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Abstract

This paper deals with the qualitative properties of an n-dimensional autonomous system

of differential equations, modeling the general ratio-dependent predator-prey interaction.

Key words and phrases: Predator-prey system, Functional response, Sign stability, Ratio depen-

dence
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1 Introduction

Let us consider the following ecological system, in which n different predator species are (the i-th

predator quantities at time t are denoted by yi(t), i = 1, 2, . . . , n respectively) competing for a

single prey species (the quantity of prey at time t is denoted by x(t)):

ẋ = rxg(x, K) −
n∑

i=1

yipi(x, yi, ai)

ẏi = yipi(x, yi, ai) − diyi, i = 1, 2, . . . , n

⎫⎪⎬
⎪⎭ , (1)

where dot means differentiation with respect to time t. We assume that the per capita growth

rate of prey in absence of predators is rg(x, K) where r is a positive constant (in fact the maximal

growth rate of prey), K > 0 is the carrying capacity of environment with respect to the prey, the

function g satisfies the conditions g ∈ C2 ((0,∞) × (0,∞), R), g ∈ C0 ([0,∞) × (0,∞), R),

g(0, K) = 1, g′
x(x, K) < 0 < g′′

xK(x, K), x > 0, K > 0 (2)

lim
K→∞

g′(x, K) = 0 (3)

uniformly in [δ, x0] for any 0 < δ < x0, and the (possibly) improper integral

∫ x0

0

g′
x(x, K)dx is

uniformly convergent in [K0,∞) for any K0 > 0,

(K − x)g(x, K) > 0, x ≥ 0, K > 0. (4)

The so called logistic growth rate of prey

g(x, K) = 1 − x

K
(5)

satisfies the conditions (2)-(4) (cf. [8], [9]).

We assume further that the death rate di > 0 of predator i is constant and the per capita birth
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rate of the same predator is pi(x, yi, ai) where the function pi satisfies the following conditions:

pi ∈ C1 ((0,∞) × (0,∞), R), pi ∈ C0 ([0,∞) × (0,∞), R),

pi(0, yi, ai) = 0, p′ix(x, yi, ai) > 0, x > 0, ai > 0, (6)

p′ix(x, yi, ai) <
pi(x, yi, ai)

x
, x > 0, ai > 0, (7)

p′iai
(x, yi, ai) ≤ 0, x > o, ai > 0. (8)

Finally, we assume that the presence of predators decreases the growth rate of prey by the amount

equal to the birth rate of the respective predator. The conditions (2)-(4) are the same as those in

[8], and conditions (6)-(8) are the generalized case of the per capita birth rate pi for that case when

it depends also on the i-th predator. Thus, we can disregard the detailed interpretation of these

conditions. We focus on the function p now. The constant ai is the ”half-saturation constant”,

namely in the case where pi is a bounded function for fixed ai > 0, mi = sup
x,yi>0

pi(x, yi, ai) is the

”maximal birth rate” of the i-th predator (mi can be infinity if p is unbounded). For the survival

of predator i it is, clearly, necessary that the maximal birth rate be larger, than the death rate:

mi > di. (9)

This will be assumed in the sequel.

Let us make an overview of the concrete functions pi which were used before. The so called Holling

II functional response was used in [10]:

pi(x, ai) = mi
x

ai + x
, (10)

the Holling III functional response can be found for example in [11]:

pi(x, ai) = mi
xn

an
i + xn

(11)
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and the Ivlev functional response is (cf. [18], [16]):

pi(x, ai) = mi

(
1 − e

− x
ai

)
. (12)

If, in particular, pi(x, yi, ai) := pi

(yi

x
, ai

)
then this case is called a ratio-dependent model. The

Michaelis-Menten functional response is, (see for example [14], [20])

pi

(yi

x
, ai

)
= mi

x

aiyi + x
. (13)

Analogously, we may write the ratio-dependent Ivlev functional response in the following form:

pi

(yi

x
, ai

)
= mi

(
1 − e

− x
aiyi

)
(14)

which has not been applied yet. Model (1) is called non-degenerate, if the function pi is given by

(10)-(12) according to the fact, that

(
pi(x, ai)

pj(x, aj)

)′

x

�= 0 if ai �= aj as it was defined in [8]. We may

generalize this property in the following way:

Definition 1.1. The ratio-dependent functional response pi(
yi

x
, ai) is called non-degenerate, if⎛

⎝ pi

(yi

x
, ai

)
pj

(yi

x
, aj

)
⎞
⎠

′

x

�= 0 for aiyi �= ajyj.

Theorem 1.1. The Michaelis-Menten functional response given by (13) is non-degenerate.

Proof.

pi
′
x

(yi

x
, ai

)
pj

(yj

x
, aj

)
− pj

′
x

(yj

x
, aj

)
pi

(yi

x
, ai

)

=
mimjx

2

(aiyi + x)2(ajyj + x)2
(aiyi − ajyj) �= 0 (aiyi �= ajyj).

Theorem 1.2. The ratio-dependent Ivlev functional response given by (14) is non-degenerate.
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Proof.

pi
′
x

(yi

x
, ai

)
pj

(yj

x
, aj

)
− pj

′
x

(yj

x
, aj

)
pi

(yi

x
, ai

)

=
mimj

x

(
x

aiyi

e
− x

aiyi

(
1 − e

− x
ajyj

)
− x

ajyj

e
− x

ajyj

(
1 − e

− x
aiyi

))
�= 0 (aiyi �= ajyj),

because using the notation α :=
x

aiyi

�= x

ajyj

=: β it is true that
αe−α

1 − e−α
�= βe−β

1 − e−β
because

the function f(x) :≡ xe−x

1 − e−x
is a strictly monotone decreasing function on the non-negative half

line.

Paper [10] deals with the qualitative behavior of system (1) in case of (5) and (10) when n = 3.

Paper [16] deals with the qualitative behavior of the system (1) in case of (5) and (12) when n = 3.

The general case of the system (1) can be found in [8] when n = 3.

It was shown that the origin, the point (K, 0, 0) and the point E∗ (where E∗ can be any point of a

segment, called a ”zip”) are equilibrium points of the system. In these cases all the points of this

segment are stable when K is in an interval, relatively low. If K increases and leaves this interval

then the points of the segment are continuously losing the stability starting from an endpoint of

the segment to the other one. This process is the zip bifurcation. This is a paradox of enrichment,

namely the increasing of the carrying capacity destabilizes the system. One of the predators is

called a K-strategist, if it has a relatively low growth rate and may survive with low carrying

capacity K. A species is an r-strategist if it has a high growth rate, see in [18], [9]. When x = ai,

then the per capita growth rate is half of the maximal. The lower the half saturation constant

ai is, the less prey is needed for the maintenance of the predator. Therefore, a predator with

low half saturation constant is a K-strategist. It was shown that as K grew the K-strategist lost

ground and only the r-strategist survived with the prey. If the model is degenerated, for example
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in case of Rosenzweig model, see in [16], the zip bifurcation does not occur. The phenomenon was

generalized to a four-dimensional case using (11) see in [11]. This is a so called velcro bifurcation.

There are more general results for the (n + 1)-dimensional case using (10), see in [12]. We note,

that these models are structurally unstable, because these systems have zero eigenvalues.

If we use the function (13) we get a ratio-dependent predator-prey system which is capable of

producing richer and more reasonable or acceptable dynamics. Originally in [3] it was suggested

that the functional response should be expressed in terms of the ratio of prey to predators. A

similar feeding equation was proposed previously in [6] (c.f. [4]). There is a growing biological and

physiological evidence [1], [2], [7] that in many situations (when competition for food is very sharp),

a more suitable general predator-prey theory should be based on the ratio-dependent theory. There

are more general cases of ratio-dependence, see in [17]. These ratio-dependent systems are two-

dimensional models. There are some results for three-dimensional cases using (13), see in [14], [5],

also results for n-dimensional food-chain model in case of (13), see in [21].

Our aim is in this paper to give a survey of the qualitative behavior of the (n + 1)-dimensional

ratio-dependent n predator one prey models. We will show a new class of these models, namely

using (14). We will show the common property of the ratio-dependence in the most general non-

degenerate case. We will discuss the difference between the general functional response with and

without ratio-dependence using the investigation of the graphs of its interaction matrices. We will

give sufficient conditions of sign-stability (cf. [15]).
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2 The Michaelis-Menten type functional response

2.1 The 3-dimensional case

Let us consider the system (1) in case of (5) and (13). We get:

ẋ = rx
(
1 − x

K

)
− m1

xy1

a1y1 + x
− m2

xy2

a2y2 + x

ẏ1 = m1
xy1

a1y1 + x
− d1y1

ẏ2 = m2
xy2

a2y2 + x
− d2y2

⎫⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎭

. (15)

The domain of definition of (15) is {(x, y1, y2)| x2 +y2
1 > 0, x2 +y2

2 > 0} which can be extended for

R
3
+ = {(x, y1, y2)| x ≥ 0, y1 ≥ 0, y2 ≥ 0} by ẋ = 0, ẏi = 0 if x2 + y2

i = 0 for any i, i = 1, 2. In this

case the system is called an extended system of (15). Note, the extended system is continuous on

R
3
+. The righthand sides of (15) are smooth functions, therefore the positive octant of the interior

of R
3
+ is an invariant region (see [19]).

Lemma 2.1. The system (15) is dissipative, i.e. all solutions are bounded.

Proof. Clearly,

ẋ ≤ rx
(
1 − x

K

)
,

implying that

lim
t→+∞

sup x(t) ≤ K.

It means that for any 0 < ε < 1, we have x(t) < K + ε for large t. If we add the three equations

of (15) then we have

(x + y1 + y2)
· = ẋ + ẏ1 + ẏ2 = rx

(
1 − x

K

)
− d1y1 − d2y2,
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which implies that there exists a constant C > 0 such that all trajectories initiated in R
3
+ enter

the symplectical region

Ω :=
{
(x, y1, y2) ∈ R

3
+| x + y1 + y2 ≤ C + ε for any ε > 0

}
.

The extended system has four equilibria in the boundary of R
3
+, namely E0(0, 0, 0), E1(K, 0, 0),

E2
i (x̂, ŷ1, ŷ2), i = 1, 2, where

x̂ = K

(
1 − 1

r

mi − di

ai

)
, if

mi − di

ai
< r, ŷi =

mi − di

diai
x̂, if mi > di, ŷj = 0 i = 1 or 2, j = 2 or 1

and j �= i.

Linearizing (15) in E1 we get the following interaction matrix:⎡
⎢⎢⎢⎣

−r −m1 −m2

0 m1 − d1 0

0 0 m2 − d2

⎤
⎥⎥⎥⎦ (16)

which is unstable for mi > di and asymptotically stable for mi < di. This is natural, because in

case of mi < di the necessary condition of the survival of the predator i does not hold (i = 1, 2).

Linearizing (15) in E2
1 , (ŷ1 �= 0, ŷ2 = 0, analogously the case ŷ1 = 0, ŷ2 �= 0) we get the following

interaction matrix: ⎡
⎢⎢⎢⎢⎢⎣

r − 2rx̂

K
− m1a1ŷ

2
1

(a1ŷ1 + x̂)2
− m1x̂

2

(a1ŷ1 + x̂)2
−m2

a1m1ŷ
2
1

(a1ŷ1 + x̂)2
− m1a1x̂ŷ1

(a1ŷ1 + x̂)2
0

0 0 m2 − d2

⎤
⎥⎥⎥⎥⎥⎦ . (17)

This matrix is unstable for m2 > d2 and asymptotically stable for m2 < d2 and r − 2rx̂

K
−

m1a1ŷ
2
1

(a1ŷ1 + x̂)2
≤ 0. The meaning of this latter condition will be clear in the following. The condition
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m2 < d2 means that predator 2 cannot survive.

In order to study the stability of E0 we introduce the variables: zi =
yi

x
, i = 1, 2, that are the

quantities of predators respective to a unit quantity of prey. Thus, we can transform the system

(15) into the following form:

ẋ = x

(
r
(
1 − x

K

)
−

2∑
j=1

zj
mj

ajzj + 1

)

żi = zi

(
mi

aizi + 1
− di − r

(
1 − x

K

)
+

2∑
j=1

zj
mj

ajzj + 1

)
, i = 1, 2.

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

(18)

This system has no singularity at (0, 0, 0). We can linearize it. We get:

⎡
⎢⎢⎢⎣

r 0 0

0 m1 − d1 − r 0

0 0 m2 − d2 − r

⎤
⎥⎥⎥⎦ . (19)

This matrix is unstable for any r > 0, independently of mi − di.

The most interesting equilibrium point of (15) is the point E∗(x∗, y∗
1, y

∗
2) where

x∗ = K

(
1 − 1

r

2∑
i=1

mi − di

ai

)
, y∗

i =
mi − di

diai
x∗, (20)

that represents the coexistence of all the species. We are going to study the stability.

E∗ is in the positive octant if
2∑

i=1

mi − di

ai
< r. (21)

mi − di is the maximal growth rate of the predator i. (21) means that the sum of the ratios of the

growth rates and half saturation constants of the predators is less than the intrinsic growth rate

of the prey. This is natural, because if the growth rate of predators were high it would result in

a too fast decreasing of prey, and too low half saturation constants of predators mean that they
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increase under low quantity of prey relative to predator. Both cases involve the too fast decreasing

of prey.

Now the K-, and r-strategist have different roles. In paper [8] ai was the half saturation constant

and it meant the quantity of prey at which the birth rate of predator i was half of its supremum.

Now the supremum of the birth rate of the predator i remained mi. The function pi tends to its

supremum when
x

yi
→ ∞. But the per capita birth rate is half of the supremum

(
ẏi

yi
=

mi

2

)
,

when
x

yi

= ai i.e. ai means a proportion of prey to predator at which the birth rate is half of its

supremum. In the paper cited the predator was called r-strategist whose half saturation constant

was greater, the other one was called K-strategist. Now, we maintain the name r-strategist for the

predator that has higher half saturation constant. Thus, we call predator 1 the r-strategist and

predator 2 the K-strategist when a1 > a2. At the same time the r-strategist should have a higher

birth rate-death rate ratio:
m1

d1

>
m2

d2

(see [9]). However, now the inequality

m1

d1
− 1

a1
>

m2

d2
− 1

a2

should also hold for the advantage of the r-strategist over the K-strategist. This shows that the

ratio-dependence has finer properties than older models.

In order to consider the stability of E∗ let us linearize (15) in E∗. We get the following interaction

matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎣

x∗
(
− r

K
+

m1y
∗
1

(a1y∗
1 + x∗)2

+
m2y

∗
2

(a2y∗
2 + x∗)2

)
− m1x

∗2

(a1y∗
1 + x∗)2

− m2x
∗2

(a2y∗
2 + x∗)2

a1m1y
∗
1
2

(a1y
∗
1 + x∗)2

− m1a1x
∗y∗

1

(a1y
∗
1 + x∗)2

0

a2m2y
∗
2
2

(a2y
∗
2 + x∗)2

0 − m2a2x
∗y∗

2

(a2y
∗
2 + x∗)2

⎤
⎥⎥⎥⎥⎥⎥⎦

. (22)

Theorem 2.1. (22) is sign-stable and E∗ is an asymptotically stable equilibrium point of system
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(15) if
2∑

i=1

m2
i − d2

i

aimi

≤ r. (23)

Proof. After a short calculation we get, the entries of the main diagonal of (22) are non-positive

under conditions (21), (23). The products of the entries symmetrical to the main diagonal are

trivially negative or zero. The graph of (22) is a tree. Both the ε- and the δ-coloring of the graph

are trivial, thus, Theorem 2.6 of [15] holds.

(23) can be written in the following form:

2∑
i=1

mi − di

ai

(
1 +

di

mi

)
≤ r,

thus, it implies (21). Condition (23) means that the prey reproduces well but the predators

not as much. Apart from this the parameters may assume arbitrary feasible value. In this case

the equilibrium point E∗ is asymptotically stable for any K. Of course x∗ < K implies a limit

for predators too. This is a main difference between the Holling and the ratio-dependent Holling-

Menten models. Moreover ratio-dependence may involve structural stability in the positive octant.

If we compare the graphs of the systems without and with ratio-dependence, it can be seen that

those are the same, but in the first case the zero entries in the main diagonal cause the existence

of nontrivial colorings of it, while with ratio-dependence the behavior of the system is simpler, but

closer to the reality, because the paradox of enrichment cannot occur (cf. [9]).

We show some trajectories in Figure (1) modeling asymptotic stability of E∗.

Now we enter to study the n-dimensional case.
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Figure 1: Time evolution of system (15) when (23) holds.

2.2 The n-dimensional case

Let us consider the generalization of system (15) for dimension n:

ẋ = rx
(
1 − x

K

)
−

n∑
i=1

mi
xyi

aiyi + x

ẏi = mi
xyi

aiyi + x
− diyi, i = 1, . . . , n

⎫⎪⎪⎬
⎪⎪⎭ . (24)

System (24) can be extended the same way as system (15). The equilibrium points of the extension

of (24) on the boundary are E0(0, . . . , 0), E1(K, 0, . . . , 0), E2
i (x̂, ŷ1, . . . , ŷn), where one or more ŷi

is or are equal to zero except at least one. We get easily the following results: The interaction
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matrix in E0 is an unstable diagonal matrix. The interaction matrix in E1 is an upper diagonal

matrix and E1 is asymptotically stable if mi − di < 0 for all i. The interaction matrix in E2 is

such a matrix whose entries at the main diagonal are equal to mi − di if ŷi = 0. If this entries are

negative and the entry in the first row and column are all less or equal to zero then this matrix is

sign stable. (It can be shown the same way as we will prove the following theorem.)

The most interesting equilibrium point is E∗(x∗, y∗
1, . . . , y

∗
n), where

x∗ = K

(
1 − 1

r

n∑
i=1

mi − di

ai

)
, y∗

i =
mi − di

diai
x∗. (25)

Let us study the point E∗. It is in the positive orthant if

n∑
i=1

mi − di

ai
< r. (26)

Let us linearize (24) in E∗. We get the following interaction matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x∗
(
− r

K
+

n∑
i=1

miy
∗
i

(aiy∗
i + x∗)2

)
− m1x

∗2

(a1y∗
1 + x∗)2

. . . . . . − mnx∗2

(any∗
n + x∗)2

a1m1y
∗
1
2

(a1y∗
1 + x∗)2

− m1a1x
∗y∗

1

(a1y∗
1 + x∗)2

0 . . . 0

...
...

...
. . .

...

anmny∗
n

2

(any∗
n + x∗)2

0 . . . 0 − mnanx∗y∗
n

(any∗
n + x∗)2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (27)

Theorem 2.2. (27) is sign-stable and E∗ is an asymptotically stable equilibrium point of system

(24) if
n∑

i=1

m2
i − d2

i

aimi
≤ r. (28)

Proof. Similar to the the 3-dimensional case, the entries of the main diagonal of (27) are non-

positive under conditions (26), (28). The products of the entries symmetrical to the main diagonal

are trivially negative or zero. The graph of (27) is a tree. Both the ε- and the δ-coloring of the

graph are trivial, thus, the Theorem 2.6 of [15] holds again.
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(28) can be written in the following form:

n∑
i=1

mi − di

ai

(
1 +

di

mi

)
≤ r,

thus, it implies (26), and comments similar to those at the end of Section 2.1 can be made. Our

results correspond to Theorem 2.4.2 of [9] because both (15)and (24) are Kolmogorov systems.

This means that the situation can be extended to the case of n prey and one predator. We are

going to publish it in a following paper.

Now we enter to study the 3-dimensional case of ratio-dependent Ivlev functional response.

3 The Ivlev type functional response

3.1 The 3-dimensional case

Let us consider system (1) in case of (5) and (14). We get:

ẋ = rx
(
1 − x

K

)
− m1y1

(
1 − e

− x
a1y1

)
− m2y2

(
1 − e

− x
a2y2

)
ẏ1 = m1y1

(
1 − e

− x
a1y1

)
− d1y1

ẏ2 = m2y2

(
1 − e

− x
a2y2

)
− d2y2

⎫⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎭

. (29)

We consider the equilibrium point in the interior of the positive octant only. (In the interior

of the positive octant the theorem of existence and uniqueness holds. This region is invariant

and the solutions are bounded.) The equilibrium point of the interior of the positive octant is:

E∗(x∗, y∗
1, y

∗
2), where

x∗ = K

(
1 − 1

r

2∑
i=1

di

ai ln
mi

mi−di

)
, y∗

i =
1

ai ln
mi

mi−di

x∗. (30)
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E∗ is in the positive octant if
2∑

i=1

di

ai ln
mi

mi−di

< r. (31)

holds. (The meaning of this condition is similar to the one in case of the Michaelis-Menten model.)

Some words on the role of the K-, and r-strategist: The supremum of the birth rate of the predator

i is mi, pi tends to its supremum when
x

yi
→ ∞ again. But the per capita birth rate is half of

the supremum, when
x

yi ln 2
= ai and ai means a proportion of prey to predator again. We will

call predator 1 an r-strategist, if its half saturation constant is greater. Thus we call predator 1

an r-strategist, and 2 a K-strategist when a1 > a2 according to the earlier. But the r-strategist

should have its birth rate relative to the death rate higher than the K-strategist, namely
m1

d1
>

m2

d2

should hold. The r-strategist has advantage over the K-strategist only if

1

a1 ln m1

m1−d1

>
1

a2 ln m2

m2−d2

,

namely the birth rate relative to the death rate has to be even greater than the ratio of the half

saturation rates. If this does not occur then the r-strategist has no advantage over the K-strategist.

The situation is the same as in case of Michaelis-Menten model.

In order to consider the stability of E∗ let us linearize (29) in E∗. We get the following interaction

matrix:

A =

⎡
⎢⎢⎢⎢⎢⎣

r

(
1 − 2x∗

K

)
− m1 − d1

a1
− m2 − d2

a2
−d1 +

x∗

a1y∗
1

(m1 − d1) −d2 +
x∗

a2y∗
2

(m2 − d2)

m1 − d1

a1

−(m1 − d1) ln
m1

m1 − d1

0

m2 − d2

a2
0 −(m2 − d2) ln

m2

m2 − d2

⎤
⎥⎥⎥⎥⎥⎦ .

(32)

Theorem 3.1. (32) is sign-stable and E∗ is an asymptotically stable equilibrium point of system

(29) if
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2∑
i=1

2di

ai ln
mi

mi−di

− mi − di

ai
≤ r. (33)

Proof. A short calculation shows that the entries of the main diagonal of (32) are non-positive

under the conditions (31),(33). The products of the entries symmetrical to the main diagonal are

negative (or zero) if −di +
x∗

aiy∗
i

(mi − di) < 0 holds. To see this:

x∗

aiy
∗
i

< ln
mi

mi − di

= ln

(
1 +

di

mi − di

)
<

di

mi − di

.

The graph of (32) is a tree. Both of the ε- and the δ-coloring of the graph are trivial, thus, Theorem

2.6 of [15] holds.

Comparing (31) and (33), we get that (33) is stricter. In order to see this, we show, that

di

ln mi

mi−di

> mi−di. Rearranging the trivially true inequality ln
mi

mi − di
<

mi

mi − di
−1 the previous

statement follows.

(33) means that if the the prey reproduces well but the predators not as much then the equilibrium

point E∗ is asymptotically stable for any K. Of course x∗ < K. This is a main difference be-

tween the Ivlev and the ratio-dependent Ivlev models. Moreover ratio-dependence may involve the

structural stability. If we compare the graphs of the system with and without ratio-dependence,

it can be seen again that those are the same, but in the latter case the zero entries in the main

diagonal cause the existence of trivial colorings of it, while with ratio-dependence the behavior of

the system is simpler, but perhaps closer to the reality, because the paradox of enrichment cannot

occur (cf. [16]).

We show some trajectories in Figure 2 modeling asymptotic stability of E∗.
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Figure 2: Time evolution of system (29) when (33) holds.

Now we turn to the study of the n-dimensional case of the ratio-dependent Ivlev model. We

state our results briefly, because those are direct generalizations of this Section.

3.2 The n-dimensional case

Let us consider generalization of system (29) for dimension n:

ẋ = rx
(
1 − x

K

)− n∑
i=1

miyi

(
1 − e

− x
aiyi

)
ẏi = miyi

(
1 − e

− x
aiyi

)
− diyi, i = 1, . . . , n

⎫⎪⎪⎬
⎪⎪⎭ . (34)
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We consider the equilibrium point in the interior of the positive orthant only that is E∗(x∗, y∗
1, . . . , y

∗
n),

where

x∗ = K

(
1 − 1

r

n∑
i=1

di

ai ln
mi

mi−di

)
, y∗

i =
1

ai ln
mi

mi−di

x∗. (35)

E∗ is in the positive orthant if
n∑

i=1

di

ai ln
mi

mi−di

< r. (36)

Let us linearize (34) in E∗. We get the following interaction matrix:

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

r

(
1 − 2x∗

K

)
−

n∑
i=1

mi − di

ai
−d1 +

x∗

a1y∗
1

(m1 − d1) . . . . . . −dn +
x∗

any∗
n

(mn − dn)

m1 − d1

a1
−(m1 − d1) ln

m1

m1 − d1
0 . . . 0

...
...

...
. . .

...

mn − dn

an
0 . . . 0 −(mn − dn) ln

mn

mn − dn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(37)

Theorem 3.2. (37) is sign-stable and E∗ is an asymptotically stable equilibrium point of system

(34) if
n∑

i=1

2di

ai ln
mi

mi−di

− mi − di

ai

≤ r. (38)

Proof. Similar to the the 3-dimensional case, the conditions of Theorem 2.6 of [15] hold again.

In order to show that (34) is a Kolmogorov system one has to expand the righthand side of the

first equation into power series. Thus Theorem 2.4.2. of [9] is not easy to use while our theorem

is applicable. Condition (38) is stricter than (36). The meaning of the condition (38) is the same

as it was in case of the Michaelis-Menten model. Thus, we can generalize the whole problem.
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4 The n-dimensional general model

Let us consider system (1) with the most general ratio-dependent functional response: pi(x, yi, ai) :=

pi

(yi

x

)
(to save space we do not write out the dependence on ai):

ẋ = rxg(x, K) −
n∑

i=1

yipi

(yi

x

)
ẏi = yipi

(yi

x

)
− diyi, i = 1, 2, . . . , n

⎫⎪⎪⎬
⎪⎪⎭ . (39)

This model was studied without ratio-dependence by Ferreira in [13] where a Zip-bifurcation was

proved.

We consider this system in the interior of the positive orthant. Suppose that there exists an

equilibrium point E∗(x∗, y∗
1, . . . , y

∗
n) in the positive orthant, where x∗, and y∗

i are the solutions of

the following equations:

rxg(x, K) =

n∑
i=1

diyi, pi

(yi

x

)
= di, i = 1, . . . , n. (40)

It is easy to see, that x∗ > 0 iff K > x∗ but this is natural since equilibria cannot exist above the

carrying capacity of the environment. The coefficient matrix of (39) in E∗ denoted by A is:⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

a11 −d1 − y∗
1p

′
1

(
y∗

1

x∗

)
1

x∗ . . . . . . −dn − y∗
np

′
n

(
y∗

n

x∗

)
1

x∗

y∗
1p

′
1

(
y∗

1

x∗

)(
− y∗

1

x∗2

)
y∗

1p
′
1

(
y∗

1

x∗

)
1

x∗ 0 . . . 0

...
...

...
. . .

...

y∗
np

′
n

(
y∗

n

x∗

)(
− y∗

n

x∗2

)
0 . . . 0 y∗

np
′
n

(
y∗

n

x∗

)
1

x∗

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

(41)

where

a11 = rg(x∗, K) + rx∗g′
x(x

∗, K) −
n∑

i=1

y∗
i p

′
i

(
y∗

i

x∗

)(
− y∗

i

x∗2

)
, (42)

and p′i
(yi

x

)
=

dpi

(
yi

x

)
d
(

yi

x

) .
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Theorem 4.1. (41) is sign-stable and E∗ is an asymptotically stable equilibrium point of system

(39) if

a11 ≤ 0, (43)

p′i

(
y∗

i

x∗

)
< 0, i = 1, . . . , n, (44)

and

−di − y∗
i p

′
i

(
y∗

i

x∗

)
1

x∗ < 0, i = 1, . . . , n. (45)

Proof. As it was done earlier one has to control whether the conditions of Theorem 2.6 of [15]

hold.

The entry a11 ≤ 0 by (43), while the other entries in the main diagonal are negative because of

(44). The products of the entries symmetrical to the main diagonal are negative or zero because

of (44), (45). The graph of this matrix is a tree rooted in vertex 1, which is white if a11 = 0,

thus the graph has not got any cycles. Both of the colorings ε and δ have to satisfy the condition

that black vertex has not got a single white neighbour. All vertices are black, at most except of

one because of (44) is strict. Thus, every black vertex can have only one white neighbour, this is

vertex 1. Hence the vertex 1 has to be black. We get that all ε- and δ-colorings are trivial, all

conditions of Theorem 2.6 of [15] hold and A is sign-stable.

In order to understand the meaning of condition (44) let us consider the following derivative:(
ẏi

yi

)′

yi

= p′i
(yi

x

) 1

x
< 0, i = 1, . . . , n. All of these inequalities are strict which means that

there is intraspecific competition within all predator species. If x > 0, (44) means, there is in-

traspecific competition in all predator species. The condition (45) means yi is predator of x, i.e.(
ẋ

x

)′

yi

=
1

x

(
−pi

(yi

x

)
− yip

′
i

(yi

x

) 1

x

)
< 0 and this also holds at E∗, where pi(

y∗
i

x∗ ) = di. Com-

paring matrix (41) with the matrix given in the third section of [13] we can see that in Ferreira’s

paper all entries in the main diagonal in (44) could be zero, and this involves the occuring of the
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zip-bifurcation. In our system the zip-bifurcation cannot occur. The coexistence of the species

does not depend on K. But E∗ exists iff x∗ < K thus x∗ has an upper limit depending on K. The

parameter r is the intrinsic growth rate of prey which obviously cannot be arbitrary high. The

prey species determines it. The sum of the quantity of the predators is an increasing function of

x∗ (in case of x∗ < K). Clearly, more predator need more food. Under conditions (43)-(45) all

the predator species can coexist with the prey, whose maximal number has a limit K. The exact

quantity of the different species is determined by the specific values of the parameters. Under

these conditions the model may be structurally stable as opposed to the model without consider-

ing ratio-dependence.
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