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Abstract

The paper deals with a special problem concerning the transport of electrically

charged species via di�usion, drift, and reaction mechanisms. We prove for a variety

of models that without knowing any a priori estimate for the chemical potentials

one can estimate the free energy from above by the corresponding dissipation rate.

The inequality presented here can be interpreted as a nonlinear analogue of Korn's

Inequality or Poincar�e's Inequality. As a consequence of our main result we show

that the free energy approximates its equilibrium value exponentially as time tends

to in�nity.

1. Introduction

In this paper we prove that for many models of reaction{di�usion processes of electri-

cally charged species the free energy can be estimated from above by the corresponding

dissipation rate. Such an estimate is of interest for several reasons.

First we should mention that reaction{di�usion processes of species some of which are

electrically charged take place in many branches of technology, for example in microelec-

tronics.

Next we want to emphazise that by means of our estimate it is easy to show that

the free energy approximates its equilibrium value exponentially as time tends to in�nity.

For this purpose one does not need further upper or lower bounds for concentrations or

chemical potentials. On the contrary, the asymptotic behaviour of the free energy can

be used as a starting point for a Moser iteration leading to L1-bounds for the chemical

potentials.

Finally we note that the inequality we prove can be seen as a nonlinear analogue of

Korn's Inequality and Poincar�e's Inequality. To a certain extent the proof of our main

result follows the proofs of these inequalities. Let us mention that in the �eld of mechanics

another nonlinear analogue of Korn's Inequality has been proved by Kohn [8].

An estimate of the same kind as the main result of this paper had been proved for

reaction{di�usion processes of uncharged species by Gr�oger [5]. For a special case with

only one kind of charged dopants analogous results have been obtained under the so called

electroneutrality condition by [2], [3]. Glitzky and H�unlich [4] present a more general

result with arbitrarily many charged species. They assume that the relations between

chemical potentials and concentrations of the species are governed by Boltzmann statistics.

Moreover, they allow reactions to take place in the interior and on the boundary of the

domain occupied by the species. In the present paper we generalize these ideas to a broader

class of statistics and to more general reaction terms. In addition we include a nonlinear

(capacity) term into the Poisson equation for the electrostatic potential. This allows to

treat models arising by eliminating some of the species (cf. H�ofler, Strecker [7]). Whereas

for Boltzmann statistics concentrations and chemical activities are of the same order of

magnitude, in the general case treated here this is no longer the case. To overcome the
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di�culties related to this fact we need additional a priori estimates. Because we are able

to present satisfactory a priori estimates only for the spatially two-dimensional case we

restrict our considerations from the beginning to that case. Our new a priori estimates are

essentially based on a well known imbedding result by Trudinger (see [11]).

The paper is organized as follows. In Section 2 we introduce the model equations, we

explain the notation adopted in this paper, and we state the basic assumptions with respect

to the data of the problem under consideration. In Section 3 we deal with equilibrium

states. We introduce a class of sets which are invariant with respect to the transient

problem, and we show that each of these classes contains a unique equilibrium state. This

section follows closely to the lines of the corresponding section of [4]. In the last section

we formulate and prove our main result, the estimate of the free energy by the dissipation

rate which leads to the exponential decay of the free energy to its equilibrium value along

trajectories of the system.

2. Model equations, notation, and assumptions

In this section we describe the mathematical model of the processes we are interested in.

Simultaneously, we introduce an appropriate notation and we formulate the assumptions

needed in the main part of the paper.

Let X1; : : : ; Xm be species, and let q1; : : : ; qm be the speci�c charges of X1; : : : ; Xm,

respectively, i.e., let

qi 2 IR; i = 1; : : : ; m; (A1)

be the charge of a mass unit of the species Xi; i = 1; : : : ; m:

We assume that X1; : : : ; Xm occupy 
, where


 is a bounded Lipschitzian domain in IR2: (A2)

As mentioned in the introduction, we restrict our considerations to the two-dimensional

case because only in this case the results we can prove are satisfactory. As ususal, H1(
)

denotes the Sobolev space of square integrable functions on 
 with square integrable

�rst derivatives. For the norm of a function v 2 H1(
) we write kvkH1. We intro-

duce D : H1(
) �! L2(
) by Du := grad u; u 2 H1(
): Because of this de�nition the

adjoint D� of D maps L2(
) into (H1(
))�, the dual of H1(
). If v = (v0; : : : ; vm) then

Dv := (Dv0; : : : ; Dvm): Unless otherwise speci�ed expressions like \measurable" and \al-

most every" refer to the standard Lebesgue measure.

The species X1; : : : ; Xm take part in chemical reactions. Some of these reactions may

be concentrated to the boundary of 
 or to interfaces between di�erent parts of 
. In

order to treat all reactions in a uni�ed manner we proceed in a way which is not standard

but seems to be quite useful. We assume that a measure � on 
 is given such that

�{measurable subsets of 
 are Lebesgue measurable (A3)

and

� � �
; 8u 2 H1(
) : exp(u) 2 L1(
; �);

Z


exp(u)d� � '(kukH1) (A4)
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for some increasing function ' : IR+ �! IR+; here �
 denotes the Lebesgue measure on 
.

An example of such a measure is � = �
+�@
, where �@
 is the standard surface measure

on @
 (cf. [11] and Lemma 1.1 in [4]). For results about the imbedding of H1(
) into Lp-

spaces for di�erent measures � we refer to Mazja [9]. The norm of v 2 Lp(
; �); 1 � p � 1,

will be denoted by kvkp;�: It follows from (A4) that, for 1 � p <1,

8v 2 H1(
) : kvkp;� � cpkvkH1:

As a consequence, each of the spaces Lq(
; �); 1 < q � 1; can be understood as a subspace

of (H1(
))�. The assumption (A3) and the property � � �
 guarantee that each element

of Lp(
; �) can be considered as an element of Lp(
). Later on we shall exploit this fact

tacitly.

The relation between the densities u1; : : : ; um of the species X1; : : : ; Xm and the corre-

sponding chemical potentials v1; : : : ; vm is supposed to be of the form

ui = uigi(vi � vi); i = 1; : : : ; m; (2.1)

where
gi 2 C1(IR); ui 2 L1+ (
; �)nf0g; vi 2 L1(
; �); i = 1; : : : ; m;

lim
y!1

1
ygi(y) = +1; 0 < �minf1; gi(y)g � g0

i
(y) � ��1gi(y);

�minf1; exp(y)g � gi(y) � ��1 exp(y); i = 1; : : : ; m; y 2 IR:

9>>=
>>; (A5)

The functions ui and vi are known reference densities and reference potentials, respectively.

The fact that the reference values may depend on the spatial position expresses the possible

heterogeneity of the system under consideration. The functions gi reect the underlying

statistics. In the case of Boltzmann statistics each gi is the exponential function. Our

assumptions with respect to gi are such that all cases of practical interest are included, in

particular the Fermi{Dirac statistics. In (A5) and in the sequel � denotes an appropriate

strictly positive constant, and the subscript + indicates the standard positive cone in a

space.

With respect to the electrical �eld we assume that it is given as �Dv0, where v0 is the
electrostatic potential. This is a standard assumption in semiconductor theory. It means

that changes of the magnetic �eld are so slowly that they can be neglected. To describe the

ows j1; : : : ; jm of the speciesX1; : : : ; Xm we need the quantities �i := qiv0+vi; i = 1; : : : ; m,

the so called electrochemical potentials of the species. The gradientD�i is to be interpreted

as the driving force for ji. In the simplest case ji is proportional to�uiD�i. We shall assume

that

ji = �di(�; vi; D�i); (2.2)

where di is a given function with the following properties:

di : 
� IR� IR2 �! IR2 is such that

di(x; �; �) : IR� IR2 �! IR2 is continuous for almost every x 2 
;

di(�; y; �) : 
 �! IR2 is measurable for all y 2 IR; � 2 IR2;

�gi(y)j�j2 � di(x; y; �) � �; jdi(x; y; �)j � ��1gi(y)j�j;
for almost every x 2 
; for all y 2 IR; � 2 IR2; i = 1; : : : ; m:

9>>>>>>=
>>>>>>;

(A6)
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These assumptions are such that several cases of practical interest are included. We don't

allow, however, the ow ji to depend on all gradients D�1; : : : ; D�m.

To describe chemical reactions we assume that

R � 6Zm

+ � 6Zm

+ is a �nite subset. (A7)

A pair (�; �) 2 R represents the vectors of stoichiometric coe�cients of a pair of reactions,

usually written in the following form:

�1X1 + � � �+ �mXm
*) �1X1 + � � �+ �mXm:

We shall assume that the net rate of this pair of reactions is of the form k��(a
� � a�),

where k�� is a reaction coe�cient, ai := exp(�i) is the electrochemical activity of Xi,

and a� :=
Q

m

i=1 a
�i

i
. The di�erence of this model to standard mass action kinetics is

that concentrations are replaced by activities. This is necessary for the model to be in

accordance with the Second Law of Thermodynamics (cf. Othmer [10]). With respect to

the reaction coe�cients k��; (�; �) 2 R; we require that

k�� 2 L1+ (
; �)nf0g for (�; �) 2 R: (A8)

Reactions taking place on the boundary @
 can be described by functions k�� supported

on @
: (It was this possibility to treat reactions on the boundary @
 in the same way as

reactions in 
 which lead us to the introduction of the measure �.) The net production

rate of species Xi corresponding to the reaction rates for all reactions taking place is

Ri :=
P

(�;�)2R k��(a
� � a�)(�i � �i).

The continuity equation for the concentrations taking into account reaction, di�usion,

and drift processes can be written as follows:

@ui

@t
�D�ji = Ri; i = 1; : : : ; m: (2.3)

These equations are to be considered as equations for functions of time with values in

(H1(
))�: Note that (2.3) includes what is usually written as a di�erential equation in 


and a boundary condition on @
. With our way of writing the continuity equation we want

to convince the reader that neither from the physical nor from the mathematical point of

view it is necessary to treat separately processes in the interior and on the boundary (or

on interfaces) of 
. By the choice of ui we can model a capability of the boundary (or

interfaces) to store the species temporarily (cf. Remark 4.7 at the end of this paper).

The Poisson equation satis�ed by the electrostatic potential can be written as

D�("Dv0) + e0(�; v0) = u0 :=
mX
i=1

qiui; (2.4)

where " is the dielectric permittivity and e0 is a function modeling capacities (in the interior

or on the boundary of 
). We assume that

" 2 L1(
); " � �; (A9)
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e0 : 
� IR �! IR is such that

e0(x; �) : IR �! IR is continuous for ��almost every x 2 
;

e0(�; y) : 
 �! IR is ��measurable for every y 2 IR;

je0(x; y)j � exp(��1(jyj+ 1)); e0(x; y)� e0(x; �) � u0(x)(y � �)

for y > �; x 2 
; and some u0 2 L1+ (
; �)nf0g:

9>>>>>>=
>>>>>>;

(A10)

In order to give a more precise formulation of the equations (2.3), (2.4) we introduce the

following spaces:

V := H1(
; IRm+1); W := fv 2 V : exp(vi) 2 L1(
); i = 1; : : : ; mg ; (2.5)

S := spanf�� � : (�; �) 2 Rg; S? := orthogonal complement of S in IRm: (2.6)

In addition to (A1) { (A10) we assume that we are given u0 2 V � such that

u0 = (u00; u
0
1; : : : ; u

0
m
); u00 =

mX
i=1

qiu
0
i
; u0

i
� 0; i = 1; : : : ; m;

mX
i=1

�i
D
u0
i
; 1
E
> 0 if � = (�1; : : : ; �m) 2 S?+nf0g:

9>>>>=
>>>>;

(A11)

As usual, V � denotes the space dual to V , and 1 means the constant function on 
 taking

the value 1. (Generally we shall use the same notation for a constant function and its

value. This should not lead to misunderstandings.) Note that the last assumption with

respect to u0 is satis�ed if u0
i
� 0; u0

i
6= 0; i = 1; : : : ; m. The element u0 plays the rôle of

an initial value for the vector function u := (u0; : : : ; um).

Next we de�ne operators L : V �! H1(
; IRm), A : W �! V �, and E : V �! V � as

follows:

Lv := (v1 + q1v0; : : : ; vm + qmv0) for v = (v0; : : : ; vm) 2 V; (2.7)

hAw; vi :=

Z



mX
i=1

di(�; wi; DLiw) �DLiv dx

+

Z



X
(�;�)2R

k��(a
� � a�)(�� �) � Lv d� for w 2 W; v 2 V; (2.8)

where a := (exp(L1w); : : : ; exp(Lmw));

hE0v0; w0i :=
Z


"Dv0 �Dw0dx+

Z


e0(�; v0)w0d� for v0; w0 2 H1(
); (2.9)

Ev := (E0v0; e1(�; v1); : : : ; em(�; vm)) for v 2 V; (2.10)

where

ei(x; y) := ui(x)gi(y � vi(x)) for x 2 
; y 2 IR; i = 1; : : : ; m: (2.11)

Using (A9) and (A10) one can easily prove that E0 : H1(
) �! H1(
)� is strongly

monotone, i.e., there exists  > 0 such that

hE0v0 � E0w0; v0 � w0i � kv0 � w0k2H1 for v0; w0 2 H1(
): (2.12)
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Now we are able to write the transient problem (2.1) { (2.4) more precisely as follows:

We are looking for functions u 2 H1
loc
(IR+;V

�); v 2 L2
loc
(IR+;V ) \ L1loc(IR+;W ) such that

du

dt
(t) + Av(t) = 0; u(t) = Ev(t) for a.e. t 2 IR+; u(0) = u0: (2.13)

For v 2 V (and � := Lv) the value

�(v) :=

Z



mX
i=1

di(�; vi; D�i) �D�idx +
Z



X
(�;�)2R

k��(e
��� � e���)(�� �) � �d� (2.14)

(which may be +1) will be called the dissipation rate associated to v. The reason for this

terminology is the following. If (u; v) is a solution to the initial value problem (2.13) then

�(v(t)) = hAv(t); v(t)i = �
*
du

dt
(t); v(t)

+
;

and in thermodynamics this expression is the dissipation rate of the process governed by

(2.13) at time t.

To de�ne the free energy of a state of the system under consideration we �rst introduce

a functional G : V �! IR as follows:

G(v) :=

Z



"

2
jDv0j2dx+

mX
i=0

Z



Z
vi

0
ei(�; y)dy d�: (2.15)

It is easy to check that G is convex and that G0 = E, i.e., the operator E (cf. (2.9) {

(2.11)) is the Gâteaux derivative of G. The conjugate of the functional G will be denoted

by F . For u 2 V � the value F (u) is to be interpreted as the free energy of the state u. It

is given by

F (u) := sup
v2V

fhu; vi �G(v)g: (2.16)

As mentioned in the introduction we are mainly interested in a relation between the free

energy and the dissipation rate. To describe this relation we need some information about

stationary solutions to (2.13).

3. Equilibria

First we de�ne

U :=

(
u 2 V � : u0 =

mX
i=1

qiui; (hu1; 1i ; : : : ; hum; 1i) 2 S
)
: (3.1)

The importance of U lies in the fact that u(t)�u0 2 U for every t > 0 if (u; v) is a solution

to (2.13). Hence, if u� := lim
t!1

u(t) exists, then we have necessarily u� 2 U + u0:
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Remark 3.1. It is easy to check that the set U? := fv 2 V : hu; vi = 0 for every u 2 Ug
can be characterized as follows:

U? = fv 2 V : DLv = 0; Lv 2 S?g:

This will frequently be used throughout the paper.

Theorem 3.2. There exists a unique v� 2 W such that Av� = 0 and u� := Ev� 2 U + u0.

It holds DLv� = 0 and Lv� 2 S?.

Before we prove this theorem we present an auxiliary result.

In the next lemma IU? denotes the indicator functional of U?, i.e., the functional

vanishing on U? and taking the value +1 on V nU?:

Lemma 3.3. The functional G0 := G+ IU?�u0 is proper, convex, and lower semicontin-

uous. It satis�es lim
kvkV!1

G0(v) = +1.

Proof. Only the last assertion needs to be proved, the other properties of G0 are evident.

It is easy to check that, for v 2 U?,

G0(v) � �kv0k2H1 +
mX
i=1

kuiv+i k1;� � c: (3.2)

Here and in the sequel c denotes (not necessarily equal) constants the value of which

is not important and the superscript + indicates the positive part of a function. By

(3.2) it su�ces to show that lim
n!1

G0(vn) = +1 provided that vn 2 U?; kvn0kH1 � c,

kuiv+nik1;� � c; i = 1; : : : ; m; and kvnkV �! 1. Let �n := Lvn: Then D�n = 0 and

�n 2 S? (cf. Remark 3.1). In view of kvnkV �! 1 and kvn0kH1 � c it holds j�nj �! 1.

On the other hand �+ni � v+ni + (qivn0)
+ implies that �+ni � c: Without loss of generality we

may assume that � �n
j�nj �! � in IRm. Then � 2 S?+nf0g; and by means of (A11) and the

boundedness properties of (vn) we derive from the de�nition of G0 that

lim inf
n!1

1

j�nj
G0(vn) �

mX
i=1

�i
D
u0
i
; 1
E
> 0: (3.3)

This is possible only if lim
n!1

G0(vn) = +1: 2

Proof of Theorem 3.2.

1. Let v� be such that G0(v
�) is the minimal value of G0. (By Lemma 3.3 such v� exists.)

Then 0 2 @G0(v
�), where @G0 denotes the subdi�erential of G0. We have

@G0 = E + @IU? � u0; @IU?(v) = U for v 2 U?: (3.4)
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Since necessarily v� 2 U? we �nd 0 = Ev� + u� u0 for some u 2 U . Consequently,

E0v
�

0 = u00 � u0 =
mX
i=1

qi(u
0
i
� ui)

=
mX
i=1

qiei(�; v�i ) =
mX
i=1

qiei(�; ��i � qiv
�

0);

where �� = (��1 ; : : : ; �
�

m
) := Lv�: Standard arguments (test functions like (v�0 � k)+) show

that v�0 2 L1(
; �): This implies that v�
i
= ��

i
� qiv

�

0 2 L1(
; �); i = 1; : : : ; m.

2. Because of D�� = 0 and �� 2 S? we obtain, for every v 2 V ,

hAv�; vi =
Z



mX
i=1

di(�; v�i ; 0) �DLiv dx +
X

(�;�)2R

Z


k��

�
e�

�
�� � e�

�
��
�
(�� �) � Lv d� = 0:

Consequently, Av� = 0:

3. Let Av = 0 and Ev 2 U + u0 for some v 2 V; and let � := Lv: Then

0 = hAv; vi =
Z



mX
i=1

di(�; vi; D�i) �D�idx+
X

(�;�)2R

Z


k��

�
e��� � e���

�
(�� �) � �d�:

In view of (A6) and (A8) we obtain D� = 0 and, for (�; �) 2 R,

k��
�
e��� � e���

�
(�� �) � � = 0:

This is possible only if � 2 S?: With v� as before we have

hEv � Ev�; v � v�i = 0; (3.5)

because Ev � Ev� 2 U and v � v� 2 U?: Hence (cf. the de�nition of E)

0 =

Z


"jD(v0 � v�0)j2dx+

Z


(e0(�; v0)� e0(�; v�0))(v0 � v�0)d�

+
mX
i=1

Z


ui(gi(vi � vi)� gi(v

�

i
� vi))(vi � v�

i
)d�:

Because of the properties of e0 and g1; : : : ; gm required in (A10) and (A5), respectively,

this leads �rst to v0 = v�0 and then to vi(x) = v�
i
(x); i = 1; : : : ; m; for x 2 
i, where


i � 
 is such that �(
i) > 0: Taking into account that, for i = 1; : : : ; m, the functions

�i := vi + qiv0 and ��
i
:= v�

i
+ qiv

�

0 are constant we �nd that vi = v�
i
; i = 1; : : : ; m:

Consequently, the desired result v = v� is true. 2

Lemma 3.4. If v� is the minimal point of G0 then u� := Ev� is the unique minimal point

of F j
U + u0

.

Proof. 1. If u 2 U + u0 then

F (u)� F (u�) = F (u)� hu�; v�i+G(v�)

= F (u)� hu; v�i+G(v�) � 0:
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Here we have used the de�nition of F and the fact that u� u� 2 U and v� 2 U?:

2. If u 2 U + u0 and F (u) = F (u�) then

hu; v�i = hu�; v�i = F (u�) +G(v�) = F (u) +G(v�): (3.6)

This equality is known to be equivalent to u 2 @G(v�): Hence, u = Ev� = u�: 2

Lemma 3.5. Let u = Ev 2 U + u0. Then, for some  > 0,

F (u)� F (u�) � kv0 � v�0k2H1 + 
mX
i=1

k
q
u
i
�
q
u�
i
k22;�: (3.7)

Proof. Under the hypotheses of the lemma we have

F (u)� F (u�) = hu; vi �G(v)� hu�; v�i+G(v�)

= hu; v � v�i �G(v) +G(v�)

=

Z



"

2
jD(v0 � v�0)j2dx+

Z



mX
i=0

Z
vi

v�
i

(ei(�; vi)� ei(�; y))dy d�

� kv0 � v�0k2H1 +

Z



mX
i=1

ui

Z
vi

v�
i

(gi(vi � vi)� gi(y � vi))dy d�:

Moreover,

Z
vi

v�
i

(gi(vi�vi)�gi(y�vi))dy � �

Z
vi

v�
i

 
gi(vi � vi)

gi(y � vi)
� 1

!
g0
i
(y � vi)dy

= �

(
gi(vi�vi) log

gi(vi�vi)
gi(v

�
i �vi)

� gi(vi�vi) + gi(v
�

i
�vi)

)

� �

����
q
gi(vi � vi)�

q
gi(v

�
i � vi)

����2 :
Hence, the assertion (3.7) holds. In the preceding estimate we used the elementary relation

� log
�

�
� � + � �

�q
� �

q
�

�2
for �; � > 0:

2

Remark 3.6. The proof of Lemma 3.5 shows that, for u = Ev 2 U + u0,

Z



mX
i=1

ui log(ui)d� � c(F (u) + 1): (3.8)

Lemma 3.7. Let u = Ev 2 U + u0: Then

F (u)�F (u�) � ckv0�v�0k2H1 + c
mX
i=1

kui�u�
i
k22;�+

Z


(v0�v�0)(e0(�; v0)� e0(�; v�0))d�: (3.9)
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This lemma can be proved similarly as the preceding one. Therefore, we omit the details.

4. Estimation of the Free Energy

Let

M := fu 2 U + u0 : It exists a 2 @IRm

+ such that a� = a� for (�; �) 2 R
and ui = ei(�; log ai � qiE

�1
0 u0) if ai > 0; ui = 0 else, i = 1; : : : ; mg

)
(4.1)

and

RM := inf
u2M

F (u) (RM = +1 if M = ;): (4.2)

Remark 4.1. Obviously, M = ; if there is no a 2 @IRm

+ such that a� = a� for all

(�; �) 2 R. But even if there exists such a 2 @IRm

+ it may happen that there is no u in

U + u0 such that ui = 0() ai = 0. In that case the set M is empty as well.

Theorem 4.2. Let (A1) { (A11) be satis�ed. Moreover, let R < RM be �xed, and let u�

be the same as in the preceding section. Then there exists a constant C such that

F (u)� F (u�) � C�(v)

provided that v 2 V; u = Ev 2 U + u0, and F (u) � R.

Proof. 1. If v 2 V; � = Lv; and a = (exp(�1); : : : ; exp(�m)), then

�(v) =

Z



mX
i=1

di(�; vi; D�i) �D�idx+
Z



X
(�;�)2R

k��(a
� � a�)(�� �) � �d�

�
Z


�

mX
i=1

gi(vi)jD�ij2dx +
Z



X
(�;�)2R

k��
�
a�=2 � a�=2

�2
d� =: �1(v):

Therefore it is su�cient to prove that, under the hypotheses of the theorem,

F (u)� F (u�) � C�1(v): (4.3)

2. We assume (4.3) to be false. Then we can �nd un 2 U + u0; vn 2 V; n 2 IN; such that

un = Evn; F (un) � R; F (un)� F (u�) = Cn�1(vn) > 0; (4.4)

where lim
n!1

Cn = +1: Lemma 3.5, Remark 3.6 and the results of [6] show that

kvn0kH1 + kvn0k1;� +
mX
i=1

kunik1;� � c: (4.5)
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3. Let �n := Lvn. Then

kD�+
ni
k22 �

Z



gi(�
+
ni
)

gi(0)
jD�nij2dx

� c

Z


gi(vni)jD�nij2dx � c�1(vn) (4.6)

� c

Cn

(R� F (u�)) �! 0 as n �!1:

At points x, where ui(x) 6= 0 we have

jui�+nij � jui�nij � cui

����g�1i

�
uni

ui

�
+ vi + qivn0

���� � c(1 + uni):

Hence kui�+nik1;� � c and k�+
ni
kH1 � c (cf. (4.5) and (4.6)). Setting ani := exp(�ni) we

obtain by Trudinger's imbedding theorem that

kanikp � k1 + exp(�+
ni
)kp � cp; i = 1; : : : ; m; p 2 [1;1[:

Using (A5) and (4.5) we �nd that

aniq
gi(vni)

� c
exp(�ni)q
gi(�ni)

� c(ani + 1):

Hence

kDanikr = kaniD�nikr � ckani + 1kpk
q
gi(vni)D�nik2 � c�1(vn); (4.7)

provided that 1
r = 1

2 + 1
p . The right hand side of (4.7) converges to 0 as n �! 1 (cf.

(4.6)). Passing to a subsequence if necessary we may assume that

an �! a in W 1;r(
; IRm); r 2 [1; 2[; vn0 ��* v0 in H1(
);

where Da = 0. In addition we may assume that the sequence (an) converges pointwise

almost everywhere (with respect to �) to a. It is easy to check that

(a�=2
n

� a�=2
n

)2 �! (a�=2 � a�=2)2

in W 1;r(
); if r < 2. Therefore,

Z


k��(a

�=2
n

� a�=2
n

)2d� �!
Z


k��d�(a

�=2 � a�=2)2:

Since, for (�; �) 2 R;

0 �
Z


k��(a

�=2
n

� a�=2
n

)2d� � �1(vn) �
1

Cn

(R� F (u�)) �! 0;

we have necessarily

8(�; �) 2 R : a� = a�: (4.8)
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4. We de�ne

ui := ei(�; log(ai)� qiv0) if ai 6= 0; ui := 0 if ai = 0: (4.9)

If ui 6= 0 then

juni � uij � cjgi(log(ani)� qivn0 � vi)� gi(log(ai)� qiv0 � vi)j
� cj exp(log(ani)� qivn0 � vi)� exp(log(ai)� qiv0 � vi)j (4.10)

� c(jani � aij+ (ani + 1)jvn0 � v0j):

This kind of estimate for juni�uij is true also if ui = 0. Since the right hand side of (4.10)

converges to 0 in Lp(
; �) for every �nite p as n tends to 1, we have

uni �! ui in Lp(
; �); 1 � p <1:

5. Next we de�ne u0 :=
P

m

i=1 qiui and u := (u0; u1; : : : ; um). Starting from un 2 U + u0

and E0vn0 = un0 we obtain in passing to the limit

u 2 U + u0; E0v0 = u0:

The operator E�1
0 : H1(
)� �! H1(
) being the inverse of a strongly monotone operator

is Lipschitzian. Therefore, the sequence (vn0) = (E�1
0 un0) converges strongly in H1(
) to

v0. Moreover, due to the lower semicontinuity of F on V �,

F (u) � lim inf
n!1

F (un) � R < RM:

Therefore, u =2 M (cf. (4.1),(4.2)). This is possible only if ai > 0, i = 1; : : : ; m: Setting

�i := log(ai); vi := �i�qiv0; i = 1; : : : ; m; we get v := (v0; v1; : : : ; vm) 2 V , u = Ev 2 U+u0,

and Av = 0. By Theorem 3.2 we conclude that v = v� and u = u�.

6. In view of the convergence properties of the sequences (vn0) and (un) we have (cf.

Lemma 3.5, Lemma 3.7)

�n :=
q
F (un)� F (u�) �! 0 as n �!1: (4.11)

Furthermore (cf. (4.4)),

1

Cn

=
1

�2
n

�1(vn) �
Z


�gi(vni)

�����D�ni�n

�����
2

dx+

Z



X
(�;�)2R

k��

�2
n

�
a�=2
n

� a�=2
n

�2
d�: (4.12)

We introduce

~vn0 :=
1

�n
(vn0 � v0); ~un :=

1

�n
(un � u); bni :=

1

�n

�sani

ai
� 1

�
; i = 1; : : : ; m:

Lemma 3.5 shows that (~vn0) is bounded in H1(
) and that

k~unik3=2;� = k 1

�n
(
p
uni �

p
ui)(

p
uni +

p
ui)k3=2;�

� k 1

�n
(
p
uni �

p
ui)k2;�k(

p
uni +

p
ui)k6;� � c:
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At points x where ui(x) 6= 0 we have

jani � aij =

����exp
�
g�1
i

�
uni

ui

�
+ vi + qivn0

�
� exp

�
g�1
i

�
ui

ui

�
+ vi + qiv0

�����
� c(ani + 1)

juni � uij
ui

+ cjvn0 � v0j:

Therefore,

kuibnik1;� � ckani + 1k3;�k~unik3=2;� + ck~vn0kH1:

Using

Dbni =
1

2�n

s
ani

ai
D�ni =

1

2�n

s
ani

aigi(vni)

q
gi(vni)D�ni

and
ani

gi(vni)
� c

ani

gi(�ni)
� c(ani + 1)

we �nd

kDbnikr � ckani + 1kp


q
gi(vni)D�ni

�n


2

� c

Cn

provided that 1
r = 1

2 + 1
p . By means of (4.10) we obtain

j~unij � c

����ani � ai

�n

����+ c(ani + 1)j~vn0j � c(
p
ani +

p
ai)jbnij+ c(ani + 1)j~vn0j: (4.13)

The preceding estimates show that, passing to a subsequence if necessary, we may assume

that

bni �! bi in W 1;r(
); r < 2;

~vn0 ��* ~v0 in H1(
); ~un ��* ~u in Lp(
; �; IRm+1); 1 � p <1;

and that the sequences (bni); (~vn0) converge pointwise almost everywhere with respect to

� in 
.

7. In view of un 2 U +u0 we have 1
�n

(un�u) 2 U: Passing to the limit we �nd that ~u 2 U:

In particular, �Z


~u1d�; : : : ;

Z


~umd�

�
2 S: (4.14)

On account of the de�nition of bni we have, for (�; �) 2 R,

a��
�
a�=2
n

� a�=2
n

�2
=

 
mY
i=1

(�nbni + 1)�i �
mY
i=1

(�nbni + 1)�i

!2

=
�
�n

mX
i=1

bni(�i � �i)
�2

+Qn;

9>>>>=
>>>>;

(4.15)

where

jQnj � c�3
n
(jbnj+ 1)p0; 0 � p0 � 2 max

(�;�)2R
max

(
mX
i=1

�i;
mX
i=1

�i

)
:
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Recalling that �n �! 0 as n �!1, we �nd that

1

�2
n

kQnk1;� � c�n

Z


(jbnj+ 1)p0d� �! 0 as n �!1:

This result combined with (4.12), (4.15) gives, for (�; �) 2 R;

lim
n!1

Z


k��

� mX
i=1

bni(�i � �i)
�2
d� = 0:

Hence

b := (b1; : : : ; bm) 2 S?: (4.16)

8. Letting n �!1 in the equation

~uni =
ui

�n

�
gi(log(ani)� qivn0 � vi)� gi(log(ai)� qiv0 � vi)

�

we �nd

~ui = uig
0

i
(log(ai)� qiv0 � vi)(2bi � qi~v0) = uig

0

i
(vi � vi)(2bi � qi~v0): (4.17)

This relation will be used in the next step of the proof.

9. The equations satis�ed by vn0 and v0, respectively, imply that, for some  > 0,



�
kvn0 � v0k2H1 +

Z


(e0(�; vn0)� e0(�; v0))(vn0 � v0)d�

�

� hE0vn0 � E0v0; vn0 � v0i =
mX
i=1

Z


qi(uni � ui)(vn0 � v0) d�: (4.18)

Dividing by �2
n
and passing to the limit as n �!1, we obtain,

k~v0k2H1 �
mX
i=1

Z


qi~ui~v0 d�:

Using (4.14), (4.16), and (4.17) we derive from the preceding inequality that

k~v0k2H1 �
mX
i=1

Z


~ui(qi~v0 � 2bi) d� = �

mX
i=1

Z


uig

0

i
(vi � vi)(qi~v0 � 2bi)

2d� � 0:

Hence ~v0 = 0, b = 0, and ~u = 0.

10. Dividing (4.18) by �2
n
we �nd that the sequence (~vn0) converges strongly in H1(
) to

~v0 = 0: Moreover, we obtain

lim
n!1

Z



1

�n
(e0(�; vn0)� e0(�; v0))~vn0d� = 0:

By (4.13)

j~unij � c(
p
ani + 1)jbnij+ c(ani + 1)j~vn0j:

14



Hence ~un �! 0 in Lp(
; �; IRm+1) for every �nite p. By de�nition of �n (cf. (4.11)) and

Lemma 3.7

1 =
1

�2
n

(F (un)� F (u�)) � c
�
k~vn0k2H1 +

mX
i=1

k~unik22;�
�
+

Z



1

�n
(e0(�; vn0)� e0(�; v0))~vn0d�:

Because of the preceding results the right hand side converges to 0 as n �! 1. This

contradiction shows that the assumption made in the beginning of the second step of the

proof was wrong, i.e., (4.3) holds, and the proof is complete. 2

The estimate of the free energy by the dissipation rate of Theorem 4.2 can be used to

prove the exponential decay of the free energy to its equilibrium value along any trajectory

of the problem (2.13).

Theorem 4.3. Let (A1) { (A11) be satis�ed, let (u; v) be a solution to the initial value

problem (2.13), and let u� have the same meaning as in Section 3. For the initial value u0

we suppose that F (u0) < RM. Then there exists � > 0 such that, for t � � � 0,

F (u(t))� F (u�) � exp(��(t� �))(F (u(�))� F (u�)):

Proof. If (u; v) is a solution to (2.13), then v(t) = E�1u(t) 2 @F (u(t)) for a.e. t 2 IR+,

and for � 2 IR we obtain (cf. Br�ezis [1], Lemma 3.3)

exp(� t)(F (u(t))� F (u�))� exp(� �)(F (u(�))� F (u�))

=

Z
t

�

exp(� s)
n
�(F (u(s))� F (u�)) + hu0(s); v(s)i

o
ds

(4.19)

=

Z
t

�

exp(� s)
n
�(F (u(s))� F (u�))� hA(v(s)); v(s)i

o
ds

=

Z
t

�

exp(� s)
n
�(F (u(s))� F (u�))� �(v(s))

o
ds:

Setting � = 0, � = 0 in (4.19) we �nd

8t 2 IR+ : F (u(t)) � F (u0) < RM:

Since v(s) 2 V , u(s) = Ev(s) 2 U + u0 for a.e. s 2 IR+ we conclude by Theorem 4.2 that

F (u(s))� F (u�) � C �(v(s)) for a.e. s 2 IR+:

Using now (4.19) with � = 1=C we complete the proof. 2

Finally we want to comment the hypotheses under which we proved Theorem 4.2.

Remark 4.4. In all cases of practical relevance we are aware of in semiconductor tech-

nology the setM de�ned in (4.1) is empty. In these cases RM = +1, and the assumption

F (u0) < RM means no restriction, i.e., Theorem 4.3 gives a global asymptotic stability

result. If M is not empty we can prove the exponential decay of the free energy only for

initial values u0 near the equilibrium state u�. In that case Theorem 4.3 contains at least

a result on local asymptotic stability.
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Remark 4.5. Theorem 4.2 remains true if the reaction coe�cients k�� depend continu-

ously on the electrostatic potential. This means that k�� in the de�nition of the operator

A (cf. (2.8)) is to be replaced by k��(�; v0) and instead of (A8) we have to assume that

k�� : 
� IR �! IR+ is such that

k��(x; �) 2 C(IR) for �{almost every x 2 
;

k��(�; s) 2 L1+ (
; �)nf0g for every s 2 IR:

(It is not necessary to impose a growth condition on k��, if the domain of de�nition of A

is modi�ed slightly.) One may also allow k�� to depend on the potentials v1; : : : ; vm if only

the values of k�� can be estimated independently of these potentials.

Remark 4.6. One could admit more general functions e1; : : : ; em than those described by

(2.11) and (A5). We don't go into details here because all functions we met in applications

satisfy our hypotheses.

Remark 4.7. We could treat also systems where in addition to the di�usion in 
 other

di�usion processes take place on the surface @
 or on interfaces because the additional

processes lead to an increase of the dissipation rate.
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