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1 Introduction

Historically, differential equations have originated in chemistry, physics, and engineer-
ing. More recently they have also arisen in models in medicine, biology, anthropology,
and the like. Here we mainly restrict our attention to ordinary differential equations; a
discussion of partial differential equations is a much more complicated issue. We focus on
initial value problems and present some of the more commonly used methods for solving
such problems.

It is often difficult to find the analytic or exact solution to many differential equations.
This may be because the equation is non-linear or has coefficients that vary with time.

Alternative strategies to approximate the solution of a differential equations would be:

• simplify the ordinary differential equation (ODE) and solve it analytically;

• use methods for directly approximating the solution.

As an application for the first strategy, we will present later the computational singular
perturbation (CSP) method. Other well-known methods would be quasi steady state
approximation and partial equilibrium approaches.

There are many methods for finding direct approximate solutions to differential equa-
tions. These methods are referred to by a variety of different names including: numerical
methods, numerical integration, or approximate solutions, among others.

The numerical methods for solving ordinary differential equations are methods of inte-
grating a system of first order differential equations, since higher order ordinary differential
equations can be reduced to a set of first order ODEs.

Errors enter into the numerical solution of initial value problems (IVPs) from two
sources. The first is discretization error and depends on the method being used. The
second is computational error which includes such things as roundoff error, the error in
evaluating implicit formulas, etc. In general, roundoff error can be controlled by carrying
enough significant figures in the computation. The control of other computational errors
again depends on the method being used.

There are two measures of discretization error commonly used in discussing the ac-
curacy of numerical methods for solving IVPs. The first is true or global error. Global
error is simply the difference between the true solution and the numerical approximation
to it. Even though this is the error in which we are usually interested, it is a relatively
difficult and expensive to estimate. The other measure of error is local error. It is the
error incurred in taking a single step using a numerical method.

Three major types of practical numerical methods for solving initial value problems
for ODEs are:

• Runge-Kutta methods,

• Richardson extrapolation and its particular implementation as the Bulirsch- Stoer
method,

• predictor-corrector methods.

A brief description of each of these types follows.
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1. Runge-Kutta methods propagate a solution over an interval by combining the in-
formation from several Euler-style steps (each involving one evaluation of the right-
hand f’s), and then using the information obtained to match a Taylor series expan-
sion up to some higher order.

2. Richardson extrapolation uses the powerful idea of extrapolating a computed result
to the value that would have been obtained if the step size had been very much
smaller than it actually was. In particular, extrapolation to zero step size is the
desired goal. The first practical ODE integrator that implemented this idea was
developed by Bulirsch and Stoer, and so extrapolation methods are often called
Bulirsch-Stoer methods.

We have to mention here that these techniques are not for differential equations
containing nonsmooth functions, and they are not particularly good for differential
equations that have singular points inside the interval of integration.

3. Predictor-corrector methods store the solution along the way, and use those results
to extrapolate the solution one step advanced; they then correct the extrapolation
using derivative information at the new point. These are best for very smooth
functions.

In what follows, we mainly will deal with the first type of numerical method, i.e. with
the Runge–Kutta methods.

The framework of the report is the following: section 2 is about the computational
singular perturbation method illustrated by an example. Then forward and backward
Euler methods are presented. A more accurate and more elaborate technique, the Runge-
Kutta methods are mentioned in section 4. The next section is meant for the Adomian’s
decomposition method. After that stiff systems are discussed and numerical methods are
given for handling the stiffness. Section 7 deal with positive and conservative numerical
integration methods for ODEs which describe chemical kinetics. Then the last section
contain a few Maple codes and examples to solve stiff IVPs.

2 The computational singular perturbation method

When an investigator is confronted with an unfamiliar problem in chemical kinetics,
the traditional first step is to identify the relevant chemical species and the important
elementary reactions which occur among them. After establishing a complete model of the
reaction system, it is usually desirable to obtain a simplified model by taking advantage
of available approximations. For sufficiently simple problems, conventional analytical
methods can be used.

Recently, databases containing extensive, reliable and up-to-date data for certain re-
action systems are available. Computations using complete models from such databases
can now be routinely carried out. In this new computational era, it is no longer necessary
to pick out only the relevant chemical species and the important elementary reactions be-
cause inclusion of benign superfluous terms in the formulation is not a problem. An option
increasingly available to modern theoreticians is to first generate a complete model nu-
merical solution, examine the resulting data to discern significant and interesting causes
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and effects - making additional diagnostic runs if necessary – and then try to propose
simplifications and approximations.

The goal of developing a general theory of singular perturbation which can handle any
system of nonlinear first order ODEs in a programmable manner seems very ambitious in
chemistry. The conventional method, using the partial equilibrium and quasi steady state
approximations, is only viable for relatively simple problems for which adequate amount
of experience and intuition have been accumulated, and that the algebra involved is man-
ageable. For massively complex problems a better method was found, the computational
singular perturbation method (CSP). It exploits the power of the computer to do simpli-
fied kinetics modeling. A CSP computation not only generates the numerical solution of
the given problem, but also the simplified equations in terms of the given information.This
theory was developed by S. H. Lam and published in 1985 in [Lam85] and it can be used to
deal with massively complex problems, but only for boundary–layer type problems where
all fast modes eventually decay exponentially. Fortunately, most problems in chemical
kinetics are of this type. The basic strategy of CSP is to uncouple the fast, exhausted
modes from the slower, currently active modes though an intelligent choice of basis vec-
tors. In this way we get a simplified model which can generate approximate solutions to
the full chemistry model.

2.1 The theory of CSP

Consider a reaction system of N unknowns1 denoted by the column state vector y =
[y1, y2, . . . , yN ]>. The governing system of ODE is:

dy

dt
= g(y)

where

g(y) =
R∑

r=1

srF
r(y),

R is the number of elementary reactions being included in the reaction system, sr and
F r(y) are the stoichiometric vector and the reaction rate of the r-th elementary reactions,
respectively. The N -dimensional column vector g is the overall reaction rate vector,
and can be interpreted as the velocity vector of y in the N -dimensional y-space. For a
massively complex problem, N and R can be large numbers, and the accuracy or reliability
of the available rate constants is usually less than ideal.

The physical problem is completely specified by g(y), a non-linear function of y ob-
tained by summing all the physical processes which contribute to the time rate of change
of y. Since g is a N -dimensional vector, it can always be expressed in terms of a set
of arbitrarily chosen N linearly independent column basis vectors, ai(t), i = 1, 2, . . . , N.
Then the set of inverse row basis vectors, bi(t), i = 1, 2, . . . , N, can be computed from the
orthonormal relations:

bi ¯ aj = δi
j, i, j = 1, 2, . . . , N. (2.1)

1The N -dimensional column vector may include temperature, total density, etc. in addition to chemical
species
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Here the operator ¯ denotes the dot product of the N -dimensional vector space.
In this case a column vector g has an alternative representation:

g =
N∑

i=1

aif
i, (2.2)

where

f i := bi ¯ g =
R∑

r=1

Bi
rF

r, i = 1, 2, . . . , N, (2.3)

and
Bi

r = bi ¯ sr, i = 1, 2, . . . , N. (2.4)

Each of the additive terms in (2.2) represents a reaction mode, or simply mode. The
amplitude and direction of the ith mode are f i and ai, respectively. Eventually, CSP
provides an algorithm to compute an approximation to the ”ideal” set of basis vectors for
the derivation of the simplified models.

The physical representation of g uses the physically meaningful (and time–independent)
stoichiometric vectors as the default column basis vectors.

Now, differentiating (2.3) with respect to time along a solution trajectory y(t), we
obtain:

df i

dt
=

N∑
j=1

Λi
jf

j, i = 1, 2, . . . , N, (2.5)

where

Λi
j :=

[
dbi

dt
+ bi ¯ J

]
¯ aj, i, j = 1, 2, . . . , N,

and J denotes the Jacobian matrix of g.
A set of basis vectors ai(t) is said to be ideal if

• the inverse row vectors bi(t) can be accurately computed for all time interval of
interest,

• Λi
j(t) is diagonal,

• the diagonal elements of Λi
j(t) are ordered in descending magnitudes.

For linear problems where J is a constant matrix, the ideal basis vectors would be the
(constant) ordered eigenvectors of J. For nonlinear problems, the eigenvectors of J are
time–dependent, and they do not diagonalize Λi

j.
The reciprocal of an eigenvalue, called the time scale, has the dimension of time, and

shall be denoted by τ(i). Ordering them in increasing magnitudes, we have:

|τ(1)| < . . . < |τ(i)| < . . . < |τ(N)|,

which provides an approximate speed ranking of the ”eigen–modes”.
Events whose time scales are shorter than ∆t are not of interest. Hence, the group of

M modes which satisfy: |τ(m)| < ∆t, m = 1, 2, . . . , M, are considered fast modes, and
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all others are considered the slow modes. The fastest group of active slow modes are the
rate–controlling modes. Slow modes with negligible amplitudes are called dormant modes.

The method of CSP does not attempt to find the ideal set of basis vectors even when
g is linear. Instead, it assumes that, at any moment in time, a trial set of ordered basis
vectors is somehow available, that the first M fastest modes are exhausted as measured
by some criterion, and generates from this trial set a new refined set of basis vectors,
a0

i and bi
0, i = 1, 2, . . . , N using a two-step refinement procedure (see [Lam93]). When

recursively applied, the refinement procedure successively weakens the coupling between
the fast modes and the slow modes.

Using the refined basis vectors, the governing system of ODEs become simpler.
For a more detailed description of the method and some other related works of S. H.

Lam see [Lam93, Lam95].

2.2 A simple example

Take a simple hypothetical reaction system (see [Lam94]) with state vector y =
[A,B, C]>, where A and B are chemical concentrations and C is temperature. The ele-
mentary reactions are:

A + A ­ B + ∆H1,

A ­ B + ∆H2, (2.6)

B + B ­ A + ∆H3,

where ∆H1, ∆H2 and ∆H3 are the heats of reaction of the respectively reactions. The
(generalized) stoichiometric vectors and the reaction rates are:

s1 = [−2, 1, ∆H1]
>, F 1 = k1(A

2 −K1B),

s2 = [−1, 1, ∆H2]
>, F 2 = k2(A−K2B),

s3 = [1,−2, ∆H3]
>, F 3 = k3(B

2 −K3A),

where the reaction rate coefficients k1, k2, k3 and the equilibrium constants K1, K2, K3

are known and their dependence on C is negligible. If we separately identify the forward
and reverse reaction rates, i.e. take F r = F r

+ − F r
− (r = 1, 2, . . . R), the induced kinetic

differential equation system reads:

dA

dt
= −2F 1 − F 2 + F 3,

dB

dt
= F 1 + F 2 − 2F 3, (2.7)

dC

dt
= ∆H1F

1 + ∆H2F
2 + ∆H3F

3,

To make things concrete the rate coefficients are given numerical values:

k1 ≈ 104cc/mole· second, K1 ≈ 1.1× 10−2mole/cc,

k2 ≈ 10−1cc/mole· second, K2 ≈ 1.1× 102mole/cc,

k3 ≈ 104cc/mole· second, K3 ≈ 0.8× 10−8mole/cc,
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and

∆H1 ≈ +1.1× 104cc·K/mole,

∆H2 ≈ +1.0× 105cc·K/mole,

∆H3 ≈ −2.9× 105cc·K/mole.

The initial conditions are also given numerical values:

A(0) ≈ 1.5× 10−4mole/cc, B(0) ≈ 0.1× 10−6mole/cc, C(0) ≈ 300K (2.8)

To obtain the reduced chemistry system, we need to remove reactions which partici-
pation is negligible and remove reactants which are not important to the issues at hand.

Experience and intuition (which is an important requirement of partial equilibrium
or quasi steady state approximations) can play no role here because the problem is hy-
pothetical, and indeed may not even make chemical sense. Note that concerning our
problem, detailed balance would require K3 = K1/(K2)

3, thermodynamics would require
∆H3 = ∆H1−3∆H2, and the law of mass action would require sr and F r to be consistent.

On how to apply conventional methodologies to this example one can consider the
paper of S. H. Lam, [Lam94].

Here we only will show the CSP method on this example. For our example, the default
set is:

a1 = s1 = [−2, 1, ∆H1]
>,

a2 = s2 = [−1, 1, ∆H2]
>,

a3 = s3 = [1,−2, ∆H3]
>,

Using this set, the inverse row vectors can easily be computed:

b1 = [2∆H2 + ∆H3, ∆H2 + ∆H3, 1]/H,

b2 = [−2∆H1 −∆H3,−∆H1 − 2∆H2,−3]/H,

b3 = [−∆H1 + ∆H2,−∆H1 + 2∆H2,−1]/H,

where H := ∆H1 − 3∆H2 −∆H3.
Using the given input numerical data, we have: H = 103cc−◦K/mole.
It can be verified that at t = 0, the amplitudes of the modes are:

f 1 = b1 ¯ g = F 1 = 2.14× 10−4mole/cc-second,

f 2 = b2 ¯ g = F 2 = 1.39× 10−5mole/cc-second,

f 3 = b3 ¯ g = F 3 = −1.19× 10−8mole/cc-second,

In terms of these basis vectors, the original reaction system becomes:

dy

dt
= a1f

1 + a2f
2 + a3f

3. (2.9)

We can rewrite (2.9) in long-hand notation as follows:

dA

dt
= −2f 1 + f 2 + ∆H1f

3,

dB

dt
= −f 1 + f 2 + ∆H2f

3, (2.10)

dC

dt
= f 1 − 2f 2 + ∆H3f

3.
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The CSP idea is very simple: instead of using the physically meaningful stoichiometric
vectors as the default basis vectors, lets exploit the theoreticians prerogative of trying
different alternatives-may be something else works better.

Now, we assume that at the beginning we have no idea which reaction is fast. The
eigenvalues λ(i) and eigenvectors of J at t = 0 can be computed numerically. We have:

λ(1) = −1.27× 102/second,

λ(2) = −0.173/second,

λ(3) = 0.00/second,

indicating that there is a fast mode with time scale of the order of 10−2 seconds, followed
by a slower mode with time scale of the order of about 101 seconds.

Taking the right (column) eigenvectors αi and left (row) eigenvectors βi, ranked in
order of decreasing speed, these may be used as our time–independent trial basis vectors
for t ≥ 0 but they diagonalize Λi

j only at t = 0. Since our time resolution of interest is in
seconds, only the first mode can be considered fast. Hence, M = 1.

The first eigenmode (which has the largest eigenvalue magnitude) is obviously the
fastest. In what follows, we shall choose

a1 = [−2.00, 1.00, 1.10× 104]>

and
b1 = [−9.00× 101,−1.90× 102, 1.00× 10−3]

instead of trial fast basis vectors for t ≥ 0.
Since we are not interested in the rapid transient period which lasts tens of millisec-

onds, the main issue now is to find the adjusted initial conditions for the simplified model
which governs the slow evolutionary period.

In the rapid transient period, y adjusts rapidly in such a way that the amplitude of
the fastest mode approaches zero. Here, the amplitude of the fastest mode at t = 0 is
f 1 = F 1 = 2.14 × 10−4. Making the radical correction using the trial fast basis vectors,
we obtain the following adjusted initial condition at t = 0+ (see [Lam94]):

y(0+) = y(0) + ∆yrc = [1.46× 10−4, 1.95× 10−6, 300.02]>,

which yields a much smaller amplitude, f 1 = F 1 = −1.36× 10−7.
From the mathematical point of view, reduced chemistry modeling can be routinely

accomplished once an appropriate set of basis vectors which approximately decouples the
fast and slow modes is available. In conventional methods, such fast basis vectors are
identified by guessing – based primarily on experience and intuition of the investigator.
The CSP method simply provides an iterative algorithm to find such decoupling basis
vectors using an iterative (refinement) procedure.

3 Euler method

In the 18th century Leonhard Euler invented a simple scheme for numerically approx-
imating the solution to an ODE. It results from ignoring second and higher order terms
in Taylor series to approximate the solution.
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Thus, to solve an IVP

y′(x) = f(x, y), y(x0) = y0, (3.1)

we have to pick the marching step h and compute

k1 = hf(xn, yn),

yn+1 = yn + k1 +O(h2).

It is an explicit method, i.e., yn+1 is given explicitly in terms of known quantities.
The formula is unsymmetrical: it advances the solution through an interval h, but

uses derivative information only at the beginning of that interval. That means that the
steps error is only one power of h smaller than the correction, i.e O(h2).

Implicit methods can be used to replace explicit ones in cases where the stability
requirements of the latter impose stringent conditions on the time step size. However,
implicit methods are more expensive to be implemented for non-linear problems since yn+1

is given only in terms of an implicit equation, which have to be solved to find yn+1. One
often uses functional iteration or (some modification of) the Newton-Raphson method to
achieve this. The implicit analogue of the explicit FE method is the backward Euler (BE)
method, which reads as follows:

k1 = hf(xn+1, yn+1),

yn+1 = yn + k1 +O(h2).

There are several reasons that Euler’s method is not recommended for practical use.
Among them, the method is not very accurate when compared to other methods run at
the equivalent step size, and neither is it very stable. Clearly, there is a trade-off between
accuracy and complexity of calculation which depends heavily on the chosen value for h.
In general as h is decreased the calculation takes longer but is more accurate. However,
if h is decreased too much the slight rounding that occurs in the computer (because it
cannot represent real numbers exactly) begins to accumulate enough to cause significant
errors. For many higher order systems, it is very difficult to make the Euler approximation
effective.

One possibility is to use not only the previously computed value yn to determine yn+1,
but to make the solution depend on more past values. This yields a so-called multistep
method. Almost all practical multistep methods fall within the family of linear multistep
methods, which have the form

αkyn+k + αk−1yn+k−1 + · · ·+ α0yn =

= h[βkf(xn+k, yn+k) + βk−1f(xn+k−1, yn+k−1) + · · ·+ β0f(xn, yn)].

Another possibility is to use more points in the interval [tn, tn+1]. This leads to the
family of Runge-Kutta methods, named after Carle Runge and Martin Kutta.
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4 Runge-Kutta methods

4.1 Runge-Kutta method of order 2

In this case, to solve (3.1) we have to pick the marching step h and compute

k1 = hf(xn, yn),

k2 = hf

(
xn +

h

2
, yn +

k1

2

)
,

yn+1 = yn + k2 +O(h3).

As indicated in the error term, O(h3), this symmetrization cancels out the first-order
error term, making the method second order2. Thus, the second-order Runga–Kutta
method, also known as the midpoint method, improves the Euler method by adding a
midpoint in the step which increases the accuracy by one order.

There are many ways to evaluate the right-hand side f(x, y) that all agree to first
order, but that have different coefficients of higher-order error terms. Adding up the right
combination of these, we can eliminate the error terms order by order. That is the basic
idea of the Runge–Kutta method.

4.2 Runge-Kutta method of order 4

The fourth-order Runge-Kutta method is by far the ODE solving method most often
used. In this case, to solve (3.1) we have to pick the marching step h and compute

k1 = hf(xn, yn),

k2 = hf

(
xn +

h

2
, yn +

k1

2

)
,

k3 = hf

(
xn +

h

2
, yn +

k2

2

)

k4 = hf(xn + h, yn + k3).

Then yn+1 = yn +
k1

6
+

k2

3
+

k3

3
+

k4

6
+O(h5).

4.3 Controlling the step size

A good ODE integrator should exert some adaptive control over its own progress, mak-
ing frequent changes in its step size. Usually the purpose of this adaptive step size control
is to achieve some predetermined accuracy in the solution with minimum computational
effort.

The main principle is that to take each integration step twice, once as a full step, then,
independently, as two half steps. In this case the difference between the two numerical

2A method is conventionally called nth order if its error term is O(hn+1).
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estimes (∆ := y1− y2) will be a convenient indicator of the truncation error. To keep the
desired degree of accuracy (∆0), the step size is adjusted according to: new time step =

old time step ×
(

∆0

∆

0.2)
.

More about Runge–Kutta methods with adaptive step size choice, see [Pre88].

5 The Adomian’s decomposition method

As we mentioned earlier, most realistic system of ordinary differential equations do
not have analytic solutions so that a numerical technique must be used. But in the case
of using the Adomian’s decomposition method (ADM) [Ado94] is that it can provide
analytical approximation to the problems. It is a relatively new field of study, but has
already found applications in many branches of physics and engineering.

ADM has been acclaimed as a significant powerful method for systems of nonlinear
equations. It is useful for obtaining both analytic and numerical approximations of linear
or nonlinear differential equations and it is also quite straightforward to write computer
codes.

An implementation of the ADM in chemical applications can be found in [Kay04]. In
the mentioned work D. Kaya have illustrated the advantages and simplicity of using the
decomposition method over traditional methods, namely the simple Taylor series method
and fourth-order RungeKutta method in terms of numerical comparisons.

5.1 The theory of ADM

We will present the method to obtain approximate solution of the (kinetic) system

dyi

dt
= fi(t, y1(t), y2(t), . . . , yp(t)), yi(0) = αi, i = 1, 2, . . . , p (5.1)

where f1, f2, . . . , fp are real continuous functions defined on same domain D; αi is a
specified constant vector, and yi(t) is the solution vector.

In the decomposition method, equation (5.1) is approximated by the operators in the
following form:

Lyi(t) = fi(t, y1(t), y2(t), . . . , yp(t)), i = 1, 2, . . . , p (5.2)

where L symbolizes d
dt

.

Assuming the inverse of the operator L−1 =
∫ t

0
(·)dt exists, then applying this inverse

to (5.2) yields
L−1Lyi(t) = L−1fi(t, y1(t), y2(t), . . . , yp(t)), (5.3)

where i = 1, 2, . . . , p. Therefore, it follows that

yi(t) = yi(0) + L−1fi(t, y1(t), y2(t), . . . , yp(t)),

i = 1, 2, . . . , p. The decomposition method consists of representing yi(t) in the decompo-
sition series form given by

yi(t) =
∞∑

n=0

fi,n(t, y1(t), y2(t), . . . , yp(t)),
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where the components yi,n(t), n ≥ 1 and i = 1, 2, . . . , p can be computed readily in a
recursive manner. We may define the components yi,n(t), n ≥ 1 and i = 1, 2, . . . , p of the
decomposition series by the following recursive relationship:

yi(0) = αi, i = 1, 2, . . . , p, (5.4)

yi,n+1(t) = L−1fi,n(t, y1(t), y2(t), . . . , yp(t)), n ≥ 0. (5.5)

Since yi,0 is known

yi,1(t) = L−1fi,0(t, y1(t), y2(t), . . . , yp(t)),

yi,2(t) = L−1fi,1(t, y1(t), y2(t), . . . , yp(t)),

...

Then, the series solution is given by

yi(t) = yi,0(t) +
∞∑

n=1

{L−1fi,n(t, y1(t), y2(t), . . . , yp(t))},

i = 1, 2, . . . , p. The solution yi(t) must satisfy the requirements imposed by the initial
conditions.

Using the decomposition method it provides a reliable technique that requires less
work if compared with the traditional techniques. Moreover, this method does not need
discretization of the problem to obtain numerical results. We can evaluate the approxi-
mative solution φi,m, by using the m-term approximation

φi,1 = yi,0(t),

φi,2 = yi,0(t) + yi,1(t),

φi,3 = yi,0(t) + yi,1(t) + yi,2(t),
...

φi,m = yi,0(t) + yi,1(t) + yi,2(t) + · · ·+ yi,m−1(t).

5.2 Applications

In order to illustrate the decomposition technique discussed above, let see an example
which arose in a chemistry problem:

dy1

dt
= −k1y1 + k2y2y3,

dy2

dt
= k3y1 − k4y2y3 − k5y

2
2,

dy3

dt
= k6y

2
2,

where the values of the reaction rate constants are considered as follows, k1 = 0.04,
k2 = 0.01, k3 = 400, k4 = 100, k5 = 3000, k6 = 30. Moreover, take the initial conditions
y1(0) = 1, y2(0) = 0, and y3(0) = 0.
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In addition to equations (5.4) and (5.5) we define the nonlinear operator Ny = y2
2 =

∞∑
n=0

An(t), where An is the convenient Adomian polynomial, given as

An(x0, . . . , xn; y0, . . . , yn) =
1

n!

dn

dλn

[
F

(
n∑

k=0

λkxk,

n∑

k=0

λkyk

)]

λ=0

, n ≥ 0.

This formulae is easy to set computer code to get as many polynomial as we need in
the calculation of the numerical as well as explicit solutions. For example a Maple code
to compute these polynomials can be found in [Bia06]. For Ny = y2

2, we get A0 = y2
20,

A1 = 2y20y21, A2 = y2
21 + 2y20y22, . . . .

The first terms of decomposition series solutions, by using the zeroth components (5.4)
and the recursive relationship (5.5) will be

y1 = 1.0− k1t +
k2

1

2
t2 − k3

1

6
t3 + · · · ,

y2 = k3t− k1k3

2
t2 +

(
k3

1k3 − k3
3k5

6

)
t3 + · · · ,

y3 =
k2

3k6

3
t3 + · · ·

Another application for the decomposition method and comparison of it with Taylor
series methods, power series methods and Runge–Kutta methods (using MATLAB) can
be found in [Edw97], where a predator prey model is discussed.

The predator-prey equations have the following familiar form:

dN(t)

dt
= N(t)

[
r

(
1− N(t)

K

)
− kP (t)

N(t) + D

]
,

dP (t)

dt
= P (t)

[
s

(
1− hP (t)

N(t)

)]
,

(5.6)

where r,K, k, D, s, h are positive constants; subject to the initial conditions

N(t0) = N0, P (t0) = P0. (5.7)

The direct application of ADM to the more complex model equations (5.6) subject
to the parameter choice as in [Edw97], provides an approximate solution of reasonable
performance. The authors observe that ADM solutions only converge locally to the true
solution of (5.6) and are less accurate at similar floating point operational cost than a 4th
order Runge–Kutta routine.

The Adomian’s decomposition method can also be applied to a large class of system
of partial differential equations with approximates that converges rapidly to accurate
solutions. The implementation of the method has shown reliable results in that few
terms are needed to obtain either exact solution or to find an approximate solution of
a reasonable degree of accuracy in real physical models. Moreover, no linearization or
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perturbation is required in the method. T. Alabdullatif et al. in [Ala07] have used this
method to obtain an analytic approximate solution for nonlinear reaction–diffusion system
of Lotka-Volterra type:

ut = (uux)x + u(a1 + b1u) + h1 + c1v,

vt = (vvx)x + v(a2 + b2v) + h2 + c2u,
(5.8)

a1, a2, b1, b2, c1, c2, h1, h2 are arbitrary constant such that b1b2 6= 0 and c1c2 6= 0, i.e. system
(5.8) contains quadratic nonlinearity in reaction terms and the two equations are coupled.

In the case of PDEs we define the linear operator (and its inverse operator) in the
following way:

Lt =
∂

∂t
and L−1

t =

∫ t

0

(·)dt. (5.9)

Using (5.9), system (5.8) can be written as

Ltu = (uux)x + u(a1 + b1u) + h1 + c1v,

Ltv = (vvx)x + v(a2 + b2v) + h2 + c2u.
(5.10)

Applying the inverse operator to both sides of the above system, we get

u(x, t) = f(x) + L−1
t [a1u + c1v + h1 + F (u)],

v(x, t) = g(x) + L−1
t [a2v + c2u + h2 + G(v)],

(5.11)

where
F (u) = (uux)x + b1u

2, G(v) = (vvx)x + b2v
2 (5.12)

are the nonlinear terms in (5.10), u(x, 0) = f(x) a nd v(x, 0) = g(x).
According to the method we assume that a series solution of the unknown functions

u(x, t) and v(x, t) are given by

u(x, t) =
∞∑

n=0

un(x, t), v(x, t) =
∞∑

n=0

vn(x, t). (5.13)

The nonlinear terms F (u) and G(v) can be decomposed into the infinite series of
polynomials given as

F (x, t) =
∞∑

n=0

An, G(x, t) =
∞∑

n=0

Bn, (5.14)

where An’s and Bn’s are the Adomian polynomials of un’s and vn’s respectively. These
polynomials for nonlinear terms can be calculated via the formula

An(u0, u1, . . . , un) =
1

n!

[
dn

dλn
F

(
n∑

k=0

λkuk

)]

λ=0

, n ≥ 0, (5.15)

Bn(v0, v1, . . . , vn) =
1

n!

[
dn

dλn
G

(
n∑

k=0

λkvk

)]

λ=0

, n ≥ 0. (5.16)
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For example,

A0 = bu2
0 + u0u0xx + (u2)x,

A1 = 2bu0u1 + u1u0xx + u0u1xx + 2u0xu1x,

A2 =
1

2

[
b(2u2

1 + 4u0u2) + 2u2u0xx + u1u1xx + 2u0u2xx + 2(u1x)
2 + 4u0xu2x

]

...

The components un and vn for n ≥ 0 are given by the following recursive relationships:

u0 = u(x, 0) = f(x),

v0 = v(x, 0) = g(x),

u1 = L−1
t [a1u0 + c1v0 + h1 + A0],

v1 = L−1
t [a2v0 + c2u0 + h2 + B0],

...

un+1 = L−1
t [a1un + c1vn + h1 + An],

vn+1 = L−1
t [a2vn + c2un + h2 + Bn].

Using the above recursive relationships, we construct the solutions u(x, t) and v(x, t)
as

u(x, t) = lim
n→∞

ψn(x, t), v(x, t) = lim
n→∞

ϕn(x, t),

where

ψn(x, t) =
n−1∑
i=0

ui(x, t), ϕn(x, t) =
n−1∑
i=0

vi(x, t), n ≥ 1.

This scheme was used in [Ala07] to obtain analytic approximate solution of the nonlin-
ear reaction diffusion system of Lotka-Volterra type. The results obtained by the authors
indicate that the method is efficient and accurate.

Beside these we would like to mention here the work of P. Diţă and N. Grama, who
have shown in [Dit06] that with a few modification the Adomian’s method for solving
second order differential equations can be used to obtain the known results of the special
functions. Their results can also be seen as a good illustration for the effectiveness of the
Picard method of successive approximation.

6 Stiff systems

6.1 Introduction

A stiff problem is a particular case of an initial value problem:

{
y′(x) = f(x, y(x)), a ≤ x ≤ b;
y(a) = ya

In this case there are N equations and y : [a, b] → RN , f : [a, b]× RN → RN .
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The step by step numerical algorithm builds an approximate solution by an interactive
procedure starting from x = a. Denote y(xn) the exact solution at the point xn of the
associated interval division

a = x0 < · · · < xn < · · · < xM = b,

and yn, the approximate value computed with the numerical method.
For the unicity of the exact solution we put the following condition:

• the system function f is continuous on

D = {(x, y)|x ∈ [a, b], ||y(x)− y|| ≤ d},
where d ∈ R+;

• f satisfies the Lipschitz’s inequality

||f(x, u)− f(x, v)|| ≤ L||u− v||, a ≤ x ≤ b, ∀(x, u), (x, v) ∈ D.

For almost all differential equation systems, the value L(b−a) is of hundreds order. For
such systems the classical step by step methods, like Runge-Kutta’s processes or Adam’s
formulae are satisfactorily (in the sense of a small error).

Unfortunately, there are some exceptions, for instance, the case when the function
variation is very strong. When the value L(b− a) exceeds the thousands order, a variety
of restrictions are imposed to the classical methods, especially on the step size, so there
are useless. Such a system is classified to be of stiff kind one.

The essence of the stiff phenomenon consists in the fact that the exact solution includes
some components with a very fast decreasement that can be very hard to be followed by
the numerical solution given by step by step iterative process.

We can give some pragmatic definitions, too:

• The stiff equations are the equations for which some implicit methods work better
than the explicit ones.

• A problem is stiff in a given integration interval if, for a given numerical code, the
step size must be very strongly reduced.

• The stiff differential equations are wrong conditioned in the computational sense.

• An ordinary differential equation system is stiff in a given integration interval [0, T ]
if, in the exact solution, there is at least one component with a very large variation
relative to the value 1/T.

• An ODEs is defined stiff if the real parts of the Jacobian matrix eigenvalues are
negative and vary over many orders of magnitude.

Definition 6.1. An ordinary differential equation system with y′ = f(x, y), numerical
integrated on the interval [a, b], starting from the initial value y(a) = ya, is stiff if the
function f has a Lipschitz’s constant very large relative to the interval length, and the
error tolerance.

16



The principal characteristics of the stiff problems are:

• the exact solutions are stable in the sense that small perturbations in the initial
values are followed only by small perturbations in the exact solutions;

• trying to solve the problem with the standard methods we get some strict restrictions
on the step size from the stability conditions.

6.2 Stiff systems in chemistry

It is well-known that for a numerical chemistry model the computational time needed
is a function of both the number of species and the number of reactions. A particular
problem arising in the solution of these ODEs is that of stiffness, which is related to the
existence of widely differing timescales in the solution.

As it was stated earlier, a stiff system can be described mathematically as one in which
all the eigenvalues of the Jacobian matrix of the system are negative, and the ratio of
the absolute values of the largest to smallest real parts of the eigenvalues is much greater
than one. For example, for atmospheric chemistry problems, the ratio is often greater
than 1000, making the system very stiff.

The stiffness problem coupled with the fact that these equations must be solved for
tens of thousands of cells in a typical modeling application require that special numerical
methods be employed. The use of standard explicit methods is often precluded because
relatively small time steps are required to maintain numerical stability and obtain accurate
solutions. On the other hand, classical implicit methods that are both accurate and stable
have not often been used because of high computational demands.

In their paper, see [Ver95], J. G. Verwer and D. Simpson discussed and compared
three explicit methods for a selected chemical kinetics system, which lies in the study of
air pollution: the first and the second method are of the explicit QSSA type and the third
is based on the two-step backward differentiation formula, combined with Gauss-Seidel
iteration to approximately solve the implicitly defined solution.

In [Cli96] L. J. Clifford et al. have investigated computationally faster methods of
solving finite-rate chemistry than the chemical kinetics methods. One approach to this is
to try to reduce a chemical kinetics data set to the lowest possible number of reactions and
species using a detailed reduction strategy. The authors have shown that some stiff ODE
solving methods are fastest in certain conditions and other methods are faster in other
conditions. They also have derived an induction parameter model for reactions involving
the oxidation of ethylene in an argon atmosphere.

The system of convection-diffusion equations with stiff source terms are also discussed
by R. P. Fedkiw et al. in [Fed97] who developed the framework needed to apply modern
high accuracy numerical methods from computational gas dynamics to this extended
system. They among others also have shown how to treat the stiff reactions via time
splitting (or fractional time step), in which the various operators (transport, diffusion,
chemistry, etc.) are treated separately, and in particular how to increase accuracy by
avoiding the common practice of approximating the temperature. The authors were based
on general consideration that, since the stiff source terms require specialized and costly
time integration, it is most practical to use a time splitting to isolate their treatment from
the rest of the problem.
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6.3 Handling the stiffness

To illustrate the stiffness phenomenon, consider the following set of equations:

ẋ = 998x + 1998y,

ẏ = −999x− 1999y,
(6.1)

with boundary conditions
x(0) = 1, y(0) = 0. (6.2)

Using the transformation

x = 2u− v, y = −u + v

which is equivalent with
u = x + y, v = x + 2y,

we find the new system

u̇ = −u,

v̇ = −1000u.
(6.3)

Take into account the initial condition u(0) = 1, v(0) = 1, we can solve the system
(6.3) easily, and get

u(t) = e−t,

v(t) = 1000e−t.

Finally, we find the solution of (6.1)

x(t) = 2e−t − e−1000t,

y(t) = −e−t + e−1000t.
(6.4)

If we integrated the system (6.1) with any of the methods given so far, the presence of
the e−1000t term would require a step size h ¿ 1/1000 for the method to be stable. This
is so even though the e−1000t term is completely negligible in determining the values of x
and y as soon as one is away from the origin (see fig. 1).

This is the generic disease of stiff equations: we are required to follow the variation
in the solution on the shortest length scale to maintain stability of the integration, even
though accuracy requirements allow a much larger step size.

Implicit integration methods are the cure of stiffness. For example, having the system
y′ = f(y), implicit differencing gives

yn+1 = yn + hf(yn+1). (6.5)

In general this is some nasty set of nonlinear equations that has to be solved iteratively
at each step. Suppose we try linearizing the equations, as in Newton’s method:

yn+1 = yn + h

[
f(yn) +

∂f

∂y

∣∣∣∣
yn

· (yn+1 − yn)

]
. (6.6)
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Figure 1: Example of an instability encountered in integrating a stiff equation. Here it is
supposed that the equation has two solutions, shown as solid and dashed lines. Although
the initial conditions are such as to give the solid solution, the stability of the integration
(shown as the unstable dotted sequence of segments) is determined by the more rapidly
varying dashed solution, even after that solution has effectively died away to zero.

Here ∂f/∂y is the matrix of the partial derivatives of the right–hand side (the Jacobian
matrix). Rearranging the previous equation we obtain

[
1− h

∂f

∂y

∣∣∣∣
yn

]
· yn+1 = yn + h

[
f(yn)− ∂f

∂y

∣∣∣∣
yn

· yn

]
,

then [
1− h

∂f

∂y

∣∣∣∣
yn

]
· yn+1 =

[
1− h

∂f

∂y

∣∣∣∣
yn

]
· yn + hf(yn),

and finally

yn+1 = yn + h

[
1− h

∂f

∂y

∣∣∣∣
yn

]−1

· f(yn). (6.7)

Solving implicit methods by linearization is called a ”semi–implicit” method, so equa-
tion (6.7) is the semi–implicit Euler method.

So far we have dealt only with implicit methods. While these are very robust, most
problems will benefit from higher-order methods. There are three important classes of
higher-order methods for stiff systems:

• Generalizations of the Runge-Kutta method, of which the most useful are the Rosen-
brock methods. The first practical implementation of these ideas was by Kaps and
Rentrop, and so these methods are also called Kaps-Rentrop methods.

• Generalizations of the Bulirsch-Stoer method, in particular a semi-implicit extrap-
olation method due to Bader and Deuflhard.

19



• Predictor-corrector methods, most of which are descendants of Gears backward
differentiation method.

6.4 Rosenbrock methods

Now consider the ODE system in the autonomous form

ẏ = f(y), t > t0, y(t0) = y0. (6.8)

This places no restriction since every non-autonomous system can be put in the form
(6.8) by treating time t also as a dependent variable.

Rosenbrock methods have the advantage of being relatively simple to understand and
implement. For moderate accuracies and moderate-sized systems, they are competitive
with the more complicated algorithms. For more stringent parameters, theese methods
remain reliable; they merely become less efficient than competitors like the semi-implicit
extrapolation method.

In 1963 Rosenbrock proposed to generalize the linearly implicit approach to methods
using more stages, so as to achieve a higher order of consistency. The crucial consideration
put forth was to no longer use the iterative Newton method, but instead to derive stable
formulas by working the Jacobian matrix directly into the integration formula. His idea
has found widespread use and a generally accepted formula (Hairer and Wanner, 1991)
for a so–called s–stage Rosenbrock method, is

yn+1 = yn +
s∑

i=1

biki

ki = hf

(
yn +

i−1∑
j=1

αijkj

)
+ hJ

i∑
j=1

γijkj,

(6.9)

where s and the formula coefficients bi, αij and γij are chosen to obtain a desired order
of consistency and stability for stiff problems. We can take the coefficients γii equal for
all stages, i.e. γii = γ for all i = 1, 2, . . . , s. For s = 1, γ = 1 the linearized implicit Euler
formula is recovered. For the non-autonomous system ẏ = f(t, y), the definition of ki is
changed to

ki = hf

(
tn + αih, yn +

i−1∑
j=1

αijkj

)
+ γih

2∂f

∂t
(tn, yn) + hJ

i∑
j=1

γijkj

where

αi =
i−1∑
j=1

αij, γi =
i∑

j=1

γij.

Like Runge–Kutta methods, Rosenbrock methods successively form intermediate re-
sults

Yi = yn +
i−1∑
j=1

αijkj, 1 ≤ i ≤ s, (6.10)
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which approximate the solution at the intermediate time points tn + αih. Rosenbrock
methods are therefore also called Runge–Kutta–Rosenbrock methods. Observe that if we
identify J with the zero matrix and omit the ∂f/∂t term, a classical explicit Runge–Kutta
method results.

Rosenbrock methods are attractive for a number of reasons. Like fully implicit meth-
ods, they preserve exact conservation properties due to the use of the analytic Jacobian
matrix. However, they do not require an iteration procedure as for truly implicit methods
and are therefore more easy to implement. They can be developed to possess optimal
linear stability properties for stiff problems. They are of one-step type, and thus can
rapidly change step size.

For an application of a second order Rosenbrock method applied to photochemical
dispersion problems see [Ver97].

In [Cab] one can found an investigation on a chemical mechanism which demonstrates
stiffness. The authors have compared various explicit and implicit numerical methods to
solve the model for the GABA reaction scheme, which is based on the classical bimolecular
reaction of Michaelis-Menten, suitably adapted to account for reversible reactions and
multiple receptor states.

In [Vos01] parallel Rosenbrock methods are developed for systems with stiff chemical
reactions.

The authors first have considered the Robertson chemical kinetics problem:

ẏ1 = −0.04y1 + 104y2y3;

ẏ2 = 0.04y1 − 104y2y3 − 3× 107y2
2;

ẏ3 = 3× 107y2
2

(6.11)

with initial conditions
y1(0) = 1, y2(0) = 0, y3(0) = 0.

Next they have considered the enzyme kinetics problem of MichaelisMenten type:

∂u

∂t
= d

∂2u

∂x2
− u

1 + u
, d > 0, (x, t) ∈ [0, 1]× [0,∞),

u(x, 0) = 1, u(0, t) = 0, u(1, t) = 0,

(6.12)

whose steady state solution is u = 0.
Unlike classical Runge-Kutta methods, parallel Rosenbrock methods avoid the neces-

sity to iterate at each time step. Parallelism across the method allows for the solution
of the linear algebraic systems in essentially backward Euler–like solves on concurrent
processors. In addition to possessing excellent stability properties, these methods are
computationally efficient while preserving positivity of the solutions. Numerical results
applied to problems above, involving stiff chemistry, and enzyme kinetics confirm these
characteristics.

Finally, we mention here that for an application on second order Rosenbrock method
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one can study the paper of Verwer et al., see [Ver97], where this scheme is defined as:

yn+1 = yn +
3

2γ
k1 +

1

2γ
k2,

(
1

γh
I− J

)
k1 = f(tn, yn) + γhft,

(
1

γh
I− J

)
k2 = f(tn + h, yn +

1

γ
k1)− 2

γh
k1 − γhft,

(6.13)

with γ = 1 + 1/
√

2. In [Ver97] it was noted that the second order Rosenbrock method
have favorable positivity properties, and the method is stable for nonlinear problems even
with large fixed step sizes.

6.5 Semi-implicit extrapolation method

The Bulirsch–Stoer method, which discretizes the differential equation using the mod-
ified midpoint rule, does not work for stiff problems. Bader and Deuflhard discovered
a semi–implicit discretization that works very well and that lends itself to extrapolation
exactly as in the original Bulirsch–Stoer method. The starting point is an implicit form
of the midpoint rule:

yn+1 − yn−1 = 2hf

(
yn+1 + yn−1

2

)
(6.14)

Convert this equation into semi-implicit form by linearizing the right-hand side about
f(yn). The result is the semi–implicit midpoint rule:

[
1− h

∂f

∂y

]
· yn+1 =

[
1 + h

∂f

∂y

]
· yn−1 + 2h

[
f(yn)− ∂f

∂y
· yn

]
. (6.15)

It is used with a special first step, the semi-implicit Euler step (6.7), and a special
”smoothing” last step in which the last yn is replaced by

yn :=
1

2
(yn+1 + yn−1). (6.16)

Bader and Deuflhard showed that the error series for this method once again involves
only even powers of h.

For practical implementation, it is better to rewrite the equations using ∆k = yk+1−yk.
With h = H/m, start by calculating

∆0 =

[
1− h

∂f

∂y

]−1

· hf(y0)

y1 = y0 + ∆0.

(6.17)

Then for k = 1, 2, . . . , m− 1, set

∆k = ∆k−1 + 2

[
1− h

∂f

∂y

]−1

· [hf(yk)−∆k−1],

yk+1 = yk + ∆k.

(6.18)
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Finally compute

∆m =

[
1− h

∂f

∂y

]−1

· [hf(ym)−∆m−1],

ym = ym + ∆m.

(6.19)

6.6 Gear algorithm

Consider the ODE system

ẏ = f(y, t), t > t0, y(t0) = y0. (6.20)

arising from chemistry.
In what follows we will present here the Gear algorithm in reference to the above

system.
The Gear algorithm is one of a class of methods referred to as backward differentiation

formulae (BDF). The generalized BDF that forms the basis for Gear’s method can be
expressed as follows:

yn = hβ0f(yn, tn) +

p∑
j=1

αjyn−j (6.21)

where n refers to the time step, h is the size of the time step, p is the assumed order,
β0 and αj are scalar quantities that are functions of the order, and f(y, t) is the function
which describe the rate of change of each species concentration in a chemical mechanism.
The method is implicit since concentrations at the desired time step n depend on values
of the first derivatives contained in f(yn, tn) that are functions of the concentrations at
the same time. The order of the method corresponds to the number of concentrations
at previous time steps that are incorporated in the summation on the right hand side of
equation (6.21).

To facilitate changing step size and estimating errors, the multi-step method in equa-
tion (6.21) is transformed to a multi-value form in which information from only the pre-
vious step is retained, but information on higher order derivatives is now used. In this
formulation, the solution is first approximated by predicting concentrations and higher
order derivatives at the end of a time step for each species using the following matrix
equation:

zi,n,(0) = Bzi,n−1 (6.22)

where zi = [yi, hy′i, . . . , hpyiy
(p)
i /p!]>, the subscript n, (0) refers to the prediction at the

end of time step n, and the subscript n−1 refers to values obtained at the end of previous
time step (or the initial conditions when n = 1). B is the Pascal triangle matrix, the
columns of which contain the binomial coefficients.

The prediction obtained from equation (6.22) is then corrected by solving for zi,n such
that the following relations hold for all species:

zi,n = zi,n,(0) + r[hfi(yn, tn)− hy′i,n,(0)]. (6.23)

In equation (6.23), r is a vector of coefficients that is dependent on the order, but
r2, the element corresponding to the first derivative location in z, is always equal to one.
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Thus, the correct value of yi,n is obtained when the calculated value of y′i,n equals fi(yn, tn)
in equation (6.23). An approximate solution for yi,n is obtained by applying Newton’s
method to the system of equations that correspond to the first equation in (6.23) for all
species. This leads to the following corrector iteration equation:

yn,(m+1) = yn,(m) + [I− hβ0J]−1r1[hf(yn,(m), tn)− hδyn,(m)] (6.24)

where m refers to the Newton iteration number, the vector f(yn, tn) is calculated using
concentrations computed for the mth iteration, δc is the vector containing the most recent
estimates of first derivatives, I is the identity matrix, and J is the Jacobian matrix whose
entries are defined as:

Jij =
∂fi(y, tn)

∂yj

; i, j = 1, 2, . . . , N. (6.25)

At the end of each iteration, the vector containing the first derivatives (δc) is updated,
but higher order derivatives in z need not be computed until convergence is achieved.

Although several variants of the basic Gear algorithm have been developed, the fun-
damental computational scheme can be described generically as follows. At the beginning
of any integration interval, the order is set to one and the starting time step is either
calculated or selected by the user. Each time step is initiated by predicting concentra-
tions at the end of the time step using equation (6.22). Corrector iterations are then
carried out using equation (6.24) until prescribed convergence criteria are achieved or
non-convergence is deemed to have occurred.

We have to mention here that Jacobson and Turco (1994) have modified the Gear
algorithm to incorporate additional computational efficiencies that can achieve speedups
on the order of 100 on vector computers. About half of the improvement is attributed to
enhanced vectorization, and half to improved matrix operations.

6.7 Multistep, multivalue, and predictor-corrector methods

The terms multistep and multivalue describe two different ways of implementing es-
sentially the same integration technique for ODEs. Predictor–corrector is a particular
subcategory of these methods in fact, the most widely used. Accordingly, the name
predictor–corrector is often loosely used to denote all these methods.

To advance the solution of y′ = f(x, y) from xn to x, we have

y(x) = yn +

∫ x

xn

f(x′, y)dx′. (6.26)

In a multistep method, we approximate f(x, y) by a polynomial passing through several
previous points xn, xn−1, . . . and possibly also through xn+1. The result of evaluating the
integral (6.26) at x = xn+1 is then of the form

yn+1 = yn + h(β0y
′
n+1 + β1y

′
n + β2y

′
n−1 + β3y

′
n−2 + . . .) (6.27)

where y′n denotes f(xn, yn), and so on. If β0 = 0, the method is explicit; otherwise it is
implicit. The order of the method depends on how many previous steps we use to get
each new value of y.
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Consider how we might solve an implicit formula of the form (6.27) for yn+1. Two
methods suggest themselves: functional iteration and Newtons method. In functional
iteration, we take some initial guess for yn+1, insert it into the right-hand side of (6.27)
to get an updated value of yn+1, insert this updated value back into the right-hand side,
and continue iterating. To get an initial guess for yn+1 one must use some explicit for-
mula of the same form as (6.27) This is called the predictor step. In the predictor step
we are essentially extrapolating the polynomial fit to the derivative from the previous
points to the new point xn+1 and then doing the integral (6.26) from xn to xn+1. The
subsequent Simpson-like integration, using the prediction steps value of yn+1 to interpo-
late the derivative, is called the corrector step. The difference between the predicted and
corrected function values supplies information on the local truncation error that can be
used to control accuracy and to adjust step size.

The most popular predictor-corrector methods are probably the Adams- Bashforth-
Moulton schemes, which have good stability properties. The Adams- Bashforth part is
the predictor.

The Adams-Bashforth formula has the form

xi+1 = xi +
n∑

j=1

cjfj, where fj = f(ti−(j−1), x(ti−(j−1))).

Note the formula uses the function values at points left to ti, namely, at ti, ti−1, . . . , ti−(n−1).
To determine the coefficients in the Adams-Bashforth formula one have to solve a

linear system for the cj’s,

∫ 1

0

r(i−1)dr =
n∑

j=1

(
cj(1− j)(i−1)

)

where 1, r, r2, . . . , r(n−1) are the testing polynomials.
For example the the 2nd-order Adams-Bashforth method becomes as follow:

x0 = x0, x1 = x1, xi+1 = xi +
h(3f(ti, xi)− f(ti−1, xi−1))

2

for i > 0.
In practice, Adams-Bashforth formula is not used alone. Neither does Adams-Moulton

formula. Instead, the Adams-Moulton formula, which is implicit, is modified by approx-
imating xi+1 using the solution we get from the Adams-Bashforth method. This avoids
solving a nonlinear equation for xi+1 in the original Adams-Moulton formula, and improves
accuracy of the Adams-Bashforth formula.

For instance, the 2nd-order Adams-Bashforth formula and the 2nd-order Adams-
Moulton formula lead us to a second order predictor–corrector method:

x0 = x0, x1 = x1,

yi+1 = xi +
h(3f(ti, xi)− f(ti−1, xi−1))

2
,

xi+1 = xi +
h(f(ti+1, yi+1) + f(ti, xi))

2
.

(6.28)
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7 Positive and conservative numerical methods

There exist specialized softwares that translate kinetic reactions into differential equa-
tions (e.g., KPP [Dam02]). As we mentioned earlier, the ODEs describing chemical ki-
netics can be nonlinear and very stiff. The stiffness in these systems forces the use of
implicit numerical techniques for their solution. The drawback to the use of an implicit
numerical technique is the need to solve a large nonlinear algebraic system of equations for
each numerical time step at each spatial grid point. The greater the number of chemical
species modeled, the larger the resulting system. Thus, the numerical overhead associated
with solving these nonlinear algebraic systems can account for a significant portion of the
total runtime, for example, in atmospheric sciences (reactive flow problem, combustion,
climate modeling, chemical-radiative-transport model).

Several recent studies have proposed techniques that effectively eliminate the need for
the matrix algebra typically associated with an implicit numerical method, for instance,
the preconditioned implicit methods. That study led to the development of the Chemical
Solver for Ordinary Differential Equations (CHEMSODE) package to support the use of
these methods. The paradigm of the preconditioned implicit methods combine an implicit
ODE integration formula with an iterative technique for solving simultaneous algebraic
systems. This idea is illustrated in [Aro96] and have been drawn from two previous stud-
ies. The above report documents the CHEMSODE package: a collection of FORTRAN
subroutines implementing three different types of preconditioned time differencing tech-
niques along with a choice of step length control.

A comparison between two classical integrators for stiff ordinary differential equations,
Quasi Steady State Approximation (QSSA), and Hybrid Solver (HS), and CHEMSODE
package is presented in [Lor99]. The results have been compared with an ”exact” solution
obtained by the Livermore Solver for Ordinary Differential Equations (LSODE).

A comprehensive numerical comparison between some(other) explicit and implicit
solvers can also be found in [San97]. For another comparison of numerical methods for
the integration of kinetic equations in atmospheric chemistry and transport models, see
[Say95].

When fast reversible reactions precede slower ones in a mechanism, in order to derive
approximate analytical expressions, beside the QSSA classical method we can use another
useful approximation method, the pre-equilibrium approximation (PEA), also called equi-
librium approximation. Both approximations can also be used to simplify the numerical
integration of complex reaction schemes, reducing the dimensionality and decoupling time
scales. In their work, see [Rae02], M. Rae and N. Berberan–Santos were presented a gen-
eral view of the pre-equilibrium approximation via several photophysical systems. They
also have shown that the kinetic behavior of systems subject to pre-equilibration can be
obtained by the application of perturbation theory.

Air quality models solve the convection-diffusion reaction set of partial differential
equations which describe the atmospheric physical and chemical processes. Usually an
operator-split approach is taken: chemical equations and convectiondiffusion equations are
solved in alternative steps. In this setting the integration of chemical kinetic equations is
a demanding computational task. The chemical integration algorithm should be stable in
the presence of stiffness; ensure a modest level of accuracy, typically 1%; preserve mass;
and keep the concentrations positive. Since chemical kinetics conserves mass and renders
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nonnegative solutions a good numerical simulation would ideally produce mass-balanced,
positive concentration vectors. Many time-stepping methods are mass conservative (mul-
tistep, Runge-Kutta, Rosenbrock); however, unconditional positivity restricts the order
of a traditional method to one. Clipping (setting the negative concentrations to zero)
enhances stability but artificially adds mass to the system. In [San97] was presented a
projection method which ensure mass conservation and positivity, alleviating the order
and step-size restrictions. The solutions computed at each step by a standard integration
method are ”projected” back onto the reaction simplex. The resulting vectors better
approximate the true solution itself.

Another approach to accelerate reacting flow calculations was proposed by O. Knoth
and R. Wolke in [Kno98]. The authors gave implicit-explicit time integration schemes
which use explicit higher order Runge-Kutta schemes for the integration of the horizontal
advection. The stiff chemistry and all vertical transport processes (turbulent diffusion,
advection, deposition) are integrated in an implicit and coupled manner by a higher order
backward differentiation formula method.

7.1 Stiff systems related to mass action kinetics

Numerical schemes that maintain numerical analogous of physical properties such as
nonnegativity of the solution and atomic mass conservation without time step restrictions
are also described in [Ber96]. Classical explicit schemes maintain these properties with
too strong time-step restrictions to be useful. Classical implicit schemes maintain these
properties with weaker time-step restrictions, but require the solution of an algebraic
system at each time step. In the above mentioned paper, E. Bertolazzi proposed and
discussed the solution of these algebraic systems without the use of Jacobian matrices, but
by the repeated inversion of M-matrices that can be easily constructed, thus considerably
simplifying and accelerating the computer implementation of the schemes.

To illustrate the idea consider a reaction mechanism
m∑

i=1

α(i, r)Xi ­
m∑

i=1

β(i, r)Xi r = 1, 2, . . . , k

which can be written in the form
m∑

i=1

σ(i, r)Xi = 0, r = 1, 2, . . . , k. (7.1)

The associated system of polynomial differential equation describing the time evolution
of the species concentrations can be written as

dx

dt
= σw(x), (7.2)

where x =




x1

x2
...

xm


 , σ =




σ(1, 1) σ(1, 2) . . . σ(1, k)
σ(2, 1) σ(2, 2) . . . σ(2, k)

...
... . . .

...
σ(m, 1) σ(m, 2) . . . σ(m, k)


 , w(x) =




w1(x)
w2(x)

...
wk(x)


 are the

molar concentration vector, the stoichiometric matrix and the reaction velocity vector,
respectively.
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If Mi is the atomic mass of the ith species, then ρi = Mixi is its density. Defining

D = diag(M1,M2, . . .Mm),

ρ = Dx,

f(ρ) = w(D−1ρ),

ν = Dσ,

chemical system (7.1) can be written in term of densities as follows:

dρ

dt
= νf(ρ). (7.3)

We have to mention here that in mass action kinetic reaction rates often have the form
f(ρ) = cρα1

1 ρα2
2 . . . ραm

m , where c is a constant and αi ≥ 0.
Related to equation (7.3), it is important that, there exist two general requirements

(see [Ber96]):

• one for the reaction rate f with its stoichiometric vector ν

(i) f ∈ C(Rm

+ ,R+),

(ii) if νi < 0, then the function q(ρ) := f(ρ)/ρi is such that q ∈ C(Rm

+ ,R+)

• the other is connected with the nonnegativity of the solution:

if ρ0 ≥ 0 =⇒ ∀t > 0, ρ(t; ρ0) ≥ 0 (7.4)

where ρ(t; ρ0) denotes the solution of system (7.3) with ρ0 as initial value.
Now, consider the kernel ν>, i.e., Ker(ν>) = {z|zν> = 0}. If z ∈ Ker(ν>) then from

(7.3), it follows that z>dρ

dt
= z>νf(ρ) = 0, so that the function

gz(ρ) = z>ρ = z1ρ1 + · · ·+ zmρm, z ∈ Ker(ν>) (7.5)

is a first integral of (7.3). In the case of a conservative system, we have ||ρ||1 = ρ1 +
ρ2 + · · ·+ ρm = constant so that ge is a first integral of the system (7.3), or equivalently,
e ∈ Ker(νT ), where e = [1, 1, . . . , 1]>.

In what follows we will take a survey through some classical numerical schemes to
establish whether mass conservation and positivity preservation is realized.

A general numerical one-step scheme can be written as

ρn+1 = G(ρn), n = 1, 2, . . . (7.6)

For this scheme the conservation and nonnegativity properties (7.5) can be written as

G(ρ) ≥ 0, ∀ρ ≥ 0, (7.7a)

z>(ρ−G(ρ)) = 0, ∀z ∈ Ker(ν>), ∀ρ ≥ 0. (7.7b)

We will consider a single reaction system

dρ

dt
= νf(ρ), (7.8)

where the reaction rate f is an homogeneous function of degree 1, for example f(ρ) =

cρα1
1 ρα2

2 . . . ραm
m , with αi =

{
1, if νi < 0,
0, if νi ≥ 0,

and discretize (7.8) with some classical schemes.
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7.1.1 Explicit Euler scheme

This scheme can be written as

ρn+1 = ρn + hνf(ρn),

for which the map G becomes

G(ρ) = ρ + hνf(ρ)

and conditions (7.7a), resp. (7.7b) become

• for nonnegativity it is necessary and sufficient that

h ≤ ρn
i

−νif(ρn)
, if νi < 0,

• the conservation is always satisfied, in fact

z>(ρ−G(ρ)) = −hz>νf(ρn) = 0, ∀z ∈ Ker(ν>).

7.1.2 Linearized implicit Euler scheme

Consider the implicit Euler scheme

ρn+1 = ρn + hνf(ρn+1),

and use the Newton–Raphson step to approximate ρn+1

ρn+1 ≈ ρn+1 = ρn − [I − hν∇f(ρn)]−1[ρn − hνf(ρn)− ρn]

= ρn[I − hν∇f(ρn)]−1[I − hν∇f(ρn)]−

− [I − hν∇f(ρn)]−1[−hνf(ρn)]

= [I − hν∇f(ρn)]−1[ρn(I − hν∇f(ρn)) + hνf(ρn)]

= [I − hν∇f(ρn)]−1[ρn + hν (f(ρn)−∇f(ρn)ρn)]

= [I − hν∇f(ρn)]−1ρn.

(7.9)

In the last equality it was used the homogeneity of f. Using ρn+1 instead of ρn+1, we
obtain the linearized implicit Euler scheme, for which the solution step is

ρn+1 = [I − hν∇f(ρn)]−1ρn,

and applying the Sherman–Morrison formula

(A + uv>)−1 = A−1 − A−1uv>A−1

I + v>A−1u
, (7.10)

where uv> denotes the dyadic product, then the map G becomes

G(ρ) = ρ +
hν∇f(ρ)ρ

I − h∇f(ρ)ν (7.11)

and conditions (7.7a) and (7.7b) become
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• for the nonnegativity it is necessary and sufficient that

h ≤ ρn
i (I − h∇f(ρn)ν)

−νi∇f(ρn)ρn
, if νi < 0,

• the conservation is always satisfied, in fact from (7.11), it follows that

z>(ρ−G(ρ)) = −h
z>ν∇f(ρ)ρ

I − h∇f(ρ)ν = 0, ∀z ∈ Ker(ν>).

7.1.3 Runge–Kutta’s fourth-order scheme

The Runge–Kutta method of order 4 for system (7.3) takes the form

k1 = hf(ρn)ν ,

k2 = hf

(
ρn +

k1

2

)
ν ,

k3 = hf

(
ρn +

k2

2

)
ν ,

k4 = hf (ρn + k3)ν ,

ρn+1 = ρn +
k1 + 2k2 + 2k3 + k4

6
.

• A necessary condition for the applicability is ρn +
k1

2
≥ 0, so that

h ≤ 2ρn
i

−νif(ρn)
, if νi < 0.

• The conservation (7.7a) is always satisfied, in fact

z>k1 = hf(ρn)z>ν = 0, ∀z ∈ Ker(ν>),

and analogously for k2,k3,k4.

7.1.4 A semi-implicit scheme

All the schemes previously considered have discrete analogs of the first integrals (7.5),
but they suffer a time-step limitation for nonnegativity. Here we will present a semi-
implicit method to avoid these limitations. We will use the following results:

Lemma 7.1. Let v ∈ Rm be a vector such that
m∑

i=1

vi = 0, and let f : Rm

+ → R+ be

a continuous function, such that, for those indices i for which vi < 0, f(x)/xi is also
continuous on R+.
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Then f(x)v can be written as

C(x,v)x = f(x)v,

where C(x,v) is m×m matrix with continuous entries such that

Ci,i(x,v) ≤ 0, i = 1, 2, . . . ,m,

Ci,j(x,v) ≥ 0, i 6= j,
m∑

i=1

Ci,j(x,v) = 0, i = 1, 2, . . . , m.

(7.12)

Theorem 7.1. Let ν be a m× k matrix and f : Rm

+ → Rk

+ be a continuous map; then if
for those indices i, j for which νi,j < 0,

fi(x)

xj

,

is also continuous on Rn

+, and

m∑
i=1

vi,j = 0, j = 1, 2, . . . , k,

then νf(ρ) can be written in the form C(ρ,ν)ρ, where C(ρ,ν) is a m ×m matrix with
continuous entries, such that

i) Ci,i(ρ,ν) ≤ 0, i = 1, 2, . . . , m,

ii) Ci,j(ρ,ν) ≥ 0, i 6= j,

iii)
m∑

i=1

Ci,j(ρ,ν) = 0, i = 1, 2, . . . , m.

For the proof of the lemma and the theorem above, the definition of matrix C(x,v)
see [Ber96].

With the matrix C, it is possible to define a semi-implicit numerical scheme for (7.3)
as follows:

ρn+1 = ρn + hC(ρn,ν)ρn+1,

which results in the following advancing step:

ρn+1 = [I − hC(ρn,ν)]−1ρn.

The matrix I − hC(ρn,ν) is strictly diagonally dominant with elements positive on
the diagonal and nonnegative elsewhere, consequently, it is a M -matrix. By definition od
a M -matrix, it follows that I − hC(ρn,ν)−1 ≥ 0, and therefore, ρn+1 ≥ 0 for arbitrarily
large h. Unfortunately, this scheme has not a numerical analogs of first integral (7.5).
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7.1.5 A fully implicit scheme

All the previous considered schemes cannot have both a discrete analogs of first integral
(7.5) and nonnegativity preservation for arbitrarily large time step. The implicit Euler
scheme

ρn+1 = ρn + hνf(ρn+1) (7.13)

can be used to avoid time-step restrictions, but the advancing steps involve the solution
of a nonlinear system as follows:

ρn+1 = the solution of x− hνf(x)− ρn = 0. (7.14)

For system (7.14), there is the question of existence and uniqueness of the solution and
an iterative procedure is needed to find the solution.

Existence of a solution: A nonnegative solution of the nonlinear system

x− hνf(x)− ρn = 0, (7.15)

is also, by Theorem 7.1, a fixed point of the map

Φ(x) := (I − hC(x,ν))−1ρn. (7.16)

Theorem 7.2. The map Φ admits at least one nonnegative fixed point (i.e., with non-
negative components). Moreover if x∗ is a nonnegative fixed point, then ||x∗||1 = ||ρn||1.
Proof. The map Φ has the property ∀ρ ≥ 0 =⇒ Φ(ρ) ≥ 0, and from (7.16), we can write

Φ(x)− hC(x,ν)Φ(x) = ρn, (7.17)

multiplying (7.17) by e> and using the fact e>C(x,ν), it follows

e>Φ(x) = e>ρn =⇒ ||Φ(x)||1 = ||ρn||1, ∀x ≥ 0.

Consequently, the image Φ(R
n

+) is contained into the convex compact

K = {x ≥ 0|||x||1 = ||ρn||1}, (7.18)

so that, if x∗ is a fixed point, it must be contained in K and ||x||1 = ||ρn||1. Moreover,
the map Φ can be viewed as a continuous map from K into K, and by the Brouwer fixed
point theorem it follows that Φ has at least one fixed point.

Observe that the proof is independent of the magnitude of h, so that the nonlinear
system (7.15) has a nonnegative solution no matter how large the time step is.
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The question of uniqueness: In general, it is not possible to see if system (7.15) has
a unique solution for arbitrarily large h. However, there are some special cases for which
we have also uniqueness. It is the case, for instance, when the system consists of only one
reaction and the reaction rate f satisfies

νi∂fρi ≤ 0, i = 1, 2, . . . ,m,

which exclude auto-inhibition in the reaction. In this case, if x∗ and y∗ are two solutions
of (7.15), it follows

0 = x∗ − y∗ − hν [f(x∗)− f(y∗)] = [I − hν∇f(ξ)](x∗ − y∗), (7.19)

and using the Sherman-Morrison formula (7.10)

[I − hν∇f(ξ)]−1 = I +
hν∇f(ξ)

I − hν∇f(ξ)
, (7.20)

so that by (7.19) and (7.20), it follows that x∗ = y∗. In the case of more than one reaction,
it is possible to prove uniqueness for small h.

Theorem 7.3. Let νf(ρ) be a m × k matrix and f ∈ C1(Rm
+,R+), then if for those

indices i, j for which νi,j < 0,

fi(x)

xj

∈ C1(Rm
+,R+),

then for all h satisfying

h <
1

m||ρn||1 maxz∈K ||∇Ci,j(z,ν)||∞ ,

the map Φ : Rm

+ → Rm

+ defined in (7.16) is a contraction, where K is given by (7.18).

Proof. Observe that ∀z ≥ 0

e>[I − hC(z,ν)] = e> =⇒ e> = e>[I − hC(z,ν)]−1,

so that it follows ||[I − hC(z,ν)]−1||1 = 1. Next

Φ(x)− Φ(y) = [I − hC(x,ν)]−1ρn − [I − hC(y,ν)]−1ρn =

= h[I − hC(x,ν)]−1[C(x,ν)−C(y,ν)][I − hC(y,ν)]−1ρn,

and taking the || · ||1 norm on both sides

||Φ(x)− Φ(y)||1 ≤ h||C(x,ν)−C(y,ν)||1||ρ||1 ≤ hL||x− y||1,
where

L = m||ρn||1 max
z∈K

||∇ci,j(z,ν)||∞,

so that if h <
1

L
the map Φ becomes a contraction.

Obviously, if the map Φ is a contraction, then it has a unique fixed point.
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7.1.6 A second-order positive scheme

The implicit Euler scheme has no stability restriction, but it is only first-order accurate.
A second-order scheme can be the following:

ρn+1 = ρn + hν f(ρn+1) + f(ρn)

2
.

The solution step, as in (7.13), involves the solution of a nonlinear system in the unknown
x

x− h
f(x)

2
= ρn + h

νf(ρn)

2
.

In order to guarantee the existence of a nonnegative solution, it is sufficient that:

ρn + h
νf(ρn)

2
≥ 0.

This condition introduces a time-step bound. To avoid time-step restriction, an alternative
approach is to switch to second-order accuracy when reactions are slow and first-order
accuracy when reactions are fast. The scheme becomes

ρn+1 = ρn + hν [(1− α)f(ρn+1) + αf(ρn], (7.21)

where α is such that
max

α∈[0,1/2]
[ρn + αhνf(ρn)] ≥ 0.

If the reaction rates have very different orders of magnitudes, this scheme can loose too
much accuracy for slow reactions. a better result can be obtained y using different α’s for
each reaction as follows:

ρn+1 = ρn + h

k∑
j=1

ν·,j[(1− αi)fj(ρ
n+1) + αjfj(ρ

n)]. (7.22)

With (7.22), the solutio step involves the solution of the nonlinear system in the unknown
x

x− h

k∑
j=1

(1− αj)ν·,jfj(x) = ρn + h

k∑
j=1

αjν·,jfj(ρ
n).

For positivity preservation, it suffices that

ρn +
k∑

j=1

αjν·,jfj(ρ
n) ≥ 0. (7.23)

In order to satisfy condition (7.23), we set

αj = min

(
1

2
,

{
− βjρ

n
i

hνi,jfj(ρn)
|νi,j < 0, i = 1, 2, . . . , m

})
,

where βj > 0 are weighting parameters with
∑k

j=1 βj = 1. The weighting factors are useful;
if, for example, the first reaction is very slow, we can use very small β1 and maintain
α1 = 1/2. This permits us to increase the α’s for the fast reactions. The weighting factors
can be chosen in many ways. A simple choice could be βi = 1/k.
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7.1.7 Two better second-order positive schemes

The scheme (7.21) has the disadvantage of slowing down the accuracy for time steps
that are large compared to the reaction rates. An alternative can be an implicit version
of Collatz scheme which takes the form

ρn+1 = ρn + hνf

(
ρn+1 − h

2
νf(ρn+1)

)
. (7.24)

Equation (7.24) involves the solution of the nonlinear system in the unknown x

x− hνf

(
x− h

2
νf(x)

)
= ρn. (7.25)

To solve (7.25), we will introduce a new variable

y = x− h

2
νf(x),

so that system (7.25) is equivalent to the new system

x− hνf(y) = ρn, x− h

2
νf(x) = y. (7.26)

This system, by Theorem 7.1, can be written in the following equivalent form:

λy − hC(y,ν)y = ρn − x + λy, x− h

2
C(x,ν)x = y,

where λ is a free parameter. This relation suggests the following iterative procedure to
solve (7.26)

yl+1 =

(
I − h

λ
C(yl,ν)

)−1 (
ρn − xl

λ
+ yl

)
,

xl+1 =

(
I − h

2
C(xl,ν)

)−1

yl+1.

(7.27)

Another scheme can be an implicit version of Heun scheme which takes the form

ρn+1 = ρn + h
1

2
ν [f(ρn+1 − hνf(ρn+1)) + f(ρn+1)]. (7.28)

Equation (7.28) involves the solution of the nonlinear system in the unknown x

x− h

2
ν [f(x− hνf(x)) + f(x)] = ρn. (7.29)

To solve (7.29), it is convenient to introduce a new variable

y = x− hνf(x),

so that the system is equivalent to the new system

y − hνf(y) = 2ρn − x, x− hνf(x) = y.
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The equivalent form of this system applying Theorem 7.1 will be

(1 + λ)y − hC(y,ν)y = 2ρn − x + λy, x− hC(x,ν)x = y.

This suggests the following iterative procedure to solve (7.26)

yl+1 =
(
(1 + λ)I − hC(yl,ν)

)−1
(2ρn − xl + λyl),

xl+1 =
(
I − hC(xl,ν)

)−1
yl+1.

(7.30)

7.1.8 A second-order diagonally implicit Runge–Kutta scheme

The schemes (7.24) and (7.28) have the disadvantage of a slow rate of convergence
of the procedures (7.27) and (7.30). An alternative can be the use of diagonally implicit
Runge–Kutta schemes, so that, instead of solving a large nonlinear system, we solve a
series of smaller nonlinear systems. For example the S-stable two-stage diagonally implicit
Runge–Kutta scheme of Alexander after some manipulation takes the form

x− αhνf(x) = ρn,

y − αhνf(x) =
(2α− 1)ρn + (1− α)x

α
,

ρn+1 = y,

(7.31)

where α = 1±√2/2.

8 Solving stiff IVP’s with Maple

Maple is a procedural programming language. It is a computer algebra software that
can perform symbolic computation as well as numerical computation, graphics, program-
ming, and more. It can handle differential equations, too. Sometimes Maple can solve
them symbolically, finding the general solution. If the equation can not be solved sym-
bolically, one can always find a numerical answer.

If it takes too long to solve an initial value problem (IVP) with the default numeri-
cal solver (for example, rkf45, which stands for Fehlberg fourth-fifth order Runge-Kutta
method) then the IVP might be stiff. A stiff IVP can be solved efficiently with either the
default solver using the stiff=true option (rosenbrock) in dsolve command or any of the
back- options in lsode. Obtained numerical solutions may be plotted using the odeplot
command in the plots package.

First we initialize Maple.
> restart;
with(DEtools):
with(plots):
with(linalg):

The equation we wish to solve a second order ODE y′′(x)+ (λ+1)y′(x)+λ y = 0 with
the initial conditions y(0) = 1, y’(0)=-1.
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By introducing auxiliary variables we can convert it into a set of first order ODEs,
where λ is a constant:

y′(x) = z(x)

z′(x) = −λ y(x)− (λ + 1)z(x).

We shall investigate how varying λ affects the numerical solution. The above is an
example of a stiff equation. If we solve the above analytically, we find that: y(x) = e−x.
We also have an unwanted solution where y(x) = e−λ x.

We will show that under certain circumstances forward Euler fails to converge to the
real solution, and instead blows up to infinity. In fact forward Euler is only stable for the
step sizes that satisfy h < 2λ−1.

Now we will present two implementations of forward and backward Euler to model
the stiff equation:

> GeneralForwardEuler := proc(vars, f, init, h, interval)
local makeeqn, ans, solveEqns, assignList, diffValue, newICSet,
i,j,k, ic; ic := init;
makeeqn := nops(u);
ans := [];
ans := [op(ans), ic];

while op(1,ic) < interval do
solveEqns := [];
assignList := [];
for j from 1 by 1 to makeeqn do
assignList := [op(assignList), op(j, u) = op(j, ic)];
end do;
for i from 1 by 1 to makeeqn do
diffValue := eval(op(i, f),assignList);
solveEqns := [op(solveEqns),op(i, u) = op(i, ic) + h * (diffValue)];
end do;
newICSet := solve(convert(solveEqns, set), convert(u, set));
for k from 1 by 1 to makeeqn do
ic := subsop(k = eval(op(k, u), newICSet), ic);
end do;
ans := [op(ans), ic];
end do;

return matrix(ans);
end proc:
> GeneralBackwardEuler := proc(vars, f, init, h, interval)
local makeeqn, ans, solveEqns, assignList, diffValue, newICSet, i, j, k,
ic;
ic := init;
makeeqn := nops(u);
ans := [];
ans := [op(ans), ic];

while op(1,ic) < interval do
solveEqns := [];
assignList := [];
for j from 1 by 1 to makeeqn do
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assignList := [op(assignList), op(j, u) = op(j, ic)];
end do;
for i from 1 by 1 to makeeqn do
diffValue := eval(op(i, f), assignList);
solveEqns := [op(solveEqns), op(i, u) = op(i, ic) + h * (op(i, f))];
end do;
newICSet := solve(convert(solveEqns, set),convert(u, set));
for k from 1 by 1 to makeeqn do
ic := subsop(k = eval(op(k, u), newICSet), ic);
end do;
ans := [op(ans), ic];
end do;

return matrix(ans);
end proc:

To investigate how varying the value of λ changes the nature of the numerical
solution, first take λ = 1000 and h = 0.1.
> u := [x,y,z];
f := [1,z,-la103*y - (la103 + 1)*z];
ic := [0,1,-1];

u := [x, y, z]

f := [1, z,−1000 y − 1001 z]

ic := [0, 1,−1]

> la103 := 10^3;
la103 := 1000

If we limit the range for x = [0, 1.5], there doesn’t seem to be a problem, until x = 1.5
where we have a sudden jump in value.

> solBE1 := GeneralBackwardEuler(u,f,ic,0.1,1.5):
solFE1 := GeneralForwardEuler(u,f,ic,0.1,1.5):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 1 to 16 do
plot_yz := [op(plot_yz),[solBE1[i,1], exp(-solBE1 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE1[i,1], exp(-la103*(solBE1 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE1[i,1], solBE1[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE1[i,1],solFE1[i,2]]]:
end do:

plotsetup("ps", plotoptions="color");
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
plotsetup(default);
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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However, when increasing the range to x = 1.6, we find that forward Euler breaks down
far more significantly. Increasing x further, and forward Euler becomes very unstable,
blowing up to infinity.

> solBE2 := GeneralBackwardEuler(u,f,ic,0.1,1.6):
solFE2 := GeneralForwardEuler(u,f,ic,0.1,1.6):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 1 to 17 do
plot_yz := [op(plot_yz),[solBE2[i,1], exp(-solBE2 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE2[i,1], exp(-la*(solBE2 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE2[i,1], solBE2[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE2[i,1],solFE2[i,2]]]:
end do:
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plotsetup("ps", plotoptions="color");
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
plotsetup(default);
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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Now we can try h=0.01. Here we find that forward Euler breaks down far quicker, in
spite of having a step size.

> solBE3 := GeneralBackwardEuler(u,f,ic,0.01,0.2):
sol6 := GeneralForwardEuler(u,f,ic,0.01,0.2):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 1 to 21 do
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plot_yz := [op(plot_yz),[solBE3[i,1], exp(-solBE3 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE3[i,1], exp(-la*(solBE3 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE3[i,1], solBE3[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE3[i,1],solFE3[i,2]]]:
end do:
plotsetup("ps", plotoptions="color");
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
plotsetup(default);
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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Now we can try h = 0.001. Here we find that forward Euler is stable. This is not
surprising as h < 2 λ−1 where 2 λ−1 = 0.002.

> solBE4 := GeneralBackwardEuler(u,f,ic,0.001,10):
sol8 := GeneralForwardEuler(u,f,ic,0.001,10):
plot_yz := []:
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plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 100 to 10001 do
plot_yz := [op(plot_yz),[solBE4[i,1], exp(-solBE4 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE4[i,1], exp(-la*(solBE4 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE4[i,1], solBE4[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE4[i,1],solFE4[i,2]]]:
end do:
#print(plot_yz);
plotsetup("ps", plotoptions="color");
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
plotsetup(default);
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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Next we can try λ = 1000000. We shall first let h = 0.1.
> u := [x,y,z];
f := [1,z,-la106*y - (la106 + 1)*z];
ic := [0,1,-1];

u := [x, y, z]

f := [1, z,−la106 y − (la106 + 1) z]

ic := [0, 1,−1]

> la106 := 10^6;
la106 := 1000000

If we limit the range for x = [0, 0.8], there are no sudden ”jumps”.
> solBE5 := GeneralBackwardEuler(u,f,ic,0.1,0.8):
solFE5 := GeneralForwardEuler(u,f,ic,0.1,0.8):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 1 to 9 do
plot_yz := [op(plot_yz),[solBE5[i,1], exp(-solBE5 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE5[i,1], exp(-la*(solBE5 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE5[i,1], solBE5[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE5[i,1],solFE5[i,2]]]:
end do:
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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However, when increasing the range to x = 0.9, we encounter the same problem seen
earlier with forward Euler.

> solBE6 := GeneralBackwardEuler(u,f,ic,0.1,0.9):
solFE6 := GeneralForwardEuler(u,f,ic,0.1,0.9):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 1 to 10 do
plot_yz := [op(plot_yz),[solBE6[i,1], exp(-solBE6 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE6[i,1], exp(-la*(solBE6 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE6[i,1], solBE6[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE6[i,1],solFE6[i,2]]]:
end do:
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
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sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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Now we can try h = 0.01 The solution generated by forward Euler very quickly becomes
unstable.

> solBE7 := GeneralBackwardEuler(u,f,ic,0.01,0.08):
solFE7 := GeneralForwardEuler(u,f,ic,0.01,0.08):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 1 to 9 do
plot_yz := [op(plot_yz),[solBE7[i,1], exp(-solBE7 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE7[i,1], exp(-la*(solBE7 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE7[i,1], solBE7[i,2]]]:
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plot_yz2 := [op(plot_yz2),[solFE7[i,1],solFE7[i,2]]]:
end do:
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);
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We could try a step size that satisfies the rule for stability say

h = 0.000001

However, this is computationally very demanding, if we could run this, it would be
stable. Note that

h < 2 λ−1

where
2 λ−1 = 0.000002
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> # procedure for running with a "stable" stepsize
# in practice to takes too long to deliver a result
stepsize := 0.000001:
solBE8 := GeneralBackwardEuler(u,f,ic,stepsize,0.1):
solFE8 := GeneralForwardEuler(u,f,ic,stepsize,0.1):
plot_yz := []:
plot_yzLa := []:
plot_yz1 := []:
plot_yz2 := []:

for i from 1 by 100 to 10001 do
plot_yz := [op(plot_yz),[solBE8[i,1], exp(-solBE8 [i,1])]]:
plot_yzLa := [op(plot_yzLa),[solBE8[i,1], exp(-la*(solBE8 [i,1]))]]:
plot_yz1 := [op(plot_yz1),[solBE8[i,1], solBE8[i,2]]]:
plot_yz2 := [op(plot_yz2),[solFE8[i,1],solFE8[i,2]]]:
end do:
plot([plot_yz, plot_yzLa, plot_yz1, plot_yz2], legend=["Real sol", "Unwanted
sol", "Backward Euler","Forward Euler"], colour=[green, brown, red, black],
style=[line,line,line, point]);

Now, consider the IVP arising from a chemistry problem and try to solve it with some
of the Maple’s incorporated methods:

ẏ1 = −0.04y1 + 10000y2y3,

ẏ2 = 0.04y2 − 1000y1y2 − 3 · 107y2
2,

ẏ3 = 3 · 107y2
2,

(8.32)

with initial conditions y1(0) = 1, y2(0) = 0, y3(0) = 0.
> odesys :=
diff(y1(t),t)=-0.04*y1(t)+10000*y2(t)*y3(t),
diff(y2(t),t)=0.04*y1(t)-10000*y2(t)*y3(t)-30000000*(y2(t))^2,
diff(y3(t),t)=30000000*(y2(t))^2,
y1(0)=1,y2(0)=0,y3(0)=0:
> sol := dsolve(odesys);

sol :=

The equation can not be solved symbolically. We will try to solve it symbolically,
by using the classical numerical 4th order Runge-Kutta method, which is a build-in
method in Maple.

> rk4_sol:=dsolve(odesys, y1(t),y2(t),y3(t), type=numeric,
method=classical[rk4]);

rk4 sol := proc(x classical) . . . end proc

The system returns a procedure. We can try to plot the solution, but we only get an
empty domain.

> plots[odeplot](rk4_sol, [t,y1(t)], 0..3):

The applied method was not sufficient to solve our problem. Now, let us try the Runge-
Kutta-Fehlberg method and attempt to plot the solution obtained with this method:

> stiffsystem := dsolve(odesys, [y1(t), y2(t), y3(t)], type=numeric,
method=rkf45, maxfun=10000000);
odeplot(stiffsystem, [[t,y2(t)]], 0..300, color=red, thickness=2);
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stiffsystem := proc(x rkf45) . . . end proc
> first:=odeplot(stiffsystem, [[t,y1(t)]], 0..400, color=red, thickness=2):
second:=odeplot(stiffsystem, [[t,y2(t)]], 0..400, color=blue, thickness=2):
third:=odeplot(stiffsystem, [[t,y3(t)]], 0..400, color=green, thickness=2):
display(first,second,third);
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Now we will represent y2 in a separate chart, too.
> odeplot(stiffsystem, [[t,y2(t)]], 0..300, color=red, thickness=2);
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Let’s print the solution as t increases from 0 to 1 by 0.1:
> for dt from 0 by .1 to 1 do
stiffsystem(dt);
od;

[t = 0.0, y1 (t) = 1.0, y2 (t) = 0.0, y3 (t) = 0.0]

[t = 0.1, y1 (t) = 0.9960777477208, y2 (t) = 0.00003583031133739, y3 (t) = 0.00388642196785]

[t = 0.2, y1 (t) = 0.9923059495004, y2 (t) = 0.00003508382572584, y3 (t) = 0.00765896667381]

[t = 0.3, y1 (t) = 0.9886739438331, y2 (t) = 0.00003448771948954, y3 (t) = 0.01129156844737]

[t = 0.4, y1 (t) = 0.9851721212508, y2 (t) = 0.00003387917354246, y3 (t) = 0.01479399957556]

[t = 0.5, y1 (t) = 0.9817917893285, y2 (t) = 0.00003324752784505, y3 (t) = 0.01817496314361]

[t = 0.6, y1 (t) = 0.9785250479311, y2 (t) = 0.00003275930440285, y3 (t) = 0.02144219276444]

[t = 0.7, y1 (t) = 0.9753647478928, y2 (t) = 0.00003217254578857, y3 (t) = 0.02460307956140]

[t = 0.8, y1 (t) = 0.9723043293659, y2 (t) = 0.00003170294102878, y3 (t) = 0.02766396769306]

[t = 0.9, y1 (t) = 0.9693378325648, y2 (t) = 0.00003121807773588, y3 (t) = 0.03063094935742]

[t = 1.0, y1 (t) = 0.9664597871114, y2 (t) = 0.00003071473027384, y3 (t) = 0.03350949815826]

Now choose a different numerical method suitable for stiff equations: Rosenbrock-
type method.

> rosenbrock_sol:=dsolve(odesys, y1(t),y2(t),y3(t), type=numeric,
method=rosenbrock,stiff=true,range=0..300,abserr=0.005):

We can review the solution obtained in this way, as follows:
> for dt from 0 by .1 to 1 do
rosenbrock_sol(dt);
od;

[t = 0.0, y1 (t) = 1.0, y2 (t) = 0.0, y3 (t) = 0.0]

[t = 0.1, y1 (t) = 0.9960780086289, y2 (t) = 0.00003581995877207, y3 (t) = 0.00388617141229]

[t = 0.2, y1 (t) = 0.9923063308204, y2 (t) = 0.00003511810288788, y3 (t) = 0.00765855107670]

[t = 0.3, y1 (t) = 0.9886748264692, y2 (t) = 0.00003447623539990, y3 (t) = 0.01129069729531]

[t = 0.4, y1 (t) = 0.9851753555818, y2 (t) = 0.00003385980894708, y3 (t) = 0.01479078460918]

[t = 0.5, y1 (t) = 0.9817921205970, y2 (t) = 0.00003327528197591, y3 (t) = 0.01817460412099]

[t = 0.6, y1 (t) = 0.9785202166784, y2 (t) = 0.00003272028403325, y3 (t) = 0.02144706303755]

[t = 0.7, y1 (t) = 0.9753547389896, y2 (t) = 0.00003219244466597, y3 (t) = 0.02461306856572]

[t = 0.8, y1 (t) = 0.9722907826942, y2 (t) = 0.00003168939342095, y3 (t) = 0.02767752791231]

[t = 0.9, y1 (t) = 0.9693234429559, y2 (t) = 0.00003120875984504, y3 (t) = 0.03064534828415]

[t = 1.0, y1 (t) = 0.9664478149384, y2 (t) = 0.00003074817348513, y3 (t) = 0.03352143688808]
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A graphical representation of the solution can be obtained via the following commands:
> first’:=plots[odeplot](rosenbrock_sol, [t,y1(t)], 0..300, color=red):
> second’:=plots[odeplot](rosenbrock_sol, [t,y2(t)], 0..300, color=blue,
thickness=2):
> third’:=plots[odeplot](rosenbrock_sol, [t,y3(t)], 0..300, color=green,
thickness=2):
> plots[display](first’, second’, third’);
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Another alternative to solve the stiff system may be the use of the Livermore ODE
solver based on backward differentiation formulas. The solution was depicted in this case
as well.

> stiff back := dsolve(odesys, y1(t), y2(t), y3(t), type=numeric,
method=lsode[backfull]);
odeplot(stiff back, [[t,y1(t)],[t,y2(t)],[t,y3(t)]], 0..300, color=green,
thickness=2);

stiff back := proc(x lsode) . . . end proc
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