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Abstract

Using the general results of the stochastic theory of chemical systems, we consider a certain
model of chemical reactions with two species, for which it is possible to calculate the �rst
passage time explicitly and study the transition to criticality. Our method uses a non-standard
Hamilton Jacobi theory for the master equation, introduced initially by Kubo et al. [J. Stat. Phys.
9 (1973) 51], which leads to solvable Hamiltonian systems. c© 2000 Elsevier Science B.V. All
rights reserved.

1. Introduction

The stationary state of a general non-equilibrium reaction di�usion system can be
analysed in the large volume limit using the information potential de�ned as �(x) ∼
−(1=V ) logP(x) where P(x) is the stationary probability distribution, V is the vol-
ume of the system and � is what can be called the information potential [1–6]. It is
well known [4–6] that � satis�es a Hamilton–Jacobi equation, although a non-standard
one. In Refs. [5,6], we proved that this large volume approximation of the stationary
distribution is better than the more traditional one, given by the usual Fokker–Planck
equation (see Refs. [7–9]). This information potential � is a non equilibrium state func-
tion, whose general properties are studied in Ref. [3]. It would be a free energy (up to
temperature) if the stationary state were an equilibrium state. This function is also the
relative entropy of a Dirac distribution located at state x with respect to the probability
distribution P (see Refs. [10–13]). Moreover in Ref. [3], we study its relation with the
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�rst exit time out of a basin of attraction of a stable state, and so, with chemical rate
constants (see also Refs. [14,15] for the case of Fokker–Planck equations). It turns out
that the Hamilton–Jacobi equation satis�ed by the information potential is not only more
appropriate to the analysis of Master equation, but also mathematically simpler than the
Hamilton–Jacobi equation derived from the Fokker–Planck equation. In particular, this
leads to a general category of chemical models with several degrees of freedom,
that can be explicitly solved, whereas, generally, multidimensional chemical systems
cannot be solved analytically in the Fokker–Planck approximation.
The model considered in this paper is a modi�cation of a model introduced as an

example of a self-organized critical model in Refs. [16–18]. Because this example is
explicitly solvable, it is possible to follow the transition to criticality when a certain pa-
rameter tends to its critical value, namely, in general, the rate constant is exponentially
small of the type exp(−VS) (V is the volume and S is the regular solution of the
Hamilton–Jacobi equation), but when the parameter tends to its critical value, S tends
to 0 in the way calculated below.
This article is organized as follows: Section 2 describes the model and its determin-

istic behavior, Section 3 describes the Master equation, the Hamilton Jacobi equation
and the �rst exit time in terms of the information potential. In Section 4, we solve
explicitly the related Hamiltonian equations and in Section 5 we calculate the min-
imal action. The details of the calculations are given in two appendices. Although
we have tried to make this article self-contained, our result is an explicit example of
the formalism developed in Ref. [3], to which we refer for general motivation and
justi�cation.

2. Deterministic behavior of the model

The model is a variation of the self-organized critical model of Ref. [18]. We con-
sider three species S, R, I, which evolve according to the following reactions:

S 1−→ R ;
R + S �−→ 2S ;

2S
�−→ S + I:
←−
��

(2.1)

In the metaphor of disease propagation of Ref. [18], S is the sick species, R the
normal (or recovering) species and I the immune species. In Ref. [18], we considered
only the case ��=0 and proved that the evolution exhibits a self-organized critical be-
havior, at least at the deterministic level. This behavior was destroyed in the stochastic
approach as was proved in Ref. [18]. The introduction of the inverse reaction with
rate ��, allows us to follow the limit when �� tends to zero. The reactions (Eq. (2.1))
preserve the number S+R+I and if we denote s; r; i the concentration of S, R and I,
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then the deterministic equations are

ds
dt
= s(−1 + �r − �s+ ��(1− r − s)) ;

dr
dt
= s(1− �r) (2.2)

with the normalization s+ r + i = 1.
Assuming that �¿ 1, the stationary points are
(i) all points with s= 0,
(ii) the point

(r∗; s∗) =

(
1
�
;
��(1− 1=�)
� + ��

)
: (2.3)

We denote

a=
��(1− 1=�)
� + ��

: (2.4)

The stationary point given by Eq. (2.3) lies in the physical region r + s61.
An elementary stability analysis of Eqs. (2.2) shows that
(i) the stationary point (1=�; a) is stable
(ii) the points (r0; 0) are repulsive for

r0¿ �r0 ≡ 1−
��

�− ��
(2.5)

and attractive for

r0¡ �r0 :

When �� tends to zero, the attractive point (1=�; a) and the separating point ( �r0; 0)
tend together towards the same point (1=�; 0) producing the self-organized criticality.
Note also that �r0¡ 1=�. The phase portriat of Eqs. (2.2) is drawn in Fig. 1 and
explained in Appendix A. We shall assume henceforth

�¿� + �� : (2.6)

3. Master equation and rate constant

The master equation [1–6] describes the evolution of the distribution probability
densities P(r; s; t) to �nd concentrations (r; s) at time t. It has the form

@P(r; s; t)
@t

= (LP)(r; s; t) ;

where

(LP) (r; s) =
∑
n;m

[
wnm

(
r − n

N
; s− m

N

)
P
(
r − n

N
; s− n

N

)
− wn;m(r; s)P(r; s)

]
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Fig. 1. Phase portrait of the trajecotries of Eqs. (2.2).

and wnm(r; s) is the rate of the transition

(r; s)→
(
r +

n
N

; s+
m
N

)
corresponding to the reactions which “produce” n particles R and m particles S, where
n; m are given positive or negative integers and N is the total number of particles (or
the volume of the system).
It is convenient to use the variable (u; v) de�ned in Eq. (A.1), namely

u=−r; v= r + s (3.1)

and to write the master equation in terms of these variables. The possible rates in the
variables (u; v) are

w−1;0 = u+ v; w+1;0 =−�u(u+ v) ;

w0;−1 = �(u+ v)2; w0;1 = ��(1− v)(u+ v) : (3.2)

Using the Hamilton–Jacobi method, introduced by Kubo et al. [2], also developed
in Ref. [4], we write the stationary solution P(u; v) as

P(u; v) ∼ U0 exp(−NS(u; v)) ; (3.3)

where S satis�es the Hamilton–Jacobi equation

H
(
u; v;

@S
@u

;
@S
@v

)
= 0 (3.4)

with

H (u; v; pu; pv) =
∑
n;m

wn;m(u; v)[exp(npu + mpv)− 1] (3.5)

and pu; pv denote the conjugate momenta of u; v. S can be called the information or
stochastic potential. It would be a free energy for an equilibrium system. We study this



B. Gaveau et al. / Physica A 277 (2000) 455–468 459

function in detail in all generality in a further publication [3]. In particular, we show in
Ref. [3], that Eq. (3.4) has at most a unique smooth solution up to an additive constant,
when the deterministic vector �eld (i.e., Eqs. (2.2)) has an isolated zero. Moreover,
in our case the isolated zero is an attracting point, and by the results of Ref. [3], the
smooth solution should have a minimum at that point.
Finally, in Ref. [3], we show that the average of the �rst passage time of the

stochastic process across the line s= 0 can be evaluated as

T ∼ exp(N min S(r; 0)) ; (3.6)

up to a prefactor, the minimum being taken on all possible values of r (or of u) and S
is the regular solution of Eq. (3.4) normalized to be zero at the stationary point given
by Eq. (2.3). This passage time is also

T ∼ �−11 ; (3.7)

where �1 is the �rst eigenvalue of the Master equation with absorbing boundary con-
dition on the line s= 0.

4. Smooth solution of the Hamilton–Jacobi equation

4.1. Equations and solution

The various coe�cients of H are given by Eqs. (3.2) and contain u + v in factor.
After division by this overall factor the Hamiltonian becomes

H̃ (u; v; pu; pv) = (exp(−pu)− 1)− �u(exp(pu)− 1)
+ ��(1− v)(exp(pv)− 1) + �(u+ v)(exp(−pv)− 1) (4.1)

and we must �nd a smooth solution of

H̃
(
u; v;

@S
@u

;
@S
@v

)
= 0 : (4.2)

To �nd the smooth solution of Eq. (4.2), we take a point (u0; v0) close to the
stationary point, compute the Hamiltonian trajectory starting from (u0; v0) at time 0
and reach (u; v) at a certain time t which has to be calculated, with energy 0. Then we
compute the Lagrangian action along this trajectory and in the process, take the limit
when (u0; v0) tends to the stationary point (see Ref. [2]).
The Hamiltonian system associated to the Hamiltonian H̃ in Eq. (4.1) is

du
ds
= H̃pu =−e−pu − �uepu ; (4.3)

dv
ds
= H̃pv =−�(u+ v)e−pv + ��(1− v)epv ; (4.4)

dpu

ds
=−H̃ u = �(epu − 1)− �(e−pv − 1) ; (4.5)
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dpv

ds
=−H̃ v =−�(e−pv − 1) + ��(pv−1) : (4.6)

This system, Eqs. (4.3)–(4.6), can be solved by quadratures in an explicit manner.
We de�ne

 = e−pv − 1; ’= e−pu − 1 : (4.7)

(i) Multiplying Eq. (4.6) by e−pv we obtain a close equation for  :

d 
ds
= � 2 + (� + ��) (4.8)

which has a general solution depending on a constant C:

1
 (s)

=− �

� + ��
+ C exp(−(� + ��)s) : (4.9)

(ii) Multiplying Eq. (4.5) by e−pu , we obtain

d’
ds
= �’+ � (’+ 1) : (4.10)

We de�ne a function Z(z) by

’= Z (4.11)

and, using Eq. (4.8), we obtain for Z the linear equation

dZ
ds
+ Z(� + �� − �)− � = 0 (4.12)

which has the general solution depending on an arbitrary constant D

Z(s) =
�

� + �� − �
+ D exp(�− (� − ��))s : (4.13)

(iii) Finally, Eq. (4.3) for u can be solved explicitly:

u(s) = exp
(
−�
∫ s

0
epu(s′) ds′

)[
u(0)−

∫ s

0
e−pu(s)′exp

(
�
∫ s′

0
epu(s′′) ds′′

)
ds′
]

:

(4.14)

It is not necessary to calculate v, because we need only the trajectory of energy
H̃ = 0, so that v can be deduced algebraically from this equation.

4.2. Action

The action along a Hamiltonian trajectory with energy H̃ = 0 is given by

S =
∫ s

0
(pu du+ pv dv) : (4.15)

Using the previous results, it is proved in Appendix B that for a trajectory of energy 0

pu
du
ds
+ pv

dv
ds
=
d
ds
(upu + vpv − pv)−  (Z + �) : (4.16)



B. Gaveau et al. / Physica A 277 (2000) 455–468 461

Finally the equation H̃ = 0, permitting to obtain v is equivalent to

Z
(
1 +

�u
1 + Z 

)
+ �(u+ v)− ��

(1− v)
1 +  

= 0 : (4.17)

From Eqs. (4.15) and (4.16), we deduce

S = (u(s)pu(s) + v(s)pv(s)− pv(s))− (u(0)pu(0) + pv(0)− pv(0))

−
∫ s

0
 (Z + �) ds (4.18)

which determines S completely, although not in an explicit form. Nevertheless, we
shall see below that this expression is su�cient to deduce the �rst passage time using
Eq. (3.6).

5. Calculation of the minimal action on s = 0

5.1. Conditions on the trajectory

We consider the action S(u; v | u0; v0) for an Hamiltonian trajectory joining (u0; v0)
at t = 0 to (u; v) at t = tf at energy 0. The unknown are pu(0); pv(0) and tf . We are
interested, only in Min S(u; v | u0; v0) on u + v = 0 (which is the line s = 0), so that
@S=@u= @S=@V or pu(tf ) = pv(tf ).
The unknown are still the initial momenta and the �nal time tf , subject to the facts

that

H̃ = 0 ; (5.1)

u(tf ) + v(tf ) = 0 ; (5.2)

pu(tf ) = pv(tf ) : (5.3)

We choose an initial point (u0; v0) close to the stationary point, more precisely

u0 =−1� + �; v0 =
�� + �=�

� + ��
+ � ; (5.4)

where �; � are small (and will ultimately tend to zero).
For any dynamical quantity X , we abbreviate X0 (resp. Xf) the value of X at time 0

(resp. time tf).

5.2. Asymptotics when �; � tend to 0

We consider now a trajectory (u(t); v(t)) starting from (u0; v0) given by Eqs. (5.4), at
energy 0 and sastisfying conditions (5.1)–(5.3), and we study the aymptotic behavior
of this trajectory when �; � tend to 0. In Appendix C, we prove that

(i) tf →∞,
(ii) pu(t); pv(t)→ 0 for �nite t, uniformly on any �nite time interval,
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(iii) the quantity � f ≡ e−pv;f − 1 is 0 if and only if �� = 0,
(iv) uf =

1− ��+ � f
��−�

, (Eq. (C.2)).

5.3. The action when �; � tend to 0

We now remark that ufpu;f + vfpv;f = 0 because uf + vf = 0; pu;f = pv;f, so that
the limiting value of the action given by Eq. (4.18) when � and � tend to zero, is

Sf =−pv;f −
∫ ∞

0
lim( (s)(Z(s) + �)) ds : (5.5)

It results from Appendix C (Eqs. (C.19) and (C.20)) that

Sf = log(1 + � f)−
1
�

(1− �� + � f) � f

1 + � f

+
1− �
�

log(1 +  � f) ; (5.6)

where �= �− (� + ��); = �=(� + ��).
From Eq. (3.6), we see that the �rst passage time across the line s= 0 is

T ∼ exp(NSf) (up to prefactor): (5.7)

If �� = 0, then � f = 0 and Sf = 0, so that the estimation of Eq. (5.7) breaks down.

It will be shown in another article that Sf vanishes as ��
2
if �� tends to zero.

5.4. The most probable exit point

The most probable exit point on the line s=0 (or u+ v=0) is computed in Appendix C.
It is given by

rf =−uf =
1− � f − ��

�− ��
: (5.8)

This is the point of exit of the Hamiltonian trajectory of least action. Note that this
is not the point of separation between attracting and repulsive points on the line s=0,
which is (1− ��)=(�− ��) (Eq. (2.5)).
In the critical limit ( �� → 0), this point tends to 1=� (in fact, all remarkable points

tend to 1=�) which also becomes the seperation point. This is precisely the situation of
self-organized criticality. Furthermore, the exponential behaviour of the exit time T , as
given by (3.6), is no more valid, because the minimal action Sf vanishes, so that the
undetermined prefactor takes over. This point is examined in Ref. [18], for a similar
example, but using a method adapted to that example. The behavior of the prefactor
remains to be investigated.

6. Conclusion

Using modi�cation of a model introduced in Ref. [18], we have examined in detail
the transition to a critical behavior when a certain parameter (here ��) tends to its critical
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value. The e�ect which was studied in this work, is the �rst exit time of a basin of at-
traction when ��¿ 0. This relaxation time has been calculated as exp(VS) where V is
the volume of the system and S is a minimal action for a non-standard Hamilton–
Jacobi theory associated to the large volume limit of the Master equation. In the
present case, it turns out that this method not only gives more precise results than
the Fokker–Planck equation, but is also mathematically more tractable (the analogue
theory for the Fokker–Planck equation would lead to a non-integrable Hamiltonian
system). At the critical value of the parameter, this method shows that the action S
vanishes, signaling that the relaxation time is not exponentially large, as one expects
in a critical situation. This is also a sign that self-organized criticality might occur in
these conditions (see Ref. [18]) although a general characterization of self-organized
criticality is still missing, from a stochastic point of view. A precise evaluation of the
time exactly at criticality as was done for the models of Ref. [18], requires, in general,
new methods.

Appendix A. Phase portrait of Eqs. (2.2)

It is convenient to de�ne new variables

u=−r; v= r + s (A.1)

so that Eqs. (2.2) become

du
dt
=−s(�u+ 1);

dv
dt
= s(−�(u+ v) + ��(1− v))

and

du
dv
=

1 + �u

�(u+ v)− ��(1− v)
: (A.2)

The equilibrium (r; s) = (1=�; a) becomes (u; v) = (−1=�; ( ��+ �=�)=(�+ ��)) and we
center everything at that point, de�ning

U = u+
1
�
; V = v−

�� + �=�

� + ��
; (A.3)

to obtain

dU
dV

=
�U

�U + (� + ��)V
: (A.4)

This has solutions

U = 0;

V =C|U |(�+ ��)=� + �

�− (� + ��)
U ;
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where C is any constant, on coming back to (r; s)

r =
1
�

; (A.5)

s= a+ C
∣∣∣∣r − 1�

∣∣∣∣(�+ ��)=� − (1 + �

�− (� + ��)

)(
r − 1

�

)
: (A.6)

Appendix B. Proofs of certain identites

B.1. Proof of identity (4.16)

We write

pu
du
ds
+ pv

dv
ds
=
d
ds
(upu + vpv)−

(
u
dpu

ds
+ v

dpv

ds

)
:

Then using Hamilton Eqs. (4.5) and (4.6)

u
dpu

ds
+ v

dpv

ds
= �u(epu − 1)− �(u+ v)(e−pv − 1) + ��v(epv − 1)
≡−H̃ + (e−pu − 1) + ��(epv − 1) :

But H̃ = 0, and Eq. (4.6) says that

− ��(epv − 1) =−dpv

ds
− �(e−pv − 1) ;

so

−
(
u
dpu

ds
+ v

dpv

ds

)
=−dpv

ds
− ’− � =−dpv

ds
−  (Z + �) :

B.2. Proof of identity (4.7)

H̃ is given by Eq. (4.1). We use the identities

epu − 1 =− ’
’+ 1

=− Z 
1 + Z 

;

epv − 1 =−  
1 +  

and equation H̃ = 0 reduces to Eq. (4.17) after division by  .

Appendix C. Asymptotic of dynamical quantities when �; � tend to 0

C.1. Calculation of Zf; uf

Because pu;f = pv;f and the de�nitions given in Eqs. (4.7) and (4.11), we deduce

Zf = 1 : (C.1)
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We recall that at any time H̃ = 0, so that from Eq. (4.17) at time tf, using Eq. (C.1)
and uf + vf = 0

uf =
1 +  f − ��
�� − �

: (C.2)

C.2. Asymptotic of pu; pv; tf

Until the end of Appendix C, we consider the limits of various quantities when �
and � tend to zero.
We take Eq. (4.17) (H̃ = 0) at time 0 using the values (u0; v0) given in Eq. (5.4):

0 = Z0

(
1 +

�(−1=�+ �)
1 + Z0 0

)
+ �

(
(1− 1=�) ��

� + ��
+ �+ �

)

−
(

� ��(1− 1=�)
� + ��

− ���

)
1

1 +  0
:

After rearrangement

0 =  0

[
Z20

1 + Z0 0
+

� ��

� + ��
(1− 1=�) 1

1 +  0

]

+ �
(

�Z0
1 + Z0 0

+ �
)
+ �

(
� +

��
1 +  0

)
: (C.3)

But 1 +  0 = exp(−pv(0))¿ 0; 1 + Z0 0 = exp(−pu(0))¿ 0 so that Eq. (C.3) forces
 0 → 0. Then, if Z0 0 does not tend to 0, this would mean Z0 →∞, which would be
in contradiction with Eq. (C.3). So both pu;0 and pv;0 tend to 0, and Z0 stays �nite.
As a consequence, in Eq. (4.9) for t = 0; C → ∞ and again from Eq. (4.9) for a

�nite t,

C →∞; pv(t)→ 0 (�nite t) : (C.4)

From Eqs. (4.11)–(4.13)

’(t) = Z(t) (t) ;

Z(t) = De�t − �; �=
�

�− (� + ��)
;

 (t) =
1

Ce−(�+ ��)t − 
; =

�

� + ��
;

�= �− (� + ��)¿ 0 (see Eq: (2:6)) : (C.5)

Now, Zf = 1, by Eq. (C.1), so that

D = (1 + �)e−�tf : (C.6)

If tf stays �nite (when �; �→ 0), then ’ and  would tend uniformly to 0 and the
action would tend to 0 (from Eq. (4.18)).
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C.3. Discussion of u(t) and equation for  f

From Eq. (4.14), we need to compute the integral of epu . From Eq. (4.5) we have

�epu =
dpu

ds
+ �+ � : (C.7)

From Eq. (4.8)

dlog  
ds

= � + � + �� (C.8)

and eliminating � between Eqs. (C.7) and (C.8), we obtain

�epu =
d
ds
(pu + log  ) + � (C.9)

so ∫ t

0
�epu(s) ds= pu(t) + log  (t)− pu(0)− log  (0)− �t ; (C.10)

u(t) = exp(−pu(t))exp(pu(0))
 (0)
 (t)

e−�tK(t) ; (C.11)

where we have de�ned

K(t) ≡ u0 −
∫ t

0
e−pu(s) exp

(
�
∫ s

0
epu(s′) ds′

)
ds

and using again Eq. (C.10) in the expression of K(t)

K(t) = u0 −
∫ t

0
e�s

 (s)
 (0)

e−pu(0) ds : (C.12)

Now at t= tf; uf satis�es Eq. (C.2), so that from Eqs. (C.11) and (C.12), we obtain

1− �� +  f
�� − �

=
e−pu;fe−�tf

 f

[(
−1

�
+ �
)
epu; 0 0 −

∫ tf

0
e�s (s) ds

]
: (C.13)

We have e−pu;f = e−pv;f =  f + 1 (de�nition (4:7) of  ). We shall now take the limit
when � → 0; pu;0 → 0; tf → 0 and denote by l̃im this limit. Under this limit, it is
obvious from Eq. (C.13) that if  f tends to non-zero limit � f, then � f satis�es the
identity

1− �� + � f

�� − �
=− (

� f + 1)
� f

lim
∫ tf

0

e−�(tf−t)

Ce−(�+ ��)s − 
dt :

On the other hand, by de�nition of  in Eq. (4.9)

� 
−1
f = l̃im(Ce−(�+�′)tf − )

so that � f satis�es the following equation:

1− �� + � f

�� − �
=−

� f + 1
� f

∫ ∞

0

e−�s(
1= � f + 

)
e−(�+ ��)s − 

ds : (C.14)
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We prove now that � f is non-zero. If � f were equal to 0, taking Eq. (C.13) we would
have

1− ��
�� − �

=−1
�
l̃im

(
 0
� fe

�tf

)
− l̃im e

−�tf

� f

∫ tf

0

e�s

Ce−(�+ ��)s − 
ds : (C.15)

Because � f → 0; Ce−(�+ ��)tf →∞, the last limit in Eq. (C.15) is

l̃im
e−�tf

� fC

(
e�tf − 1

�

)
' 1

�

and so Eq. (C.15) reduces to

1− ��
�� − �

=−1
�

(
1 + lim

 0
� fe

�tf

)
: (C.16)

In Eq. (C.16), the limit is a �xed number which is non-zero (to satisfy Eq. (C.16))
so that

l̃im
 0
� fe

�tf
= l̃im

(
Ce−(�+ ��)tf − 
(C − )evtf

)

but this last term is obviously, 0, so that we have a contradiction and � f does not tend
to zero.

C.4. Unicity of the solution of Eq. (C.14)

We show that Eq. (C.14) has a unique solution which is ¿− 1, and in fact will be
positive if ��¿ 0 and 0 for �� = 0.
We rewrite Eq. (C.14) as

1− �� + � f

1 + � f

= (�− ��)
∫ ∞

0

e−�s

(1 +  � f)e(�+
��)s −  � f

ds : (C.17)

The function of � f in the �rst number is increasing, while the function of � f in the
second number is decreasing.
For � f =0, the �rst function takes the value 1− ��, while the second function takes

the value (� − ��)=�¿ 1 − �� because �¿ 1, so that there is a unique positive root of
Eq. (C.17) for ��¿ 0 and for �� = 0 this root is � f = 0.

C.5. Limit of the action

The limit of action given by Eq. (5.5). But we have

� 
−1
f = l̃im(Ce−(�+ ��)tf − ) ;

D = (1 + �)e−�tf ; (Eq: (C:6)) ;



468 B. Gaveau et al. / Physica A 277 (2000) 455–468

so that using Eqs. (4.9) and (4.13)∫ ∞

0
l̃im( (s)(Z(s) + �)) ds=

∫ ∞

0

(1 + �)e−�s − (�− �)

(1= � f + )e−(�+ ��)s − 
ds : (C.18)

Now, using Eq. (C.14) which de�nes � f, we have∫ ∞

0

e−�s

(1= � f + )e(�+ ��)s − 
ds=

(
1− �� + � f

�− ��

)(
� f

1 + � f

)
while ∫ ∞

0

1

(1= � f + ()e(�+
��)s − 

ds=
1

(� + ��)

∫ 

0

du

(1= � f + )− u

=
1

(� + ��)
log(1 +  � f) ;

so that using the values �= �=[�− (� + ��)]; = �=(� + ��)∫ ∞

0
l̃im( (s)(Z(s) + �)) ds=

1
�

(1− �� + � f) � f

1 + � f

− 1− �
�

log(1 +  � f)

(C.19)

and by de�nition of  ,

pv;f =−log(1 + � f) : (C.20)
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