@8m, s2i<, 82, 0.5<, 500D¨;

The draws for m are as follows:

ListPlot@metrom, PlotStyle Ø PointSize@TinyD, AspectRatio Ø 0.2, ImageSize Ø 400D

100 200 300 400 500

15.0

15.5

16.0

16.5

We  see  that  the  chain  stays  for  long  amounts  of  time  in  the  same  state  before  going  to  a  new  state.
Calculate the different values of the chain:

Length@Union@metromDD 45

The small number of different values is an indication that the standard deviations are too large: A large

standard  deviation  allows  for  large  values  for  the  proposal fi,  and  then  the  ratio pIfi … YM ë pIqi … YM  is

often small, which results in small acceptance probabilities and frequent rejection of the proposal.

1058 Mathematica Navigator



We try smaller standard deviations 0.5 and 0.1:

SeedRandom@2D;

8metrom, metros2i< = metropolis@8m, s2i<, 80.5, 0.1<, 500D¨;

ListPlot@metrom, PlotStyle Ø PointSize@TinyD, AspectRatio Ø 0.2, ImageSize Ø 400D

100 200 300 400 500

14.5

15.0

15.5

16.0

16.5

Length@Union@metromDD 246

Now  the  values  vary  more,  and  approximately  half  of  the  proposals  are  accepted.  We  then  use  even
smaller standard deviations 0.1 and 0.02:

SeedRandom@2D;

8metrom, metros2i< = metropolis@8m, s2i<, 80.1, 0.02<, 500D¨;

ListPlot@metrom, PlotStyle Ø PointSize@TinyD, ImageSize Ø 400, AspectRatio Ø 0.2D

100 200 300 400 500

15.5

16.0

16.5

Length@Union@metromDD 450

Now approximately 90% of proposals are accepted, but the sequence has a high autocorrelation, and it
moves too slowly to various parts of the domain of the posterior distribution of m,  which means that a
long sequence will be needed to get a satisfactory estimate of the posterior density.

In  conclusion,  experimenting  is  often  needed  to  adjust  the  standard  deviations  of  the  proposal
distribution.  The standard deviations should be small enough so that a sufficient number of proposals
will be accepted but large enough so that the autocorrelation is not too large.

For a manipulation to demonstrate the effect of standard deviations, see
demonstrations.wolfram.com/MarkovChainMonteCarloSimulationUsingTheMetropolisAlgorithm  by
Philip Gregory.

Next, we use the standard deviations 0.5 and 0.1 and study MCMC in more detail.

‡ Using the Results

We calculate 21,000 steps and reject the first 1000, which are considered to be transient:

SeedRandom@2D;
metro = Drop@metropolis@8m, s2i<, 80.5, 0.1<, 21 000D, 1000D;

Calculate the number of different points:

Length@Union@metroDD 10 208

The points are displayed as follows:

Chapter 30  •  Statistics 1059



ListPlotAmetro, PlotStyle Ø PointSize@TinyD, PlotRange Ø All,

AxesLabel Ø 9"m", "s-2"=, AxesOrigin Ø 813.5, 0<, ImageSize Ø 200E

14 15 16 17
m

0.2

0.4

0.6

0.8

1.0

s-2

The draws for m and s-2 are as follows:

8metrom, metros2i< = metro¨;

ListPlot@metrom, AspectRatio Ø 0.3, PlotRange Ø All,
PlotStyle Ø PointSize@TinyD, AxesOrigin Ø 80, 13.5<, ImageSize Ø 400D

5000 10000 15000 20000

14

15

16

17

ListPlot@metros2i, AspectRatio Ø 0.3, PlotRange Ø All,
PlotStyle Ø PointSize@TinyD, AxesOrigin Ø 80, 0<, ImageSize Ø 400D

5000 10000 15000 20000

0.2

0.4

0.6

0.8

1.0

8Mean@metromD, Mean@metros2iD< 815.4427, 0.360577<

Show the draws for m and s:

metros = 1 ê Sqrt@metros2iD;

1060 Mathematica Navigator



ListPlotA8metrom, metros<¨, PlotStyle Ø PointSize@TinyD, PlotRange Ø All,

AxesLabel Ø 8"m", "s"<, AxesOrigin Ø 813.5, 0.8<, ImageSize Ø 200E

14 15 16 17
m

1.0

1.5

2.0

2.5

3.0

3.5

s

The histograms for m and s are as follows:

<< Histograms`

8hm =
Histogram@metrom, HistogramScale Ø 1, HistogramCategories Ø Range@13, 18, 0.1DD,

hs = Histogram@metros, HistogramScale Ø 1, HistogramCategories Ø Range@0, 5, 0.1DD<

:

14 15 16 17

0.2

0.4

0.6

0.8

1.0

,

1 1.5 2 2.5 3 3.5

0.2
0.4
0.6
0.8
1.0
1.2
1.4

>

If  we compare the histograms with the exact densities  that we calculated in Section 30.7.2,  p. 1049,  we

can see a close agreement, which confirms that MCMC is a working method:

8Show@hm, plotfmD, Show@hs, plotfsD<

:

14 15 16 17

0.2

0.4

0.6

0.8

1.0

,

1 1.5 2 2.5 3 3.5

0.2
0.4
0.6
0.8
1.0
1.2
1.4

>

Chapter 30  •  Statistics 1061



1062 Mathematica Navigator

This page intentionally left blank



References

The references can also be found from the Index.

Abell,  M. L.,  and J.  P. Braselton (1997). Differential  Equations with Mathematica,  2nd ed. Academic Press,
Boston.

Abell, M. L., J. P. Braselton, and J. A. Rafter (1999). Statistics with Mathematica. Academic Press, Boston.

Allen, A. O. (1990). Probability, Statistics, and Queueing Theory: With Computer Science Applications, 2nd ed.
Academic Press, Boston.

Bhatti, M. A. (2000). Practical Optimization Methods with Mathematica Applications. Springer, New York.

Borrelli, R. L., and C. S. Coleman (1998). Differential Equations: A Modeling Perspective. Wiley, New York.

Bulmer,  M.,  and  M.  Carter  (1996).  Integer  programming  with  Mathematica.  Mathematica  Journal  6(3),
28-36.

Burghes, D. N., and M. S. Borrie (1981). Modelling with Differential Equations. Horwood, Chichester, UK.

Cheng,  A.  H.-D.,  P.  Sidauruk,  and  Y.  Abousleiman  (1994).  Approximate  inversion  of  the  Laplace
transform. Mathematica Journal 4(2), 76-82.

Cleveland, W. S. (1993). Visualizing Data. Hobart Press, Summit, NJ.

Cleveland, W. S. (1994). The Elements of Graphing Data. Hobart Press, Summit, NJ.

Cox, D. R., and H. D. Miller (1965). The Theory of Stochastic Processes. Methuen, London.

Dennemeyer, R. (1968). Introduction to Partial Differential Equations and Boundary Value Problems. McGraw-
Hill, New York.

Dickau, R. M. (1997). Compilation of iterative and list operations. Mathematica Journal 7(1), 14-15.

Gamerman, D. (1997): Markov Chain Monte Carlo: Stochastic Simulation for Bayesian Inference.  Chapman &
Hall, London.

Ganzha, V. G., and E. V. Vorozhtsov (1996). Numerical Solutions for Partial Differential Equations: Problem
Solving Using Mathematica. CRC Press, Boca Raton, FL.

Gilks,  W.  R.,  S.  Richardson,  and D.  J.  Spiegelhalter  (Eds.)  (1996). Markov  Chain  Monte  Carlo  in  Practice.
Chapman & Hall, London.

Giordano,  F.  R.,  M.  D.  Weir,  and  W.  P.  Fox  (1997). A  First  Course  in  Mathematical  Modeling,  2nd  ed.
Brooks/Cole, Pacific Grove, CA.

Gray,  J.  W.  (1997). Mastering  Mathematica:  Programming  Methods  and  Applications,  2nd  ed.  Academic
Press, Boston.

Green, P. J. (2001): A primer on Markov chain Monte Carlo. In O. E. Barndorff-Nielsen, D. R. Cox, and C.
Klüpperberg (Eds.), Complex Stochastic Systems. Chapman & Hall, Boca Raton, FL.



Guttorp, P. (1995). Stochastic Modeling of Scientific Data. Chapman & Hall, London.

Hastings,  K.  J.  (2006). Introduction  to  the  Mathematics  of  Operations  Research  with  Mathematica,  2nd  ed.
Chapman & Hall/CRC Press, Boca Raton, FL.

Johnson,  N.  L.,  S.  Kotz,  and  A.  W.  Kemp  (1992). Univariate  Discrete  Distributions,  2nd  ed.  Wiley,  New
York.

Kaplan, D., and L. Glass (1995). Understanding Nonlinear Dynamics. Springer, New York.

Kelley,  W.  G.,  and A. C.  Peterson (2001). Difference  Equations:  An Introduction with Applications,  2nd ed.
Academic Press, San Diego.

Knapp,  R.,  and  M.  Sofroniou  (1997).  Difference  equations  and  chaos  in  Mathematica:  Symbolic  and
numerical mathematics at work. Dr. Dobb’s Journal 22(11), 84-90, 95-99. (A version of the article can
be found as item number 0209-012 in MathSource.)

Kulenovic,  M.  R.  S.,  and  O.  Merino  (2002). Discrete  Dynamical  Systems  and  Difference  Equations  with
Mathematica. Chapman & Hall/CRC Press, Boca Raton, FL.

Kulkarni, V. G. (1995). Modeling and Analysis of Stochastic Systems. Chapman & Hall, London.

Kythe,  P.  K.,  P.  Puri,  and M. R. Schäferkotter (1996). Partial  Differential  Equations and Mathematica.  CRC
Press, Boca Raton, FL.

MacHale, D. (1993). Comic Sections: The Book of Mathematical Jokes, Humour, Wit and Wisdom.  Boole Press,
Dublin.

Maeder, R. E. (1994). The Mathematica Programmer. Academic Press, Boston.

Maeder, R. E. (1995a). Single-image stereograms. Mathematica Journal 5(1), 50-61.

Maeder, R. E. (1995b). Function iteration and chaos. Mathematica Journal 5(2), 28-40.

Maeder, R. E. (1997). Programming in Mathematica, 3rd ed. Addison-Wesley, Reading, MA.

Martelli, M. (1999). Introduction to Discrete Dynamical Systems and Chaos. Wiley, New York.

Mesterton-Gibbons,  M.  (1989). A  Concrete  Approach  to  Mathematical  Modelling. Addison-Wesley,  Red-
wood City, CA.

Murrell, H. (1994). Planar phase plots and bifurcation animations. Mathematica Journal 4(3), 76-81.

Nachbar, R. B. (1995). Genetic programming. Mathematica Journal 5(3), 36-47.

Pearl, R. (1927). The growth of populations. Quarterly Review of Biology 2(4), 532-548.

Rohatgi, V. K. (1984). Statistical Inference. Wiley, New York.

Rose, C., and M. D. Smith (2002). Mathematical Statistics with Mathematica. Springer, New York.

Rowland,  E.  S.  (2008).  A  natural  prime-generating  recurrence. Journal  of  Integer  Sequences  11,  Article
08.2.8, 1-13.

Ruskeepää,  H.  (2007).  Mathematica.  In  L.  Hogben  (Ed.), Handbook  of  Linear  Algebra.  Chapman  &
Hall/CRC Press, Boca Raton, FL.

Ruskeepää,  H.  (2008a):  Mathematica:  Introductory examples  related to Ramanujan,  Part  1. Mathematics
Newsletter 18(2), 33-57.

1064 Mathematica Navigator



Ruskeepää,  H.  (2008b):  Mathematica:  Introductory examples related to Ramanujan,  Part  2. Mathematics
Newsletter 18(3), 69-91.

Sandefur, J. T. (1990). Discrete Dynamical Systems: Theory and Applications. Clarendon, Oxford.

Schwalbe,  D.,  and  S.  Wagon  (1997). VisualDSolve:  Visualizing  Differential  Equations  with  Mathematica.
Springer/TELOS, New York.

Shaw,  W.  T.,  and  J.  Tigg  (1994). Applied Mathematica:  Getting  Started,  Getting  It  Done.  Addison-Wesley,
Reading, MA.

Skeel,  R.  D.,  and  J.  B.  Keiper  (2001). Elementary  Numerical  Computing  with  Mathematica.  Stipes,  Cham-
paign, IL.

Smith, C., and N. Blachman (1995). The Mathematica Graphics Guidebook. Addison-Wesley, Reading, MA.

Spiegel, M. R. (1971). Schaum’s Outline of Theory and Problems of Calculus of Finite Differences and Difference
Equations. McGraw-Hill, New York.

Spiegel, M. R. (1999). Mathematical Handbook of Formulas and Tables, 2nd ed. McGraw-Hill, New York.

Szabo, F. (2000). Linear Algebra: An Introduction Using Mathematica. Academic Press, San Diego.

Szabo, F. (2001). Student Solutions Manual for Linear Algebra: An Introduction Using Mathematica. Academic
Press, San Diego.

Trott,  M. (2004a). The Mathematica Guidebook for Graphics. Springer, New York.

Trott,  M. (2004b). The Mathematica Guidebook for Programming. Springer, New York.

Trott,  M. (2006a). The Mathematica Guidebook for Numerics. Springer, New York.

Trott,  M. (2006b). The Mathematica Guidebook for Symbolics. Springer, New York.

Wagner, D. B. (1995). Dynamic programming. Mathematica Journal 5(4), 42-51.

Wagner, D. B. (1996). Power Programming with Mathematica: The Kernel. McGraw-Hill, New York.

Wagon, S. (2000). Mathematica in Action, 2nd ed. Springer/TELOS, New York.

Wellin,  P.,  R.  Gaylord,  and  S.  Kamin  (2005). An  Introduction  to  Programming  with  Mathematica.  Cam-
bridge University Press, Cambridge, UK.

Wickham-Jones, T. (1994). Mathematica Graphics. Springer, New York.

Winston, W. L. (1994). Operations Research: Applications and Algorithms, 3rd ed. Duxbury Press, Belmont,
CA.

Wolfram, S. (2002). A New Kind of Science. Wolfram Media, Champaign, IL.

Wrede,  R.  C.,  and  Spiegel,  M.  R.  (2002). Schaum’s  Outline  of  Theory  and  Problems  of  Advanced  Calculus.
McGraw-Hill, New York.

References 1065



1066 Mathematica Navigator

This page intentionally left blank



Index

Mathematica  names  are  written in  this  style: Factorial;  menu commands are  shown like  this: Abort
Evaluation. Names that begin with a lowercase letter are either names of programs, such as bifurcaÖ
tion,  or  names  of  data  sets,  such  as barley.  Names  such  as FunctionApproximations`  are
packages.  The  adjectives  one-,  two-,  three-,  and  four-dimensional  are  written  as  1D,  2D,  3D,  and  4D,
respectively. Mathematica names beginning with $ are listed at the end of the index.

Note that some of the names listed here are in packages. Such names are denoted by a bullet after the
name,  such  as AdjustedRSquared•.  To  use  such  a  command,  you  first  have  to  load  the  correct
package, which is explained in Section 4.1.1.

Note also that if a cell in a Mathematica  document is too long to fit at the bottom of a page, Mathemat-
ica  may divide the cell into two parts, and the parts are printed on consecutive pages. However, index
entries  are  associated  with  whole  cells,  and Mathematica  has  adopted  the  convention  that  the  page
number of an index entry will correspond with the page where the cell ends. Thus, the page numbers of
the index entries that are associated with a divided cell  and are located at the bottom of the first page
are actually one less than their page number in the index.

!, Not, 433
!, Factorial, 11, 437
!!, Factorial2, 437
ü Hprefix function applicationL, 33
üü, Apply, 397, 462
üüü, Apply, 397, 463
Ò, Slot, 520
ÒÒ, SlotSequence, 464, 520
%, %%, %%%, etc., Out, 8, 414, 566
^, Power, 10
^=, UpSet, 588
^:=, UpSetDelayed, 588
&, Function, 520
&&, And, 433
*, Times, 10, 13
* Hstring metacharacterL, 20
_, Blank, 39, 492, 512
__, BlankSequence, 500
___, BlankNullSequence, 500
_., Optional, 501
-, Minus, Subtract, 10
->, Rule, 32, 416, 494, 584
+, Plus, 10
++, PreIncrement, 553
=, Set, 9, 414, 584
=., Unset, 9, 415
==, Equal, 43, 431
!=, Unequal, 431
===, SameQ, 431
=!=, UnsameQ, 431

` Hspecifies precisionL, 406
` Hcontext markL, 95, 531
H ...L HgroupingL, 13-14
8 ...<, List, 13, 15, 34, 444
@ ...D Hfunction applicationL, 13-14
@@ ...DD, Part, 13, 34, 418, 448
H* ...*L HcommentL, 536
<* ...*> HsplicingL, 111
», Alternatives, 502
»», Or, 433
\n Hnew line characterL, 104, 433
\t Htab characterL, 433
<, Less, 431
<=, LessEqual, 431
<<, Get, 95, 110
<>, StringJoin, 434
>, Greater, 431
>=, GreaterEqual, 431
>>, Put, 110
>>>, PutAppend, 110
., Dot, 42, 699
.., Repeated, 503
..., RepeatedNull, 503
;, CompoundExpression, 33, 114
;;, Span, 448, 679, 692
" Hstring delimitersL, 103, 433
?, PatternTest, 497
? Hinformation escapeL, 20, 415
?? Hinformation escapeL, 20
', Derivative, 617-618



ê, Divide, 10
êü, Map, 38, 445, 459
ê., ReplaceAll, 32, 416, 494
ê:, TagSet, 588, 624
ê;, Condition, 499
êê Hpostfix function applicationL, 33, 420
êê., ReplaceRepeated, 418, 494, 596
:, Pattern, 503
:=, SetDelayed, 39, 512, 584
:>, RuleDelayed, 584
::, MessageName, 540
œ, Element, 420

1D hyperbolic problems, 896, 909
1D inputs, 73
1D outputs, 70
1D parabolic problems, 893, 909
2|periodic points, 944
2D Drawing window, 127
2D elliptic problems, 904, 921
2D functions, graphics for, Plot, etc., 116
2D geometry, 154
2D Graphics Inspector window, 127
2D hyperbolic problems, 898, 901
2D inputs, 76
2D outputs, 70
2D primitives, 152
3D elliptic problems, 907
3D functions, graphics for, Plot3D, etc., 139
3D geometry, 177, 309
3D primitives, 177
4|periodic points, 945
4D functions, graphics for, ContourPlot3D, etc.,

147
8|periodic points, 946

Abell and Braselton H1997L, 830, 886
Abell, Braselton, and Rafter H1999L, 1004
Abort Evaluation Hmenu commandL, 7
abs, 586
Abs, 11, 137, 400, 430, 437
abs2, 586
Absolute errors, 403
Absolute value, Abs, 11
AbsoluteDashing, 154, 157, 178
AbsoluteOptions, 181
AbsolutePointSize, 154-155, 178
AbsoluteThickness, 154, 157, 178
AbsoluteTiming, 112
AccountingForm, 399
Accumulate, 36, 40, 682, 987
Accuracy, 403
AccuracyGoal, 113, 409, 645, 668, 735, 749, 763,

822, 866, 917, 1036

ActionMenu, 387
Adams, 866, 917
Adams method, 849, 866
Adaptive methods

for 2D plots, Plot, 117
for 3D plots, Plot3D, 140
for differential equations, NDSolve, 866
for integration, NIntegrate, 648
for interpolation, FunctionInterpolation,

807
AdaptiveMonteCarlo, 647, 662
AdaptiveQuasiMonteCarlo, 647, 662
Add Frame Hmenu commandL, 67
Add|ons, 99
AddêRemove Cell Tags Hmenu commandL, 57, 89
AdjustedRSquared•, 1031
AffineTransform, 160, 686
Airy functions, AiryAi, etc., zeros of,

AiryAiZero, etc., 736
AiryAi, 441
AiryAiZero, 736
AiryBi, 441
AiryBiZero, 736
Algebraic numbers, domain of, Algebraics, 420
AlgebraicManipulation palette, 16
Algebraics, 420
Align Selected Graphics Hmenu commandL, 120
Aligning tables

with Grid, 471
with PaddedForm, 469

Alignment, 354, 471, 476
Alignment marker, 83
AlignmentPoint, 185, 195, 212
All, 182
Allen H1990L, 1028
AlternatingSigns, 668
Alternatives H»L, 502, 595
Analysis of variance, 1029
Analytic, 626, 630, 671
And H&&L, 433
Angles, VectorAngle, 685
animal data, 251
Animate, 321, 365, 625
AnimationDirection, 368, 375
AnimationRate, 368, 375
AnimationRepetitions, 368
AnimationRunning, 366, 368
Animations

with Animate, 365, 625
with ListAnimate, 367, 918
with Manipulate, 321, 366

Animator, 321, 376
AnimatorElements, 368

1068 Mathematica Navigator



Annotation, 363
ANOVA` package, 1029
ANOVA•, 1029
ANOVATable•, 1031, 1036
Antiderivatives, Derivative, 634
Apart, 32, 428
Appearance, 323, 328, 375-377, 380, 382-387
AppearanceElements, 355, 368, 375-376, 385
Append, 113, 449, 680, 693-694
AppendTo, 113, 449, 566, 609, 680
Application Packages, 5
Applications Library, 16
Apply HüüL, 462, 568, 570, 682, 774, 795, 968
ApproximateIntervals•, 258, 1012
Approximation of data, 812

by linear least|squares, Fit, 47, 812
by linear least|squares with a logarithmic

transform, Fit, 817
by nonlinear least|squares, FindFit, 818

Approximation of functions, 824
by Chebyshev approximation,

RationalInterpolation•, 806, 826
by economized rational approximation,

EconomizedRationalApproximation•,
825

by interpolation, FunctionInterpolation,
824

by linear least|squares, functionLSQ, 827
by minimax approximation,

MiniMaxApproximation•, 827
by Padé approximants, PadeApproximant, 825
by Taylor polynomials, Series, 825

Arbitrary|precision numbers, 113, 405, 544
ArcCos, 11, 435
ArcCosh, 435
ArcCot, 11, 435
ArcCoth, 435
ArcCsc, 11, 435
ArcCsch, 435
Arcs, 159
ArcSec, 11, 435
ArcSech, 435
ArcSin, 11, 435
ArcSinh, 435
ArcTan, 11, 435
ArcTanh, 435
Arg, 400, 430
Argument of complex number, Arg, 400
Arguments

conventions of, 14
default values for, 501
in compiled functions, 528
in functions, 512

in pure functions, 520
optional, 502
patterns for, 491
variable number of, 500

Arithmetic
fixed|precision, 404
interval, 408
of matrices, 696
of vectors, 681
variable|precision, 404

Arranging graphics
as a column, GraphicsColumn, 124
as a grid, GraphicsGrid, 124
as a row, GraphicsRow, 124
side by side, GraphicsRow, 123
superimposed, Show, 121

Array, 446, 678, 687, 774, 995
ArrayDepth, 444, 692
ArrayFlatten, 695, 980, 992, 1019
ArrayPlot, 275, 691, 1018

options for, 691
ArrayQ, 444
ArrayRules, 689
Arrays

constant, ConstantArray, 687
depth of, ArrayDepth, 692
generation of, Array, 678, 687
plotting of, ArrayPlot, 691
sparse, SparseArray, 689

Arrow, 129, 154, 161, 183, 201, 685, 855
Arrowheads, 161, 269
Asking values, 9, 415
AspectRatio, 124, 212, 215

in 2D graphics, 185, 189
in contour and density graphics, 227

Assignments
delayed, SetDelayed H:=L, 584
immediate, Set H=L, 9, 414, 584

Associated Legendre functions, 441
Assuming, 422
Assumptions

default, $Assumptions, 422
in FullSimplify, 420
in Integrate, 640
in LaplaceTransform, 671
in Simplify, 420

Assumptions, 423, 630, 640
AstronomicalData, 292
Asymptotic stability, 833
AsymptoticCorrelationMatrix•, 1036
AsymptoticCovarianceMatrix•, 1036
Atoms of expressions, 426
Atoms, plot of, 307

Index 1069



Attributes, 401, 531
AuthorTools` package, 79
AutoAction, 353, 374
Autocorrelation, 1007
autocorrelation, 1007
Automatic, 182
Automatic numbering, 89

of formulas, 90
of referred pages, 89
of sections, 91

Automatic Numbering Hmenu commandL, 90
Automatic updates, 20
AutoSequencing, 355
Axes, 213

in 2D graphics, 186, 196
in 3D graphics, 219
in contour and density graphics, 227

Axes labels
with AxesLabel, 196
with FrameLabel, 198

AxesEdge, 213, 219
AxesLabel, 186, 196, 213, 219
AxesOrigin, 186, 196
AxesStyle, 186, 196, 213, 219

Background, 65, 67, 124, 165, 185, 191, 193, 212,
217, 374, 471, 482

Backsubstitution, 721
Backward difference methods, 866
Balancing paired characters, 22
Band, 690, 714
Band matrices, 690
Bar charts

for 2D data with labels, BarChart•, 253
for 2D data with positions,

GeneralizedBarChart•, 257
for frequencies, Histogram•, 258, 1012
options for, 254

BarChart•, 253, 256
BarChart3D•, 275, 280
BarCharts` package, 253, 256|257, 275
BarEdges•, 254, 278
BarEdgeStyle•, 254, 278
BarGroupSpacing•, 254
BarLabels•, 254
BarOrientation•, 254
BarSpacing•, 254, 278
BarStyle•, 254, 278
BarValues•, 254
BaselinePosition, 185, 195, 212, 354, 374, 471
BaseStyle, 67, 183, 185, 192|193, 212, 217, 354,

374, 471
BasicMathInput palette, 16
BasicTypesetting palette, 16, 85

BasisNames•, 1031
Bayesian statistics, 1046
BDF, 866, 917
Begin, 535
BeginPackage, 535
BellB, 437
BernoulliB, 437
BernoulliDistribution, 969
Bessel functions, BesselJ, etc., 441

zeros of, BesselJZero, etc., 736
BesselI, 441
BesselJ, 441
BesselJZero, 736, 902
BesselK, 441
BesselY, 441
BesselYZero, 736
BestFit•, 1031
BestFitParameters•, 1031
BestFitParametersDelta•, 1031
Beta, 440
Beta function, Beta, 440

incomplete, Beta, 440
inverse, InverseBetaRegularized, 440
regularized incomplete, BetaRegularized,

440
BetaBinomialDistribution, 969
BetaDistribution, 976
BetaNegativeBinomialDistribution, 970
BetaRegularized, 440
BetsFit•, 1036
BetsFitParameters•, 1036
Bezier•, 163, 803
Bezier splines

in graphics, Spline•, 163
in interpolation, SplineFit•, 805

Bhatti H2000L, 742
Bias•, 826, 828
bifurcation, 942
Bifurcation diagrams, 941, 952
Biharmonic•, 620
Bilaterally formatted cells, 79
BinCounts, 1015, 1018, 1020
Binomial, 11, 437
Binomial coefficient, Binomial, 437
BinomialDistribution, 966, 969, 971

normal approximation to, 982
Birth-death process, 272, 888, 999
Bisection method, 733
Bitmap plots, 114
Bivariate normal distribution, 985
Black, 169
Blank H_L, 492, 512
BlankNullSequence H___L, 500

1070 Mathematica Navigator



BlankSequence H__L, 500
Blend, 169
Block, 522, 606
Block matrices, 695
BlockRandom, 964
Blue, 169
BMP, 105
Bold, 165, 192
BoltzmannExponent, 752
Bonferroni•, 1029
Bookmarks, 354
Boole, 438, 642, 656
Booleans, 420
Borrelli and Coleman H1998L, 840, 853, 860
Boundary value problems

for partial differential equations, 885
numerical solution by NDSolve, 851
numerical solution by other methods, 874
symbolic solution by DSolve, 835

BoundaryStyle, 214, 222
Box structure of expressions, 61
Boxed, 213, 220
BoxFrame, 67
BoxRatios, 212-213, 215, 220
BoxStyle, 213, 220
BoxWhiskerPlot•, 264
Brackets, 13
Brake•, 828
Branch, If, Switch, Which, 556
Branch|and|bound method, 754
BrayCurtisDistance, 684
Break, 565, 739, 998
Brent, 735
Brent‘s method, 733
Brown, 169
Brownian motion, 991
brownianMotion, 991
Browser Categories file, automatic generation of,

79
Browser Index file, automatic generation of, 79
Broyden-Fletcher-Goldfarb-Shanno method, 764
Bugs, 667
Built|in functions

arguments of, 14
attributes of, 531
context of, 531
getting help with, 15
mathematical, 435
names of, 13
timing of, Timing, 112
tracing of, Trace, 524

Bulmer and Carter H1996L, 742
Burgers’ equation, 889
Burghes and Borrie H1981L, 240

Button, 56, 386
ByteCount, 114

C, 830
C language, 111
Caching, 598
CalculationCenter, 16
Calculus of variations, 789
CanberraDistance, 684
Cancel, 428
Cartesian•, 620
CartesianRule, 648, 653
Cases, 457, 493, 609, 680
Catalan, 401
CatalanNumber, 437
Catch, 580
CatcherMatrix•, 1031
Cauchy principal value, 640
CauchyDistribution, 978
Cauchy‘s integral formula, 621
CCA, 777
CDF, 967, 973
Ceiling, 399
Cell styles, 54

creating new, 64
editing, 63

Cell tags, 89
Cell with Same Style Hmenu commandL, 55
CellDingbat, 67
CellFrame, 68
CellFrameColor, 68
CellFrameLabelMargins, 68
CellFrameLabels, 68
CellFrameMargins, 68
CellMargins, 67
Cells, 23

background of, Background, 67
brackets for, 23
dingbats of, CellDingbat, 67
frames of, CellFrame, 68
initialization, 535
labels of, ShowCellLabel, 67
magnification of, Magnification, 67
margins of, CellMargins, 67
tags of, 89

Cellular automata, 960, 962
CellularAutomaton, 960
CentralMoment, 1005
CForm, 111
CGS•, 402
Chaos

and difference equations, 935, 937, 939-940, 942,
949

and differential equations, 861

Index 1071



Characteristic polynomial, 39
CharacteristicFunction, 967, 972-973
CharacteristicPolynomial, 702
CharacterRange, 434, 678
Characters, 433, 573

new line H\nL, 104, 433
special, 74
tab H\tL, 433

Characters, 434
charPoly, 39
Chasing, 876
Chebyshev approximation,

RationalInterpolation•, 806, 826
Chebyshev polynomials, ChebyshevT,

ChebyshevU, 439, 927
in Chebyshev approximation, 806

ChebyshevDistance, 684, 779
ChebyshevT, 439
ChebyshevU, 439
Check, 540
Check Balance Hmenu commandL, 22
Check Spelling Hmenu commandL, 24, 53
Checkbox, 333, 382
CheckboxBar, 334, 383
Chemical elements, 284
ChemicalData, 289
Chemicals, 288
Cheng, Sidauruk, and Abousleiman H1994L, 671
ChiDistribution, 979
ChiSquareCI•, 1023
ChiSquareDistribution, 979
ChiSquarePValue•, 1027
Cholesky, 712
CholeskyDecomposition, 705
Chop, 399, 408, 774
Circle, 154, 159, 163
CityData, 297, 779
Classical optimization, 768

with equality and inequality constraints,
kktOptimize, 773

with equality constraints, 769
without constraints, 768

classicalRungeKuttaCoefficients, 871
Clear, 415, 512
Clear Formatting Hmenu commandL, 62
ClearAttributes, 531
ClenshawCurtisRule, 648, 658
Cleveland H1993L, 239, 242, 249, 252, 262, 279, 1038
Cleveland H1994L, 1038
ClickPane, 393
Clip, 437
Clipping

in 2D graphics, 119, 190
in 3D graphics, 216, 222

ClippingStyle, 187, 203, 214, 217, 222, 691
Close, 104
Cluster analysis, 1009
CMYKColor, 154, 168, 178
cobwebPlot, 579, 932
Coefficient, 429
Coefficient of variation, 1005
CoefficientArrays, 712
CoefficientList, 429, 627
CoefficientOfVariation•, 1031
CofactorExpansion, 712
coinTossing, 988
collatzSequence, 558
collatzSequence2, 580
collatzSequence3, 589
Collect, 429
Color

in text, 193
interactive specification of, 127
interactive study of, 337
specification of, 168

Color Selector Hmenu commandL, 171
Color specifications

interactive, 127, 171
with CMYKColor, 168
with GrayLevel, 169
with Hue, 170
with RGBColor, 170

ColorData, 172, 304
ColorFunction, 144, 187, 204, 214, 222, 227, 278,

305, 691
ColorFunctionScaling, 187, 204, 214, 222,

227, 278, 691
ColorRules, 691
Colors

in contour and density graphics, 227, 278
in plots for 3D data, 278
in surface graphics, 222

ColorSchemes palette, 172
ColorSetter, 336, 385
ColorSlider, 171, 336, 385
Column, 469, 678
Columns

displaying, Column, 678
of matrices, 694

Combinatorial functions, 437
Combinatorica` package, 454, 742
Combinatorics, 16
Comments, 536
Commonest, 1004
CompensatedSummation, 682, 698
Competing species, 855
Compilation

of expressions in built|in commands,
Compiled, 412

1072 Mathematica Navigator



of user|defined functions, Compile, 528, 941,
948, 958, 1039

Compile, 528, 941, 948, 958, 1039
Compiled, 412, 645, 668, 735, 763, 866, 917
CompiledFunction, 528
Complement, 459
Complementary error function, Erfc, 440
Complementary slackness condition, 773
Complete Selection Hmenu commandL, 21
Complex

conjugate, Conjugate, 400
exponentials, 429
integers, GaussianIntegers, 396
numbers, 400
numbers, domain of, Complexes, 420
powers, 138
random numbers, 963

Complex expressions, 400, 430
expanding of, ComplexExpand, 400, 430
plotting of, 137
residues of, Residue, 626

Complexes, 420, 726
ComplexExpand, 400, 430, 717
ComplexInfinity, 401
ComplexityFunction, 423
ComposeList, 575
ComposeSeries, 626
Composite Bezier splines

with Spline•, 163
with SplineFit•, 805

Composite functions, Composition, 515
CompositeBezier•, 163, 803
Composition, 515
CompoundExpression H;L, 33
Compress, 114
ComputationalGeometry` package, 281, 802
ComputerArithmetic` package, 409
Condition Hê;L, 499
Condition number of matrices, 701
conditionNumber, 701
Confidence intervals, 1020, 1022

for normal distribution, 981
ConfidenceLevel•, 1021, 1031, 1036
Confluent hypergeometric function, 440
Congruental, 963
Conjugate, 400, 430
ConjugateGradient, 763, 822
ConjugateTranspose, 697
Constant, 401
ConstantArray, 446, 678, 687
Constants

local, With, 522
mathematical, 401

physical, 402
Constants, 624
Constrained optimization

by dynamic programming, 780
classical, kktOptimize, 773
exact global, Minimize, 743
linear, LinearProgramming, 757
linear, Minimize, 753
numerical global, NMinimize, 747

ContentSelectable, 185, 195, 212
Context, 532
Contexts, 531
Developer`, 881
Global`, 415, 531
in packages, 95, 537
notebook|specific, 533
PacletManager`, 531
shadowing with, 534
System`, 531
WebServices`, 531

Contexts, 532
Continue, 565, 567
Continued fractions, 400, 575, 583
ContinuedFraction, 400
Continuing calculations, 109
Continuous probability distributions

multivariate, 984
statistical, 979
univariate, 976

Continuous|time Markov chains, 997
ContinuousAction, 344, 353, 374
Contour plots

for 3D functions, ContourPlot, 139
for 4D functions, ContourPlot3D, 149

ContourLabels, 228
ContourLines, 228
ContourPlot, 29, 134, 139, 734
ContourPlot3D, 149, 909
Contours, 228
ContourShading, 228
ContourStyle, 228
ContractRatio, 752
Control keys, 76
ControlActive, 343
ControllerLinking, 355
ControllerMethod, 355
ControllerPath, 355
Controllers, 355
ControlPlacement, 317, 338, 353
Controls in Dynamic

locators, 375
other controls, 380
sliders, 375

Index 1073



special controls, 385
Controls in manipulations

enhacing, 338
gamepads and joysticks as, 342
interdependent, 340
locators, 326
other controls, 331
placement of, ControlPlacement, 317
sliders, 318
slowing down the speed of, 338
types of, ControlType, 317

ControlType, 317, 353
Convergents, 400
Conversion

between Mathematica graphics and other forms
of graphics, Export, Import, 105

between units, Convert•, 402
from character codes to strings,

FromCharacterCode, 434
from characters to codes, ToCharacterCode,

434
from equations to rules, ToRules, 638
from exponential to trigonometric functions,

ExpToTrig, 429
from expressions to strings, ToString, 434, 968
from lowercase to uppercase, ToUpperCase,

434
from strings to characters, Characters, 434
from strings to expressions, ToExpression,

415, 434
from trigonometric to exponential functions,

TrigToExp, 429
from uppercase to lowercase, ToLowerCase,

434
Convert•, 402
Convert To Hmenu commandL, 71
ConvertTemperature•, 402
convolution, 602
convolution2, 604
Convolutions, 934, 1042

continuous, 602
discrete, 603

CookD•, 1031
Coordinate transformations, 620
CoordinateRanges•, 621
Coordinates

in graphics, 131, 165
in plot region, 191
in text primitives, 163
in vector analysis, 620
in viewpoint selection, 218

CoordinatesToCartesian•, 621
CoordinateSystem•, 620
CoprimeQ, 396

Correlation, 1008
CorrelationDistance, 684
CorrelationMatrix•, 1031
Corrupted notebooks, restoring of, 79
Cos, 11, 435
Cosh, 435
CoshIntegral, 440
CosineDistance, 684
CosIntegral, 440
Cot, 11, 435
Coth, 435
Count, 457, 493, 573, 594, 680
CounterAssignments, 91
CounterBox, 91
CounterFunction, 54
CountRoots, 723
CountryData, 250, 293, 364, 388, 391
Covariance, 1008
CovarianceMatrix•, 1031
CovarianceMatrixDetRatio•, 1031
Cox and Miller H1965L, 991
cramersRule, 699
Cramer’s rule, 699
CreatePalette, 56
Critical points, 616, 768
CRK4, 872
Cropping of plots, 120
Cross, 683
Cross|product, Cross HäL, 683
CrossProbability, 752
CrossProduct•, 620
Cryptography, 550
Csc, 11, 435
Csch, 435
CSV, 101
ctMarkovChain, 998
Cubic

piecewise|interpolating functions,
ListInterpolation, 797

splines in graphics, Spline•, 163
splines in interpolation, SplineFit•, 803

Cubic•, 163, 803
Cubics, 703, 721, 724
Cuboid, 177
Cumulative

distribution functions, CDF, 967
maximums, FoldList, 583
products, FoldList, 583
sums, Accumulate, 682
sums, FoldList, 583

Curl•, 620
Curly braces, 15
Cyan, 169

1074 Mathematica Navigator



Cycles, 944
Cylinder, 177
Cylindrical•, 620
Cylindrical algebraic decomposition, 743
CylindricalDecomposition, 726

D, 40, 616, 619
dAlambert, 890
DampingFactor, 735
Darker, 169
Dashed, 157
Dashing, 154, 157, 178
Data

approximation of, Fit, etc., 812
Bayesian statistics of, 1046
built|in, 284
derivatives of, 622
descriptive statistics of, 36, 1004
DictionaryLookup, 506
exploratory analysis of, 1009
exporting, Export, 100
Fourier transform of, Fourier, 675
hypothesis testing with, 1024
importing, Import, 100
integrals of, 666
interpolation of,

InterpolatingPolynomial, etc., 792
manipulations of, 1012
regression with, Regress•, 1030
smoothing of, 1041

Data, built|in
AstronomicalData, 292
ChemicalData, 289
CityData, 297
ColorData, 304
CountryData, 293
DictionaryLookup, 304
ElementData, 284
ExampleData, 308
FinancialData, 299
GraphData, 301
IsotopeData, 290
KnotData, 302
LatticeData, 302
ParticleData, 291
PolyhedronData, 300
WordData, 303

Data sets
animal, 251
environmental, 249, 1007, 1038
galaxy, 279
hare, 240, 246, 879
lynx, 246, 879
modAnimal, 251, 255, 260

modBarley, 262, 265, 280
precipitation, 992
visdata, 249, 251
yeast, 820, 878, 956

Databases, 104
dataLSQ, 817
DataRange, 235, 277-278, 691
DataReversed, 691
DateDifference, 112
DateList, 112
DateListPlot, 238, 300, 388
DatePlus, 112
DateString, 112
Davidon-Fletcher-Powell method, 765
dayOfWeek, 552
Debugger Hmenu commandL, 525
Debugger Controls Hmenu commandL, 527
Debugging, 524
Decimal numbers, 9, 31, 398
Decompose, 429, 717
Decompositions of matrices, 704
decrypt, 551
Default values in patterns, 501
DefaultBaseStyle, 354, 374
DefaultDuration, 368
DefaultLabelStyle, 354
Definite integration

by advanced numerical methods, NIntegrate,
644

by advanced symbolic methods, Integrate,
41, 638

by change of variable, 641
Definition, 415, 512
Degree, 401
Deinitialization, 353, 373
Delay|differential equations, 852
Delayed

definitions, SetDelayed H:=L, 584
rules, RuleDelayed H:>L, 584

Delete, 449, 680, 693
Delete All Output Hmenu commandL, 114
DeleteCases, 457, 493, 680
Delimiter, 339
Delta function, DiracDelta, 439
Dennemeyer H1968L, 893, 896, 899, 902, 905, 907
Denominator, 428
Density function

of sums of random variables, 602-603
posterior, 1046
prior, 1046

Density function, PDF, 967
DensityPlot, 29, 139
DependentVariables, 865-866, 917
Deployed, 355

Index 1075



der, 543, 607
Derivative H'L, 617-618, 634
Derivatives, 615

finite difference approximations of, 914
numerical, ND•, 621
of data, 622
of implicit functions, 622
partial, D, 11, 40, 615
program for, 607
total, Dt, 622

Derivatives•, 828
Descriptive statistics, 36, 1004
DesignedRegress•, 1035
DesignMatrix•, 1035
Det, 42, 698
deter, 608
Determinants, program for, 608
Determinants, Det, 42, 698
Developer` context, 881
Developer`SetSystemOptions, 881
dfpMinimize, 767
Diagonal, 694, 697
DiagonalMatrix, 688
Dickau H1997L, 941
DictionaryLookup, 304, 506, 573
Difference equations, 924

bifurcation diagrams for, 941, 952
cobwebs for, 932, 939
direction fields for, 926, 930
equilibrium points of, 943, 950
estimation of, 954
fractals from, 958
linear, RSolve, 924
logistic, 934-935
Lyapunov exponents for, 947
nonlinear, RSolve, 933
of convolution type, 934
of Newton’s method, 934
of Riccati type, 933
partial, 927
periodic points of, 943
phase trajectories for, 930, 953
predator-prey, 950
q|difference equations, 928
return plots for, 954
solving by generating functions, 931
solving by Z|transform, 932

Differences, 575, 622, 682, 698
Differential calculus, 40, 615
Differential equations, 48, 830

boundary value problems for, 835, 851
boundary value problems for linear,

linearBVP, 874
boundary value problems for nonlinear, 874
delay|, 852

direction fields for, 832, 839, 854, 857
equation trekker with, 882
equilibrium points of, 833
estimation of, 878
events in, 876
first|order, 830
general solutions of, 830
initial value problems for, 830
manipulations of, 330, 881
nullclines of, 855
partial, 886
phase trajectories for, 832, 836-837, 850, 854,

857, 863
second| and higher|order, 835
simultaneous, 836
stiff, 866

Differential equations, solution of
as expressions, 830
as interpolating functions, 849
as pure functions, 846, 852
as rules, 830

Differential equations, solving
by advanced numerical methods, NDSolve, 49,

849
by Euler‘s methods, euler, etc., 546, 576
by Laplace transform, 841
by Runge-Kutta method, 871
by series expansions, 843
by symbolic methods, DSolve, 48, 830

Differential|algebraic equations, 841, 859
DifferentialEquations`Interpolating-

FunctionAnatomy` package, 871, 920
DifferentialEquations`NDSolve-

Utilities` package, 868
DifferentialEquationTrek•, 882
DifferentialEvolution, 749
Differentials, Dt, 624
DifferentiateBoundaryConditions, 918
Diffusion, 996
Digamma function, PolyGamma, 440
DigitCharacter, 509
DigitCount, 397
DigitQ, 434
Digits, IntegerDigits, 397
Dijkstra•, 742
Dimensions, 444, 696
DiracDelta, 439
DirectedEdges, 267-268
DirectedInfinity, 401
Direction, 630, 632, 878
Direction fields, 832, 839, 854, 857
Directive, 155, 188, 203
Directives, graphics, 152, 178
Directory

current working, Directory, 107

1076 Mathematica Navigator



resetting current working, ResetDirectory,
108

setting current working, SetDirectory, 108
Directory, 107-108
Discontinuous functions, plotting of, 117
Discrete

dynamic models, 924
Fourier transform, Fourier, 675
probability distributions, multivariate, 973-974
probability distributions, univariate, 966

Discrete optimization problems
inventory, 785
knapsack, 756, 759
resource allocation, 783
shortest path, 781
traveling salesman, 777, 787

Discrete|time Markov chains, 992
DiscreteDelta, 438
DiscreteUniformDistribution, 969
DiscretizedMonitorVariables, 918
Disk, 154, 166, 170
Dispatch, 588
Dispersion statistics, 1005, 1008
Display formulas, 80
DisplayAllSteps, 368
DisplayFunction, 185, 195, 212
Displaying graphics

regularly, GraphicsGrid, 124
superimposed, Show, 121

DistanceFunction, 777, 1009-1010
Distances, 684
Distribute, 456
Distribution function, CDF, 967
DistributionDomain, 968
Div•, 620
Divergence, 619
Divide HêL, 10
Divided differences, 621, 796
Dividers, 124, 471, 477
Divisible, 397
DivisionFreeRowReduction, 712
Divisors, 397
DivisorSigma, 397
Do, 553, 566, 739, 796, 998
Documentation, 17

Documentation Center, 17
Function Navigator, 18
Help Browser, 20
Virtual Book, 18

Documentation Center, 17
automatic updates of, 20

Domains, 420, 726
of probability distributions,

DistributionDomain, 968

Dot H.L, 42, 683, 699
DotDashed, 157
dotPlot, 260
DotProduct•, 620
Dots per inch, 105
Dotted, 157
DoubleExponential, 647, 656, 658
DoubleExponentialOscillatory, 647, 658
Downvalues, 588
DownValues, 587, 788
dpi Hdots per inchL, 105
DragAndDrop, 69
Drawing, interactive, 126
Drawing Tools Hmenu commandL, 127
Drop, 449, 679, 693-694, 1007
DSolve, 836, 846, 860

for differential equations, 48, 830, 835
for partial differential equations, 886

Dt, 622, 624
DTFourierTransform•, 673
dtMarkovChain, 995
DuffyCoordinates, 647, 656, 658
DumpSave, 110
Duncan•, 1029
Dunnett•, 1029
DurbinWatsonD•, 1031
Dynamic, 346, 348, 370, 988, 990
Dynamic expressions, 369
Dynamic interactivity

 with Animate, 365
 with Dynamic, 369
 with Manipulate, 30, 316
 with views, 357

Dynamic interfaces
advanced, 369
animations, 365
manipulations, 316
views, 357
with ActionMenu, 387
with Animator, 376
with Button, 386
with Checkbox, 382
with CheckboxBar, 383
with ColorSetter, 385
with ColorSlider, 385
with InputField, 384
with Locator, 379
with Manipulator, 375
with Opener, 385
with PasteButton, 386
with PopupMenu, 381
with RadioButtonBar, 380
with SetterBar, 380

Index 1077



with Slider, 377
with Slider2D, 378
with Toggler, 383
with TogglerBar, 383
with Trigger, 376
with VerticalSlider, 378

Dynamic programming
as a programming technique, 597
as an optimization method, 742, 780

DynamicModule, 371, 988, 990

E, 10, 401
EconomizedRationalApproximation•, 825
EdgeForm, 154, 166, 178
EdgeLabeling, 268
EdgeRenderingFunction, 268
Edit, 7
Edit Stylesheet Hmenu commandL, 63
Editable, 373
EditDistance, 684
Editing

graphics, 120
inputs, 24
notebooks, 7, 22, 59
of cell styles, 63
outputs, 24
style sheets, 63

EigenstructureTable•, 1031
Eigensystem, 702
Eigenvalues, 42, 696, 702
Eigenvectors, 702
Element HœL, 420
ElementData, 284, 486
Elements, chemical, 284
Eliminate, 718, 848
Ellipses, Circle, 159
Ellipsoid•, 160
EllipsoidProbability•, 985
EllipsoidQuantile•, 985
Elliptic integrals, 635
Elliptic partial differential equations, 904, 907, 921
em, 65
EMF, 105
Enabled, 374
encrypt, 551
End, 535
EndOfLine, 510
EndOfString, 510
EndPackage, 535
EngineeringForm, 399
environmental data, 249, 1007, 1038
Epilog, 154, 183, 186, 201, 209, 213, 221
EPS, 106
EPS, 105

Equal H==L, 43, 431
EqualVariances•, 1022
Equations

delay|differential, 852
difference, RSolve, 924
differential, DSolve, 48, 830
integral, 847
integro|differential, 848
linear, Solve, 710
of Taylor series, 629
partial differential, DSolve, 886
polynomial, Solve, 43, 716
transcendental, FindRoot, 44, 732

Equations, linear, 710
advanced methods for, Solve, LinearSolve,

710
eliminating variables from, Solve, 712
Gaussian elimination of, RowReduce, 713
iterative methods for, 715
overdetermined, 714
sparse, Solve, 711
tridiagonal, 713
underdetermined, 714

Equations, polynomial, 716
detailed solutions of, Reduce, 721
eliminating variables from, Eliminate, 718
Frobenius, FrobeniusSolve, 723
number of roots, CountRoots, 723
numerical solutions of, NSolve, 44, 717
symbolic solutions of, Solve, 43, 716
systems of, 718

Equations, radical
solving by Solve, Reduce, 723
step|by|step solution, Thread, 725

Equations, transcendental, 730
advanced methods for, FindRoot, 44, 732
bisection method for, FindRoot, 733
Brent‘s method for, FindRoot, 733
detailed solutions of, Reduce, 730
fixed|point method for, FixedPoint, 578
inverse cubic interpolation for,

InterpolateRoot•, 736
Newton‘s method for, newtonSolve, 737
Newton’s method for, FindRoot, 732
Newton’s method for, newton, etc., 545, 576,

579
secant method for, FindRoot, 733
secant method for, secantSolve, 739
simple, Solve, Reduce, 730
symbolic solutions of, Solve, 730
systems of, 734

EquationTrekker` package, 882
EquationTrekker•, 882
Equilibrium points, 833, 853, 855, 943, 950

1078 Mathematica Navigator



eratosthenes, 556
Erf, 440
Erfc, 440
Error functions, Erf, Erfc, 440
Error messages, 540
ErrorBarPlots` package, 237
ErrorListPlot•, 237
Errors

absolute, 403
relative, 403
round|off, 407, 409
truncation, 409

EstimatedVariance•, 1031, 1036
Estimation

interval, 1020, 1022
of difference equations, 954
of differential equations, 878
point, with method of maximum likelihood,

1006
point, with method of moments, 1005

EuclideanDistance, 684, 777, 787
euler, 546
Euler-Maclaurin formula, 669
euler2, 576
EulerE, 437
EulerEquations•, 789
EulerGamma, 401
EulerMaclaurin, 668
EulerPhi, 396
Euler‘s method, euler, etc., 546, 576
EulerSum•, 621, 632
Evaluate, 122, 531, 895
Evaluate in Place Hmenu commandL, 24
Evaluate Notebook Hmenu commandL, 52
Evaluated, 187, 207, 735
EvaluateNumericalFunctionArgument, 881
Evaluation, 6

aborting, 7
delayed, 584
immediate, 584
memory constrained, MemoryConstrained,

114
time constrained, TimeConstrained, 112
time of, Timing, 112
tracing of, Trace, 523

EvaluationCompletionAction, 69, 112
EvaluationMonitor, 187, 207, 214, 226, 411,

645, 649, 668, 735, 749, 763, 822, 866, 917
Evaluator, 355, 373
EvenOddSubdivision, 647, 660
EvenQ, 397, 431
Event, 876
EventAction, 876
EventHandler, 394

EventLocator, 866, 876
Events in differential equations, 876
ExampleData, 308
Except, 504, 509-510
ExcludedForms, 423
Exclusions, 117, 187, 206, 214, 225, 368,

375-378, 645, 655
ExclusionsStyle, 187, 206, 214, 225
Exists, 722, 728
Exp, 11, 435
Expand, 32, 424, 429
ExpandAll, 424
ExpandDenominator, 428
Expanding

logical statements, LogicalExpand, 433
piecewise functions, PiecewiseExpand, 518
polynomials, Expand, 32, 424, 429
powers, PowerExpand, 424
special functions, FunctionExpand, 424
trigonometric expressions, TrigExpand, 429

ExpandNumerator, 428
ExpandRatio, 752
ExpectedValue, 967, 973
ExpIntegralE, 440
ExpIntegralEi, 440
ExplicitEuler, 866
ExplicitRungeKutta, 866, 917
Exploratory data analysis, 1009
Exponent, 429
Exponential growth, 817, 819, 842, 851
ExponentialDistribution, 977
ExponentialMovingAverage, 1044
Export, 101, 105
Exporting

data, Export, 100
graphics, Export, 105

Expressions
atoms of, 426
box structure of, 61
calculating the value of, 32
classes of, 491
complex, 430
dynamic, Dynamic, 369
expanding, 424
grouping terms in, 14
heads of, Head, 426
hyperbolic, 429
in TEX form, TeXForm, 111
in C form, CForm, 111
in Fortran form, FortranForm, 111
in input form, InputForm, 70
in MathML form, MathMLForm, 111
in output form, OutputForm, 70

Index 1079



in standard form, StandardForm, 70
in traditional form, TraditionalForm, 70
inserting values into, ê., 416
internal code of, 60
internal form of, FullForm, 419, 426
levels of, 427
logical, 431
manipulating, 32, 419
parts of, Part, etc., 418
patterns of, 491
polynomial, 429
rational, 427
short forms for, Short, Shallow, 34, 425
simplifying, Simplify, etc., 32, 419
size of, ByteCount, 114
string, 433
testing equality of, 432, 964
tracing, Trace, 523
trigonometric, 421, 429
writing 2D, 76

ExpToTrig, 429
Extend Selection Hmenu commandL, 22
ExtendedCA, 962-963
Extension, 427
Extract, 458, 680, 774
Extraneous solutions, 724
ExtrapolatingOscillatory, 647, 658
Extrapolation, 798
ExtremeValueDistribution, 978

FaceForm, 154, 166, 178
FaceGrids, 213, 221
FaceGridsStyle, 213, 221
Factor, 32, 427, 429, 717
Factorial H!L, 11, 437
Factorial2 H!!L, 437
Factoring

integers, FactorInteger, 396
Mersenne numbers, 2
polynomials, Factor, 32, 429
rational expressions, Factor, 427
trigonometric expressions, TrigFactor, 429

FactorInteger, 2-3, 396
FactorList, 427
FactorTerms, 429
False, 182
Fast Fourier transform, Fourier, 675
Fermat’s Last Theorem, 422
fib, 599
Fibonacci, 437, 599
Fibonacci numbers, 599, 927
FieldSize, 381, 384, 387
File Path Hmenu commandL, 108
FileNames, 108

FileNameSetter, 387
FilePrint, 101, 110
Files

finding from, FindList, 104
listing of, FileNames, 108
locating, 107
looking at, FilePrint, 101
reading data from, Import, 101
reading graphics from, Import, 105
writing data to, Export, 101
writing graphics to, Export, 105

Filled plots, 135
Filling, 135, 187, 204, 214, 223, 232, 242, 246
FillingStyle, 135, 187, 204, 214, 223, 233, 243,

246
Filtering, with Fourier, 675, 1045
FilterRules, 539
Final|state diagram, 941
FinancialData, 299
Find Cell Tag Hmenu commandL, 90
FindClusters, 1009
FindFit, 812, 818, 879

options for, 822
FindInstance, 727
FindList, 104
FindMaximum, 46, 759

options for, 762
FindMinimum, 46, 759, 881

options for, 762
findPerfect, 549
FindRoot, 44, 519, 732, 734, 876

options for, 734
FindShortestTour, 236, 777, 788
Finite difference methods, 921
Finite fields, 16
FiniteDifference, 735, 763
FiniteDifferenceDerivative•, 914
First, 449, 679, 693
Fit, 47, 329, 812, 816
FitCurvatureTable•, 1036
FitResiduals•, 1031, 1033, 1036
Fitting of data

manipulations in, 329, 823
with linear models, Fit, 812
with nonlinear models, FindFit, 818

Fixed|point method, FixedPoint, 578
Fixed|precision arithmetic, 404
FixedPoint, 578
FixedPointList, 499, 578-580, 589, 737-738,

740, 767, 988
Flatten, 450
fleas, 559
FlipView, 362
Floor, 399

1080 Mathematica Navigator



Fold, 582, 609
FoldList, 582-583, 611
FontColor, 65, 165, 193
FontFamily, 65, 165, 193
FontOpacity, 65
Fonts

in graphics, 192
in notebooks, 60
size of printed, 64

FontSize, 65, 193
FontSlant, 65, 193
FontTracking, 65, 165, 193
FontVariations, 65
FontWeight, 65, 193
For, 553
ForAll, 722, 728
Format HmenuL, 59
Formatting

notebooks, 59
outputs, 70
tables, 467, 470
text in graphics, 192

FormatType, 185, 194, 212, 217
Formulas

automatic numbering of, 90
display, 80
inline, 86
manual numbering of, 90
numbering of, 79

FortranForm, 111
Four|dimensional graphics, for functions, 147
Fourier, 675, 1045
Fourier transforms

continuous, FourierTransform, 672
discrete, Fourier, 675
FourierCoefficient•, 673

FourierCosCoefficient•, 673
FourierCosTransform, 673
FourierDCT, 675
FourierDST, 675
FourierParameters, 672, 675
FourierParameters•, 673
FourierSeries` package, 673
FourierSeries•, 673
FourierSinCoefficient•, 673
FourierSinTransform, 673
FourierTransform, 672
FourierTrigSeries•, 673
Fractals, 958
FractionalPart, 399
Frame, 124, 186, 198, 227, 354, 471, 483
FrameBoxOptions, 67, 84
Framed, 72

FrameLabel, 186, 198, 354
FrameMargins, 67, 354, 381, 384, 386-387
Frames

around 2D graphics, Frame, 198
around boxes, BoxFrame, 67
around cells, CellFrame, 68
around outputs, Framed, 72
around tables, GridFrame, 471

FrameStyle, 67, 124, 186, 198, 471, 484
FrameTicks, 186, 198
FrameTicksStyle, 186, 198
FRatioCI•, 1023
FRatioDistribution, 979
FRatioPValue•, 1027
Fredholm integral equations, 847
FreeQ, 431, 496, 607, 774
Frequencies, 572, 1011

of continuous data, 1015
of discrete data, 1011
plotting of, Histogram•, 258, 1012
plotting of 2D, Histogram3D•, 280, 1018

frequencies1, 573
frequencies2, 573
Frobenius, 702
FrobeniusNumber, 723
FrobeniusSolve, 723
FromCharacterCode, 434
FromContinuedFraction, 400
FromDigits, 397, 400
Front end, 5

notebook, 5
options for, 61
text|based, 5
Full conditional distributions, 1053

FullForm, 419, 426
FullGraphics, 152, 256
FullReport•, 1024
FullSimplify, 32, 419

options for, 423
Function H&L, 520, 955
Function application

postfix, êê, 33
prefix, ü, 33
standard, @...D, 33

Function iteration, 569
Function Navigator, 18
Functional programming, 568
FunctionApproximations` package, 736, 806,

825-827
FunctionExpand, 424
FunctionInterpolation, 807, 824, 874, 1047,

1052
functionLSQ, 827

Index 1081



Functions
attributes of, Attributes, 530
compiling, Compile, 528
composite, Composition, 515
defining, 39, 512
generalized, 439
identity, Identity, 515
implicit, 518
indexed, 513
inverse, InverseFunction, 515
iterating, 569
mathematical, 435
periodic, 602, 673-674
piecewise|defined, Piecewise, 516
pure, 520
tracing, Trace, 524
user|defined, 39, 512

galaxy data, 279
gamblersRuin, 988
Gamerman H1997L, 1055, 1057
Gamma, 440
Gamma function, Gamma, 440

generalized incomplete, Gamma, 440
incomplete, Gamma, 440
inverse, InverseGammaRegularized, 440
regularized incomplete, GammaRegularized,

440
GammaDistribution, 977
GammaRegularized, 440
Ganzha and Vorozhtsov H1996L, 886
Gauss-Newton method, 764
Gauss-Seidel method, 715
GaussBerntsenEspelidRule, 648
Gaussian

distribution, NormalDistribution, 978
elimination, RowReduce, 703, 713
integers, GaussianIntegers, 396
kernel, 1042

Gaussian quadrature, 665
GaussianIntegers, 396, 427
gaussianQuadrature, 666
GaussianQuadratureError•, 665
GaussianQuadratureWeights•, 665
gaussKronrod, 654
GaussKronrodRule, 648, 653
GaussNewton, 764
GCD, 397
Gear, 866
Gear‘s method, 866
General solution, 830
Generalized

eigenvalues, 702
functions, 439
incomplete gamma function, Gamma, 440

inverse, PseudoInverse, 700
GeneralizedBarChart•, 257, 982
GeneralizedBarChart3D•, 275
GeneralMinimaxApproximation•, 828
GeneralRationalInterpolation•, 826
GenerateConditions, 640, 671
GeneratedParameters, 835
Generating functions

in solving difference equations, 931
in solving partial difference equations, 928
moment, 972
probability, 628, 888, 928, 972

Generation
of random numbers from probability

distributions, RandomReal, etc., 968
of uniform random numbers, RandomReal,

etc., 962
Generators of continuous|time Markov chains, 998
Generic values of parameters, 635, 721, 831
Genetic programming, 742, 750
GeometricDistribution, 970
geometricMean, 572
GeometricMean, 1004
GeometricTransformation, 160
Get H<<L, 95, 110
Gibbs sampling, 1048, 1053
GIF, 105
Gilks, Richardson, and Spiegelhalter H1996L, 1057
Giordano, Weir, and Fox H1997L, 272, 275
Glaisher, 401
Global` context, 415, 531
Global adaptive integration strategies, 648
Global optimization

by Minimize, 743
by NMinimize, 747

GlobalAdaptive, 647
Glow, 178
GoldenRatio, 189, 401
Goodness|of|fit test, 1028
Goto, 565
Grad•, 620
Gradient, 619
Gradient, 763, 822, 1036
Gradient fields

for 3D functions, GradientFieldPlot•, 144
for 4D functions, GradientFieldPlot3D•,

148
GradientFieldPlot•, 144
GradientFieldPlot3D•, 148
Gradients, 305
Gram-Schmidt orthonormalization, 685
Graph plots

with GraphPlot, 267
with LayeredGraphPlot, 274

1082 Mathematica Navigator



with TreePlot, 274
Graph theory, 16, 742
GraphData, 301
Graphics

add|ons in 2D graphics, 201
add|ons in 3D graphics, 201
as raster images, Raster, 169
complexes, GraphicsComplex, 173
directives, 2D, 152
directives, 3D, 178
exporting, Export, 105
font in a piece of text, Style, 193
font in a plot, BaseStyle, 192
font in a session, BaseStyle, 193
for 2D data, 232
for 2D functions, 116
for 3D data, 275
for 3D functions, 139
for 4D functions, 147
groups, GraphicsGroup, 176
importing, Import, 105
insets, Inset, 175
interactive drawing of, 126
interactive editing of, 126
primitives, 2D, 154
primitives, 3D, 177
programming, 152
text primitive, Text, 163
transformation of, 160

Graphics, 153, 158, 202, 238, 367, 997-998
options for, 184

Graphics Inspector Hmenu commandL, 127
Graphics3D, 176

options for, 210
GraphicsColumn, 124

options for, 124
GraphicsComplex, 173
GraphicsGrid, 27, 124

options for, 124
GraphicsGroup, 176
GraphicsPrintingFormat, 69, 193
GraphicsRow, 27, 123-124

options for, 124
GraphPlot, 174, 267, 755, 780-781, 783
Gray, 169
Gray H1997L, 542, 588
GrayLevel, 154, 168-169, 178
Greater H>L, 431
GreaterEqual H>=L, 431
Greatest common divisor, GCD, 397
Greedy, 777
GreedyCycle, 777
Greek letters, 74
Green, 169

Green H2001L, 1046, 1055, 1057
Grid, 35, 288, 470, 561, 584, 686, 755, 784, 786, 968,

980, 992, 1019
GridLines, 186, 199
GridLinesStyle, 186, 199
gridMathematica, 16
GroebnerBasis, 718
Group theory, 16
Grouping of input expressions, HL, 14
GroupPageBreakWithin, 69
GumbelDistribution, 978
Guttorp H1995L, 992

HalfNormalDistribution, 977
HamiltonianFieldPlot•, 144
Hamming distance, 547
hamming1, 548
hamming2, 548
HammingDistance, 684
hare data, 240, 246, 879
harmonicMean, 571
HarmonicMean, 1004
harmonicNumber, 571
HarmonicNumber, 437
Harvesting, 842
Hastings H2006L, 742
HatDiagonal•, 1031, 1036
Head, 396, 426, 462
Heads, 426, 496
Heat equation, 892-893, 909
HeavisideTheta, 439
Help, 15
Help Browser, 20
Hermite polynomials, HermiteH, 439
HermiteDecomposition, 706
HermiteH, 439
HermitianMatrixQ, 696
HessenbergDecomposition, 707
Hessian, 619, 769
High|precision numbers, 406
Hilbert matrices, 700
HilbertMatrix, 688
Histogram•, 258, 983, 1012, 1056
Histogram3D•, 280, 1018
HistogramCategories•, 258, 1012
HistogramRange•, 258, 1012
Histograms, with Graphics, 167
Histograms` package, 258, 280, 1012
HistogramScale•, 258, 1012
HoldAll, 531
HoldForm, 575
Horner form, 583
HornerForm, 428-429

Index 1083



HotellingTSquareDistribution•, 984
HTML, 78, 111
Hue, 154, 168, 170, 178
Hyperbolic cosine integrals, CoshIntegral, 440
Hyperbolic functions, 429, 435-436
Hyperbolic partial differential equations, 891, 896,

898, 901, 909
Hyperbolic sine integrals, SinhIntegral, 440
Hypergeometric functions, 440
Hypergeometric1F1, 440
Hypergeometric2F1, 440
HypergeometricDistribution, 969
Hyperlink Hmenu commandL, 57
Hyperlink, 57
Hyperlinks, 57
Hyphenation, 53, 66
HyphenationMinLengths, 66
HyphenationOptions, 66
Hypothesis tests, 1024

type I and II errors in, 1026
HypothesisTesting` package, 1020, 1024

I, 10, 400
Identity, 515
Identity function, Identity, 515
IdentityMatrix, 688
If, 556, 566, 688, 998
IgnoreCase, 506-507
Im, 137, 400, 430
ImageMargins, 124, 185, 191, 212, 217, 354, 374
ImagePadding, 185, 191, 212, 217, 326
ImageResolution, 105
ImageRotated, 105
ImageSize, 69, 105, 120, 124, 183, 185, 189, 212,

215, 374
Imaginary part, Im, 400
Imaginary unit, I, 400
Implicit functions, 518

plotting of, 134
ImplicitRungeKutta, 866, 917
Implies, 728
Import, 101, 105
Importing

data, Import, 100
graphics, Import, 105

IMT, 656-657
IncludeConstant•, 1031
Incomplete

beta function, Beta, 440
gamma function, Gamma, 440

Indefinite integration, Integrate, 41, 634
Indeterminate, 401
Index, automatic creation of, 79

Index entries, adding into a notebook, 79
Indexed recursive formulas, 596
Indexed variables, 447
Inequalities

finding instances of, FindInstance, 727
plotting 2D, RegionPlot, 136, 726
plotting 3D, RegionPlot3D, 143
plotting complex, RegionPlot, 138
simplifying, Simplify, 422
solving, Reduce, 725

Infinity, 10, 401
Information

about Mathematica, 22
about built|in symbols, 17
about user|defined symbols, 415

Initial value problems
numerical solution of, NDSolve, 49, 849
symbolic solution of, DSolve, 48, 830

Initialization, files, 96, 109
Initialization, 349, 353, 373
Initialization cell, 535
InitialPoints, 751
Inline formulas, 86
Inner, 466, 619
Inner products, Dot H.L, 683
InêOut names, 6
Input, 564
Input from Above Hmenu commandL, 24
InputAutoReplacements, 69
InputField, 335, 384
InputForm, 70, 152, 406
Inputs

1D, 73
2D, 76
editing, 24
forms of, 73

Insert, 449, 680, 693
Insert TableêMatrix Hmenu commandL, 444
Inset, 175
Install Hmenu commandL, 99
int, 608
Integer programming, 742

with Minimize, 743
with NMinimize, 747

IntegerDigits, 397
IntegerExponent, 397
IntegerLength, 397
IntegerPart, 399
IntegerPartitions, 397
IntegerQ, 431
Integers

domain of, Integers, 420
factoring, FactorInteger, 396
Gaussian, GaussianIntegers, 396

1084 Mathematica Navigator



manipulating, 396
prime, Prime, 396
random, RandomInteger, 962
testing, IntegerQ, etc., 431

Integers, 420, 726
Integral calculus, 41, 634
Integral equations, 847

Fredholm, 847
Volterra, 847

Integrate, 11, 41, 634
options for, 640

Integration
definite, Integrate, 11, 638
indefinite, Integrate, 11, 634
program for, 607

Integration, numerical
by advanced methods, NIntegrate, 41, 644
by Gaussian quadrature, 665
by Newton-Cotes quadrature, 664
by trapezoidal rule, 544, 665
for data, 666
oscillatory integrands in, 658

Integration, symbolic
assumptions in, Assumptions, 640
by advanced methods, Integrate, 41, 634
by change of variable, 638, 641
by parts, 637
conditions of convergence in, 639
definite, Integrate, 638
for multiple integrals, Integrate, 642
indefinite, Integrate, 634
options for, 640

Integro|differential equations, 848
Interactive

drawing of graphics, 126
editing of graphics, 126
selection of colors, 171

Interactivity
by animations, 365
by dynamic expressions, 369
by manipulations, 30, 316
by views, 357

Interarrival times, 997
interchange, 589
interchange2, 590
interchange3, 590
Interfaces, Manipulate, 30, 316
InteriorPoint, 751, 757, 763
interleave, 547
Interleaving lists, 547
InterpolateRoot•, 736
Interpolating functions

for 2D data, ListInterpolation, 797
for functions, FunctionInterpolation, 807
for irregular 3D data, 802

for regular higher-dimensional data,
ListInterpolation, 800

in solving differential equations, 849
Interpolating polynomials

for data, Lagrange‘s form of,
lagrangeInterpolation, 795

for data, Newton‘s form of,
InterpolatingPolynomial, 792

for data, Newton‘s form of,
newtonInterpolation, 796

for functions, RationalInterpolation•, 806
InterpolatingFunction, 797, 849
InterpolatingFunctionAnatomy` package,

920
InterpolatingFunctionCoordinates•, 871,

920
InterpolatingFunctionValuesOnGrid•, 871
InterpolatingPolynomial, 329, 792, 795
Interpolation, 46, 797, 800, 1039
Interpolation of data

manipulations in, 329
piecewise, Interpolation, 46, 797
piecewise, ListInterpolation, 797
piecewise, for irregular 3D data, 802
spline, SplineFit•, 803
usual, InterpolatingPolynomial, 792

Interpolation of functions, 806
by Chebyshev approximation,

RationalInterpolation•, 806, 826
piecewise, FunctionInterpolation, 807
rational, RationalInterpolation•, 806

InterpolationOrder, 235, 277, 354, 799, 808,
866, 917

InterpolationPoints, 808
InterpolationPrecision, 808
InterquartileRange, 1005
Interrupt Evaluation Hmenu commandL, 113
Intersection, 459
Interval, 402, 408
Interval arithmetic, Interval, 408
Inventory problem, 785
Inverse

beta function, InverseBetaRegularized, 440
complementary error function, InverseErfc,

440
cubic interpolation, InterpolateRoot•, 736
cumulative distribution function, InverseCDF,

967
error function, InverseErf, 440
functions, InverseFunction, 515
gamma function,

InverseGammaRegularized, 440
hyperbolic functions, 436
of matrices, Inverse, 700

Index 1085



trigonometric functions, 436
Inverse, 42, 700
InverseBetaRegularized, 440
InverseCDF, 967
InverseDTFourierTransform•, 673
InverseErf, 440
InverseErfc, 440
InverseFourier, 675
InverseFourierCosTransform, 673
InverseFourierSinTransform, 673
InverseFourierTransform, 672
InverseFunction, 515
InverseFunctions, 731
InverseGammaRegularized, 440
InverseGaussianDistribution, 977
InverseLaplaceTransform, 670
InverseSeries, 626
InverseZTransform, 672
IsotopeData, 290
Italic, 165, 192
Item, 340, 488
ItemSize, 471, 485
ItemStyle, 471, 481
Iterating

a mapping, Nest, 575
a mapping until convergence, FixedPoint, 578
a mapping with a resource, Fold, 582
in procedural programming, Do, While, For,

553
Iteration limit, $IterationLimit, 612
Iteration specifications, 37, 445

multiple, 464

JackknifedVariance•, 1031
Jacobian, 619
Jacobian, 735
JacobianDeterminant•, 621
Jacobi’s method, 715
Jenkins-Traub algorithm, 717
JêLink, 16
Johnson, Kotz, and Kemp H1992L, 1023
Join, 449, 459, 680-681, 693, 695, 774
Joined, 232, 235
Joining

lists, Join, 459
strings, StringJoin, 434

Joining, 242
JordanDecomposition, 707
josephus, 577
JPEG, 105

Kaplan and Glass H1995L, 949
Karush-Kuhn-Tucker conditions, 773

Kelley and Peterson H2001L, 923, 929, 934, 950
Kernel, 5

remote, 113-114
Kernel Configuration Options Hmenu commandL,

113
Kernels, smoothing with, 1041
Khinchin, 401
KKT, 751
kktOptimize, 774
Klein bottle, 141
Knapp and Sofroniou H1997L, 949
Knapsack problem, 756, 759
KnotData, 302
KnownVariance•, 1020
Korteweg-deVries equation, 891
KroneckerDelta, 438
KroneckerProduct, 683, 699, 766, 827
Krylov, 712
Kulenovic and Merino H2002L, 923
Kulkarni H1995L, 998
Kurtosis, 967, 973, 1005
Kythe, Puri, and Schäferkotter H1996L, 886

L|systems, 959
Label, 565
Labeled, 72, 196, 358
labeledArrow, 162
LabelStyle, 185, 193, 212, 217, 354
lagrangeInterpolation, 795
Lagrange‘s

interpolating polynomial, 795
method of constrained optimization, 771

Laguerre polynomials, LaguerreL, 439
LaguerreL, 439
Laplace transform, LaplaceTransform, 670

solving differential equations by, 841
solving integral equations by, 847
solving partial differential equations by, 891

LaplaceDistribution, 978
LaplaceTransform, 670, 841, 892
Laplace’s equation, 890
Laplacian, 619
Laplacian•, 620
Large, 155, 165, 192
Larger, 165, 192
Last, 449, 679, 693
LaTeX, 107
LatticeData, 302
LayeredGraphPlot, 274
LCM, 397
LeafCount, 423
Least common multiple, LCM, 397
Least|squares fits

linear, for data, Fit, 811-812

1086 Mathematica Navigator



linear, for functions, functionLSQ, 827
nonlinear, for data, FindFit, 811
nonlinear, for data FindFit, 818

LeastSquares, 714-715
leg, 599
Legacy, 963
LegendBackground•, 210
LegendBorder•, 210
LegendBorderSpace•, 210
LegendLabel•, 210
LegendLabelSpace•, 210
LegendOrientation•, 210
LegendPosition•, 187, 210
Legendre polynomials, LegendreP, 439
LegendreP, 439, 441
LegendreQ, 441
Legends, 208

for Plot, 209
with Epilog, 208
with PlotLegend•, 209

LegendShadow•, 210
LegendSize•, 187, 210
LegendSpacing•, 210
LegendTextDirection•, 210
LegendTextOffset•, 210
LegendTextSpace•, 210
Length

of expressions, Length, 425
of integers, IntegerLength, 397
of lists, Length, 34, 444
of strings, StringLength, 434
of vectors, Length, 681

Length, 34, 425, 444, 681, 696
LengthWhile, 449, 679
Less H<L, 431
LessEqual H<=L, 431
LetterCharacter, 509
LetterQ, 434
Letters

double|struck, 74
Gothic, 74
Greek, 74
script, 74

Level, 427
LevelIterations, 752
Levels, 427

in Apply, 463
in Map, 461

Levenberg-Marquardt method, 819
LevenbergMarquardt, 763, 822
Lighter, 169
Lighting, 212, 218
LightRed, 169

Likelihood function, 1006, 1046
Limit

of iterations, $IterationLimit, 612
of recursion, $RecursionLimit, 605

Limit, 40, 630
Limits, 630

directional, Direction, 631
numerical, NLimit•, 632
symbolic, Limit, 630

LimitsPositioning, 67, 88
Lindenmayer systems, 959
Line, 154, 156, 158, 166, 177
Linear

algebra, 677
equations, Solve, 710
least|squares, Fit, 812
regression, Regress•, 1030

Linear programming
example problems for, ExampleData, 311
with LinearProgramming, 757
with Minimize, 753

LinearAlgebra`MatrixConditionNumber,
702

linearBVP, 874
LinearFractionalTransform, 160, 686
LinearProgramming, 757
LinearRegression` package, 1031
LinearSolve, 705, 711, 713, 738, 817, 827
LinearSolveFunction, 713
Lines, Line

dashing of, Dashing, 157
thickness of, Thickness, 157

Lines, 101
LineSpacing, 66
List, 101, 444
List|based programming, 547
Listable, 530
ListAnimate, 367, 918
ListContourPlot, 275
ListContourPlot3D, 282
ListConvolve, 1042
ListCorrelate, 1042, 1044
ListDensityPlot, 275
ListInterpolation, 797, 800
ListLinePlot, 29, 232, 242
ListLogLinearPlot, 237
ListLogLogPlot, 237
ListLogPlot, 237
ListPlot, 29, 232, 242
ListPlot3D, 275
ListPointPlot3D, 275, 279
ListPolarPlot, 238
ListQ, 431

Index 1087



Lists, 15, 34, 444
array depth of, ArrayDepth, 444
as collections of elements, 444
as matrices, 686
as tensors, 444, 692
as vectors, 677
changing the head of, Apply, 462
dimensions of, Dimensions, 444
generation of, Table, Range, 36, 445
grouping, Partition, 450
in column form, Column, 469
in matrix form, MatrixForm, 35, 686
in row form, Row, 35, 469
in tabular form, Grid, 35, 470
in tabular form, TableForm, 35, 467
length of, Length, 34, 444
manipulating, 448, 568, 570
mapping elements of, Map, 38, 459
mapping elements of two, 465
modifying, Prepend, etc., 449
of general elements, Array, 446
of graphics, GraphicsGrid, 124
of random numbers, RandomReal etc., 962
of ranges of characters, CharacterRange, 434
of ranges of numbers, Range, 446
of rules, 417
operations on several, 459
parts of, @@ DD, etc., 444, 448
permutations of elements, Permutations, 454
positions of elements of, Position, etc., 458
products of elements of, Apply, 462
rearranging, Transpose, etc., 452
runs in, Split, 450
searching from, Select, etc., 457
sorting, Sort, 34, 452
subsets of, Subsets, 454
sums of elements of, Total, 682
tabulating, Grid, 470
tabulating, TableForm, 467
transposition of, Transpose, 444
tuples of, Tuples, 454
ungrouping, Flatten, 450

ListSurfacePlot3D, 281
ListVectorFieldPlot•, 266
ListVectorFieldPlot3D•, 275
Loading, results, Get H<<L, 110
Loading packages, 94

problems with, 96
shadowing with, 96
with Get H<<L, 95

LobattoKronrodRule, 648
LobattoPeanoRule, 648

Local
adaptive integration strategies, 648
constants, With, 522
extrema, FindMinimum, 759
regression, localRegress, 1038
rules, 584
values of variables, Block, 522
variables, Module, 39, 521

LocalAdaptive, 647
LocalizeVariables, 355
localRegress, 1039
Location statistics, 1004
Locator, 160, 326, 379
LocatorAutoCreate, 328, 393
LocatorPane, 393
LocatorRegion, 379
Locators, adding and removing, 328
Loess method for local regression, 1038
Log, 11, 421, 424, 435
loga, 606
Logarithmic

expressions, 421, 424, 606
plots, 133
transforms in fitting exponentials, 817
transforms in solving difference equations, 933

Logical
expressions, 431
operations, 432
tests, 431

LogicalExpand, 433, 629, 845
LogIntegral, 440
Logistic

difference equations, 37, 934-935
differential equations, 820, 830, 878
fits, 820, 878

LogisticDistribution, 978
logisticPlot, 938
LogLinearPlot, 133
LogLogPlot, 133
LogNormalDistribution, 977
LogPlot, 133
LogSeriesDistribution, 970
Longest, 504
Lorenz model, 860
Lotka-Volterra model, 853
lottoCodes, 560, 594
lottoFrequencies, 594
LSystemLines, 959
LSystemPlot, 959
LSystemPoints, 959
LucasL, 437
LUDecompose, 705
LUDecomposition, 704

1088 Mathematica Navigator



lyapunovExponent, 948
lynx data, 246, 879

MacHale H1993L, 21
Machine|precision numbers, 405
MachinePrecision, 401, 405, 410
Maeder H1994L, 588
Maeder H1995aL, 146
Maeder H1995bL, 949
Maeder H1997L, 538, 542
Magenta, 169
Magnification Hmenu commandL, 55
Magnification, 65, 67
Make Standard Size Hmenu commandL, 120
Make Template Hmenu commandL, 22
mandelbrot, 958
ManhattanDistance, 684, 777
Manipulate, 30, 160, 316, 352, 823, 876, 881, 895,

898, 900-901, 903-904, 940
Manipulation

of 2D plots, 120
of 3D plots, 140
of expressions, 419
of lists, 448
of matrices, 692
of vectors, 679

Manipulations, 316
bookmarks of, 351
handling slow, 342
initial values in, 323
initialization in, Initialization, 349
labels in, 323
options of, 352
saving definitions in, SaveDefinitions, 348
showing the current value in, 323
snapshots of, 350
with Checkbox, 333
with CheckboxBar, 334
with ColorSetter, 336
with ColorSlider, 336
with InputField, 335
with Locator, 326
with Manipulator, 318
with PopupMenu, 332
with RadioButtonBar, 332
with SetterBar, 332
with Slider, 319
with Toggler, 333
with TogglerBar, 334
with VerticalSlider, 319

Manipulations, examples of, 940
curve fitting, 329, 823
differential equation plotting, 330
heat model, 895
interpolation, 329

plotting cobwebs, 940
predator-prey model, 881
shooting for boundary value problems, 876
transformation of a circle, 160
wave model, 898, 900-901, 903

Manipulator, 318, 375
MantissaExponent, 400
Map HêüL, 3, 38, 158, 170, 174, 436, 445, 459, 568,

570, 693, 774, 817, 941, 968, 998, 1039
MapAll, 461
MapAt, 461
MapIndexed, 462
Mapping

elements of lists with functions, Map, 38,
444-445, 459

lists with functions, Apply, 462
two lists with functions, Inner, etc., 465

MapThread, 465, 654
Margins

above headers, PageHeaderMargins, 69
around boxes, FrameMargins, 67
around cells, CellMargins, 67
around pages, PrintingOptions, 69
between a cell frame and the labels,

CellFrameLabelMargins, 68
inside cell frames, CellFrameMargins, 68

Markov chain Monte Carlo, 1048, 1057
Markov chains, 1055, 1057

continuous|time, 997
discrete|time, 992

Martelli H1999L, 923, 950
Matching of patterns, 491
MatchQ, 431, 496
Mathematica, 4

as a writing tool, 24, 54, 78
help for, 15
notational conventions of, 12
running a remote kernel of, 113-114

Mathematical
constants, 401
documents, 78
formulas, programming of, 551
formulas, writing of, 80

Mathematical functions, 435
basic, 435
combinatorial, 437
nonsmooth, 437
orthogonal polynomials, 439
special, 439

Mathematical programming
exact global, Minimize, 743
exact integer, Minimize, 743
linear, LinearProgramming, 757
linear, Minimize, 753
numerical global, NMinimize, 747

Index 1089



numerical integer, NMinimize, 747
numerical local, FindMinimum, 759

MathLink, 16, 949
MathML, 16
MathMLForm, 111
Matrices, 42, 686

band, Band, 690
block, ArrayFlatten, 695
calculus of, 696
characteristic polynomials of,

CharacteristicPolynomial, 702
characteristic polynomials of, charpoly, 39
columns of, 694
combining, ArrayFlatten, 695
condition numbers of, 701
conjugate transpose of,

ConjugateTranspose, 697
constant, ConstantArray, 687
constructing, Table, etc., 687
decompositions of, 704
determinants of, Det, 42, 698
diagonal, DiagonalMatrix, 688
diagonal elements of, Diagonal, 694
dimensions of, Dimensions, 696
displaying, MatrixForm, 686
eigenvalues of, Eigenvalues, 42, 702
eigenvectors of, Eigenvectors, 702
examples of, ExampleData, 310
exponentials of, MatrixExp, 699
formatting of, MatrixForm, 35, 686
Gaussian elimination of, RowReduce, 703, 713
generating, Table, etc., 687
Hermitian, HermitianMatrixQ, 696
Hilbert, HilbertMatrix, 688
identity, IdentityMatrix, 688
inverse, Inverse, 42, 700
manipulations of, 692
minors of, Minors, 698
norms of, Norm, 702
null space of, NullSpace, 703
orthogonal, 706
plotting of, ArrayPlot, 690
plotting of, MatrixPlot, 690
positive definite,

PositiveDefiniteMatrixQ, 696
powers of, MatrixPower, 699
products of, Dot H.L, 699
properties of, 696
pseudoinverse of, PseudoInverse, 700, 714
rank of, MatrixRank, 703
rows of, 692
singular values of, SingularValueList, 701
sparse, 689

sub|, 694
sums of elements of, Total, 697
tests for, MatrixQ, 696
trace of, Tr, 697
transpose of, Transpose, 42, 697
triangular, 704
tridiagonal, 713
Vandermonde, 688

MatrixConditionNumber•, 702
MatrixExp, 699, 837
MatrixForm, 35, 42, 678, 686, 1020
matrixNorm, 702
MatrixPlot, 275, 691

options for, 691
MatrixPower, 699
MatrixQ, 431, 696
MatrixRank, 703
Max, 11, 437, 682, 684, 698, 702
MaxArrowLength•, 144
MaxBend•, 163
Maximize, 45, 753
Maximum, Max, 11, 437
Maximum likelihood method, 1006
MaxIterations, 735, 749, 763, 822, 828, 1036
MaxMemoryUsed, 114
MaxPlotPoints, 235, 277, 691
MaxPoints, 645
MaxRecursion, 187, 207, 214, 226, 645, 808, 876
MaxStepFraction, 866, 917
MaxSteps, 866, 917
MaxStepSize, 866, 917
MaxwellDistribution, 977
MCMC, 1048, 1057
Mean, 36, 967, 973, 1004
MeanCI•, 1020
MeanDeviation, 1005
MeanDifferenceCI•, 1022
MeanDifferenceTest•, 1027
MeanPredictionCITable•, 1031, 1034, 1036
MeanTest•, 1024
Median

moving, MovingMedian, 1044
univariate, Median, 1004

Median, 1004
MedianDeviation, 1005
Medium, 155, 165, 192
MemberQ, 401, 431, 496, 592
Memory, 113
MemoryConstrained, 114
MemoryInUse, 114
MenuView, 332, 358, 381, 388
Mersenne numbers, 2
MersenneTwister, 963

1090 Mathematica Navigator



Mesh, 187, 205, 214, 224, 232, 242, 691
MeshFunctions, 187, 205, 214, 224
MeshShading, 187, 205, 214, 224
MeshStyle, 187, 205, 214, 224, 233, 243, 691
Message, 540, 563
MessageName H::L, 540
Messages, 540
Mesterton|Gibbons H1989L, 134
Metafile, 106
Method

of least squares, 812
of lines, 909, 912
of lines, options for, 918
of maximum likelihood, 1006
of moments, 1005

Method, 270, 386, 621, 632, 645, 668, 682, 735, 749,
752, 763, 822, 866, 917, 1031, 1036

MethodOfLines, 917
metropolis, 1058
Metropolis method, 1057
Metropolis-Hastings method, 1057
Microsoft Word, 106
Min, 11, 437, 682, 698
Minimax approximation

of data, FindFit, 822
of functions, MiniMaxApproximation•, 827

MiniMaxApproximation•, 827
Minimize, 45, 743, 753
Minimum, Min, 11, 437
MinimumSpanningTree•, 742
Minors, 698
MinRecursion, 645
Minus H-L, 10
MKL, 963
MKS•, 402
MêMê1 queue, 1000
Mod, 397
modAnimal data, 251, 255, 260
modBarley data, 262, 265, 280
Modeling

methods, 275
process, 272

Models, examples of
birth-death process, 888, 999
Brownian motion, 991
coin tossing, 988
competing species, 855
diffusion, 996
drug in blood, 955
elliptic equation, 2D, 904, 921
elliptic equation, 3D, 907
exponential growth, 819
gambler‘s ruin, 988
heat equation, 1D, 892-893
logistic growth, 820

Lorenz model, 860
Lotka-Volterra model, 853
Markov chain, continuous|time, 997
Markov chain, discrete|time, 992
MêMê1 queue, 1000
Poisson process, 997
predator-prey model, 853, 879, 881
random walk, 1D, 987
random walk, 2D, 989
wave equation, 1D, 891, 896
wave equation, 2D, 898, 901
yeast culture, 820, 878, 956

Modified Bessel functions, BesselI, BesselK,
441

Module, 39-40, 521, 566, 767, 774, 998
Modulo, 397
Moment|generating functions, 972
Moments

central, 1005
method of, 1005

Monitor, 563
Monte Carlo integration methods, 662
MonteCarlo, 647, 662
Moore-Penrose inverse, PseudoInverse, 700
Most, 449, 679, 693
Mouseover, 363
MousePosition, 394
Moving averages, 1042, 1044
MovingAverage, 1044
MovingMedian, 1044
MultiDimensionalRule, 648, 653
MultiedgeStyle, 268
Multifrontal, 712
Multinomial, 437
Multinomial distribution, 974
MultinomialDistribution•, 974
MultinormalDistribution•, 984
MultiPanelRule, 648
MultiPeriod, 647
Multiple
|valued functions, 435-436
functions, plotting of, Plot, 121
integrals, Integrate, 642
zeros, DampingFactor, 735

Multiplication, 10, 13
of matrices, Dot H.L, 699
of vectors, Dot H.L, 683

Multiplier method, 742
MultiPoissonDistribution•, 974
Multivariate

continuous distributions, 984
descriptive statistics, 1008
discrete distributions, 973-974

MultivariateKurtosis•, 974
MultivariateSkewness•, 974

Index 1091



MultivariateStatistics` package, 973-974,
984

MultivariateTDistribution•, 984
Multiway dot plots, dotPlot, 262
Murrell H1994L, 853

N, 9, 31, 398, 406
Nachbar H1995L, 742
Names

attributes of, 530
complete, 532
conventions of, 13
of variables, 9
removing, Remove, 415
shadowing of, 534

Names, 401, 415, 533
Nand, 433
ND•, 621, 804
NDelayDSolve•, 852
NDSolve, 330, 849, 852

for ordinary differential equations, 49, 849
for partial differential equations, 909
options for, 865, 917

NDSolve`FiniteDifferenceDerivative,
622, 914

NDSolveUtilities` package, 868
Nearest, 1010
Negative, 431
NegativeBinomialDistribution, 970
NegativeMultinomialDistribution•, 974
NelderMead, 749
Nest, 575, 577
NestList, 575-576, 872, 925, 938, 941, 948, 953,

991, 995, 1058
NestWhile, 581
NestWhileList, 581
NetworkFlow•, 742
networkPlot, 174
New lines H\nL, 104, 433
newton, 545
Newton, 735, 763, 822
Newton-Cotes rule, 664
newton2, 554
newton3, 554
newton4, 554
newton5, 566
newton6, 576
newton7, 576
newton8, 579
newton9, 499, 581
NewtonCotesError•, 665
NewtonCotesRule, 648, 653
NewtonCotesWeights•, 665
newtonInterpolation, 796

newtonSolve, 502, 737, 765
newtonSolveSystem, 738
Newton’s method, 627

difference equation of, 934
in interpolation,

InterpolatingPolynomial, 792
in root finding, FindRoot, 732
in root finding, newton, etc., 545, 566

NextPrime, 396
NFourierTransform•, 673
NIntegrate, 41, 621, 644

adaptive strategies for, 648
methods of, 647
Monte Carlo methods with, 662
options for, 645
oscillatory integrands with, 658
quadrature rules of, 652
singularities with, 655
symbolic preprocessing with, 660

NIntegrate`GaussKronrodRuleData, 654
NLimit•, 632
NMaximize, 45, 747

options for, 749
NMinimize, 45, 747, 821-822

options for, 749
NoncentralChiSquareDistribution, 979
NoncentralFRatioDistribution, 979
NoncentralStudentTDistribution, 979
NonConstants, 618
None, 182
Nonindexed recursive formulas, 606
Nonlinear

boundary value problems, 874
difference equations, 933, 935, 950
equations, FindRoot, 732
least|squares, FindFit, 818
regression, NonlinearRegress•, 1035
time series analysis, 949

Nonlinear programming
global, NMinimize, 747
integer, NMinimize, 747
local, FindMinimum, 759

NonlinearRegress•, 1036
NonNegative, 431
Nonparametric regression, 1038
NonPositive, 431
Nor, 433
Norm, 684, 702, 822
Normal, 625, 636, 689
Normal distribution

as approximation to binomial distribution, 982
bivariate, 985
multivariate, 984
truncated, 983
univariate, 980

1092 Mathematica Navigator



NormalCI•, 1020
NormalDistribution, 978
Normalize, 685
NormalProbabilityPlot•, 983
NormalPValue•, 1024
NormalsFunction, 214, 222
NormFunction, 822, 866, 917
Norms

of matrices, Norm, 702
of vectors, Norm, 684

Not H!L, 433
NotebookAutoSave, 52, 69
Notebooks, 52

cell styles in, 54
cells in, 23
checking spelling of, 53
editing, 22, 59
footers of, 53
headers of, 53
hyphenating, 53
manipulating graphics in, 120
opening, 24, 52
options for, 61
page breaks in, 54
printing, 54
printing settings of, 53
saving, 52
screen environments of, 55
structure of, 61
style sheets of, 55
to packages, 535

Notebook’s Default Context Hmenu commandL,
533

NProduct, 670
NProductFactors, 670
NResidue•, 627
NSeries•, 627
NSolve, 44, 717-718
NSum, 667

options for, 668
NSumTerms, 668
Nullclines, 855
NullSpace, 703
Number

of bytes, ByteCount, 114
of characters, StringLength, 434
of elements, Length, 425, 444
of occurrences, Count, 493
of primes, 552

Number theory, 16, 395
NumberForm, 399, 980
numberFromFactors, 572
Numbering

of formulas, 79, 90
of page references, 89

of sections, 91
NumberQ, 431
Numbers, 396

accuracy of, Accuracy, 403
arbitrary|precision, 113, 405
complex, 396, 400
decimal, N, 31
domains of, 420
fixed|precision, 405
Gaussian integer, 396
integer, 396
machine|precision, 405
Mersenne prime, 4
precision of, Precision, 403
prime, 4, 396
random, RandomReal, etc., 962
ranges of, Range, 36, 446
rational, 396, 400
real, 396, 398, 403
Roman, 54
tests for, 431
truncation of, Chop, 399

NumberString, 509
Numerator, 428
Numerical methods

for derivatives, ND•, 621
for differential equations, NDSolve, 49, 849
for global optimization, NMinimize, 45, 747
for integer optimization, NMinimize, 747
for integrals, NIntegrate, 644
for limits, NLimit•, 632
for local optimization, FindMinimum, 46, 759
for nonlinear least squares, FindFit, 818
for nonlinear regression,

NonlinearRegress•, 1035
for partial differential equations, NDSolve, 909
for polynomial equations, NSolve, 44, 717
for products, NProduct, 670
for sums, NSum, 667
for transcendental equations, FindRoot, 44, 732
high precision in, 544
monitoring, 411
precision of, 409
programs for, 542

NumericalCalculus` package, 621, 627, 632,
804

NumericalDifferentialEquation-

Analysis` package, 664-665
NumericQ, 431

OddQ, 397, 431
Off, 524
Offset, 159, 166
On, 524

Index 1093



OneStepRowReduction, 712
Opacity, 150, 154, 169, 178
Open Hmenu commandL, 52
OpenAppend, 104
Opener, 385
OpenerView, 361
OpenRead, 104
OpenWrite, 104
Optimization

by calculus of variations, 789
by classical methods, kktOptimize, 768
by cylindrical algebraic decomposition,

Minimize, 743
by dynamic programming, 780
by global numerical methods, NMinimize, 747
by integer programming, NMinimize, 747
by linear programming, LinearProgramming,

757
by linear programming, Minimize, 753
by local numerical methods, FindMinimum, 759

Option Inspector, 60-61
Option Inspector Hmenu commandL, 52, 62
Optional, 501
OptionQ, 431, 737
Options

comparison of, 182
conflicting, 125
defining, 538
filtering, FilterRules, 539
for Animate, 368
for ArrayPlot, 691
for BarChart•, 254
for BarChart3D•, 278
for Dynamic, 373
for FindFit, 822
for FindMaximum, 762
for FindMinimum, 762
for FindRoot, 734
for FullSimplify, 423
for Graphics, 184
for Graphics3D, 210
for GraphicsColumn, 124
for GraphicsGrid, 124
for GraphicsRow, 124
for GraphPlot, 268
for Grid, 470, 475
for Integrate, 640
for ListAnimate, 369
for ListContourPlot, 277
for ListDensityPlot, 277
for ListLinePlot, 234
for ListPlot, 234
for ListPlot3D, 277

for ListPointPlot3D, 278
for Manipulate, 352
for MatrixForm, 687
for MatrixPlot, 691
for MiniMaxApproximation•, 828
for NDSolve, 865, 917
for NIntegrate, 645
for NMinimize, 749
for NonlinearRegress•, 1036
for NSum, 668
for ParametricPlot, 184
for ParametricPlot3D, 210
for Plot, 184
for Plot3D, 210
for Regress•, 1031
for Simplify, 423
for TableForm, 468
for cell frames, 68
for cells, 67
for controls, 374
for fonts, 65
for formatting, 66
for frame boxes, 67
for front end, 61
for numerical routines, 409
for printing, 69
for text layout, 65
for views, 364
in packages, 538
information about, Options, 181
setting, SetOptions, 180
using, 180

Options, 181, 538
OptionsPattern, 538
OptionValue, 538
Or H»»L, 433
Orange, 169
Ordering, 458, 766, 782
OrOpt, 777
Orthogonal

decompositions of matrices, 706
polynomials, 439
vectors, 685

Orthogonalize, 685
OrZweig, 777
Oscillatory integrands, 658
OscillatorySelection, 647, 660
Out, 8, 414
Outer, 456, 466
Outer products, KroneckerProduct, 683
Outer products, Outer, 683
Outliers, 265, 822
Output

1D, 70

1094 Mathematica Navigator



2D, 70
editing, 24, 52
in TEX form, TeXForm, 111
in C form, CForm, 111
in Fortran form, FortranForm, 111
in framed form, Framed, 72
in input form, InputForm, 70
in internal form, FullForm, 426
in labeled form, Labeled, 72
in output form, OutputForm, 70
in pane form, Pane, 72
in panel form, Panel, 72
in shallow form, Shallow, 425
in short form, Short, 425
in standard form, StandardForm, 70
in traditional form, TraditionalForm, 70
suppressing, ;, 33

Output from Above Hmenu commandL, 24
OutputForm, 70
Overdetermined linear systems, 714
Overlaps, 508

p values, 1024
Packages

contexts in, 537
extra, 97
forgetting to load, 533
from notebooks, 535
legacy, 98
loading, 94
loading automatically, 96
loading with Get H<<L, 95
nonstandard, 99
of Mathematica, 5
problems with, 96
shadowing with, 96
standard, 94
types of, 94
writing, 535

PackingMethod, 270
PacletManager` context, 531
PaddedForm, 469
PadeApproximant, 825
PadLeft, 450, 680
PadRight, 450, 680, 695
Page Break Hmenu commandL, 54
Page breaks, 54, 69
Page numbers, automatic references to, 89
PageBreakAbove, 69
PageBreakBelow, 69
PageBreakWithin, 69
PageHeaderMargins, 69
PageWidth, 66
Painlevé transcendents, 850
PairwiseScatterPlot•, 251

Palettes
AlgebraicManipulation, 16
BasicMathInput, 16
BasicTypesetting, 16, 85
ColorSchemes, 172, 304
nonstandard, 99
pasting, 56
SpecialCharacters, 16

Palettes HmenuL, 15
palindromeQ, 550
Pane, 72
Panel, 72, 358
Paneled, 354
PaneSelector, 385
Parabolic partial differential equations, 892-893,

909
ParagraphIndent, 66
ParagraphSpacing, 66
ParameterBias•, 1036
ParameterCITable•, 1031, 1036
ParameterConfidenceRegion•, 1031,

1035-1036
ParameterTable•, 1031, 1036
Parametric

2D curves, ParametricPlot, 132
3D curves, ParametricPlot3D, 142
3D surfaces, ParametricPlot3D, 142

ParametricPlot, 132, 137, 139
options for, 184

ParametricPlot3D, 142
options for, 210

Parentheses, 14
ParetoDistribution, 977
ParetoPlot•, 259
Part, 418, 448, 679, 692, 694
Partial derivatives, D, 615
Partial difference equations, 927
Partial differential equations

complete integrals of, 890
elliptic, 904, 907, 921
hyperbolic, 891, 896, 898, 901, 909
parabolic, 892-893, 909
quasi|linear first|order, 886
solving by finite differences, 921
solving by Laplace transforms, 891
solving by method of lines, 912
solving by numerical methods, NDSolve, 909
solving by separation of variables, 893, 906
solving by series representations, 893
solving by symbolic methods, DSolve, 886

Partial fractions, Apart, 32, 428
PartialSumOfSquares•, 1031
ParticleData, 291
Partition, 450-451, 681, 688, 694
Partitions, of integers, IntegerPartitions, 397

Index 1095



PartitionsP, 397
Parts

of expressions, Part, 418
of lists, Part, 448
of matrices, Part, 692
of vectors, Part, 679
replacing, ReplacePart, 449

pascal, 601
Pascal’s triangle, 600
PasteButton, 56, 386
Path

context search, $ContextPath, 532
for files, $Path, 107

Pattern H:L, 503
Patterns, 458, 491, 513, 523

alternative, 502
default values in, 501
for a variable number of arguments, 500
in options, 538
in searching, 493
in strings, 505
in tests, 496
in transformation rules, 494
repeated, 503
restricting with conditions, 499
restricting with heads, 496
restricting with tests, 497
searching with, Cases, etc., 457
sequences of, 505
special, 492
with exceptions, 504
with restrictions, 496

PatternSequance, 505
PatternTest H?L, 497
PDF Hfile formatL, 105
PDF Hprobability density functionL, 967, 973
Pearl H1927L, 820, 878, 956
PenaltyFunction, 751
PercentileBarChart•, 256
Perfect numbers, 549
perfectQ, 549
PerformanceGoal, 187, 207, 214, 226, 344
Periodic functions, 602, 673-674
Periodic points, 943
PeriodicInterpolation, 799
Permutations

all, Permutations, 454
random, RandomSample, 966

Permutations, 454
PerturbationScale, 752
Phase trajectories

for solutions of difference equations, 930, 953
for solutions of differential equations, 839, 854,

856-857, 863
Physical constants, 402

Physical units, 402
PhysicalConstants` package, 402
Pi, 10, 401
Pick, 493
PICT, 105
Pie charts, with Graphics, 167
Piecewise, 84, 438, 516, 558, 602, 635, 641
Piecewise interpolation

for data, ListInterpolation, 797
for functions, FunctionInterpolation, 807
for irregular 3D data, 802

Piecewise|defined functions, Piecewise, 516
PiecewiseExpand, 518
PieChart•, 266
PieCharts` package, 266
PieEdgeStyle•, 266
PieExploded•, 266
PieLabels•, 266
PieOrientation•, 266
PieStyle•, 266
Pink, 169
PixelConstrained, 691
Plain, 165, 192
Plants, 959
Play, 121
Plot, 12, 26, 121, 183

for several curves, 121
options for, 184

Plot add|ons
in 2D graphics, 201
in 3D graphics, 201

Plot fonts
in a piece of text, Style, 193
in a plot, BaseStyle, 192
in a session, BaseStyle, 193

Plot labels
for axes, AxesLabel, 196
for frames, FrameLabel, 198
for plots, PlotLabel, 195
for ticks, Ticks, 198

Plot legends
for Plot, 209
with Epilog, 208
with PlotLegend•, 209

Plot options
for Graphics, 184
for Graphics3D, 210
for ParametricPlot, 184
for ParametricPlot3D, 210
for Plot, 184
for Plot3D, 210
for 2D graphics, 180
for 3D graphics, 210

1096 Mathematica Navigator



for contour and density graphics, 226
Plot styles

for axes, AxesStyle, 196
for curves, PlotStyle, 203
for fonts, BaseStyle, 192
for frame ticks, FrameTicksStyle, 198
for frames, FrameStyle, 198
for grid lines, GridLinesStyle, 199
for labels, LabelStyle, 193
for text pieces, Style, 193
for ticks, Ticks, 198
for ticks, TicksStyle, 197

Plot3D, 29, 139
options for, 210

PlotFlag•, 828
PlotLabel, 186, 194-195, 200, 213, 219
PlotLegend•, 187
PlotLegends` package, 187, 209
PlotMarkers, 235, 243-244
PlotPoints, 113, 144, 187, 207, 214, 226
PlotRange

in 2D graphics, 119, 185, 190
in 3D graphics, 212, 216
in contour and density graphics, 227

PlotRangeClipping, 185, 190, 691
PlotRangePadding, 185, 191, 212, 217
PlotRegion, 183, 185, 191, 212, 217
Plots

algorithm for 2D functions, 207
aligning, 120
arranging regularly, GraphicsGrid, 27, 124
arranging regularly, GraphicsRow, 27, 123-124
arranging regularly, Row, 27
bitmap, 114
color directives for, 168
combining, Show, 121, 125
cropping, 120
default size of, ImageSize, 120
exporting, Export, 105
filled, Filling, 135
fonts in, 192
formatting in, 194
graphics directives in, 152
graphics primitives in, 152
importing, Import, 105
interactive drawing of, 126
interactive editing of, 126
labeling curves in, Tooltip, 122
legends in, 208
manipulating 2D, 120
manipulating 3D, 140
moving, 120
options for, 180
rendering in the front end, 193

resizing, 120
stereographic, 863
superimposing, Show, 26, 121
suppressing display of, ;, 28, 121
text additions to, Text, 163

Plots, 2D for data, 232
bar charts, BarChart•, 253
basic, ListPlot, ListLinePlot, 232
basic plots for several data sets, ListPlot,

ListLinePlot, 242
box|and|whisker plots, BoxWhiskerPlot•, 264
circles and joining lines, Graphics, 159, 238
date list plots, DateListPlot, 238
dot plots, dotPlot, 260
error plots, ErrorListPlot•, 237
graph plots, GraphPlot, 267
histograms, Histogram•, 258, 1012
layered graph plots, LayeredGraphPlot, 274
lines, ListLinePlot, 29, 232
logarithmic plots, ListLogPlot, 237
multiway dot plots, dotPlot, 262
phase plots, ListLinePlot, 248
pie charts, PieChart•, 266
points, ListPlot, 29, 232
points and joining lines, Graphics, 155, 238
points and joining lines, ListLinePlot, 232
polar plots, ListPolarPlot, 238
q-q plots, QuantilePlot, 252
quantile-quantile plots, QuantilePlot•, 252
scatter plots, ListPlot, 249
scatter plots, PairwiseScatterPlot•, 251
stem|and|leaf plots, StemLeafPlot•, 259
tree plots, TreePlot, 274
vector fields, ListVectorFieldPlot•, 266
with Graphics, 238, 248

Plots, 3D for data, 275
bar charts, BarChart3D•, 275
color squares, MatrixPlot, 275
contour plots, ListContourPlot, 275
density plots, ListDensityPlot, 275
grayscale squares, ArrayPlot, 275
histograms, Histogram3D•, 280
point plots, ListPointPlot3D, 275
surface plots, ListPlot3D, 275
surface plots, ListSurfacePlot3D, 281
triangular surface plots,

TrangularSurfacePlot•, 281
Plots for 2D functions, 116

complex inequality plots, RegionPlot, 138
complex region plots, RegionPlot, 138
implicit plots, ContourPlot, 134
inequality plots, RegionPlot, 136

Index 1097



logarithmic plots, LogPlot, 133
parametric plots, ParametricPlot, 132
plots of complex|valued functions, 137
plots of discontinuous functions, 117
plots of one curve, Plot, 12, 26, 116
plots of several curves, Plot, 26, 121
polar plots, PolarPlot, 133
region plots, RegionPlot, 136

Plots for 3D functions
contour plots, ContourPlot, 29, 139
density plots, DensityPlot, 29, 139
gradient fields, GradientFieldPlot•, 144
parametric curves, ParametricPlot3D, 142
parametric surfaces, ParametricPlot3D, 142
region plots, RegionPlot3D, 143
rotations of, 140, 320
spherical surfaces, SphericalPlot3D, 143
stereograms, 145
surface plots, Plot3D, 29, 139
surfaces of revolution, RevolutionPlot3D,

143
two|image stereograms, 863
zooming of, 140

Plots for 4D functions
gradient fields, GradientFieldPlot3D•, 148
simple methods, 147
surfaces of constant value, ContourPlot3D,

149
Plots for data, advanced examples of
ArrayPlot, 993
Graphics, 248, 251, 260, 1056
ListPlot, 942

Plots for functions, advanced examples of
ContourPlot, 230, 767
ContourPlot3D, 909
ParametricPlot, 855, 859
ParametricPlot3D, 864
Plot, 3, 183, 201
Plot3D, 214

Plots for other purposes
plots of matrices, ArrayPlot, 690
plots of matrices, MatrixPlot, 690
regular polygons, 158

PlotStyle, 187, 203, 214, 222, 233, 243, 270, 278
PLU decomposition, 704
Plus H+L, 10
Pochhammer, 437
PoincareSection•, 882
Point, 154-155, 177
PointSize, 154-155, 178
Poisson process, 997, 999
PoissonDistribution, 970
poissonProcess, 997
poker, 591

poker2, 592
Polak-Ribiere method, 764
PolarPlot, 133
PolyaFieldPlot, 139
PolyGamma, 440
Polygon, 154, 166, 177
PolyhedronData, 178, 300
PolyLog, 440
Polynomial

equations, Solve, 716
inequalities, Reduce, 725
optimization, Minimize, 743

PolynomialQ, 431
PolynomialQuotient, 429
PolynomialRemainder, 429
Polynomials

interpolating, InterpolatingPolynomial,
792

manipulating, 429
number of roots of, CountRoots, 723
orthogonal, 439
zeros of, Solve, 716

Polytopes package, 158
PopupMenu, 332, 381
PopupView, 362, 389
PopupWindow, 363
Position, 458, 493, 680, 774, 995, 998
Positive, 431
PositiveDefiniteMatrixQ, 431, 696, 760
PossibleZeroQ, 431
Posterior density function, 1046
Postfix function application, êê, 33
PostProcess, 751
PostTests•, 1029
Power H^L, 10, 421, 425, 435
PowerExpand, 424
PowerMod, 397
Powers

expansion of, PowerExpand, 424
of matrices, MatrixPower, 699
Power H^L, 421, 435
simplification of, PowerExpand, 424

PowersRepresentations, 398
powerSumOfDigits, 582
precipitation data, 992
Precision

calculating with high, 113, 398, 404, 406
input of numbers with high, 406
of numerical routines, 113, 409
of real numbers, 403

Precision, 403
PrecisionGoal, 113, 409, 645, 668, 735, 749, 763,

822, 866, 917, 1036
Predator-prey models, 853, 950

1098 Mathematica Navigator



predatorPreyPlot, 953
PredictedResponse•, 1031, 1036
PredictedResponseDelta•, 1031
Predictions, 995
Preferences, 69
Prefix function application, ü, 33
PreIncrement H++L , 553
Prepend, 113, 449, 680, 693-694
PrependTo, 113, 449, 680
PreserveImageOptions, 185, 195, 212, 353
Prime, 396
primePi, 553
PrimePowerQ, 396
PrimeQ, 3, 396, 431
Primes, 396

domain of, Primes, 420
Gaussian, GaussianIntegers, 396
generation of with a recurrence, 599
Mersenne, 4
relative, CoprimeQ, 396

Primes, 420
Primitives, interactive drawing of, 126
Primitives, graphics, 152, 177, 201
Principal roots, 435
PrincipalAxis, 763
PrincipalValue, 640, 647, 671
Print Hmenu commandL, 54
Print, 562, 814, 998, 1001, 1041
Print Selection Hmenu commandL, 54
Printer‘s points, 65, 105, 156
PrintFlag•, 828
Printing options, 69
Printing Settings Hmenu commandL, 53, 69
Printing units

em, 65
printer‘s point, 65
x|height, 65

PrintingOptions, 69
PrintTemporary, 563
Prior density function, 1046
Probability

density function, PDF, 967
distribution function, CDF, 967
distributions, 966
function, PDF, 967
generating function, 628, 888, 972
graph paper, 983
mass function, PDF, 967
plot, 983

Probability distributions
continuous multivariate, 984
continuous univariate, 976
discrete multivariate, 973-974
discrete univariate, 966
domains of, DistributionDomain, 968

of transformations, 643
random numbers from, RandomInteger,

RandomReal, 968
relationships between, 272
statistical, 979

Probability distributions, continuous
beta, 976
bivariate normal, 985
Cauchy, 978
chi, 979
chi|square, 979
exponential, 977
extreme value, 978
F|ratio, 979
gamma, 977
Gumbel, 978
half|normal, 977
Hotelling T2, 984
inverse Gaussian, 977
Laplace, 978
logistic, 978
lognormal, 977
Maxwell, 977
multinormal, 984
multivariate Student t, 984
normal, 978, 980
Pareto, 977
quadratic form, 984
Rayleigh, 977
Student t, 979
triangular, 976
uniform, 963, 976
Weibull, 977
Wishart, 984

Probability distributions, discrete
Bernoulli, 969
beta binomial, 969
beta negative binomial, 970
binomial, 966, 969, 971
geometric, 970
hypergeometric, 969
logarithmic series, 970
multinomial, 974
multiple Poisson, 974
negative binomial, 970
negative multinomial, 974
Poisson, 970
uniform, 962, 969
Zipf, 970

probabilityCI, 1023
probabilityTest, 1028
Procedural programming, 553
Product, 670, 796
ProductLog, 440, 731
Products
Cross HäL, 683
CrossProduct•, 620

Index 1099



Dot H.L, 683, 699
DotProduct•, 620
Inner, 466
KroneckerProduct, 683
of diagonal elements, Tr, 697
of elements of lists, Apply, 462, 682
of indexed expressions, Product, NProduct,

670
of matrices, Dot H.L, 42, 699
of scalars, Times H*L, 10, 13
of vectors, Dot H.L, 42, 683
Outer, 466, 683
ScalarTripleProduct•, 620

Programming, 39
dynamic, 597
functional, 459, 462, 568
graphics, 152
list|based, 547
procedural, 553
recursive, 596, 781
rule|based, 584
simple, 542

Programming, examples of graphics
cobwebPlot, 579, 932
dotPlot, 260
labeledArrow, 162
logisticPlot, 938
LSystemPlot, 959
networkPlot, 174
predatorPreyPlot, 953
regularPolygon, 158
showConfidenceIntervals, 1022
showError, 824
showFit, 814
showIterations, 767
showLocalResiduals, 1041
showPValues, 1026
showResiduals, 815
trigPlot, 436

Programming, examples of list manipulation
autocorrelation, 1007
encrypt, 550
frequencies1, 572
frequencies2, 572
geometricMean, 571
hamming1, 547
hamming2, 547
harmonicMean, 571
harmonicNumber, 571
interleave, 547
josephus, 577
numberFromFactors, 572
palindromeQ, 550

records1, 611
records2, 611
records3, 611
records4, 611
records5, 612
records6, 612
removeRepetitions, 567
removeRepetitions2, 567
removeZeros1, 609
removeZeros2, 609
removeZeros3, 609
removeZeros4, 610
removeZeros5, 610
runLengthDecoding, 574
runLengthDecoding2, 613
runLengthEncoding, 574
runLengthEncoding2, 613
sort, 613
subsequence, 548
SWOR, 554
SWOR2, 577
tabulateDistributions, 968
transitions, 994

Programming, examples of numerical
bifurcation, 942
brownianMotion, 991
coinTossing, 988
conditionNumber, 701
cramersRule, 699
CRK4, 872
ctMarkovChain, 998
dataLSQ, 817
der, 543
dfpMinimize, 767
dtMarkovChain, 995
euler, 546
euler2, 576
Euler’s method, 601
fleas, 559
functionLSQ, 827
gamblersRuin, 988
gaussianQuadrature, 666
gaussKronrod, 654
limits, 941
linearBVP, 874
localRegress, 1039
LUDecompose, 705
lyapunovExponent, 948
mandelbrot, 958
matrixNorm, 702
metropolis, 1058
newton, 545

1100 Mathematica Navigator



newton2, 554
newton3, 554
newton4, 554
newton5, 566
newton6, 576
newton7, 576
newton8, 579
newton9, 581
newtonSolve, 737
newtonSolveSystem, 738
Newton’s method, 601
poissonProcess, 997
probabilityCI, 1023
probabilityTest, 1028
randomWalk, 40, 987
rungeKuttaSolve, 872
secantSolve, 739
stationaryDistribution, 995
steadyStateAverages, 1001
stehfest, 671
trapez, 544
vectorNorm, 684

Programming, examples of symbolic
abs, 586
abs2, 586
charPoly, 39
collatzSequence, 558
collatzSequence2, 580
collatzSequence3, 589
convolution, 602
convolution2, 604
dAlambert, 890
dayOfWeek, 551
der, 607
deter, 608
eratosthenes, 555
fib, 599
findPerfect, 549
int, 607
interchange, 589
kktOptimize, 774
lagrangeInterpolation, 795
leg, 599
loga, 606
lottoCodes, 560, 592
lottoFrequencies, 594
newtonInterpolation, 796
pascal, 600
poker, 590
poker2, 591
powerSumOfDigits, 582
primePi, 552
riemannSum, 631

stirlingS2, 465
volume, 558

Programs
as packages, 535
C, CForm, 111
compiling, Compile, 528
debugging, 524
efficient, 113
Fortran, FortranForm, 111
local constants in, With, 522
local variables in, Module, 521
tracing, Trace, 523

ProgressIndicator, 563
Projection, 685
Prolog, 186, 201, 213, 221
PseudoInverse, 700
Pseudorandom numbers, 962
Pseudospectral, 920
Pure functions, 520

in Apply, 464
in FixedPoint, 578
in Fold, 582
in Map, 38, 445, 460
in Nest, 575
in Select, 457
in patterns, 498

Purple, 169
Put H>>L, 110
PutAppend H>>>L, 110

q|difference equations, 928
q|q plots, QuantilePlot•, 252
QRDecomposition, 706
QuadraticFormDistribution•, 984
Quadrature, 644
Quadrature rules, 652
Quantifiers, 728
Quantile, 967, 1004
Quantile-quantile plots, 252
QuantilePlot•, 252
Quantiles

of multivariate distributions,
EllipsoidQuantile•, 985

of univariate data, Quantile, 1004
of univariate distributions, Quantile, 967

Quartics, 703, 721, 724
QuartileDeviation, 1005
Quartiles, 265, 1004
Quartiles, 1004
QuartileSkewness, 1005
Quasi|linear partial differential equations, 886
QuasiMonteCarlo, 647, 662
QuasiNewton, 763, 822
Quaternions, 16

Index 1101



Queue process, 1000
Quiet, 540
Quit, 7
Quit Kernel Hmenu commandL, 7, 114
Quotient, 397
QuotientRemainder, 397

Radical
equations, Solve, Reduce, 723
optimization, Minimize, 743

RadioButtonBar, 332, 380
Ramanujan, Srinivasa, 395, 398
RamanujanTau, 398
RamanujanTauL, 398
RamanujanTauTheta, 398
RamanujanTauZ, 398
Random

lines, 684
numbers, generating with quantiles, 984
numbers, generation of, RandomInteger,

RandomReal, 968
numbers, seeds for, SeedRandom, 963
numbers, uniformly distributed, RandomReal,

etc., 962
permutations, RandomSample, 966
primes, RandomPrime, 396
processes, 987
variables, sums of, 602-603
walk Metropolis method, 1057
walks, 683, 987

RandomChoice, 965, 987
RandomComplex, 962
RandomInteger, 31, 962, 968, 973
RandomPrime, 396, 962
RandomReal, 31, 962, 968, 973, 976
RandomSample, 965-966
RandomSearch, 749
RandomSeed, 751
randomWalk, 987
Range

of characters, CharacterRange, 434
of numbers, Range, 36, 446

Range, 36, 446, 678
Rank of matrices, MatrixRank, 703
Raster, 154, 169-170
Rasterize, 105
Rational

approximation of reals, Rationalize, 400
Chebyshev approximation,

RationalInterpolation•, 806, 826
expressions, 427
interpolation, RationalInterpolation•, 806
numbers, 396
numbers, domain of, Rationals, 420

RationalInterpolation•, 806, 826
Rationalize, 400
Rationals, 420
RayleighDistribution, 977
Re, 137, 400, 430
Read, 104
Reading

data, Import, 100
graphics, Import, 105
interactive inputs, Input, 564
results, Get H<<L, 110

ReadList, 104
Real numbers, 398, 403

accuracy of, 403
arbitrary|precision, 405
domain of, Reals, 420
interval arithmetic of, Interval, 408
machine|precision, 405
precision of, 403
round|off errors of, 407

Real part, Re, 400
RealDigits, 400
Reals, 420, 726
Reap, 412, 564, 649
Record values, 583
records1, 611
records2, 611
records3, 611
records4, 611
records5, 612
records6, 612
Rectangle, 154, 166
Recurrence relations, 924
Recursion limit, $RecursionLimit, 605
Recursion relations, 37, 924
Recursive

formulas, indexed, 596
formulas, nonidexed, 606
functions, 596, 925
list manipulation, 609
programming, 596, 781
transformation rules, 596, 610

Red, 169
Reduce, 944, 950

for inequalities, 725
for polynomial equations, 721
for radical equations, 723
for transcendental equations, 730

Refine, 424
ReflectionTransform, 160, 686
ReflectRatio, 752
Refresh, 374
RefreshRate, 368
RegionFunction, 187, 207, 214, 226

1102 Mathematica Navigator



RegionPlot, 136, 138, 643, 726, 753
RegionPlot3D, 143, 150
Regions

plotting 2D, RegionPlot, 136
plotting 3D, RegionPlot3D, 143
plotting complex, RegionPlot, 138

Regress•, 1031, 1039
Regression analysis

linear, Regress•, 1030
local, localRegress, 1038
nonlinear, NonlinearRegress•, 1035
nonparametric, 1038

RegressionReport•, 1031, 1036
RegressionReportValues•, 1031, 1036
Regular, polygons, regularPolygon, 158
RegularExpression, 510
Regularized incomplete

beta function, BetaRegularized, 440
gamma function, GammaRegularized, 440

regularPolygon, 158
Relative errors, 403
Relative primality, CoprimeQ, 396
ReliefPlot, 275
Remainder

in numerical division, Mod, 397
in polynomial division,

PolynomialRemainder, 429
Remez‘s algorithm, 827
Remote kernel, 113-114
Remove, 415, 512
removeRepetitions, 567
removeRepetitions2, 567
removeZeros1, 609
removeZeros2, 609
removeZeros3, 609
removeZeros4, 610
removeZeros5, 610
Removing

symbols, Remove, 415
values, =., Clear, 415

Repeated H..L, 503-504
RepeatedNull H...L, 503
ReplaceAll Hê.L, 416, 494
ReplaceList, 495, 994
Replacements

of parts, ReplacePart, 449
once, ReplaceAll Hê.L, 416, 494
repeated, ReplaceRepeated Hêê.L, 418, 494,

596
ReplacePart, 449, 680, 693
ReplaceRepeated Hêê.L, 418, 494, 596
Rescale, 400
RescalingTransform, 160, 686

ResetDirectory, 108
Residuals, 814
Residue, 626
Resolution of graphics, ImageResolution, 105
Resolve, 728
Resource allocation problem, 783
Rest, 449, 679, 693
Restoring corrupted notebooks, 79
Restricting patterns

with conditions, 499
with heads, 496
with tests, 497

Restrictions for arguments, 496
Results

referring to, 8, 414
saving and loading, 110

Return, 113, 565-566, 766, 774
Return plots, 954
Reverse, 452, 696
RevisedSimplex, 757
RevolutionPlot3D, 143
RGBColor, 154, 168, 170, 178
Riccati difference equations, 933
Riemann zeta function, Zeta, 440
riemannSum, 631
Riffle, 450, 680
Rohatgi H1984L, 1030
RomanNumeral, 54
RombergQuadrature, 653
Root, 717, 720
RootApproximant, 721
RootIntervals, 723
RootMeanSquare, 1004
RootReduce, 720
Roots

as fractional powers, Power, 435
as solutions of polynomial equations, Solve,

716
as solutions of transcendental equations,

FindRoot, 732
principal, 435

RootSum, 636, 720
Rose and Smith H2002L, 1004
Rotate, 160
RotateLabel, 186, 198, 354
RotateLeft, 452, 696
RotateRight, 452, 696
Rotation

of 3D graphics with manipulations, 320
of 3D graphics with the mouse, 140
of graphics in exporting, ImageRotated, 105
of graphics primitives, Rotate, 160
of vectors, 685

RotationAction, 212, 217

Index 1103



RotationMatrix, 685
RotationTransform, 133, 160, 686
Round, 399
Round|off errors, 406-407, 409
Row, 27, 35, 123, 469, 678
Rowland H2008L, 599
RowReduce, 703, 713
Rows

displaying, Row, 678
of matrices, 692

RSolve, 843, 924
RSquared•, 1031
Rule H->L, 416, 584
Rule base, 586
Rule|based programming, 584
Rule30CA, 963
RuleDelayed H:>L, 584
RulerUnits, 69
Rules, 584

applying in all possible ways, ReplaceList,
495, 994

applying once, ReplaceAll Hê.L, 32, 416, 494
applying repeatedly, ReplaceRepeated

Hêê.L, 418, 494, 596
base of, 586
dispatching, 588
downvalues, 588
global delayed, SetDelayed H:=L, 584
global immediate, Set H=L, 584
in programming, 584
local delayed, RuleDelayed H:>L, 584
local immediate, Rule H->L, 416, 584
names of, 418
upvalues, 588

Run|length encoding, 461, 613
Runge-Kutta methods, 866, 871, 917
rungeKuttaSolve, 872
runLengthDecoding, 574
runLengthDecoding2, 613
runLengthEncoding, 574
runLengthEncoding2, 613
Runs, Split, 450, 993
Ruskeepää H2007L, 677
Ruskeepää H2008aL, 395
Ruskeepää H2008bL, 395

Saddle points, 617, 769
Salmon, 134
Same expressions

testing for with Equal H==L, 43, 431-432
testing for with SameQ H===L, 431-432, 578
testing for with random numbers, 964

SameQ H===L, 431, 578
SameTest, 459, 578, 737-738, 767, 988

Sampling
Gibbs, 1054
in function interpolation,

InterpolationPoints, 808
in optimization, SearchPoints, 751
Markov chain Monte Carlo, 1057
with replacement, RandomChoice, 965
without replacement, 554, 577
without replacement, RandomSample, 965

Sandefur H1990L, 923
Save Hmenu commandL, 52
Save, 110
Save As Hmenu commandL, 52, 78
Save As Special Hmenu commandL, 52
Save Selection As Hmenu commandL, 100, 105
SaveDefinitions, 348, 353
Saving

memory, 114
notebooks, 52
results, Put H>>L, 110
time, 112

Scalar product, Dot H.L, 683, 699
ScalarTripleProduct•, 620
Scale, 160
Scale•, 621, 632
Scaled, 165
ScaleFactor•, 144
ScaleFunction•, 144
ScalingFactor, 752
ScalingTransform, 160, 686
Scan, 462
Scatter plot matrix, PairwiseScatterPlot•,

251
SchurDecomposition, 707
Schwalbe and Wagon H1997L, 830
ScientificForm, 399
Scoping constructs, 520

with Block, 522
with Function, 520
with Module, 521
with With, 522

Screen environments, 55
ScriptMinSize, 67
ScriptSizeMultipliers, 67
Search path

for contexts, $ContextPath, 532
for files, $Path, 107

Searching
elements, Select, etc., 457
positions, Position, 458
with patterns, 493

SearchPoints, 751
Sec, 11, 435
Secant, 735

1104 Mathematica Navigator



Secant method, 733, 739
secantSolve, 739
secantSolve2, 740
Sech, 435
Sections, automatic numbering of, 91
SeedRandom, 963
Select, 3, 401, 457, 493, 520, 609, 680, 774, 1047
SelfLoopStyle, 268
SemialgebraicComponentInstances, 727
Sensitivity

to initial conditions, 862, 937
to numerical inaccuracies, 861, 936

Separation of variables, 893, 906
Sequence, 180, 463
SequenceLimit•, 632
Sequences, 463
SequentialSumOfSquares•, 1031
Series, 40, 624, 825
Series expansions, Series, 40, 624
Series solutions

to differential equations, 630, 843
to partial differential equations, 893

SeriesCoefficient, 627, 928, 931
SessionTime, 112
Set H=L, 9, 414, 584
Set operations, 459
SetAttributes, 531, 624
SetCoordinates•, 620
SetDelayed H:=L, 512, 584
SetDirectory, 108
SetOptions, 180, 193
SetPrecision, 406, 544
SetSystemOptions•, 881
SetterBar, 332, 380
ShadowBackground•, 210
Shadowing of names, 96, 534
Shallow, 425
Shape statistics, 1005
Share, 114
Shaw and Tigg H1994L, 13, 822
ShearingTransform, 160, 686
Shooting, 866, 876
Shooting method, 875
Short, 34, 425
Shortest, 504
Shortest path problem, 781
ShortestPath•, 742
Show

in changing options, 180
in superimposing plots, 26, 121, 221
options for, 181

Show Cell Tags Hmenu commandL, 90
Show Expression Hmenu commandL, 60
Show Page Breaks Hmenu commandL, 54

Show Toolbar Hmenu commandL, 54
ShowCellLabel, 67
showConfidenceIntervals, 1022
showError, 824
showFit, 814
showIterations, 767
ShowLegend•, 210
showLocalResiduals, 1041
showPValues, 1026
showResiduals, 815
ShrinkingDelay, 353, 373
ShrinkRatio, 752
SI•, 402
Sieve of Eratosthenes, 555
Sign, 430, 438
SignificanceLevel•, 1024
Significant digits, 403-404
Simplex, 757
Simplify, 32, 419

options for, 423
Simplifying

expressions, Simplify, 32, 419
special functions, FullSimplify, 32, 419

SimulatedAnnealing, 749, 777
Simulating stochastic processes, 987
Simultaneous

difference equations, RSolve, 929
differential equations, DSolve, NDSolve, 836,

852, 860
linear equations, Solve, LinearSolve, 710
partial differential equations, NDSolve, 909
polynomial equations, Solve, NSolve, 718
transcendental equations, FindRoot, 734

Sin, 11, 435
Sinc, 435
Single|image stereograms, SIS•, 146
SinglePredictionCITable•, 1031, 1034, 1036
Singular values, 701
Singularities

with NDSolve, 869
with NIntegrate, 644, 655
with Series, 626

SingularityHandler, 656
SingularValueDecomposition, 701, 706
SingularValueList, 701-702
Sinh, 435
SinhIntegral, 440
SinIntegral, 440
SIS•, 146
Size

of Mathematica, 4-5
of expressions, ByteCount, 114
of fonts, FontSize, 193

Index 1105



of graphics, 120
of graphics, ImageSize, 105, 120, 189
of points, PointSize, 155

Skeel and Keiper H2001L, xii
Skewness, 967, 973, 1005
Skip, 104
Slide shows, 58
Slider, 319, 377
Slider2D, 324, 378
Sliders, 318, 375
SlideView, 362
Slot HÒL, 520
SlotSequence HÒÒL, 520
Small, 155, 165, 192
Smaller, 165, 192
Smith and Blachman H1995L, 116
Smoothing, 1041

with a kernel, ListCorrelate, 1041
with discrete Fourier transform, Fourier, 1045
with exponential smoothing,

ExponentialMovingAverage, 1044
with local regression, 1044
with moving averages, MovingAverage, 1044
with moving medians, MovingMedian, 1044

Social network, 273
Solve, 712

for linear equations, 43, 710
for polynomial equations, 43, 716, 718
for radical equations, 723
for transcendental equations, 730

SolveAlways, 719, 848, 956
SolveDelayed, 866, 917
Solving

difference equations, RSolve, 924
differential equations, DSolve, NDSolve, 830
integral equations, 847
linear equations, Solve, LinearSolve, 710
partial differential equations, DSolve,

NDSolve, 886
polynomial equations, Solve, NSolve,

Reduce, 716
poynomial inequalities, Reduce, 725
radical equations, Solve, NSolve, Reduce, 723
transcendental equations, Solve, FindRoot,

730, 732
sort, 613
Sort, 34, 434, 452, 681, 1022
SortBy, 452, 681
Sorting, 613

according to a given criterion, 452, 1022
with Sort, 34, 452, 681
with SortBy, 452, 681
with Union, 452

Sound, 310

Sound, Play, 121
Sow, 412, 564, 649
Spacings

above headers, PageHeaderMargins, 69
around boxes, FrameMargins, 67
around cells, CellMargins, 67
between a cell frame and the labels,

CellFrameLabelMargins, 68
between lines, LineSpacing, 66
between paragraphs, ParagraphSpacing, 66
between tabs, TabSpacings, 66
in grid boxes, Spacings, 471
inside cell frames, CellFrameMargins, 68

Spacings, 124, 471, 479
Span, ;;, 448, 679, 692
SpanFromAbove, 488
SpanFromBoth, 488
SpanFromLeft, 488
Sparse arrays, 689
Sparse linear systems, Solve, 711
SparseArray, 678, 687, 689, 705, 714
SpatialDiscretization, 918
Special characters, 74
Special functions, 439

expansion of, FunctionExpand, 424
simplification of, FullSimplify, 419

SpecialCharacters palette, 16
Spectrums, 675
Specularity, 178
Speeding up

calculations, 112, 569-570
functions, Compile, 528

Spelling
checking, 24, 53
errors, 53

Spelling Language Hmenu commandL, 53
SpellingOptions, 53, 69
Sphere, 177
Spherical•, 620
SphericalPlot3D, 143
SphericalRegion, 212, 217
Spiegel H1971L, 923, 928
Spiegel H1999L, 639, 671, 893, 964
Splice, 111
Spline•, 154, 163
SplineDivision•, 163
SplineDots•, 163
SplineFit•, 803
SplineFunction•, 804
SplinePoints•, 163
Splines

in graphics, Spline•, 163
in interpolation, SplineFit•, 803

Splines` package, 163, 803

1106 Mathematica Navigator



Split, 450, 567, 574, 681, 993
Sqrt, 11, 421, 435
Square brackets, 14
Square roots, Sqrt, 11, 421
SquaredEuclideanDistance, 684
StackedBarChart•, 256
Standard error of sample mean, 1005
StandardDeviation, 36, 967, 973, 1005
StandardForm, 70
StandardizedResiduals•, 1031, 1036
Start Kernel Hmenu commandL, 7
StartingParameters•, 1036
StartingStepSize, 866, 917
StartOfLine, 510
StartOfString, 510
stationaryDistribution, 995
Statistical distributions, 979
StatisticalPlots` package, 251-252, 259
Statistics

descriptive multivariate, 1008
descriptive univariate, 36, 1004
dispersion, multivariate, 1008
dispersion, univariate, 1005
location, univariate, 1004
shape, univariate, 1005

StausArea, 363
steadyStateAverages, 1001
stehfestILT, 672
StemLeafPlot•, 259
Step function, UnitStep, 438
StepDataPlot•, 868
StepMonitor, 411, 735, 749, 763, 822, 866, 868,

917-918
Stereograms

single|image, SIS•, 146
two|image, 145, 149, 863

Stiff differential equations, 866
Stirling numbers, 464
StirlingS1, 437
stirlingS2, 465
StirlingS2, 437
Stochastic processes, 987

birth-death process, 272, 888, 999
Brownian motion, brownianMotion, 991
coin tossing, coinTossing, 988
continuous|time Markov chain,

ctMarkovChain, 998
discrete|time Markov chain, dtMarkovChain,

992
gambler‘s ruin, gamblersRuin, 988
MêMê1 queue, 1000
Poisson process, poissonProcess, 997, 999
random walk, 1D, randomWalk, 987
random walk, 2D, 989

random walk, 3D, 990
Wiener process, 991

Stopping criteria, for numerical methods, 411
Stopping criteria, SameTest, 578
Stratified Monte Carlo method, 663
String expressions, 506
StringCases, 507
StringCount, 507
StringDrop, 434
StringExpression, 507
StringFreeQ, 507
StringInsert, 434
StringJoin H<>L, 434
StringLength, 434
StringMatchQ, 507
StringPosition, 507
StringQ, 431, 434
StringReplace, 509
StringReplaceList, 509
StringReplacePart, 434
StringReverse, 434
Strings

manipulating of, 433, 550
patterns in, 505
reading and writing, 103
replacing in, 509
searching in, 507

StringSplit, 509
StringTake, 434
StudentizedResiduals•, 1031
StudentNewmanKeuls•, 1029
StudentTCI•, 1020
StudentTDistribution, 979
StudentTPValue•, 1024
Style Hmenu commandL, 54
Style, 71, 164, 183, 193, 339
Style sheets, 55, 78

creating new, 64
editing, 63
nonstandard, 99

Styles
for cells, 54
for curves in graphics, PlotStyle, 203
for graphics, 200
for notebooks, 55
for outputs, 70
for outputs, Style, 71
for text in graphics, Style, 164

Stylesheet Hmenu commandL, 55, 63
Subfactorial, 437
Sublists

generation of, Partition, 450
removal of, Flatten, 450

Subscript, 447

Index 1107



subsequence, 549
Subsessions, 113
Subsets, 454
Substitution, ReplaceAll Hê.L, 416
Subtract H-L, 10
Sufficient conditions for optimum points, 760
Sum, 41, 544, 666, 672, 795
SummaryReport•, 1031, 1036
Sums

numerical, NSum, 667
of elements of lists, Apply, 462
of elements of lists, Total, 682, 697
of elements of matrices, Total, 697
of random variables, 602-603
symbolic, Sum, 41, 666

Superimposing graphics, Show, 121
Suppressing display

of expressions, ;, 33
of graphics, ;, 28, 121

Surface plots, 139
Surfaces of constant value, ContourPlot3D, 149
Switch, 556, 592, 684, 688, 702
SWOR, 555
SWOR2, 577
Symbolic, 735, 763
Symbolic methods

for derivatives, D, 40
for difference equations, RSolve, 924
for differential equations, DSolve, 48, 830
for equations, Solve, 43, 710, 716, 730
for global optimization, Minimize, 45
for integrals, Integrate, 41, 634
for limits, Limit, 40, 630
for partial differential equations, DSolve, 886
for sums, Sum, 41, 666
for Taylor series, Series, 40, 624

Symbolic preprocessing, 660
SymbolicPiecewiseSubdivision, 647, 660
Symbols, 74
SymplecticPartitionedRungeKutta, 866,

917
SynchronousInitialization, 353
SynchronousUpdating, 353
Syntax coloring, 22
Syntax errors, 7, 13
SyntaxInformation, 515
System` context, 531
SystemInformation, 22
Szabo H2000L, 677
Szabo H2001L, 677

t distribution, 979
TabFilling, 66

Table, 36-38, 101, 445, 546, 678, 687, 942
Table of contents, automatic creation of, 79
TableAlignments, 468
TableDepth, 468
TableDirections, 468
TableForm, 35, 288, 468
TableHeadings, 468
TableêMatrix Hmenu commandL, 76, 78, 686
Tables

creation of, Table, 445
formatting of, Column, 469
formatting of, Grid, 35, 470
formatting of, Row, 469
formatting of, TableForm, 35, 467-468

TableSpacing, 468
Tabs H\tL, 433
TabSpacings, 66
tabulateDistributions, 968
TabView, 332, 360, 380
TagSet Hê:L, 588
TagSetDelayed, 588
Take, 449, 679, 693-694
TakeWhile, 449, 679
Tally, 36, 561, 1013
Tan, 11, 435
Tangent lines, 616, 623
Tanh, 435
TargetFunctions, 430
Taylor polynomials, Normal, 625
Taylor series

coefficients of, SeriesCoefficient, 627
equations of, 629
expansion in, Series, 40, 624
inversion of, InverseSeries, 626
truncation of, Normal, 625

Templates, 22
TensorProductGrid, 918
TensorQ, 431
Tensors, 529, 692
Terms•, 621, 632
Testing

for convergence, SameTest, 578
for equality, ==, ===, 432, 964
for primality, PrimeQ, 396
hypotheses, 1024
in pattern matching, 497
in programming, If, Switch, Which, 556
properties of expressions, 431

TeX, 78, 107, 111
TeXForm, 111
Text

as a string, 433
in graphics, 192

1108 Mathematica Navigator



options for, 193
primitives in graphics, Text, 163
rotated, 164

Text, 71, 101, 154, 163, 167, 177, 183, 201
Text Alignment Hmenu commandL, 83
Text|based interface, 5
TextAlignment, 66
TextJustification, 66
Texts, examples of, ExampleData, 312
Thick, 157
Thickness, 154, 157, 178
Thin, 157
Thread, 417, 465, 712, 725, 738, 774, 872, 995
Throw, 580
Ticks

for axes, Ticks, 197
for frames, FrameTicks, 198

Ticks, 186, 213
in 2D graphics, 197
in 3D graphics, 220
in contour and density graphics, 227

TicksStyle, 186, 197, 213, 220
TIFF, 105
Time consumption, 112
Time series, 949, 1007
TimeConstrained, 112
TimeConstraint, 423
Times H*L, 10
TimeUsed, 112
Timing, 112
Tiny, 155, 165, 192
ToCharacterCode, 434
ToExpression, 415, 434
Together, 428
Toggler, 333, 383
TogglerBar, 334, 383
Tolerance, 701, 751, 1031, 1036
ToLowerCase, 434
Tooltip, 122, 208, 236, 287, 293, 295, 298, 363
ToRadicals, 636, 720
ToRules, 638
ToString, 434, 968
Total

derivatives, Dt, 622
differentials, Dt, 624

Total, 36, 682, 684, 697, 702
ToUpperCase, 434
Tr, 697
Trace, 523
Trace of matrix, Tr, 697
TraceDepth, 523
TrackedSymbols, 353, 373-374
TraditionalForm, 70, 686

Trajectories, 832
TrangularSurfacePlot•, 281
Transcendental equations, Solve, FindRoot, 730
Transcendental functions, 435
Transformation rules, Rule H->L, 416

applying, ReplaceAll Hê.L, 416
TransformationFunctions, 423
Transformations, 160
Transforms

discrete Fourier, Fourier, 675, 1045
Fourier, FourierTransform, 672
Laplace, LaplaceTransform, 670
logarithmic, 817, 933
of vectors, 686
Z|, ZTransform, 672

Transition probabilities, 994
transitions, 994
Translate, 160
TranslationTransform, 160, 686
Transport equation, 888
Transportation problem, 754, 758
Transpose, 42, 444, 452, 696-697
trapez, 544
Trapezoidal, 647
Trapezoidal rule, 544, 665
TrapezoidalRule, 648, 653
Traveling salesman problem, 777

solving with dynamic programming, 787
solving with heuristic methods,

FindShortestTour, 777
TreePlot, 274
TrekGenerator•, 882
TrekParameters•, 882
Triangular matrices, 688, 704
TriangularDistribution, 976
TriangularSurfacePlot•, 802-803
Tridiagonal, equations, 713
Trig, 423
TrigExpand, 429
TrigFactor, 429
Trigger, 321, 376
Trigonometric

expressions, 421, 429
functions, 11, 435

trigPlot, 436
TrigReduce, 429
TrigToExp, 429
TrimmedMean, 1004
Trott H2004aL, 116, 959
Trott H2004bL, 542, 611, 613
Trott H2006aL, 551-552, 559
Trott H2006bL, 441
True, 182
Truncated normal distribution, 983

Index 1109



Truncation
of numbers to integers, IntegerPart, 399
of series expansions, Normal, 625
of small numbers to zero, Chop, 399

Truncation errors, 409
Tukey•, 1029
Tuples, 454
TuringMachine, 960
Two|dimensional graphics

for functions, Plot, etc., 116
options for, 180
primitives, 152

Two|dimensional inputs and outputs, 70
Two|image stereograms, 145, 149, 863
TwoOpt, 777
TwoSided•, 1024
Type I and II errors in statistical tests, 1026
Types

of arguments, 496, 500
of arguments in compiling, 529
of expressions in compiling, 530
of numbers, 396

Typesetting Hmenu commandL, 76

Uncompress, 114
Underdetermined linear systems, 714
Underlined, 165, 192
Underscore, Blank H_L, 512
Undetermined coefficients, 719
Unequal H!=L, 431
Unevaluated arguments, HoldAll, 531
Uniform random numbers, 962
UniformDistribution, 976
Union, 452, 459, 681
UnitCubeRescaling, 647, 660
Units, 402
Units` package, 402
UnitStep, 438, 834, 851
UnitVector, 678
Univariate

continuous distributions, 976
descriptive statistics, 1004
discrete distributions, 966

UnsameQ H=!=L, 431
Unset H=.L, 9, 415
UpdateInterval, 373-374
UpSet H^=L, 588
UpSetDelayed H^:=L, 588
Upvalues, 588
Usage messages, 536
User|defined functions, 512

Values of variables
asking for, 415
assigning, =, 414

clearing, =., Clear, 415
Vandermonde matrices, 688
Variable|precision arithmetic, 404
Variables

asking values of, 9, 415
assigning values for, Set H=L, 9, 414
clearing values of, Unset H=.L, 9, 415
in compiled functions, 528
in functions, 512
in pure functions, 520
in rational expressions, Variables, 428
indexed, 447
local, Module, 39, 521
removing, Remove, 415
tracing, Trace, 523

Variables, 428-429
Variance, 36, 967, 973, 1005
VarianceCI•, 1023
VarianceInflation•, 1031
VarianceRatioCI•, 1023
VarianceRatioTest•, 1027
VarianceTest•, 1027
VariationalMethods` package, 789
Vector analysis, 619
Vector fields

for 3D functions, VectorFieldPlot•, 144
for 4D functions, VectorFieldPlot3D•, 148

VectorAnalysis` package, 620
VectorAngle, 685
VectorFieldPlot•, 144, 832, 839, 854, 857, 926,

930
VectorFieldPlot3D•, 148
VectorFieldPlots` package, 144, 148, 266, 832
vectorNorm, 684
VectorQ, 431, 681
Vectors, 42, 677

calculating with, 681
distances between, 684
manipulation of, 679
norms of, Norm, 684
orthogonalization of, Orthogonalize, 685
products of, 683
properties of, 681
tests for, VectorQ, 681
transforms of, 686

VerifyConvergence, 668
VerifySolutions, 720, 724
VertexCoordinateRules, 269
VertexLabeling, 267, 269
VertexRenderingFunction, 269
VerticalSlider, 319, 378
ViewAngle, 212, 217
ViewCenter, 212, 217
ViewMatrix, 212, 217

1110 Mathematica Navigator



ViewPoint, 212, 217
ViewRange, 212, 217
Views, 357
Annotation, 363
FlipView, 362
MenuView, 358
Mouseover, 363
OpenerView, 361
PopupView, 362
PopupWindow, 363
SlideView, 362
StausArea, 363
TabView, 360
Tooltip, 363

ViewVector, 212, 217
ViewVertical, 212, 217
Virtual Book, 18
visdata data, 249, 251
Volterra integral equation, 847
volume, 558

Wagner H1995L, 742
Wagner H1996L, 113
Wagon H2000L, 868, 959
Wave equation, 890-891, 896, 898, 901, 910, 913
webMathematica, 16
WebServices` context, 531
WeibullDistribution, 977
Weights•, 1031, 1036
Wellin, Gaylord, and Kamin H2005L, 542, 547, 555,

577, 612
Which, 556, 688, 1028
While, 553, 564, 958
White, 169
Whitespace, 509
WhitespaceCharacter, 509
Wickham|Jones H1994L, 116
Wiener process, 991
Winston H1994L, 781
WishartDistribution•, 984
With, 522, 544
WMF, 105
Wolfram H2002L, 960
Wolfram Research, 22
WordBoundary, 510
WordCharacter, 509
WordData, 303
Words, 101

WorkingPrecision, 113, 187, 207, 214, 226, 409,
621, 632, 645, 668, 735, 749, 763, 822, 828,
866, 917, 1036

Wrede and Spiegel H2002L, 637-638, 641
Write, 104
Writing

data to files, Export, 100
graphics to files, Export, 105
mathematical documents, 78
results to files, Put H>>L, 110
results to notebooks, Print, 562

WWW, 111
WynnDegree•, 632
WynnEpsilon, 668

x|height, 65
XML, 16
Xor, 433

yeast data, 820, 878, 956
Yellow, 169

Zeta, 440
ZipfDistribution, 970
ZTransform, 672, 932

$ symbols, 521
$Assumptions, 422
$BaseDirectory, 99
$Context, 532
$ContextPath, 532
$ExportFormats, 101, 105
$ImportFormats, 101, 105
$InstallationDirectory, 94
$IterationLimit, 613
$Line, 414
$MachineEpsilon, 408
$MachinePrecision, 405
$MaxExtraPrecision, 399
$MaxMachineNumber, 408
$MinMachineNumber, 408
$Path, 107, 109
$PrePrint, 687
$RecursionLimit, 605
$TimeUnit, 112
$UserBaseDirectory, 99
$Version, 22

Index 1111



About the CD-ROM

The CD-ROM ofMathematica Navigator contains

• the entire book, easily installable into the Help Browser;

• material that describes the new properties ofMathematica 7,

also easily installable into the Help Browser; and

• all the data sets discussed in the book and several other data sets.

The CD-ROM also contains instructions for installation and usage.
When you have installed the book into the Help Browser ofMathematica,

• the entire book is accessible from within Mathematica so that you can easily read

sections of the book, experiment with the examples, interact with manipulations

and animations, see the figures in color, and copy material from the book;

• the index entries contain hyperlinks to the correct positions in the book so that

you can easily find information about various topics; and

• references in the text to other parts of the book are also hyperlinks that directly

lead you to the appropriate points of the book.

The CD-ROM can be read using Windows, Macintosh, and Linux computers.

Here is a short installation instruction for the book:

• Drag the MathematicaNavigator3 and MathematicaNavigator3NewIn7 folders from

the CD-ROM into the Applications folder found in $UserBaseDirectory.


	Mathematica® Navigator: Mathematics, Statistics, and Graphics
	Copyright Page
	Contents
	Preface
	Chapter 1. Starting
	1.1 What Is Mathematica
	1.2 First Calculations
	1.3 Important Conventions
	1.4 Getting Help
	1.5 Editing

	Chapter 2. Sightseeing
	2.1 Graphics
	2.2 Expressions
	2.3 Mathematics

	Chapter 3. Notebooks
	3.1 Working with Notebooks
	3.2 Editing Notebooks
	3.3 Inputs and Outputs
	3.4 Writing Mathematical Documents

	Chapter 4. Files
	4.1 Loading Packages
	4.2 Exporting and Importing
	4.3 Saving for Other Purposes
	4.4 Managing Time and Memory

	Chapter 5. Graphics for Functions
	5.1 Basic Plots for 2D Functions
	5.2 Other Plots for 2D Functions
	5.3 Plots for 3D Functions
	5.4 Plots for 4D Functions

	Chapter 6. Graphics Primitives
	6.1 Introduction to Graphics Primitives
	6.2 Primitives and Directives

	Chapter 7. Graphics Options
	7.1 Introduction to Options
	7.2 Options for Form, Ranges, and Fonts
	7.3 Options for Axes, Frames, and Primitives
	7.4 Options for the Curve
	7.5 Options for Surface Plots
	7.6 Options for Contour and Density Plots

	Chapter 8. Graphics for Data
	8.1 Basic Plots
	8.2 Scatter Plots
	8.3 Bar Charts
	8.4 Other Plots
	8.5 Graph Plots
	8.6 Plots for 3D Data

	Chapter 9. Data
	9.1 Chemical and Physical Data
	9.2 Geographical and Financial Data
	9.3 Mathematical and Other Data

	Chapter 10. Manipulations
	10.1 Basic Manipulation
	10.2 Advanced Manipulation

	Chapter 11. Dynamics
	11.1 Views and Animations
	11.2 Advanced Dynamics

	Chapter 12. Numbers
	12.1 Introduction to Numbers
	12.2 Real Numbers
	12.3 Options of Numerical Routines

	Chapter 13. Expressions
	13.1 Basic Techniques
	13.2 Manipulating Expressions
	13.3 Manipulating Special Expressions
	13.4 Mathematical Functions

	Chapter 14. Lists
	14.1 Basic List Manipulation
	14.2 Advanced List Manipulation

	Chapter 15. Tables
	15.1 Basic Tabulating
	15.2 Advanced Tabulating

	Chapter 16. Patterns
	16.1 Patterns
	16.2 String Patterns

	Chapter 17. Functions
	17.1 User-Defined Functions
	17.2 More about Functions
	17.3 Contexts and Packages

	Chapter 18. Programs
	18.1 Simple Programming
	18.2 Procedural Programming
	18.3 Functional Programming
	18.4 Rule-Based Programming
	18.5 Recursive Programming

	Chapter 19. Differential Calculus
	19.1 Derivatives
	19.2 Taylor Series
	19.3 Limits

	Chapter 20. Integral Calculus
	20.1 Integration
	20.2 Numerical Quadrature
	20.3 Sums and Products
	20.4 Transforms

	Chapter 21. Matrices
	21.1 Vectors
	21.2 Matrices

	Chapter 22. Equations
	22.1 Linear Equations
	22.2 Polynomial and Radical Equations
	22.3 Transcendental Equations

	Chapter 23. Optimization
	23.1 Global Optimization
	23.2 Linear Optimization
	23.3 Local Optimization
	23.4 Classical Optimization
	23.5 Special Topics

	Chapter 24. Interpolation
	24.1 Usual Interpolation
	24.2 Piecewise Interpolation
	24.3 Splines
	24.4 Interpolation of Functions

	Chapter 25. Approximation
	25.1 Approximation of Data
	25.2 Approximation of Functions

	Chapter 26. Differential Equations
	26.1 Symbolic Solutions
	26.2 More about Symbolic Solutions
	26.3 Numerical Solutions
	26.4 More about Numerical Solutions

	Chapter 27. Partial Differential Equations
	27.1 Symbolic Solutions
	27.2 Series Solutions
	27.3 Numerical Solutions

	Chapter 28. Difference Equations
	28.1 Solving Difference Equations
	28.2 The Logistic Equation
	28.3 More about Discrete Systems

	Chapter 29. Probability
	29.1 Random Numbers and Sampling
	29.2 Discrete Probability Distributions
	29.3 Continuous Probability Distributions
	29.4 Stochastic Processes

	Chapter 30. Statistics
	30.1 Descriptive Statistics
	30.2 Frequencies
	30.3 Confidence Intervals
	30.4 Hypothesis Testing
	30.5 Regression
	30.6 Smoothing
	30.7 Bayesian Statistics

	References
	Index
	About the CD-ROM



