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Relations between the determinist ic  and stochastic models of a complex 

chemica l  react ion are presented. Indications are given about the possible 

development  of a quasi - thermodynamic theory of react ion kinetics by the 

aid of stochastic processes. 

~pHBOBHTCS 3aBHCHMOCTH Me.By BeTepMHHHCTHqeCKO~ H 

CTOXaCTHMeCKO~ MoBe~SMH C~O~HBIX XHMH~eCKHX peaKuH~. 

~BI~H cBeflaHhl BBIBOB~ OTHOCHTe~BHO BO3MO~HOFO pa3BH-- 

TH~ KBa3H--TepMO~HHaMH~eCKO~ TeopHH peaKUHOHHO~ KHHeTHKH 

Ha OCHOBe CTOXaCTHqeCKHX HpoHeccoB. 

I. INTRODUCTION 

In a previous paper we constructed Kolmogorov equations for the stochastic 

model  with a continuous t ime parameter  and discrete state space (CDS model)  of 

a complex chemica l  r e a c t i o n / 6 / .  The description given by these equations is 
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equivalent  to that given by the Kramers-Moyal-Stra tanovich equa t ion /3 ,  5, 7 /  

which holds (under.certain assumptions) for Markov processes with continuous 

t ime  parameter:  

n 
o~ 1 ( o j D (x) g(x,t), 

0 t g ( x , t ) = , ~ '  n! - 8 x  n 
n = l  

(1) 

where g(x, t) is the absolute probabili ty density function of the process 

and 
1 

D ( x ) =  l im ~tt E ( ( r  - ~(t)) n ~ r = x) 

A t e 0  

(t), 

(9) 

t 
is the velocity of the n- th  condi t ional  moment ,  an n- th  order tensor. As the 

veloci t ies  of the condi t ional  moments exist and are f inite in the CDS model l  of a 

complex chemica l  react ion,  eq. (1) holds for this case as well .  

2. STOCHASTIC AND DETERMINISTIC MODELS 

2.1 Velocity of the condit ional  expecta t ion = determinist ic  react ion rate 

THEOREM 1: The veloci ty of the condi t ional  expecta t ion of the usual CDS model  

of a complex chemica l  react ion coincides with the react ion rate of the usual de-  

terrninistic model  with continuous t ime  parameter  and continuous state space 

(CCD model):  

1 
D I ( x )  = l imA~ E ( r  A t ) - r  r (t) = x  = f ~X) (8) 

dt  -.,- 0 

(Part ial ly,  this motivates  why f(x) is referred to as general ized reaction rate. ) 

The theorem has been demomtra ted  in Ref. / 8 / .  

n 
Here ( ~/ ) 

82 

is a direct product of n factors, thus i t  is an n- th  order tensor 



I~RDI, TOTH: STOCHASTIC REACTION KINETICS 

2.2 Consistency in mean 

In special cases it can be shown - by the aid of probability generating func- 

tions - that the system of differential equations for the first moments coincides 

with deten'ninistic kinetic equations in so far as the second and higher moments 

are omitted. Especially in the case of complex chemical  reactions consisting of 

unicomponent reactions, the CDS model is consistent in mean with the CCD 

model. (The equations for the first moments do not contain the higher moments.  ) 

2 .8 Dcten'ninistic reaction rate = "drift" velocity 

Upon omitt ing the higher than first order velocities of condit ional  moments 

in eq. (1) the following so cal led "drift"-equation is obtained: 

m 

o t g (x,  t) + ~ '  o ( D 1 (x) 
i=l 0 x. 

1 

g(x,t))  = 0, (4) 

with the following conditions: 

g ( x , t ) ~  > 0, Sg(x, t )  dx = I ,  g(x,0) = 'SD (5) 

where 6D is a 6 -distribution. If we consider eq. (4) as a partial differential 

equation for distributions, we can prove the following. 

THEOREM 2: The unique solution of (4) satisfying conditions (5) is the 6 x (t) 

distribution, where x(t) is the solution of the in i t ia l  value problem 

x(t) = f (x) ; x(o) = D (6) 

Theorem 2 can be proved by solving eq. (4) treated as a differential equation 

for functions and taking into consideration the conditions. The foundations of the 
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procedure are described in Ref. /2,  9/ .  The fact that Dl(x) is an ana ly t ica l  func- 

t ion (it  is a polynomial)  is essentially u t i l ized ,  however, its actual  form is in-  

different,  so the theorem applies not only to chemica l  reactions. 

The meaning of Theorem 2 is that  

- the motion derived from the determinist ic  model  (the solution of in i t ia l  

value problem (6) may be considered as a special  stochastic process subordinated 

to eq. (1) not containing veloci t ies  of higher than first order moments  ( L a x / 4 / ) :  

- by assuming that the veloci t ies  of the higher order condi t ional  moments  

are zero in the case of a mot ion described by a stochastic process, the solution of 

kinetic  equation (6), i . e .  a determinis t ic  motion,  is obtained.  

3. QUASI-THERMODYNAMIC MOTION IN THE STATE SPACE 

In the  val idi ty range of "pure react ion kinet ics" ,  i . e .  where physical  trans- 

port processes are disregarded, the state of the system is charac ter ized  by the prob- 

abi l i ty  density function g(x , t ) .  We have seen that the Kramers-Moyal -St ra tano-  

vich equation describes the temporal  evolut ion of the system. This equation is 

formally analogous to the source-free continuity equation of nonlinear transport 

theory ( c f . / 1 / ) .  The mot ion in the state space of the chemica l  components is the 

resultant of "convect ive"  and "conductive" motions in the state space. The deter-  

minis t ic  motion coincides with the mot ion derived from the solution of the drift 

equation.  This mot ion can  be considered as "convect ive"  in the state space. The 

velocity of "conductive" mot ion  corresponds to veloci t ies  of the  higher condi t ional  

moments.  

The motion can be visual ized in such a way that the shape of the density 

(cloud) charac ter iz ing  the state of the system is not deformed by the "convect ive"  

(=determinist ic)  motion,  the cloud is only shifted by it.  The effect  of fluctuations 

is the spreading of the c loud.  Though convect ive  motion in the real  t h ree -d imen-  
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sional space is not a dissipative process, i . e .  i t  does not change the entropy of 

the system, the "convect ive"  motion of the chemica l  react ion is a dissipative 

motion. Namely,  the state space of the chemica l  components is anisotropic. 

Our present a im was nothing more than to shed some light on the features 

of the thermodynamics of state space (a notion introduced by F6nyes, see e. g. 

Ref. / 1 / )  for the special  ease o f  chemica l  reactions.  
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