Variational nonequilibrium thermodynamics of reaction-diffusion systems.
III. Progress variables and dissipation of energy and information

Bernard Gaveaua)
Université Pierre et Marie Curie, Laboratoire Equations aux Dérivées Partielles, Case 172,
75252 Paris Cedex 05, France

Michel Moreaub)
Université Pierre et Marie Curie, Physique Théorique des Liquides, Case 121,
75252 Paris Cedex 05, France

Janos Tothc)
Budapest University of Technology and Economics, Department of Analysis, Budapest, Hungary

(Received 16 November 2000; accepted 5 April 2001)

We continue, in this article, to develop the formalism of nonequilibrium thermodynamics in variational form. We prove that in the framework of progress variables, the Hamilton–Jacobi equation has always a simple solution, and we prove that this solution becomes a state function if and only if there is a thermodynamic equilibrium for the system. We study an inequality between the dissipation of energy and of information, and we discuss the notion of relative entropy. Finally we also study in detail the case of a system with one chemical species, where all the previous quantities can be calculated explicitly. © 2001 American Institute of Physics.
[DOI: 10.1063/1.1375137]

I. INTRODUCTION

In two previous publications1 (referred to below as Parts I and II), we have introduced a new formalism for nonequilibrium thermodynamics of reaction-diffusion systems at a fixed temperature (see Refs. 2 and 3 for general references as well as different approaches to these questions and Ref. 4 for applications of this formalism). The dynamics of such systems can be described by a Master Equation (Ref. 2) because the rate constants of all processes, chemical or diffusive are well defined, the temperature being kept fixed. The stationary probability distribution on the state space is the stationary solution of this Master equation \(P_s(x) \) (\(x \) is the label of the state of the system) and, following Kubo \textit{et al.}, 5,6 it can be approximated in the large volume approximation as

\[P_s(x) \approx U_0(x) \exp(-V \Phi(x)), \]

where \(U_0 \) is a prefactor, \(V \) is the volume of the system, and \(\Phi \) is the information potential.1,4

This approximation is valid at least away from criticality. In an equilibrium situation, the information potential would be \(F(x)/k_B T \), where \(F \) is the free energy per unit volume. In general, \(\Phi \) satisfies a Hamilton–Jacobi equation of a non-standard form and its properties have been studied in Part I. We have applied these results to the study and approximation of rate constants, first passage times and eigenvalue of the Master equation in Part II. A more general formalism for non equilibrium statistical mechanics was introduced in Refs. 7–9, for any stochastic dynamics, and was used to prove a fluctuation dissipation theorem and derive generalized Onsager relations as well as a general approach to first order phase transitions in nonequilibrium situations.9

In this work, we study the information potential in term of the progress variables (see Ref. 3) and we derive a Hamilton–Jacobi equation in term of these variables, although this does not lead to a state function in general (see Sec. II). In Sec. III, we also state and derive an inequality relating the dissipation of energy to the dissipation of information which is valid for any reaction-diffusion system at fixed temperature. This inequality was also derived in a slightly less general context in Ref. 10. In Sec. IV, we study the relative entropy. In Sec. V, we examine the action of external reservoirs maintaining a nonequilibrium situation in the system. We show that the natural condition is that the reservoirs maintain constant certain chemical potentials of certain species rather than the corresponding concentrations. We prove that the information potential in progress variables induces a state function in the space of concentration variables (which is then the information potential in these variables), if and only if the reservoirs maintain external conditions compatible with the existence of a thermodynamic equilibrium. We show also that the information potential in progress variables is the work performed by the reservoirs to maintain the non equilibrium situation in the system. In Sec. VI, we examine the case of a chemical system with only one chemical species varying freely. A conclusion summarizes our results and certain detailed proofs are given in the appendices.

II. DYNAMICS OF PROGRESS VARIABLES

\textbf{A. Fundamental processes and progress variables}

We consider a vessel of fixed volume \(V \), containing two kinds of chemical species:
(i) Chemical species denoted X_i, $i = 1, \ldots, s$, which are varying freely according to natural chemical reactions in V. We denote n_i the number of particles X_i and $x_i = n_i / V$ their concentration;

(ii) Chemical species denoted A_l, $l = 1, \ldots, \bar{x}$, which are completely under the control of external reservoirs. This means that at any time t, the concentrations $a_l(t)$, $l = 1, \ldots, \bar{x}$ are imposed by the external reservoirs.

The state of the system is given by the set of numbers $\{x_i\}_{i = 1, \ldots, s}$ which specify the concentrations of the freely varying species. The concentrations $\{a_l(t)\}$, $l = 1, \ldots, \bar{x}$ may be functions of the state variables x_i. The simplest situation is the case where the reservoirs maintain each a_l at a fixed concentration independent of t. We allow such a general variation $a_l(t)$ in Sec. II–IV and we shall discuss in more detail the action of the reservoirs in Sec. V.

The species are reacting and diffusing according to p fundamental processes, which are all reversible, of the type

\[
\sum_{i=1}^{\bar{x}} n_i A_i \rightarrow \sum_{i=1}^{\bar{x}} n_i A_i + \sum_{i=1}^{\bar{x}} n_i A_i \rightarrow \sum_{i=1}^{\bar{x}} n_i A_i + \sum_{i=1}^{\bar{x}} n_i A_i
\]

and $\alpha = 1, \ldots, p$ labels the processes. By convention, the forward process is from left to right and the backward process is from right to left.

We denote by $r_\alpha(t)$ the number of forward processes minus the number of backwards processes of type α, up to time t. In particular,

\[
n_i(t) = n_i(0) + \sum_\alpha r_\alpha r_\alpha(t), \tag{2.1}
\]

where r_α is the difference between the stoichiometric numbers $\nu_+ - \nu_-$,

\[
r_\alpha = \nu_+ - \nu_-. \tag{2.1}
\]

We denote by u_α the algebraic number of processes α per unit volume

\[
u = \frac{r_\alpha}{V} \tag{2.2}
\]

and call these numbers the progress variables, according to the usual denomination.

Finally, we define by Ω_α the probability per unit time that a forward or backward process of type α occurs in V. Because of Eq. (2.1), written in rescaled variables, namely,

\[
x_i(t) = x_i(0) + \sum_\alpha r_\alpha u_\alpha(t), \tag{2.3}
\]

the Ω_α can be considered as functions of the u_α, the $x_i(0)$ and the a_l.

B. Dynamics of progress variables

We call $Q(r, t)$ the probability that at time t r_α processes of type α have occurred, $\alpha = 1, \ldots, p$. We denote by δ_α the Kronecker symbol. Then Q satisfies the following Master equation (see Part I and Ref. 2 for general references):

\[
\frac{\partial Q(r, t)}{\partial t} = \sum_\alpha \left[\Omega_\alpha^+ (r_\alpha - \delta_\alpha) Q(r_\alpha - \delta_\alpha, t) \right]
\]

\[
+ \Omega_\alpha^- (r_\alpha + \delta_\alpha) Q(r_\alpha + \delta_\alpha, t)
\]

\[
- (\Omega_\alpha^+ (r_\alpha + \delta_\alpha) + \Omega_\alpha^- (r_\alpha - \delta_\alpha)) Q(r, t). \tag{2.4}
\]

We use now the rescaled progress variables $u_\alpha = r_\alpha / V$ as in the definition of Eq. (2.2), to define the rescaled probability density $q(u, t)$ and rates $\tilde{\omega}_\alpha$ by

\[
Q(r, t) = \frac{1}{V} q(u, t), \nonumber
\]

\[
\Omega_\alpha^\pm (r) = V \tilde{\omega}_\alpha (u), \nonumber
\]

and Eq. (2.4), can be rewritten,

\[
1 \frac{\partial q(u, t)}{\partial t} = \sum_\beta \left[\tilde{\omega}_\beta^+ \left(u - \delta_\beta \right) q \left(u - \delta_\beta \right) t \right]
\]

\[
+ \tilde{\omega}_\beta^- \left(u + \delta_\beta \right) q \left(u + \delta_\beta \right) t
\]

\[
- \left(\tilde{\omega}_\beta^+ (u) + \tilde{\omega}_\beta^- (u) q(u, t) \right). \tag{2.5}
\]

For large V, we obtain an approximate Fokker–Planck equation in the usual way from Eq. (2.5),

\[
\frac{\partial q(u, t)}{\partial t} = -\sum_\beta \frac{\partial}{\partial u} \left(\tilde{\omega}_\beta^- - \tilde{\omega}_\beta^+ \right) q
\]

\[
+ \frac{1}{2V} \sum_\beta \frac{\partial^2}{\partial u^2} \left(\tilde{\omega}_\beta^- + \tilde{\omega}_\beta^+ \right) q. \tag{2.6}
\]

However, it has been shown that this equation does not give the correct results for stationary state and the large time dynamics of the full Master equation (see Ref. 11 and Part I).

C. Approximation dynamics for large V

For large V, following Kubo and other authors (see also Part I for a systematic use), one can try a formal asymptotic expansion for $q(u, t)$ (which is reminiscent of the WKB-expansion in quantum mechanics),

\[
q(u, t) = \exp \left(- V \varphi \right) U_0 + \frac{1}{V} U_1 + \cdots. \tag{2.7}
\]

The variations of the prefactor U_0 are usually negligible compared to the variations of the dominant exponential $\exp(- V \varphi)$. However, the prefactor becomes preponderant near criticality, when the argument of the exponential vanishes. On the other hand, the method of Kubo would make no sense if U_0 was singular. For all these reasons, a further study of the prefactor is necessary for a sound mathematical foundation of the present formalism. This study, which is somewhat intricate and needs abstract topological arguments, will be presented elsewhere.\(^\text{15}\)

The expansion (2.7) can be used either in the Fokker–Planck equation (Eq. 2.6), or directly in the Master equation

\[
\frac{\partial Q(r, t)}{\partial t} = \sum_\beta \left[\Omega_\beta^+ (r_\beta - \delta_\beta) Q(r_\beta - \delta_\beta, t) \right]
\]

\[
\frac{\partial Q(r, t)}{\partial t} + \Omega_\beta^- (r_\beta + \delta_\beta) Q(r_\beta + \delta_\beta, t)
\]

\[
- (\Omega_\beta^+ (r_\beta + \delta_\beta) + \Omega_\beta^- (r_\beta - \delta_\beta)) Q(r, t). \tag{2.4}
\]
(2.5). In both cases, it is easily shown (as in Part I) that the function \(\psi \) satisfies a Hamilton–Jacobi equation in progress variables,
\[
H'(u, \frac{\partial \psi}{\partial u}) = 0, \tag{2.8}
\]
where \(H' \) is either the Fokker–Planck Hamiltonian \(H'_{FP} \) or the Master Hamiltonian \(H'_{M} \),
\[
H'_{FP}(u, \pi) = \sum_{\beta} \left[(\omega^+_{\beta} - \omega^-_{\beta}) \pi_{\beta} + \frac{1}{2}(\omega^+_{\beta} + \omega^-_{\beta}) \pi^2_{\beta} \right],
\]
\[
H'_{M}(u, \pi) = \sum_{\beta} \left[\omega^+_{\beta} (\exp(\pi_{\beta}) - 1) + \omega^-_{\beta} (\exp(-\pi_{\beta}) - 1) \right], \tag{2.9}
\]
where \(\pi_{\beta} \) is the conjugate momentum of \(u_{\beta} \). As in Part I, we have
\[
H'_{M}(u, \pi) = H'_{FP}(u, \pi) + 0(1|\pi|^3). \tag{2.10}
\]

We notice here that all the results proved in Part I for the Hamilton–Jacobi equation associated with the Master equation are valid for the Hamilton–Jacobi equation in progress variables.

D. Relation with the usual master equation

The usual Master equation (see Part I) is an equation for functions of the state variables (here the \(x_i \)). Although the formal derivation of the usual Master equation and of its approximations (Fokker–Planck and Hamilton–Jacobi) are the same as in Sec. II C, their physical meaning is completely different, because the \(u_{\alpha} \) are not state variables. They are related to the state variables by Eq. (2.3). If one knows the \(u_{\alpha} \), one can deduce the variation of the state variables \(x_i(t) = x_i(0) \) but in general not conversely. In Part I, we have been using the \(x_i \) variables and we introduced the rate per unit volume \(w_r(x) \) of a transition, \([x_i(0)] = [x_i + (r, V)] \). It is clear that
\[
w_r(x) = \sum_{\alpha: \mathbf{r}_{\alpha} = \mathbf{r}_i} \omega^+_{\alpha}(x) + \sum_{\alpha: \mathbf{r}_{\alpha} = -\mathbf{r}_i} \omega^-_{\alpha}(x). \tag{2.12}
\]

The usual Kramers–Moyal expansion of the Master equation (see Refs. 2, 4, 11, and Part I) yields the usual Fokker–Planck equation in concentration variables,
\[
\frac{\partial p}{\partial t} = -\sum_i \frac{\partial}{\partial x_i} (A_{i} p) + \frac{1}{2V} \sum_{i,j} \frac{\partial^2}{\partial x_{i} \partial x_{j}^{2}} (D_{ij} p),
\]
with the following expressions for \(A_{i} \) and \(D_{ij} \):
\[
A_{i} = \sum \mathbf{r}_{i} w_{r_{i}} = \sum_{\alpha} \mathbf{r}_{\alpha} \omega^+_{\alpha} - \omega^-_{\alpha}, \tag{2.13}
\]
\[
D_{ij} = \sum \mathbf{r}_{i} \mathbf{r}_{j} w_{r_{i}} = \sum_{\alpha} \mathbf{r}_{\alpha} \omega^+_{\alpha} + \omega^-_{\alpha}. \tag{2.14}
\]

Finally, Eq. (2.3) shows that the evolution remains, for all time, in the subspace \(E(x(0)) \) of the state space of the \(\{x_i\} \), given by parametric equations,
\[
E(x(0)) = \left\{ x = \{x_i\}|x_i = x_i(0) + \sum_{\alpha} \mathbf{r}_{\alpha} u_{\alpha} \right\}.
\]

It is clear that this subspace is the same as the subspace introduced in Part I, Sec. II, because the set of the \(2p \) vectors \(\{r_{\alpha}\}, \alpha = 1,...,p \) is exactly the set of the vectors \(\{r_{i}\} \), and each subspace \(E(x(0)) \) carries a stationary probability distribution. We shall assume henceforth that we reduce the situation to a given subspace \(E(x(0)) \), so that the dynamics is irreducible and has a unique stationary state in this subspace.

Notice that when we do this, we can use \(d \) variables \(x_{1},...,x_{d} \), where \(d \) is the dimension of \(E(x(0)) \), to parametrize \(E(x(0)) \). The other variables \(x_{d+1},...,x_{s} \) are still present (so that the chemical processes \(\alpha \) are the same) but they are certain linear functions of the \(x_{1},...,x_{d} \).

In Part I, we have introduced the Hamiltonian \(H_{M}(x,\xi) \) of the Master equation,
\[
H_{M}(x,\xi) = \sum_{\alpha} w_{r_{\alpha}}(e^{r_{\alpha} \xi} - 1),
\]
where \(\xi_{i} \) is the conjugate variable of \(x_{i} \) and
\[
r_{i} \xi = \sum_{\alpha} r_{\alpha} \xi_{i}.
\]

Let us define now
\[
\pi_{\alpha} = \sum_{\alpha} \mathbf{r}_{\alpha} \xi_{i}, \tag{2.15}
\]
then using Eq. (2.12), the master Hamiltonian \(H'_{M} \) in \((u, \pi)\) variables reduces to the master Hamiltonian \(H_{M} \) in \((x, \xi)\) variables,
\[
H'_{M}(u, \pi) = H_{M}(x, \xi). \tag{2.16}
\]

In particular, if \(\Phi(x) \) is a solution of the Hamilton–Jacobi equation,
\[
H_{M} \left(x, \frac{\partial \Phi}{\partial x} \right) = 0, \tag{2.17}
\]
then the function,
\[
\psi(u) = \Phi \left(x_{i}(0) + \sum_{\alpha} \mathbf{r}_{\alpha} u_{\alpha} \right)
\]
induces a solution of the Hamilton–Jacobi equation in the progress variable form,
\[
H'_{M} \left(u, \frac{\partial \psi}{\partial u} \right) = 0 \tag{2.18}
\]
because
\[
\frac{\partial \psi}{\partial u_{\alpha}} = \sum_{\alpha} \mathbf{r}_{\alpha} \frac{\partial \Phi}{\partial x_{i}}.
\]
E. Free energy and rate constants in the unconstrained system

We consider now the vessel \(V \), in which the \(p \) processes take place, but we switch off the exchanges of molecules \(A_l \), \(l = 1, ..., \bar{x} \) with the reservoirs (but still maintaining the temperature \(T \) constant), so that the concentrations \(x_l \) and \(a_l \) vary freely according to the natural chemical processes \(\alpha = 1, ..., p \) in the vessel. The state will then reach a thermal equilibrium. At thermal equilibrium, the probability distribution on the state space, which consists now of the freely varying concentrations \(x_l \) and \(a_l \), is for large \(V \),

\[
p_{eq}(\{x_l\}, \{a_l\}) \sim U_0 \exp\left(-\frac{VF(x,a)}{k_B T}\right),
\]

where \(F \) is the free energy (of the state \((x,a) \)) per unit volume, \(T \) is the temperature, and \(U_0 \) is a prefactor. At equilibrium, all processes satisfy the condition of detailed balance, which can be written asymptotically, for large \(V \), as

\[
\omega^+(x,a) \exp\left(-\frac{V}{k_B T} F(x,a)\right) = \omega^-(x,a) \exp\left(-\frac{V}{k_B T} F(x,a)\right)
\]

where \(\omega^\pm \) are given by

\[
\omega^\pm = k^\pm \left(\prod_i x_{i}^{\prime =\pm a_i} \right) \left(\prod_i a_{i}^{n =\pm a_i} \right),
\]

where \(k^\pm \) are temperature dependent constants. It is immediate to check that the usual partial equilibrium form \(\omega^\pm \) is

\[
F(x,a) = \sum_i F_i(x_l) + \sum_i F_i(a_l)
\]

(22.22)\)(where \(F_i \) is the free energy of the ideal gas law at temperature \(T \) and concentrations \(x_l \) satisfies Eq. (2.20). In fact, the chemical potentials are

\[
\mu_l = \frac{\partial F}{\partial x_l} = k_B T \log x_l + f_i(T)
\]

and Eq. (2.20) reduces to the equation

\[
k_B T \log k^\pm = \sum_i \tau^{\prime i}_a f_i(T) + \sum_i \tau^{i}_a f_i(T).
\]

Here each \(f_i(T) \) is calculated using the partition functions of the internal degrees of freedom of the species \(X_i \) and Eq. (2.24) is the usual expression for the equilibrium constant \(K_{eq} \) of the process \(\alpha \) in terms of the partition function of the internal degrees of freedom of the species appearing in the process \(\alpha \).

In many circumstances, like for imperfect gases or solutions, electrolytes, etc., one needs a more general formulation of the free energy \(F(x,a) \), not necessarily of the form of Eq. (2.22). This is why we shall work with the most general free energy \(F(x,a) \).

From Eq. (2.20), it is easy to see that for all \(\alpha \),

\[
\omega^\pm \left[\exp\left(\frac{1}{k_B T} \frac{\partial F}{\partial u_{\alpha}}\right) - 1 \right] + \omega^\pm \left[\exp\left(-\frac{1}{k_B T} \frac{\partial F}{\partial u_{\alpha}}\right) - 1 \right] = 0,
\]

(2.25)\)where

\[
\frac{\partial F}{\partial u_{\alpha}} = \sum_i \frac{\partial F}{\partial x_i} \tau^{\prime i}_a + \sum_i \frac{\partial F}{\partial a_i} \tau^{i}_a
\]

(2.26)\)so that \(F \) satisfies the Hamilton–Jacobi equation (2.8),

\[
H_M^{\prime}(u, \frac{1}{k_B T} \frac{\partial F}{\partial u}) = 0
\]

with \(H_M^{\prime} \) given by Eq. (2.10), where, in \(\omega^\pm \), one uses the variables

\[
x_i = x_i(0) + \sum_a \tau^{i}_a u_a,
\]

\[
a_i = a_i(0) + \sum_a \tau^{i}_a u_a.
\]

III. DISSIPATION OF ENERGY AND OF INFORMATION

A. Dissipation of information

From now on, we shall assume again that, on a given subspace \(E(x(0)) \), the state of the vessel reaches a stationary state \(p(x) \sim U_0 \exp(-VF) \) with the concentrations \(a_i \) being entirely controlled by the reservoirs and having fixed variations \(a_i(t) \).

If we consider a state \(x = \{x_i\} \), it evolves macroscopically according to the deterministic equations,

\[
\frac{dx_i}{dt} = A_i(x) = \sum_a \tau^{i}_a (\omega^+_a - \omega^-_a).
\]

The value of the state function \(\Phi \) evolves as

\[
\frac{d\Phi}{dt} = \sum_i \frac{\partial \Phi}{\partial x_i} \frac{dx_i}{dt} = \sum_{i,a} (\omega^+_a - \omega^-_a) \frac{\partial \Phi}{\partial u_a}.\]

(3.1)\)

We know from Sec. II E, that \(H_M^{\prime}(u, \frac{\partial \Phi}{\partial u}) = 0 \). But \(e^{\Phi} - 1 \approx x \), so that

\[
0 = \sum_a \left[\omega^+_a \left(\exp\left(\frac{\partial \Phi}{\partial u_a}\right) - 1 \right) + \omega^-_a \left(\exp\left(-\frac{\partial \Phi}{\partial u_a}\right) - 1 \right) \right] \geq \sum_a (\omega^+_a - \omega^-_a) \frac{\partial \Phi}{\partial u_a}.
\]

As a consequence, we obtain the inequality

\[
\frac{d\Phi}{dt} \leq 0.
\]

(3.2)\)
Moreover, the equality is attained if and only if for each \(\alpha \),
\[
\omega^*_\alpha \cdot (\partial \Phi/\partial u_\alpha) = \omega_\alpha \cdot (\partial \Phi/\partial u_\alpha) = 0.
\]
In particular, if the deterministic state reaches a stationary point \(x^{(0)} \), for which \(A_i(x^{(0)}) = 0 \), then \(\Phi/\partial u_\alpha = 0 \) or \(\omega_\alpha = \omega^*_\alpha = 0 \).

The quantity \(d\Phi/dt \) computed along a deterministic trajectory is always negative. It can be interpreted as a dissipation of information per unit time.

In fact, \(V\Phi(x) \) can be considered as the average information which when the system is observed in the state \(x \) rather than being stochastically distributed with the stationary probability distribution \(p_* (x) \sim \exp(-V\Phi(x)) \), which is the state of lowest information, when the system is coupled to the various reservoirs of heat and of chemical species \(A_i \). We have
\[
V\Phi(x) = \sum_y \delta(y-x) \log \frac{p(y,x)}{p_* (y)} = -\log p_* (x), \tag{3.3}
\]
where \(\delta(y-x) \) is the Dirac distribution at \(x \). The sum of Eq. (3.3) is really on the space of discrete states \(x = [n_i/V] \), so that \(\delta(y-x) \) is in fact a Kronecker symbol. Along a deterministic path, \(\Phi \) decreases with time while the state \(x \) tends to a deterministic stationary state which is a local minimum of \(\Phi \).

More generally, we can define the relative information (see Refs. 7–9, 14) of a probability distributions \(p(x,t) \) as
\[
I(p|p_\ast) = \sum_y p(y,t) \log \frac{p(y,t)}{p_* (y)}, \tag{3.4}
\]
for any stochastic system evolving according to a Markov process with stationary state \(p_* \).

This quantity \(I(p|p_\ast) \) is the average information gained if one knows that the state is the probability \(p(x,t) \) at time \(t \), rather than in the state of lowest information \(p_\ast(y) \) (given the reservoirs or, the stochastic mechanisms). \(I(p|p_\ast) \) is the opposite of the relative entropy \(S(p|p_\ast) \) used by various authors (see Refs. 7–9 and 14).

B. Dissipation of energy

We consider now the variation of the free energy along the deterministic trajectory, namely,
\[
\frac{d\Phi}{dt} = \sum_t \frac{\partial F}{\partial x_t} \frac{dx_t}{dt} + \sum_t \frac{\partial F}{\partial a_t} \frac{da_t}{dt},
\]
which we write as
\[
\frac{d\Phi}{dt} = \sum_t \frac{\partial F}{\partial x_t} \frac{dx_t}{dt} + \sum_t \frac{\partial F}{\partial a_t} \left[\frac{da_t}{dt} \right]_c - \sum_t \frac{\partial F}{\partial a_t} \left[\frac{da_t}{dt} \right]_c,
\]
where \([da_t/dt]_c \) is the variation of the \(a_t \) due to the various chemical processes \(\alpha \) in the vessel \(V \), so that
\[
\left[\frac{da_t}{dt} \right]_c = \sum_\alpha \left(\omega^*_\alpha - \omega_\alpha \right) t'_\alpha \tag{3.5}
\]
and \([da_t/dt]_c - (da_t/dt) \) is the actual variation of the concentration \(a_t \) in the reservoir.

In Eq. (3.5) the first two terms are, using Eq. (2.26),
\[
\sum_\alpha \left(\omega^*_\alpha - \omega_\alpha \right) \left(\sum_i t'_i \frac{\partial F}{\partial x_i} + \sum_i t'_i \frac{\partial F}{\partial a_i} \right) = \sum_\alpha \left(\omega^*_\alpha - \omega_\alpha \right) \frac{\partial F}{\partial a_i} \tag{3.7}
\]
Now Eq. (2.25) says that for each \(\alpha \),
\[
0 = \omega^*_\alpha \left[\exp \left(\frac{1}{k_B T} \frac{\partial F}{\partial a_i} - 1 \right) \right] + \omega_\alpha \left[\exp \left(-\frac{1}{k_B T} \frac{\partial F}{\partial a_i} \right) - 1 \right]
\]
\[
\geq (\omega^*_\alpha - \omega_\alpha) \frac{\partial F}{\partial a_i} \tag{3.8}
\]
so that we deduce
\[
\sum_i \frac{\partial F}{\partial x_i} \frac{dx_i}{dt} + \sum_i \frac{\partial F}{\partial a_i} \left[\frac{da_i}{dt} \right]_c = \sum_i \left(\omega^*_\alpha - \omega_\alpha \right) \frac{\partial F}{\partial a_i} \leq 0.
\]

On the other hand, the quantity in Eq. (3.5),
\[
w = -\sum_i \frac{\partial F}{\partial a_i} \left[\frac{da_i}{dt} \right]_c - \frac{da_i}{dt}
\]
(3.9)
is the work given to the system by the reservoirs to impose the evolution \(a_i(t) \) for each concentration \(a_i \) in the vessel \(V \), where we have denoted by \(m_i \) the chemical potential with respect to the species \(A_i \),
\[
m_i = \frac{\partial F}{\partial a_i}.
\]
Then, from Eqs. (3.5) to (3.9),
\[
\frac{d\Phi}{dt} - w \leq 0 \tag{3.10}
\]
and the quantity \(d\Phi/dt - w \) is the dissipation of energy in the system, per unit time.

C. Inequality between the dissipation of information and of energy

It is proven in Appendix A that the dissipation of information and the dissipation of energy satisfy the fundamental inequality,
\[
\frac{1}{k_B T} \left(\frac{d\Phi}{dt} - w \right) \leq 0, \tag{3.11}
\]
so that, in absolute value the dissipation of information is always less than the dissipation of energy. Moreover, there is equality if and only if we have an equilibrium situation.

This inequality has been derived in Ref. 10 in a slightly more restrictive situation. It is completely general (for reaction diffusion systems at a fixed temperature). This is different from the usual inequalities for the rate of production of entropy given by various authors (see Refs. 2 and 12). The main reason is that for non equilibrium situations, it is not easy to relate directly entropy production and energy dissipation.
pation. In fact, here $d\Psi/dt$ is not an absolute production of entropy (as in Refs. 2 and 12) but a production of relative entropy as discussed at the end of Sec. III A, and below.

IV. INFORMATION POTENTIAL IN THE CONSTRAINED SYSTEM

In this section, we shall assume that the free energy of the whole vessel V is a given function $F(x,a)$ of the various concentrations, the temperature T being fixed. We recall Eq. (2.20),

$$k_B T \log \frac{\omega_a}{\omega_a} = \sum_i \frac{\partial F}{\partial x_i} \tau'_a + \sum_i \frac{\partial F}{\partial a_i} t'_a.$$ \hspace{1cm} (4.1)

The reservoirs maintain a fixed evolution $a_l(t)$ for each concentration of the species A_l. We call the chemical potentials,

$$\mu_l = \frac{\partial F}{\partial x_l}, \quad m_l = \frac{\partial F}{\partial a_l};$$ \hspace{1cm} (4.2)

We would like to define a solution of the Hamilton-Jacobi equation $H_{\tilde{m}}(u, (\partial \Psi/\partial u)) = 0$ in the progress variables.

A. The action of the reservoirs

We shall assume that the reservoirs of the $\{A_l\}$ act in such a way as to maintain constant the chemical potentials m_l with respect to a_l for all $l = 1,...,\tilde{s}$, at a value $m_l = m_l(0)$. For example, when the so-called partial equilibrium situation holds, namely,

$$F(x,a) = F_1(x) + F_2(a),$$ \hspace{1cm} (4.3)

then the $m_l = (\partial F_2/\partial a_l)(a)$ depend only on a and our hypothesis means that the reservoirs maintain the concentrations a_l, which is the standard assumptions for reaction-diffusion systems. In general, however, we shall show below that the constancy of the chemical potentials m_l is a more natural condition. In this case, we assume that, each time a process a occurs in the vessel V, the reservoirs provide to the vessel a quantity σ'_a of the species l, in such a way that, for all $l = 1,...,\tilde{s}$ and all a one has

$$\sum_i \frac{\partial m_i}{\partial x_i} \tau'_a + \sum_k \frac{\partial m_k}{\partial a_k} (t'_a + \sigma'_a) = 0.$$ \hspace{1cm} (4.4)

Equations (4.4) for $l = 1,...,\tilde{s}$ are the mathematical expressions of the hypothesis of the constancy of the chemical potentials m_l. It should be pointed out that Eq. (4.4) expresses the fact all the $m_l(x,a)$ are maintained constant by the action of reservoirs. In fact, the $m_l(x,a)$ are stochastic variables; the increment of m_l in time Δt is

$$\Delta m_l = \sum_a \left[\sum_i \frac{\partial m_i}{\partial x_i} \tau'_a + \sum_k \frac{\partial m_k}{\partial a_k} (t'_a + \sigma'_a) \right] \Delta u_a.$$ \hspace{1cm} (4.4)

Δu_a being the increment in time Δt of the progress variable u_a of reaction a. But, for given x,a, the Δu_a are independent random variables. Thus, $\Delta m_l = 0$ with probability 1, and only if the coefficients of all the Δu_a are 0, namely, if Eq. (4.4) holds for all a, and determines the coefficients σ'_a.

Remark: If it is assumed as usual that the concentrations a_l, considered as stochastic variables, are maintained constant by the reservoirs, this implies the relation

$$t'_a + \sigma'_a = 0 \quad \text{for all } a \text{ and } k,$$ \hspace{1cm} (4.4')

which will replace Eq. (4.4) under this assumption. Conditions (4.4) and (4.4') are equivalent when Eq. (4.3) holds. This is the case in many situations (see Appendix B). However, it seems more natural to assume that the reservoirs maintain the chemical potentials constant for each spaces A_l since the equilibrium conditions between the system and the reservoirs (with respect to the species A_l) are expressed by the equality of these chemical potentials in the system and in the reservoirs.

It could be argued that Eqs. (4.4) or (4.4') express very strong controls on each species A_l, which are difficult to implement in actual systems. Nevertheless, the hypotheses of the constancy of species A_l are usually assumed in works about the Master equation in chemical contexts. Furthermore, we show in Appendix B, that such hypotheses are justified provided the A_l are local concentrations of the corresponding species, near the interface between the system and the reservoirs.

B. Solution of the Hamilton–Jacobi equation in progress variables

In the function $\log(\omega_a/\omega_a)$ defined in Eqs. (4.1), we shall replace x_i and a_l by the values

$$x_i = x_i(0) + \sum_a \tau'_a u_a,$$ \hspace{1cm} (4.5)

$$a_l = a_l(0) + \sum_a (t'_a + \sigma'_a) u_a.$$ \hspace{1cm} (4.5)

These expressions give the actual values of the x_i and the a_l, knowing their initial values, after u_a processes of type a, $a = 1,...,p$ have occurred. In particular, by definition, the state $\{x_i\}$ of the system remains on the subspace $E(x(0))$ as defined in Sec. II D. When all the x_i and a_l are replaced by their expressions of Eqs. (4.5), the $\log(\omega_a/\omega_a)$ are functions of the progress variables $\{u_a\}$, depending parametrically of the initial concentration $\{x_i(0)\}$ and $\{a_l(0)\}$. We prove in Appendix C, that

$$\frac{\partial}{\partial u_\beta} \left(\log \frac{\omega_a}{\omega_a} \right) = \frac{\partial}{\partial u_\alpha} \left(\log \frac{\omega_\beta}{\omega_\beta} \right).$$ \hspace{1cm} (4.6)

As a consequence, we can define a function $\Psi(u(x(0),a(0)))$ of the u, depending parametrically on the initial values $x(0),a(0)$ of the concentrations such that

$$\frac{\partial \psi}{\partial u_\beta} = \log \frac{\omega_\beta}{\omega_\beta},$$ \hspace{1cm} (4.7)

and Ψ is unique up to an additive constant.

Clearly, Ψ will satisfy for any β,

$$\omega_\beta \left[\exp \left(\frac{\partial \psi}{\partial u_\beta} - 1 \right) + \omega_\beta \left[\exp \left(- \frac{\partial \psi}{\partial u_\beta} - 1 \right) \right] = 0, \hspace{1cm} (4.8)$$
and a fortiori, it satisfies the Hamilton–Jacobi equation in progress variables,

$$H_M'(u, \frac{\partial \Phi}{\partial u}) = 0. \tag{4.9}$$

We shall show now that the new solutions satisfying Eq. (4.7) corresponds to a very special path in term of the progress variables, namely the “antideterministic path.” We recall here that the usual kinetic deterministic path corresponds to the trivial solution $\Phi = 0$ of the Hamilton–Jacobi equation,

$$H_M(x, \nabla \Phi) = 0.$$

C. The antideterministic path in progress variables

As we have said at the end of Sec. III C, all the results proved in Part I, for $H_M(x, \partial \Phi/\partial x) = 0$ are still valid for the H_M' Eq. (4.9). In particular, we can define the antideterministic path in Sec. V of Part I, by the formula

$$\frac{du_a}{dt} = \frac{\partial H_M'}{\partial \pi_a} = \omega_a^+ e^{\pi_a} - \omega_a^- e^{-\pi_a},$$

$$\pi_a = \frac{\partial \psi}{\partial u_a} = \log \frac{\omega_a^+}{\omega_a^-},$$

so that the antideterministic path satisfies

$$\frac{du_a}{dt} = \omega_a^- - \omega_a^+. \tag{4.10}$$

Thus, the antideterministic path in progress variables is the deterministic path run backwards in time.

D. Comparison of Ψ with the free energy

We have constructed, for given $x(0)$ and $a(0)$, the function $\Psi(x|\tau x(0), a(0))$ of the progress variables using Eq. (4.7). We can now compute the difference

$$W(u|x(0), a) = F(x, a) - k_B T \psi(u|x(0), a), \tag{4.11}$$

where x, a are replaced by their expressions of Eqs. (4.5) in term of the initial values $x(0), a(0)$, and of the progress variables u. It is easy to see from Eqs. (4.11), (4.7), and (4.1) that

$$\frac{\partial W(u|x(0), a)}{\partial u_{\beta}} \frac{\partial F}{\partial a_{\beta}} = \sum_i m_i^{(0)} \sigma_i^\beta,$$

$m_i^{(0)}$ being the fixed value of the chemical potential m_i.

The deterministic evolution of W is then

$$\frac{dW(u|x(0), a)}{dt} = \sum_{\beta} m_i^{(0)} \sigma_i^\beta (\omega_{\beta}^+ - \omega_{\beta}^-),$$

because $du_{\beta}/dt = \omega_{\beta}^+ - \omega_{\beta}^-$. So comparing to Eq. (3.9) we see that

$$\frac{dW(u|x(0), a)}{dt} = w \tag{4.12}$$

is the work done by the reservoirs per unit time, during the evolution of the vessel and the reservoirs. Comparing now Eqs. (4.11) and (4.12), we see that

$$\frac{dW}{dt} - w = k_B T \frac{d}{dt} \psi(u|x(0), a(0)) \leq 0 \tag{4.13}$$

so that $k_B T (dW/dt) \psi(u|x(0), a(0))$ is the dissipation of energy per unit time.

E. The function ψ in the space of concentrations

We have constructed a function $\psi(u|x(0), a(0))$ on the space of progress variables using Eq. (4.7), which is uniquely defined up to an additive constant. We would like to know if ψ corresponds to a state function $\bar{\psi}(x, a)$, using the substitution defined by the progress variables of Eqs. (4.5),

$$x_i = x_i(0) + \sum_a r_i^a u_a, \tag{4.14}$$

$$a_i = a_i(0) + \sum_a (r_i^a + \sigma_i^a) u_a.$$

We shall prove the following facts in Appendix C:

(i) Let us assume that there exists a thermodynamic equilibrium state (\bar{x}, \bar{a}), so that

$$\omega_{\beta}^-(\bar{x}, \bar{a}) = \omega_{\beta}^+(\bar{x}, \bar{a}) \quad \text{for all } \beta,$$

$$m_i(\bar{x}, \bar{a}) = m_i^{(0)} \quad \text{for all } i.$$ \tag{4.15}

Then there exists a function $\bar{\psi}(x, a|\bar{x}, \bar{a})$ such that

$$\bar{\psi}(x_i(0) + \sum r_i^a u_a, a_i(0) + \sum (r_i^a + \sigma_i^a) u_a|\bar{x}, \bar{a}) = \psi(u|x(0), a(0)).$$ \tag{4.16}

Moreover, we have

$$\bar{\psi}(x, a|\bar{x}, \bar{a}) = \frac{1}{k_B T} \left(F(x, a) - \sum_i \mu_i(\bar{x}, \bar{a}) x_i - \sum_i m_i^{(0)} a_i + C \right) \tag{4.17}$$

for a certain constant C which depends of $x(0), a(0), \bar{x}, \bar{a}$.

(ii) If one chooses another solution $(\bar{x}, \bar{a})'$ of Eqs. (4.15), then the function $\bar{\psi}(x, a|\bar{x}, \bar{a}) - \bar{\psi}(x, a|\bar{x}', \bar{a}')$ is constant during the evolution given by the progress variables [see Eq. (4.17)].

(iii) The function $\bar{\psi}(x, a|\bar{x}, \bar{a})$ satisfies the Hamilton–Jacobi equation associated with the Master equation,

$$\sum w_i(x, a) \left[\exp \left(\sum \frac{\partial \bar{\psi}}{\partial x_i} \right) - 1 \right] = 0 \tag{4.18}$$

provided that in this equation, (x, a) are replaced by their expressions (4.5) in term of the progress variables.

Thus, the function ψ of the progress variables u corresponds to a state function $\bar{\psi}$ if the conditions imposed by the constraints allow the existence of a detailed balance equilibrium.
F. The case of a partial equilibrium free energy

We assume now that Eq. (4.3) holds

$$F(x,a) = F_1(x) + F_2(a).$$

(4.19)

In Sec. IV A, we have seen that, in this case, the evolution maintaining the chemical potential m_i of the species A_i is constant, such that,

$$\sigma'_a = -t'_a$$

as in Eq. (4.4'), i.e., the reservoirs cancel exactly the action of the chemical processes. In this situation, the concentration of the chemical species A_i can be considered as fixed parameters. The function $\psi(x|x,a)$ satisfies more precise properties than those of Sec. IV E. In fact, it can be asserted, under these conditions, that

(i') There exists a function $\tilde{\psi}(x|x,a)$ such that

$$\tilde{\psi}(x|x(0) + \sum \tau_{j\mu} \beta \tilde{x},a) = \psi(u|x(0),a)$$

(4.20)

if and only if there exists a state $\{\tilde{x}\}$ such that $\{\tilde{x},a\}$ is a thermodynamic equilibrium state, i.e., all processes are in equilibrium at $\{\tilde{x},a\}$,

$$\omega_{\beta}(\tilde{x},a) = \tilde{\psi}_{\beta}(\tilde{x},a) \quad \text{for all } \beta$$

(4.21)

and we have

$$\tilde{\psi}(x|x,a) = \frac{1}{k_B} \left(F(x,a) - \sum \frac{\partial F_1}{\partial x_i}(\tilde{x},a)x_i \right) + C,$$

(4.22)

where C is a constant.

(ii') If x' is another solution of Eq. (4.21) (for given a),

$$\tilde{\psi}(x|x,a) - \tilde{\psi}(x'|x,a)$$

restricted to the subspace $E(x(0))$ is a constant.

(iii') As a function of $x,$ $\tilde{\psi}(x|x,a)$ satisfies the Hamilton Jacobi equation of the Master equation,

$$\sum \nabla_x \left[\exp \left(\sum \tau_{j\mu} \beta \tilde{x} \right) - 1 \right] = 0$$

and the restriction of $\tilde{\psi}(x|x,a)$ to $E(x(0))$ satisfies the Hamilton Jacobi equation of the Master equation on the invariant subspace $E(x(0)).$

(iv') If there exists an isolated attracting point of the vector field $A_i(x,a)$ on $E(x(0)),$ then $\tilde{\psi}(x|x,a)$ on $E(x(0))$ is the unique regular solution of the Hamilton–Jacobi equation of the Master equation on the subspace $E(x(0)).$ This means that $\tilde{\psi}(x|x,a)$ on $E(x(0))$ is the information potential Φ itself.

The proof of these statements is given in Appendix C. We have seen above, that the function $\psi(u|x(0),0)$ is the restriction to the subspace $E(x(0))$ (parametrized by the progress variables u_p) of a function $\tilde{\psi}(x|x,a)$ if and only of one can find a state \bar{x} such that \bar{x} is the thermal equilibrium state. But, a priori, the state \bar{x} does not necessarily belong to the same subspace $E(x(0)).$ Finally, the following fact can be easily derived.

(v) The choice of \bar{x} will depend in general on $s-d$ free parameters (where s is the number of the species X_i and d is the dimension of the space $E(x(0))).$ It is then always possible to choose \bar{x} in the subspace $E(x(0))$ for any given $x(0)$.

These general statements can be confirmed by explicit calculations in the case where there is only one chemical space varying freely in the volume $V.$ In this situation, everything can be calculated explicitly, in particular the non-equilibrium information potential (see Part I).

V. CONCLUSION

In this article, which concludes the first two parts of our general study of nonequilibrium reaction-diffusion systems, we have mainly considered the situation of systems which are maintained out of equilibrium by external constraints. Because of this nonequilibrium situation, the standard thermodynamics potentials are not fully appropriate to study the approach to the stationary nonequilibrium state.

We have defined an information potential in progress variables and we have shown that it can be defined very easily in term of its first order partial derivatives. It is not in general a state function, but it gives exactly the work provided by the reservoirs to maintain the system in a nonequilibrium situation. Moreover we have shown that the information potential in progress variables is a state function if the reservoirs maintain conditions such that the system reaches a thermal equilibrium. In this case, it is identical to the information potential in the concentration variables. We have also discussed in detail the action of the reservoirs and we have shown that a natural condition is that the reservoirs maintain constant certain chemical potentials rather than the concentrations. Finally, we have shown that the dissipation of energy is always larger or equal to the dissipation of information (in absolute value), the equality holding only at equilibrium. Our results are restricted to reaction-diffusion systems at a fixed temperature. Further publications will propose an extension to variable temperature systems as well as a more detailed study of the actions of the reservoirs in stochastic dynamics contexts.13–15

APPENDIX A: PROOF OF THE INEQUALITY (3.11)

We have from Eqs. (3.5), (3.9), and (3.8), the equality,

$$\frac{dF}{dt} = \sum_i \frac{\partial F}{\partial x_i} dx_i + \sum_i \frac{\partial F}{\partial a_i} \left[\frac{d a_i}{dt} \right]_C$$

$$= \sum_a \left(\omega^+_a - \omega^-_a \right) \frac{\partial F}{\partial u_a}$$

(A1)

and

$$\frac{d\Phi}{dt} = \sum_a \left(\omega^+_a - \omega^-_a \right) \frac{\partial \Phi}{\partial u_a}$$

$$\pi_a = \frac{\partial \Phi}{\partial u_a}, \quad p_a = \frac{1}{k_B T} \frac{\partial F}{\partial u_a},$$

(A2)

so that π_a satisfies the Hamilton–Jacobi equation,

$$\sum_a \left[\omega^+_a (e^{\pi_a} - 1) + \omega^-_a (e^{-\pi_a} - 1) \right] = 0$$

(A3)

and p_a satisfies the detailed balance condition,
\[\omega^+ (e^{\nu a} - 1) + \omega^- (e^{-\nu a} - 1) = 0 \quad \text{for all } \alpha. \]
\tag{A4}

From Eqs. (A3) to (A4), by subtraction we obtain
\[\sum_a \left(\omega^+_a (e^{\nu a} - e^{\nu b}) + \omega^-_a (e^{-\nu a} - e^{-\nu b}) \right) = 0. \]
\tag{A5}

But \(e^\nu - e^{-\nu} \geq e^{\nu(y-x)} \) with equality only if \(y = x \) so that from Eq. (A5),
\[\sum_a (\omega^+_a (\nu_a - \nu_b) + \omega^-_a (\nu_a - \nu_b)) \leq 0. \]

By Eq. (A4), \(\nu_a = \log(\omega_a^\alpha/\omega_a^\beta) \), so that
\[-\sum_a (\omega_a^\alpha - \omega_a^\beta) (\pi_a - \pi_b) \leq 0 \]

which, by Eqs. (A1), (A2) implies inequality (3.11).

In Eq. (A6), we have equality if and only if \(\pi_a = \pi_b \) for all \(\alpha \), or
\[\Phi = \frac{F}{k_B T} + \text{cst}, \]

which means that we are at equilibrium.

APPENDIX B: PROOF OF EQ. (4.6)

We have to prove that for all \(\alpha, \beta \),
\[\frac{\partial}{\partial u^\alpha} \left(\log \frac{\omega^\beta}{\omega^\alpha} \right) - \frac{\partial}{\partial u^\beta} \left(\log \frac{\omega^\alpha}{\omega^\beta} \right) = 0 \]
or
\[\frac{\partial}{\partial u^\alpha} \left(\sum_i \mu_i \tau^\beta - \sum_i m_i \tau^\beta \right) - \frac{\partial}{\partial u^\beta} \left(\sum_i \mu_i \tau^\alpha - \sum_i m_i \tau^\alpha \right) = 0. \]
\tag{B1}

Now, by definition of our constraints, the \(m_i \) stay constant in the evolution of the system, due to the action of reservoir, so we have to verify that
\[\frac{\partial}{\partial u^\alpha} \left(\sum_i \mu_i \tau^\beta \right) - \frac{\partial}{\partial u^\beta} \left(\sum_i \mu_i \tau^\alpha \right) = 0 \]
or
\[\sum_i \left[\tau^\beta \frac{\partial}{\partial u^\alpha} \left(\mu_i \tau^\beta \right) - \tau^\alpha \frac{\partial}{\partial u^\beta} \left(\mu_i \tau^\alpha \right) \right] \
+ \sum_k \left[\frac{\partial a_k}{\partial u^\alpha} \frac{\partial}{\partial a_k} \left(\sum_i \mu_i \tau^\beta \right) - \frac{\partial a_k}{\partial u^\beta} \frac{\partial}{\partial a_k} \left(\sum_i \mu_i \tau^\alpha \right) \right] = 0. \]
\tag{B2}

Here \(\partial x_j/\partial u^\alpha = \tau^\alpha_{x_j} \), \(\partial a_k/\partial u^\alpha = \tau^\alpha_{a_k} \), according to Eq. (4.5). Using \(\overline{\partial F}/\partial x_j = \mu_i, \partial x_j = \partial u^\beta/\partial x_j = \partial u^\alpha/\partial x_j \), the first summation in Eq. (B2) disappears, so that Eq. (B2) reduces to
\[\sum_i \left[\left(\tau^\alpha_{a_k} + \sigma^\alpha_{a_k} \right) \tau^\beta_{x_j} - \left(\tau^\beta_{a_k} + \sigma^\beta_{a_k} \right) \tau^\alpha_{x_j} \right] \frac{\partial}{\partial a_k} = 0. \]
\tag{B3}

Now by Eq. (4.4),
\[t^\alpha_{a_k} + \sigma^\alpha_{a_k} = -\sum_{ij} M_k^\alpha \frac{\partial m_{ij}^\alpha}{\partial x_j} \tau^\beta_{a_k}, \]

where \(M_k^\alpha = \frac{\partial m_{ij}^\alpha}{\partial a_k} \) and \(M_k^{-1} \) is the inverse of the matrix \(M \). Thus, Eq. (B3) reduces to
\[\sum_{i,j} M_{kl}^\alpha \frac{\partial m_{ij}^\alpha}{\partial x_j} \frac{\partial \tau^\beta_{a_k}}{\partial a_k} = \sum_{i,j} M_{kl}^\beta \frac{\partial \tau^\beta_{a_k}}{\partial a_k} \frac{\partial \tau^\beta_{a_k}}{\partial a_k} = 0. \]

But
\[\sum_{i,k} M_{kl}^{\alpha \beta} \frac{\partial m_{ij}^\alpha}{\partial x_j} \frac{\partial \tau^\beta_{a_k}}{\partial a_k} = \sum_{k} M_{kl}^{\alpha \beta} \frac{\partial \tau^\beta_{a_k}}{\partial a_k} \frac{\partial \tau^\beta_{a_k}}{\partial a_k} \frac{\partial m_{ij}^\alpha}{\partial x_j} = 0. \]
\tag{B4}

Equation (B5) obviously holds if the \(m_{ij}^\alpha \) are functions of the \(a_i \) only, in which case the constancy of the chemical potentials \(m_i \) is indeed equivalent to the constancy of the concentration \(a_i \). Otherwise, Eq. (B5) implies relations between the \(x \) and the \(\alpha \) which, in general, are not compatible with the kinetic equations. So, in general, Eq. (4.6) holds only if we assume the constancy of the chemical potential \(m_i \).

(1) It has been observed in Sec. V A, that relations (4.4) or (4.4') imply a very strong control on the species \(A_1 \) which could be difficult to realize in practice. Nevertheless, such a control could be effective, at least in the following situation: All species in the system are free (i.e., evolve according the chemical laws). However some of them, say \(X_i \), can be directly and rapidly exchanged with the reservoirs by diffusion processes for example at the interfaces with the reservoirs. This can be expressed by pseudochemical reactions,
\[X_i \leftrightarrow A_i, \]

with \(A_i \) denoting the same chemical species as \(X_i \), but considered inside the reservoirs. If the rate of exchange from \(A_i \) to \(X_i \) is assumed to be constant (which it a standard hypothesis), this will correspond to a strictly constant concentration or chemical potential for \(A_i \). On the other hand the chemical potential for \(A_i \) is independent of the \(X \), so that we recover the general formalism, just by considering that \(A_i \) is also a chemical species of the system.

APPENDIX C: THE FUNCTION \(\psi \) AS A STATE FUNCTION

We recall from Eqs. (4.7) and (4.1) that
\[\frac{\partial \psi}{\partial u^\beta} = \log \frac{\omega^\beta}{\omega^\alpha} = \frac{1}{k_B T} \sum_i \mu_i \tau^\beta_{x_j} + \sum_{i,j} m_{ij}^{(0)} \tau^\beta_{x_j} \]

so its differential is
\[d\psi = \frac{1}{k_B T} \left(\sum_{i,\beta} \mu_i \tau^i_\beta d\mu_\beta + \sum_{i,\beta} m_i^{(0)} t^i_\beta d\mu_\beta \right). \]

(C1)

1. Proof of (i), Sec. IV E

\(\psi \) comes from a function \(\bar{\psi} \) depending on \(x, a \) [using the substitution of Eqs. (4.5)], if and only if \(d\psi \) can be rewritten as a linear combination of the \(dx_i \) and \(da_i \) with the variations given by Eqs. (4.5),

\[dx_i = \sum \tau^i_\beta d\mu_\beta, \]

\[da_i = \sum (t^i_\alpha + \sigma^i_\alpha) d\mu_\alpha, \]

(C2)

with coefficients depending on \((x,a) \) (and no more on \(\mu_\beta \)). From Eq. (C1) using Eqs. (C2), we have

\[d\psi = \frac{1}{k_B T} \left(\sum_i \mu_i dx_i + \sum_i m_i^{(0)} da_i \right) - \frac{1}{k_B T} \sum_{i,\beta} m_i^{(0)} \sigma^i_\beta d\mu_\beta. \]

(C3)

In Eq. (C3) the first term is exactly

\[\frac{1}{k_B T} dF(x,a) \]

because \(\mu_i = \partial F/\partial x_i \), \(m_i^{(0)} = \partial F/\partial a_i \) maintained constant during the evolution. So we need to prove that the last summation in Eq. (C3) can be rewritten as a linear combination of the \(dx_i \) and \(da_i \) given by Eq. (C2), namely, to find \(\gamma_i, \theta_i \),

\[\sum_{i,\beta} m_i^{(0)} \sigma^i_\beta d\mu_\beta = \sum_i \gamma_i dx_i + \sum_i \theta_i da_i = \sum_i \gamma^i_\beta d\mu_\beta + \sum_i \theta^i_\alpha d\mu_\alpha. \]

(C4)

So we must have for all \(\beta \),

\[\sum_i m_i^{(0)} \sigma^i_\beta = \sum_i \gamma^i_\beta + \sum_i \theta^i_\alpha. \]

Under the hypothesis of (i) of Sec. IV E, there exists a \((\bar{x},\bar{a}) \) with

\[\omega^-_\beta (\bar{x},\bar{a}) = \omega^+_\beta (\bar{x},\bar{a}), \]

\[m_i^{(0)} = m_i (\bar{x},\bar{a}). \]

From Eq. (4.1), we have for all \(\beta \),

\[\sum_i \mu_i (\bar{x},\bar{a}) \tau^i_\beta + \sum_i m_i^{(0)} t^i_\beta = 0, \]

(C5)

and we can solve Eq. (C4) with

\[\theta_i = m_i^{(0)} - \mu_i (\bar{x},\bar{a}). \]

Then Eq. (C3) becomes

\[d\psi = \frac{1}{k_B T} \left(dF(x,a) - \sum_i \mu_i (\bar{x},\bar{a}) dx_i - \sum_i m_i^{(0)} da_i \right), \]

and we can take

\[\bar{\psi}(x,a | \bar{x},\bar{a}) = \frac{1}{k_B T} \left(F(x,a) - \sum_i \mu_i (\bar{x},\bar{a}) x_i - \sum_i m_i^{(0)} a_i \right) + C, \]

(C6)

where \(C \) is a constant adjusted so that

\[\bar{\psi}(0 | x(0),a(0)) = \bar{\psi}(x(0),a(0) | \bar{x},\bar{a}). \]

This proves the assertion (i) of Sec. IV E.

2. Proof of (ii), Sec. IV E

Let us consider two equilibrium states \((x,\bar{a}) \) and \((\bar{x}',\bar{a}') \). From Eq. (C6), one has

\[\bar{\psi}(x,a | x',\bar{a}') - \bar{\psi}(x,a | x',\bar{a}') = \frac{1}{k_B T} \left(\sum_i (\mu_i (x,\bar{a}) - \mu_i (x',\bar{a}')) x_i \right) + \text{cst}. \]

We replace \(x_i \) by its value of Eq. (4.5),

\[x_i = x_i(0) + \sum \tau^i_\beta \mu_\beta, \]

and use Eq. (C5), to deduce that for all \(\beta \),

\[\sum_i \mu_i (x,\bar{a}) \tau^i_\beta - \sum_i \mu_i (x',\bar{a}') \tau^i_\beta = 0, \]

so when we replace \(x \) and \(a \) by their expression in term of the progress variables, given by Eq. (4.5), we see that

\[\bar{\psi}(x,a | x',\bar{a}') - \bar{\psi}(x,a | x',\bar{a}') = \text{cst}. \]

3. Proof of (iii), Sec. IV E

Take \(\bar{\psi} \) as in Eq. (C6) and calculate \(\partial \bar{\psi}/\partial \mu_\beta \) for the evolution given by Eq. (C2), to obtain, using the fact that \(m_i = \partial F/\partial a_i \) is constant and equal to \(m_i^{(0)} \),

\[\frac{\partial \bar{\psi}}{\partial \mu_\beta} = \frac{1}{k_B T} \sum_i (\mu_i(x,a) - \mu_i(x,\bar{a})) \tau^i_\beta = \sum_i \tau^i_\beta \frac{\partial \bar{\psi}}{\partial x_i}. \]

Now, \(\psi \) satisfies

\[\sum_\beta \omega^+ \left(\exp \left(\frac{\partial \psi}{\partial \mu_\beta} \right) - 1 \right) + \sum_\beta \omega^- \left(\exp \left(- \frac{\partial \psi}{\partial \mu_\beta} \right) - 1 \right) = 0 \]

[provided in \(\omega^+ \), \(\omega^- \), \(x \), and \(a \) are replaced by the evolution of Eq. (C2)]. So this is

\[\sum_i w_i \left[\exp \left(\sum_i r_i \frac{\partial \psi}{\partial x_i} \right) - 1 \right] = 0 \]

(C7)

provided in this equation, \(x \) and \(a \) are replaced by their expressions of Eq. (C2). For a situation of partial equilibrium free energy, the previous properties are made more precise in Sec. III F.
4. Proof of (i'), Sec. IV F

We have seen in the assertion (i) of Sec. IV E that the condition of finding \((\bar{x},a)\) (thermodynamic equilibrium state) is a sufficient condition. To see that this condition is also necessary we come back to Eq. (C1). The function \(\psi\) comes from a state function \(\bar{\psi}(x)\), if and only if \(d\psi\) can be written as a linear combination of the \(dx_i\). In Eq. (C1), we see that

\[
\sum_{i=1}^{n} \sum_{\beta} \mu_i \gamma_{i\beta} du_{\beta} = dF_1(x).
\]

The second sum in Eq. (C1) is a linear combination of the \(dx_i\), if and only if we can find \(\gamma_i\) with,

\[
\sum_{i=1}^{n} m^{(0)}_{i\beta} du_{\beta} = -\sum_{i=1}^{n} \gamma_i \gamma'_{i\beta} du_{\beta}
\]

or for all \(\beta\),

\[
\sum_{i=1}^{n} m^{(0)}_{i\beta} + \sum \gamma_i \gamma'_{i\beta} = 0.
\]

We can always find \((\bar{x}_i)\) such that

\[
\gamma_i = \frac{\partial F_1}{\partial x_i}(\bar{x}) \quad \text{for all } i,
\]

while

\[
m^{(0)}_{i\beta} = \frac{\partial F_2}{\partial a_i}(a).
\]

Then Eq. (C9) means exactly that

\[
\omega^+_{\beta}(\bar{x},a) = \omega^-_{\beta}(\bar{x},a)
\]

which is the equilibrium condition. Then Eq. (5.26) is evident from Eq. (C6) in view of the fact that \(F=F_1(x)+F_2(a)\).

The proofs of assertions (ii) and (iii), Sec. IV F are straightforward from the corresponding assertions (ii), (iii) of Sec. IV E but here \(\sigma'_\alpha = -t'_\alpha\) so that the \(a_i\) keep a constant value, so Eq. (C10) is valid for all \(x\) in the space \(E(x(0))\). But now, \(\bar{\psi}\) depends on \(x(0)\), only through an additive constant [see Eq. (5.26) for \(\bar{\psi}\)], so that Eq. (C10) is valid on every subspace \(E(x(0))\) and thus, is valid everywhere in the space of the concentrations \(x\).

5. Proof of (iii'), Sec. V F

We have seen in assertion (iii) that \(\bar{\psi}\) satisfies the equation

\[
\sum_i w_i(x,a) \left[\exp \left(\sum_i r_i \frac{\partial \bar{\psi}}{\partial x_i} \right) - 1 \right] = 0
\]

provided one replaces in this equation the variables \(x\) and \(a\) by their expressions in term of the progress variables,

\[
x_i = x_i(0) + \sum_{\beta} t_{i\beta} u_{\beta}, \quad a_i = a_i(0) + \sum_{\alpha} (r_{i\alpha} + \sigma'_\alpha) u_{\alpha}.
\]

6. Proof of (iv'), Sec. IV F

This is a consequence of Part I, where it is proven that the Hamilton–Jacobi equation associated with the Master equation has a unique smooth solution when there is at least one attracting zero of the deterministic vector field \(A_i\).