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Introduction

(bio)chemical reaction networks (CRNs): useful class of
nonnegative nonlinear systems

dynamical description of (bio)chemical reactions in a laboratory or
industrial environment
interesting from the viewpoint of nonlinear systems theory: description
of complex behaviour

optimization: important area, fast scientific and HW/SW
development:

essential for the solution of numerous engineering/technical problems,
deciding feasibility and searching for feasible solutions can be possible
when the problem is hard or impossible to treat analytically (LMIs,
BMIs, SOS problems in control, diagonal stabilizability etc.)

approach: the dynamics is given, we are searching for preferred CRN
structures that "realize" it
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Some motivating facts

dynamics is essential for understanding complex phenomena in
biological/biochemical systems
kinetic systems form a wide class within nonnegative polynomial
models
many important features like deficiency, (weak) reversibility,
complex/detailed balance etc. are not intrinsically encoded in the
kinetic ODEs, but they are realization properties
the strong structure-dependent results of CRNT can often be
extended to other models through appropriate dynamically equivalent
realizations
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Original problem statement and starting analogies

Problem statement of computing CRN topologies corresponding to a
set of kinetic differential equations with required properties appeared
about 30 years ago in: Hárs and Tóth, "On the inverse problem of
reaction kinetics", Qualitative Theory of Differential Equations,
30:363-369, 1981.
Similar (unsolved) problem in the theory of electrical circuits:
constructing a linear electrical network with a minimal number of R, L,
C elements corresponding to a given transfer function (R.E. Kalman,
probably substantially more complex than our problem)
The idea of terminology ’realization’ came from linear control theory,
where matrices (A,B,C ,D) are called a realization of a transfer
function H(s), if

H(s) = C (sI − A)−1B + D
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Essentially nonnegative systems

the function f = [f1 . . . fn]T : [0,∞)n → Rn is essentially
nonnegative, if whenever xi = 0, fi (x) ≥ 0 ∀ x ∈ [0,∞)n for
i = 1, . . . , n
linear case: f (x) = Ax , A is a so-called Metzler-matrix (off-diagonal
elements are nonnegative)
Consider the following nonlinear autonomous system:

ẋ = f (x), x(0) = x0 (1)

where f : X → Rn is locally Lipschitz, X is an open subset of Rn, and
x0 ∈ X . Assume furthermore that [0,∞)n = R̄n

+ ⊂ X . Then the
nonnegative orthant is invariant for the dynamics (1) if and only if f
is essentially nonnegative.
Kinetic systems are (naturally) essentially nonnegative
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characterization of mass action type CRNs

Usual definition for CRNs:
Species: S = {X1,X2, . . . ,Xn}
Complexes: C = {C1,C2, . . . ,Cm}, where

Ci =
n∑

j=1

αijXj , i = 1, . . . ,m

and the αij ≥ 0 are the stoichiometric coefficients
Reactions: R = {(Ci ,Cj) | Ci → Cj}
weighted by reaction rate coefficients kij

Reaction rate with mass action law (MAL) for the elementary reaction step

Ci

kij

→ Cj , where Ci =
∑n

j=1 αijXj :

ρij(x) = kij

n∏
i=1

[Xi ]
αij = kij

n∏
i=1

xαij
i
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Weighted directed graph of a reaction network

directed graph G consists of a finite nonempty set Vd of vertices and a finite
set Ed of ordered pairs of distinct vertices (directed edges), i.e. G = (Vd ,Ed)

vertices correspond to complexes:
Vd = {C1,C2, . . .Cm}

directed edges represent reactions:
(Ci ,Cj) ∈ Ed if complex Ci is transformed to Cj

reaction rate coeffs.: kj ≥ 0, j = 1, . . . , r (weights of the corresponding
directed edges)

linkage class: connected component (complexes of the set are linked to each
other in the reaction graph but not to any other complex)

reversible reaction: both Ci → Cj and Cj → Ci are present

weakly reversible network: linkage classes are the strongly connected
components

Szederkényi G. (MTA SZTAKI) computation methods for CRNs BME semin. 2012 10 / 59



Dynamical description (ODEs)

Stoichiometric matrix (Y ) and the reaction monomials

Yij = αij , ϕj(x) =
n∏

i=1

xYij
i , j = 1, ..,m; i = 1, ..., n

Kirchhoff (or kinetic) matrix of a CRN: Ak ∈ Rm×m

[Ak ]ij =

{
−
∑m

l=1,l 6=i kil if i = j
kji if i 6= j

(column conservation matrix with nonpositive diagonal and nonnegative
off-diagonal entries)

Dynamic state equations:

dx
dt

= Y · Ak︸ ︷︷ ︸
M

·ϕ(x) = M · ϕ(x) (2)
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Kinetic polynomial systems

An autonomous system of the form ẋ = f (x) is kinetic, if
f (x) = Y · Ak · φ(x), where (Y ,Ak) are such that they encode a CRN
(constraints!) =⇒ (Y ,Ak) is called the kinetic realization of the function f

Necessary and sufficient conditions for kinetic realizability:

fi (x) = −xigi (x) + hi (x), i = 1, . . . , n

where gi and hi are polinomials with nonnegative coefficients

There exists a systematic algorithm for determining one possible CRN
structure from kinetic polynomial equations (Hárs és Tóth, 1981)
But: in general, it inserts more complex/reactions into the graph than the
necessary minimum (but it is very important to determine an initial
realization)

What to do with nonnegative but not kinetic polynomial systems?
a) state dependent time-rescaling, b) embedding into (generalized)
Lotka-Volterra form =⇒ the set of polynomial systems that are kinetic
or are transformable to kinetic form is quite wide
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Realization of kinetic systems: algorithm
Form of coordinates functions:

fi (x) =

ri∑
j=1

mij

n∏
k=1

xbjk (3)

Realization algorithm (Tóth J. és Hárs V., 1981)
for each i = 1, . . . , n and for each j = 1, . . . , ri do:

1 Cj = Bj + sign(mij) · ei
2 Add the following reaction to the CRN graph:

n∑
k=1

bjkXk −→
n∑

k=1

cjkXk

where the reaction rate coefficient is |mij |, and
Cj = [cj1 . . . cjn].
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Example: "kinetic RLC circuit" – 1

Original system:
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Example: "kinetic RLC circuit" – 2

Physical model and state equations:
Voltage along a loop: −ube + uR + uL + uC = 0
Ohm’s law: UR = R · i
Dynamics of linear capacitor and inductor:

uL = L · di
dt

, i = C · dUC

dt

state equations

di
dt

= −R
L
· i − 1

L
uC +

1
L
ube

duC

dt
=

1
C
· i
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Example: "kinetic RLC circuit" – 3

Model equations (after coordinates shift (x∗1 , x
∗
2 ) and time-rescaling):

variables: i  x1, uC  x2, (ube = 0)

x ′1 = −k1x2
1 x2 − k2x1x2

2 + c1x1x2 (4)

x ′2 = k3x1x2
2 − c2x1x2 (5)

where: k1 = R/L, k2 = 1/L, k3 = 1/C , c1 = (R/L)x∗1 + (1/L)x∗2 , c2 = (1/C )x∗2
Output of realization algorithm:
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Example: "kinetic RLC circuit" – 4

Operation of the realization algorithm
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Distinguishability, dynamical equivalence

G. Craciun and C. Pantea. Identifiability of chemical reaction
networks. Journal of Mathematical Chemistry, 44:244-259, 2008.
Original (unfortunately erroneous) claim:
Under the mass-action kinetics assumption, two chemical reaction
networks (S, C′, R′) and (S, C′′, R′′) are confoundable if and only if
they have the same source complexes and
ConeR′(y) ∩ ConeR′′(y) is nonempty for every source complex y.
Counterexample:
G. Szederkényi. Comment on "Identifiability of chemical reaction
networks" by G. Craciun and C. Pantea. Journal of Mathematical
Chemistry, 45: 1172-1174, 2009.
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Dynamical equivalence – Example 1

known (?) property : CRNs with different structures may have exactly
the same dynamics (dynamically equivalent networks)

Both give the following equations:[
ẋ1
ẋ2

]
=

[
−2x21
3x21

]
(6)

with the parameters
ki = 1, i = 1, 2, 3, 4; k ′1 = 1, k ′2 = k ′3 = k ′5 = k ′6 = 0.1, k ′4 = 1.9
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Dynamical equivalence – Example 2

Dynamically equivalent networks (realizations)

Dynamics:

ẋ1 = 3k1x32 − k2x31
ẋ2 = −3k1x32 + k2x31
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Mixed integer linear programming

A mixed integer linear program (MILP) with k variables (denoted by
y ∈ Rk) and p constraints can be written as:

minimize cT y
subject to:
A1y = b1
A2y ≤ b2 (7)
li ≤ yi ≤ ui for i = 1, . . . , k
yj is integer for j ∈ I , I ⊆ {1, . . . , k}

where c ∈ Rk , A1 ∈ Rp1×k , A2 ∈ Rp2×k , and p1 + p2 = p.
if there are no integer variables, then (7) is a simple LP problem
(polynomial)
if any of the variables is integer: the problem is NP-hard (efficient free
and commercial solvers exist)
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MILP and propositional calculus

literal : a statement (such as x ≤ 0) that can have a truth value of
"T" (true) or "F" false
compound statement: literals combined into more complex expressions
using the following connectives: "∧" (and), "∨" (or), "∼" (not),
"→" (implies), "↔" (if and only if), "⊕" (exclusive or)
a propositional logic problem, where a statement S1 must be proved to
be true given a set of compound statements containing literals
S1, . . . , Sn, can be solved by means of a linear integer program:

logical variables δi (δi ∈ {0, 1}) are associated with the literals Si
compound statements can be algorithmically translated to linear
inequalities involving the logical variables δi
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Dense and sparse realizations: goals

Given: (Y ,Ak) CRN or kinetic polynomial system
Goal: computing the following:

sparse realization (Y S ,As
k) (containing the minimal number of

reactions)
dense realization (Y S ,As

k) (containing the maximal number of
reactions)

Assumption: the set of possible complexes is given in advance
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Dense and sparse realizations: computation

Kinetic constraints

Y · Ak = M∑m
i=1[Ak ]ij = 0, j = 1, . . . ,m

[Ak ]ij ≥ 0, i , j = 1, . . . ,m, i 6= j
[Ak ]ii ≤ 0, i = 1, . . . ,m

Lower/upper bounds 0 ≤ [Ak ]ij ≤ lij , i , j = 1, . . . ,m, i 6= j
lii ≤ [Ak ]ii ≤ 0, i = 1, . . . ,m

Density/sparsity
δij = 1↔ [Ak ]ij > ε, i , j = 1, . . . ,m, i 6= j
C1(δ) =

∑m
i , j = 1
i 6= j

δij (objective function)

Computations can be parallelized! (column-by-column)
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Dense and sparse realizations: example

"Pathological" example (2 components, higher deficiency)
Reaction network (δ = 4): Sparse realization (δ = 2):
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Dense and sparse realizations: example

Dense realization (δ = 5):
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Further results and properties
We have managed to prove:

if a kinetic system Σ is given with matrices M and Y , then the directed
unweighted graph of any realization is a subgraph of the directed
unweighted graph of the dense realization (maximal superstructure)
the structure of the dense realization (directed unweighted graph) is unique
if the set of complexes is given
the structure of a CRN is unique if and only if the structures of the dense
and sparse realizations are identical if the set of complexes is given (easy to
check computationally!)

Other (sometimes trivial) remarks:
reactions not present in the dense realization cannot be parts of any other
realizations
dense realizations are parametrically not unique in general
the structure of sparse realizations is not unique in general
dense/sparse realizations are not only theoretical constructions (we gave an
easily usable computation method)
more complex problems can also be solved using the proposed computation
framework
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Minimizing/maximizing the number of complexes

constraints of MAL kinetics: same as before
a complex becomes isolated in the graph (i.e. it can be omitted from
the model), if the corresponding row/column of Ak is zero
m boolean variables are assigned to the colums/rows of Ak :

δi = 1↔
m∑

j1=1

Ak(i , j1) +
m∑

j2=1

Ak(j2, i) > ε, i = 1, . . . ,m

(can be transformed to linear (in)equalities)
The goal is the following:

min. ±
m∑

i=1

δi

the problem is not straightforward to parallelize in its original form,
but the number of integers here is only m (instead of the previous m2)
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Reversible realizations
Further condition: [Ak ]i,j > ε2 ↔ [Ak ]j,i > ε2, ∀i > j
Corresponding inequalities:

0 ≤ (ε2 − ε)− [Ak ]ij + (lij − ε2) · δ(1)ij , ∀i > j

0 ≤ (ε2 − ε)− [Ak ]ji + (lji − ε2) · δ(1)ij , ∀i > j

0 ≤ [Ak ]ij − ε2 · δ(1)ij , ∀i > j

0 ≤ [Ak ]ji − ε2 · δ(1)ij , ∀i > j

Assuring numerical stability: [Ak ]ij < ε OR [Ak ]ij > ε2 + γ, i.e.:

0 ≤ δ(2)ij , i 6= j

0 ≤ lij − [Ak ]ij − (lij − ε) · δ(3)ij , i 6= j

0 ≤ [Ak ]ij − (ε2 + γ) · δ(4)ij , i 6= j

0 ≤ −δ(2)ij + δ
(3)
ij + δ

(4)
ij , i 6= j

0 ≤ δ(2)ij − δ
(3)
ij , i 6= j

0 ≤ δ(2)ij − δ
(4)
ij , i 6= j
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Brusselator example

Starting network: reversible Brusselator (well known)

Corresponding kinetic ODEs:

ẋ1 =− k12x1 + k21x2

ẋ2 =k12x1 − (k21 + k23)x2 + k32x3 + k45x2
2 x4 − k54x3

2 − k67x2x5 + k76x4x6

ẋ3 =k23x2 − k32x3

ẋ4 =− k45x2
2 x4 + k54x3

2 + k67x2x5 − k76x4x6

ẋ5 =− k67x2x5 + k76x4x6

ẋ6 =k67x2x5 − k76x4x6
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Brusselator example

Oscillation condition: xi = x∗i , i = 1, 3, 5, 6
Remaining dynamics (kinetic):

ẋ2 = (k12x∗1 + k32x∗3 ) + (−k21 − k23 − k67x∗5 )x2 − k54x3
2 + k45x2

2 x4 + (k76x∗6 )x4

ẋ4 = −k45x2
2 x4 + k54x3

2 + k67x∗5 x2 − k76x∗6 x4

Realizing reaction network:
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Brusselator example

Does there exist a fully reversible dyn. eq. realization? YES!
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Detailed and complex balance

The realization (Y ,Ak) is complex balanced at the point x∗ ∈ Rn
+, if

Akϕ(x∗) = 0.
The reversible realization (Y ,Ak) is detailed balanced at the point
x∗ ∈ Rn

+, if

ρij(x∗) = ρji (x∗), ∀i , j for which Ci � Cj exists

Most important properties:
detailed/complex balance at x∗ =⇒ x∗ is an equilibrium point
detailed (complex) balance at x∗ =⇒ detailed (complex) balance in
any equilibrium point
complex balance =⇒ weak reversibility (strong connectivity)
complex balance for any positive value of reaction rate coeffs: ⇐⇒
weak reversibility AND 0 deficiency
complex balance =⇒ at least local stability with known Lyapunov
function
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Two important conjectures

Global attractor conjecture: Complex balance =⇒ global stability
with known Lyapunov function
Persistency conjecture: Weak reversibility (strong connectivity) =⇒
persistence of dynamics
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Computation of complex balanced realizations

Given: (Y ,Ak), x∗, ϕ∗ = ϕ(x∗)
We are searching for: elements of Ak (y)
Solution: LP problem
Objective function: h = cT y
Constraints:

−a11ϕ∗1 + a12ϕ∗2 + · · ·+ a1mϕ∗m = 0
a21ϕ∗1 − a22ϕ∗2 + · · ·+ a2mϕ∗m = 0

...
am1ϕ

∗
1 + · · ·+ am(m−1)ϕ

∗
m−1 − ammϕ

∗
m = 0
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Computation of detailed balanced realizations

Given: (Y ,Ak), x∗, ϕ∗ = ϕ(x∗)
We are searching for: elements of Ak (y)
Let G = diag(ϕ∗)
Solution: LP problem
Objective function: h = cT y
Constraints:

G · AT
k = Ak · G

i.e.

ϕ∗i y(i−1)m+j − ϕ∗j y(j−1)m+i = 0, ∀i > j ,
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Weakly reversible realizations – principles

Basic principle (roughly): the dense realization contains all possible
reactions ⇒ compute it and discard the unnecessary edges (if possible)
More precisely:

If each strongly connected component of a directed graph G is
contracted to a single vertex, the resulting directed graph is a directed
acyclic graph. (acyclic graph: has no nontrivial strongly connected
subgraphs)
The structure of the dense realization of any CRN is unique, and the
directed unweighted graph of any CRN realization is a subgraph of the
directed unweighted graph of the dense realization, if the set of
complexes is fixed.

Directed edges linking different strong components have to be
removed while maintaining dynamical equivalence.
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The proposed algorithm – pseudocode

Aout
k =FindWeaklyReversibleRealization(Y (0),A(0)

k )
1 Aout

k :=0 ∈ Rm×m; ExitCondition:=false;
2 Y := Y (0); Ak := A(0)

k ; Fout :=true; K := {}; L := {};
3 while (ExitCondition=false) do
4 begin
5 if (K 6= {}) then Fout :=IsRemovable(Y ,Ak ,K);
6 if (Fout =true) then
7 begin
8 Ak :=FindConstrDenseRealization(Y ,Ak ,K);
9 L:=FindCrossComponentEdges(Ak);
10 if (L = {}) then ExitCondition:=true; Aout

k :=Ak ;
11 else K := K ∪ L;
12 end
13 else ExitCondition:=true;
14 end
15 return Aout

k ;
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Weak reversibility example – 1

a) Original network from (Johnston and Siegel, 2011), and
b) its published weakly reversible realization structure
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Weak reversibility example – 2

Structure of dense realization
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Weak reversibility example – 3

Operation of the algorithm
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Weak reversibility example – 4

The dense dynamically equivalent weakly reversible structure
(not complex balanced with the obtained parameters)
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Weak reversibility example – 5

Complex balanced realization (computed with pure LP)
(structure is the subgraph of the dense one)
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Linear conjugacy – 1

Special case of kinetic lumpings
Two CRNs denoted by Σ and Σ′ are said to be linearly conjugate if
there is a positive diagonal linear mapping which takes the flow of one
network to the other (dynamical equivalence is a special case)
Consider two mass-action systems Σ = (S, C,R) and Σ′ = (S, C′,R′)
and let Y be the stoichiometric matrix corresponding to the complexes
in either network. Consider a kinetics matrix Ak corresponding to Σ
and suppose that there is a kinetics matrix Ab with the same structure
as Σ′ and a vector c ∈ Rn

>0 such that

Y · Ak︸ ︷︷ ︸
M

= T · Y · Ab (8)

where T =diag{c}. Then Σ is linearly conjugate to Σ′ with kinetics
matrix

A′k = Ab · diag {ψ(c)} . (9)
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Linear conjugacy – 2

Corresponding calculation: Let Φ(x0, t) correspond to the flow of (2)
associated to the reaction network Σ. Consider the linear mapping
h(x) = T−1 · x where T =diag{c}. Now define Φ̃(y0, t) = T−1 · Φ(x0, t)
so that Φ(x0, t) = T · Φ̃(y0, t).
Since Φ(x0, t) is a solution of (2), we have

d
dt

Φ̃(y0, t) = T−1 · d
dt

Φ(x0, t) = T−1 · Y · Ak · ψ(Φ(x0, t)) =

= T−1 · T · Y · Ab · ψ(T · Φ̃(y0, t)) = Y · Ab · diag {ψ(c)} · ψ(Φ̃(y0, t)).

It is clear that Φ̃(y0, t) is the flow of (2) corresponding to the reaction
network Σ′ with the kinetics matrix given by (9). We have that
h(Φ(x0, t)) = Φ̃(h(x0), t) for all x0 ∈ Rn

>0 and t ≥ 0 where y0 = h(x0)

since y0 = Φ̃(y0, 0) = T−1 · Φ(x0, 0) = T−1 · x0. It follows that the
networks Σ and Σ′ are linearly conjugate.
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Linear conjugacy – optimization constraints

(LC)



Y · Ab = T−1 ·M
m∑

i=1

[Ab]ij = 0, j = 1, . . . ,m

[Ab]ij ≥ 0, i , j = 1, . . . ,m, i 6= j
[Ab]ii ≤ 0, i = 1, . . . ,m
ε ≤ cj ≤ 1/ε, j = 1, . . . , n

(10)

where M = Y · Ak , T =diag{c}, and 0 < ε� 1, and

(LC-S)


0 ≤ [Ab]ij − εδij , i , j = 1, . . . ,m, i 6= j
0 ≤ −[Ab]ij + uijδij , i , j = 1, . . . ,m, i 6= j
δij ∈ {0, 1} , i , j = 1, . . . ,m, i 6= j ,

(11)

where uij > 0 for i , j = 1, . . . ,m, i 6= j .
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Linear conjugacy – Example 1

Consider the kinetics scheme:

ẋ1 = x1x22 − 2x21 + x1x23
ẋ2 = −x21 x22 + x1x23
ẋ3 = x21 − 3x1x23

(12)

Generated complex set:

C1 = X1 + 2X2,C2 = 2X1 + 2X2,C3 = 2X1 + X2,

C4 = 2X1,C5 = X1,C6 = 2X1 + X3,C7 = X1 + 2X3,

C8 = 2X1 + 2X3,C9 = X1 + X2 + 2X3,C10 = X1 + X3

There is no WR dynamically equivalent realization with this complex set
But ...
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Linear conjugacy – Example 1

Sparse and dense linearly conjugate WR realizations:

X1+2X2 2X1+2X2

2X1X1+2X3

4

400
25

40

125

X1+2X2 2X1+2X2

2X1X1+2X3 2X1+X2

0.367

13.9 0.926 13.1
1.35

0.816

13.3 1.35

0.926

0.926

(a) (b)

Computed transformation constants:
(a) c1 = 20, c2 = 2, c3 = 5
(b) c1 = 20/3, c2 = 20/33, c3 = 5/3
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Linear conjugacy – some further results

Any eq. point can be selected for the computation of linearly
conjugate complex balanced realizations:
Suppose N is linearly conjugate to N ′ with transformation matrix
T = diag {c} where c ∈ Rn

>0 and suppose N ′ is complex balanced at
y∗ = T−1x∗ where x∗ ∈ Rn

>0 and Y · Ak ·Ψ(x∗) = 0. Then N ′ is
complex balanced at ȳ∗ = T−1x̄∗ for all x̄∗ ∈ Rn

>0 satisfying
Y · Ak ·Ψ(x̄∗) = 0.
For a given CRN, the unweighted directed reaction graph of
any linearly conjugate realization is the subgraph of that of the
dense one =⇒ The structure of the dense linearly conjugate
realization is unique.

Szederkényi G. (MTA SZTAKI) computation methods for CRNs BME semin. 2012 54 / 59



Linear conjugacy – Example 2

Consider the kinetic system of Example 1 again
Linearly conjugate realizations:

X1+2X2 2X1+2X2

2X1X1+2X3

4

400

25

40

125

X1+2X2 2X1+2X2

2X1X1+2X3
2X1+X2

0.367

13.9
0.926 13.1

1.35
0.816

13.3 1.35

0.926

0.926

(a) (b)

X1+2X2 2X1+2X2

2X1X1+2X3
2X1+X2

0.367

13.9
0.926 12.5

1.35
2.01

13.3 1.35

0.926

0.926

(c)

(a) Sparse, complex balanced (WR, deficiency 0)
(b) Dense, weakly reversible, not complex balanced
(c) Dense, complex balanced
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1 Introduction and motivation

2 Basic notions and tools
Positive (nonnegative) dynamical systems
Reaction networks obeying the mass action law (MAL)
Dynamical equivalence (macro-equivalence)
Combining logic with mixed integer linear programming (MILP)

3 Computing CRN realizations with preferred properties
Computing "dense" and "sparse" realizations
Minimizing/maximizing the number of complexes
Computation of reversible realizations
Detailed and complex balance
Finding weakly reversible realizations
Linearly conjugate networks

4 Conclusions
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Summary

Conclusions
some important properties of CRNs are not encoded in the ODEs
the scope of strong CRNT results can be extended through dynamical
equivalence and linear conjugacy
solution motivation: widespread optimization-based feasibility analysis
(e.g. in systems and control theory)
thermodynamical point of view: interesting/useful even in the case of
non-(bio)chemically originated (but mathematically kinetic) models
existence analysis and computation of CRN structures with preferred
properties: optimization (LP, MILP)
properties of system class, prescribed features: constraints
proposed methods do not substitute rigorous (algebraic, geometric)
analysis in any way

Work in progress: developing algorithms to be numerically more efficient
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