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1. Introduction

Let us consider the following ratio-dependent ecological system, in which
n different predator species (the i-th predator quantities at time t are
denoted by yi(t), i = 1, 2, . . . , n respectively) are competing for a single
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prey species (the quantity of prey at time t is denoted by x(t)):

ẋ = rxg(x,K) −
n

∑

i=1

yipi

(yi

x

)

ẏi = yipi

(yi

x

)

− diyi, i = 1, 2, . . . , n















. (1.1)

where dot means differentiation with respect to time t. We assume that
the per capita growth rate of prey in absence of predators is rg(x,K)
where r is a positive constant (in fact the maximal growth rate of prey),
K > 0 is the carrying capacity of environment with respect to the prey,
the function g satisfies some natural conditions, see the details in [6]. For
example one of these conditions is the following:

(K − x)g(x,K) > 0, x ≥ 0, x 6= K. (1.2)

Such a function g is the so called logistic growth rate of prey

g(x,K) = 1 −
x

K
. (1.3)

We assume further that the death rate di > 0 of predator i is constant

and the per capita birth rate of the same predator is pi

(yi

x

)

, where the

function pi also satisfies some natural conditions, see also in [6].
In that paper we have already investigated the system with the Michaelis–

Menten or Holling type functional response in case of ratio-dependence:

pi

(yi

x
, ai

)

= mi

x

aiyi + x
(1.4)

and with the ratio-dependent Ivlev functional response:

pi

(yi

x
, ai

)

= mi

(

1 − e
−

x
aiyi

)

, (1.5)

where parameter ai is the so called ”half-saturation constant”, namely
in the case where pi is a bounded function for fixed ai > 0, mi =
sup

x,yi>0
pi(x, yi, ai) is the ”maximal birth rate” of the i-th predator. That

means, if the functional response is a Holling-type without ratio-dependence
then ai means the quantity of prey at which the birth rate of predator
i is half of its supremum. In case of a ratio-dependent Holling model ai
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means a proportion of prey to predator at which the birth rate is half of
its supremum. In case of an Ivlev model the meaning of ai is similar to
the earlier, see the details in [6]. (To save space we did not write out the
dependence on ai in (1.1).) For the survival of predator i it is, clearly,
necessary that the maximal birth rate be larger than the death rate:

mi > di. (1.6)

This will be assumed in the sequel. Finally, we assume that the presence
of predators decreases the growth rate of prey by the amount equal to
the birth rate of the respective predator.

2. Model with delay

We get a more realistic model if we take into account that the predators’
growth rate at present depends on past quantities of prey and therefore
a continuous weight (or density) function f is introduced whose role
is to weight moments of the past. Function f satisfies the following
requirements:

f(s) ≥ 0, s ∈ (0,∞);

∫

∞

0

f(s)ds = 1, (2.7)

and x(t) is replaced in the growth rate of predator i by its weighted
average over the past:

q(t) :=

∫ t

−∞

x(τ)f(t − τ)dτ. (2.8)

This means that the time average of prey quantity over the past has the
same fading influence on the present growth rates of different predators.
The simplest choice is f(s) = αe−αs, with α > 0. This function satisfies
the condition (2.7) and now

q(t) =

∫ t

−∞

x(τ)αe−α(t−τ)dτ. (2.9)

We call this choice of f exponentially fading memory, see in [2], [7]; later
in [4]. (Since f is the probability density of an exponentially distributed
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random variable, the probabilistic interpretation is obvious.) The smaller
α > 0 is the longer is the time interval in the past in which the values
of x are taken into account, i.e. 1

α
is the ”measure of the influence of

the past”. It is easy to see that with this special delay, system (1.1) is
equivalent to the following system of ordinary differential equations:

ẋ = rxg(x,K) −
n

∑

i=1

yipi

(yi

x

)

ẏi = yipi

(

yi

q

)

− diyi, i = 1, 2, . . . , n

q̇ = α(x − q)































, (2.10)

where function pi(
yi

q
) can be (1.4),(1.5) or any kind of general ratio-

dependent functional response if we replace x(t) by the time average q(t)
of prey quantity over the past. Similar systems have been studied by
many authors in the two-dimensional case, specially in [1], and also with
diffusion in [8]. In [1] the functional response was of the simplest Holling-
type one without ratio-dependence and in [8] the functional response was
of the Michaelis–Menten-type with ratio-dependence and also with diffu-
sion. Our aim in this paper is to study the effect of exponentially fading
memory in case of a general ratio-dependent functional response with
more than one different predators.
The qualitative behaviour of (1.1) was studied in [6], where it has been
supposed that there exists an equilibrium point E∗(x∗, y∗

1, . . . , y
∗

n) in the
positive orthant, where x∗, and y∗

i are the solutions of the following equa-
tions:

rxg(x,K) =
n

∑

i=1

diyi, pi

(yi

x

)

= di, i = 1, . . . , n. (2.11)

Note that x∗ > 0 if and only if K > x∗ because of (1.2).
The coefficient matrix of the system (1.1) linearized at E∗ is:
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A =





























a11 −d1 − y∗

1
p′∗
1

1

x∗
−d1 − y∗

2
p′∗
2

1

x∗
. . . . . . −dn − y∗

np′∗n
1

x∗

y∗

1
p′∗
1

(−
y∗

1

x∗2
) y∗

1
p′∗
1

1

x∗
0 . . . . . . 0

y∗

2
p′∗
2

(−
y∗

2

x∗2
) 0 y∗

2
p′∗
2

1

x∗
. . . . . . 0

..

.
..
.

..

.
..
.

..

.
..
.

y∗

n−1
p′∗n−1

(−
y∗

n−1

x∗2
) 0 0 . . . y∗

n−1
p′∗n−1

1

x∗
0

y∗

np′∗n (−
y∗

n

x∗2
) 0 0 . . . 0 y∗

np′∗n
1

x∗





























(2.12)

where

a11 = rg(x∗, K) + rx∗g′

x(x
∗, K) −

n
∑

i=1

y∗

i p
′∗

i (−
y∗

i

x∗2
), (2.13)

p′∗i = p′i

(

yi
∗

x∗

)

; p′i

(yi

x

)

=
dpi

(

yi

x

)

d
(

yi

x

) . (2.14)

An n × n matrix A = [aij] is said to be stable if each of its eigenvalues
has a negative real part. The following definition can be found in [5]:

Definiton 2.1. An n×n matrix A = [aij] is called sign-stable if each
matrix Ã of the same sign-pattern as A (sign ãij = sign aij for all i, j) is
stable.

It was proven in [6] the following:

Theorem 2.2. If
a11 ≤ 0, (2.15)

p′i
∗

= p′i

(

yi
∗

x∗

)

< 0, i = 1, . . . , n, (2.16)

and

−di − yi
∗p′i

∗ 1

x∗
= −di − yi

∗p′i

(

yi
∗

x∗

)

1

x∗
< 0, i = 1, . . . , n (2.17)

then matrix (2.12) is sign-stable, thus, E∗ is an asymptotically stable
equilibrium point of system (1.1).

Now, let us suppose that there exists a positive equilibrium point
E∗(x∗, y∗

1, . . . , y
∗

n) of system (1.1), then with the definition q∗ := x∗ and
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E∗

d(x
∗, y∗

1, . . . , y
∗

n, q∗) we get an equilibrium point of (2.10) in the positive
orthant. And again x∗ > 0 if and only if K > x∗.
The coefficient matrix of system (2.10) linearized at E∗

d is:

Ad =




























a11 −d1 − y∗

1
p′∗
1

1

x∗
−d2 − y∗

2
p′∗
2

1

x∗
. . . . . . −dn − y∗

n
p′∗

n

1

x∗
0

0 y∗

1
p′∗
1

1

x∗
0 . . . 0 y∗

1
p′∗
1

(−
y
∗

1

x∗2 )

0 0 y∗

2
p′∗
2

1

x∗
. . . 0 y∗

2
p′∗
2

(−
y
∗

2

x∗2 )
...

...
...

...
...

...

0 . . . . . . 0 y∗

n
p′∗

n

1

x∗
y∗

n
p′∗

n
(−

y
∗

n

x∗2 )

α 0 . . . . . . 0 −α





























(2.18)

where a11 is given by (2.13) and again p′i
∗ = p′i

(

yi
∗

x∗

)

; p′i

(yi

x

)

=

dpi

(

yi

x

)

d
(

yi

x

) .

We note that (2.18) can not be sign-stable because its graph has cycles.
(See in [5].)

Let us restrict the number of predators to two.

2.1. One prey two predators with delay

Let us consider system (2.10) in case of n = 2. We suppose that
(2.15),(2.16), (2.17) hold for i = 1, 2. In this special case the entries of
matrix Ad are a11 ≤ 0, a22, a33 < 0, a12, a13 < 0, a24, a34 > 0, a41 = α > 0,
a44 = −α < 0. This means that Ad has the following sign pattern:

Ad =

















−/0 − − 0

0 − 0 +

0 0 − +

α 0 0 −α

















. (2.19)

The characteristic polynomial of a matrix with the same sign pattern as
(2.19) is:

D(λ) = λ4 + a3λ
3 + a2λ

2 + a1λ + a0 (2.20)
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with
a3 = −a11 − a22 − a33 + α,

a2 = a11a22 + a11a33 + a22a33 − α(a11 + a22 + a33),

a1 = −a11a22a33 + α(a11a22 + a11a33 + a22a33) − α(a12a24 + a13a34),

a0 = det Ad = α(−a11a22a33 + a22a13a34 + a33a12a24).

It is known that the necessary condition of stability of the polynomial
D(λ) is ai > 0, i = 0, 1, 2, 3.

Lemma 2.1. If Ad has the same sign pattern as (2.19) then the above
necessary conditions of stability are satisfied for all α > 0.

Proof. It is an elementary calculation to prove ai > 0, i = 0, 1, 2, 3,
for all α > 0. Sufficient condition of stability of matrix Ad in this case
is:

a3(a1a2 − a0a3) − a2
1 > 0 (2.21)

See for example Theorem 1.4.8 in [3]. It leads to a very complicated
formula. In order to check this we used Wolfram Mathematica 6.0.
http://www.wolfram.com. We got the following:
H(α) = a3(a1a2 − a0a3) − a2

1 =
(−a22a

2
11 − a33a

2
11 − a2

22a11 − a2
33a11 + a12a24a11 − 2a22a33a11 + a13a34a11

−a22a
2
33 + a12a22a24 − a2

22a33 + a13a33a34) α3

+(a22a
3
11 + a33a

3
11 + 2a2

22a
2
11 + 2a2

33a
2
11 − a12a24a

2
11 + 4a22a33a

2
11 − a13a34a

2
11

+ a3
22a11 + a3

33a11 + 4a22a
2
33a11 − a12a22a24a11 + 4a2

22a33a11 + a12a24a33a11

+a13a22a34a11−a13a33a34a11+a22a
3
33−a2

12a
2
24+2a2

22a
2
33+a12a24a

2
33−a2

13a
2
34

−a12a
2
22a24 +a3

22a33 +a12a22a24a33 +a13a
2
22a34 −a13a

2
33a34 − 2a12a13a24a34

+ a13a22a33a34) α2

+(−a2
22a

3
11 − a2

33a
3
11 − 2a22a33a

3
11 − a3

22a
2
11 − a3

33a
2
11 − 4a22a

2
33a

2
11

+ a12a22a24a
2
11 − 4a2

22a33a
2
11 + a13a33a34a

2
11 − 2a22a

3
33a11 − 4a2

22a
2
33a11

−a12a24a
2
33a11 +a12a

2
22a24a11−2a3

22a33a11−a12a22a24a33a11−a13a
2
22a34a11

+a13a
2
33a34a11−a13a22a33a34a11−a2

22a
3
33−a12a24a

3
33−a3

22a
2
33−a12a22a24a

2
33

− a13a
3
22a34 − a13a

2
22a33a34) α

+a11a
2
22a

3
33 + a2

11a22a
3
33 + a11a

3
22a

2
33 + 2a2

11a
2
22a

2
33 + a3

11a22a
2
33 + a2

11a
3
22a33

+ a3
11a

2
22a33.

Lemma 2.2. If matrix (2.18) in case of n = 2 has a pure imaginary
eigenvalue then in (2.21) the expression at left hand side is equal to zero.
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Proof. If we substitute jω, j2 = −1, ω 6= 0 into (2.20) we get
ω2 = a1

a3

and a3(a1a2 − a0a3) − a2
1 = 0. As we can see by result of

Wolfram Mathematica 6.0 the left hand side of condition (2.21) has the
following form depending on α:

H(α) = Ã3α
3 + Ã2α

2 + Ã1α + Ã0 (2.22)

Lemma 2.3. If Ad has the same sign pattern as (2.19) and a11 < 0
then Ã3, Ã0 > 0.

Proof. The proof is complete by elementary calculations. Lemma
2.3. means that the function H(α) given by (2.22) is positive, and mono-
tone increasing or decreasing depending on Ã1 > 0 or Ã1 < 0, respec-
tively; and has a convex or concave down shape if Ã2 > 0 or Ã2 < 0,
respectively; at α = 0.

1a 1b 1c

Figure 1: The value of Ã1 and of Ã2 is positive

Figures 1, 2, 3, 4 show that there are several cases when delay does
not destabilize the system for any α, for example if Ã2 > 0, Ã1 > 0,
and the cases when H(α) has a single real root only. Furthermore, if α
increases through a limit, namely if 1

α
is small, ”measure of the influence

of the past” is small then the system (2.10) has a locally asymptotically
stable equilibrium point E∗

d . This situation corresponds to our expecta-
tion and it is similar as it was in the 2-dimensional case, see in [1].
Now we can formulate our main result. We will give appropriate condi-
tions that can easily be checked in order to satisfy Ã2 > 0, Ã1 > 0.
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2a 2b 2c

Figure 2: The value of Ã1 is positive and of Ã2 is negative

3a 3b

Figure 3: The value of Ã1 is negative and of Ã2 is positive

Theorem 2.3. If matrix Ad given by (2.18) in case of n = 2 satisfies
conditions (2.15),(2.16),(2.17) for i = 1, 2 (it has the same sign pattern
as (2.19)) and the following two conditions also hold

a2
11 > a2

33 > −a13a34, (2.23)

a2
11 > a2

22 > −a12a24 (2.24)

then Ad is stable and E∗

d is an asymptotically stable equilibrium point of
the delayed system (2.10) in case of n = 2 for any α > 0.
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4a 4b

Figure 4: The value of Ã1 is negative and of Ã2 is negative

Proof. Under the conditions of the theorem we can decompose the
expression of Ã1 into the following positive terms:

Ã1 = (a2
22 + a12a24)(−a3

33 − a11a
2
33 − a11a22a33)

+ (a2
33 + a13a34)(−a3

22 − a11a
2
22 − a11a22a33)

+ (a2
11 − a2

33)(a22a12a24) + (a2
11 − a2

22)(a33a13a34)

+ (−a3
11a

2
22 − a2

11a
3
22 + a11a

2
22a12a24 − 2a3

11a22a33

− 4a2
11a

2
22a33 − a11a

3
22a33 − a3

11a
2
33 − 4a2

11a22a
2
33

− 2a11a
2
22a

2
33 − a2

11a
3
33 − a11a22a

3
33 + a11a

2
33a13a34)

> 0
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and similarly for the expression of Ã2 :

Ã2 = (a2
22 + a12a24)(a11a33 + a22a33 + a2

33 − a12a24)

+ (a2
33 + a13a34)(a11a22 + a22a33 + a2

22 − a13a34)

+ (−a2
11a12a24 − a2

11a13a34 − 2a12a24a13a34)

+ (a3
11a22 + 2a2

11a
2
22 + a11a

3
22 − a11a22a12a24 + a3

11a33 + 4a2
11a22a33

+ 3a11a
2
22a33 + 2a2

11a
2
33 + 3a11a22a

2
33 + a11a

3
33 − a11a33a13a34)

> (a2
22 + a12a24)(a11a33 + a22a33 + a2

33 − a12a24)

+ (a2
33 + a13a34)(a11a22 + a22a33 + a2

22 − a13a34)

+ (−a2
33a12a24 − a2

22a13a34 − 2a12a24a13a34)

+ (a3
11a22 + 2a2

11a
2
22 + a11a

3
22 − a11a22a12a24 + a3

11a33 + 4a2
11a22a33

+ 3a11a
2
22a33 + 2a2

11a
2
33 + 3a11a22a

2
33 + a11a

3
33 − a11a33a13a34)

= (a2
22 + a12a24)(a11a33 + a22a33 + a2

33 − a12a24)

+ (a2
33 + a13a34)(a11a22 + a22a33 + a2

22 − a13a34)

+ (−a12a24(a
2
33 + a13a34) − a13a34(a

2
22 + a12a24))

+ (a3
11a22 + 2a2

11a
2
22 + a11a

3
22 − a11a22a12a24 + a3

11a33 + 4a2
11a22a33

+ 3a11a
2
22a33 + 2a2

11a
2
33 + 3a11a22a

2
33 + a11a

3
33 − a11a33a13a34)

> 0.

This theorem means that in case of a sign-stable interaction matrix
(2.12) there are many cases when delay does not destabilize the sys-
tem. By Theorem 2.1, if a11 ≤ 0 (given by (2.13)) and if conditions
(2.16), (2.17) are also satisfied then (2.12) is sign-stable. This is the
two-dimensional situation modelled by Farkas and Cavani in [1] when
the equilibrium point lies on the descending branch of the prey nullcline.
That is the case when E∗ lies outside the Allée-effect zone – here the ef-
fect of overcrowding is already felt. Any further increase in prey quantity
must be counterbalanced by a decrease in predator quantity, see in [4].
On the other hand, in the Allée-effect zone prey is scarce and an increase
in prey quantity is beneficial for the growth rate of prey, see in [4]. Let
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us introduce the vector

F (x, y1, y2, . . . , yn) =





















rxg(x,K) −
n

∑

i=1

yipi

(yi

x

)

y1p1

(y1

x

)

− d1y1

...

ynpn

(yn

x

)

− dnyn





















. (2.25)

Vector (2.25) has two rows F1 and F2 in the two-dimensional case. Sup-
pose that any predator quantity growth will decrease the growth rate
of prey, namely F ′

1y1

< 0. Some typical reasonable forms of the zero

isoclines F1(x, y1) = 0, that are applicable to most species in case of
ratio-dependence are shown in Figure 5. We can see that F ′

1x
> 0, thus

a11 > 0 in the Allée-effect zone modelled by the increasing branch of the
function in the third graph.

0.02 0.04 0.06 0.08 0.10
x

0.005

0.010

0.015

0.020

0.025

y1

m�a=r

0.00 0.02 0.04 0.06 0.08 0.10
x

0.02

0.04

0.06

0.08

0.10

0.12

0.14

y1

m�a<r

0.02 0.04 0.06 0.08 0.10
x

0.002

0.004

0.006

0.008

0.010

0.012

y1

m�a>r

Figure 5: Typical nullclines of prey in 2–dimensional case

In case of our model we keep this meaning of the Allée-effect zone,
and we say we are outside of Allée-effect zone if — in order to keep the
prey growth rate zero — the increase of prey can be counterbalanced
by the decrease of the whole quantities of the different predators. Let
us consider the higher dimensional cases. Now the function F given
by (2.25) has n + 1 rows Fi, i = 1, 2, . . . , n + 1. Suppose that any
predator quantity growth will decrease the growth rate of prey, namely
F ′

1yi
< 0, i = 1, 2, . . . , n. In the three dimensional case a typical onion-

like prey zero isocline surface of F1(x, y1, y2) = 0 is shown in Figure 2.4.2
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in [4] on page 44 without ratio-dependence. Inside the onion-like surface
F1 > 0 while outside F1 < 0. Function F is increasing as we cross the
surface inwards and therefore its gradient points inwards. Therefore if
the equilibrium point is on the eastern hemisphere of this onion then
F ′

1x
< 0, thus, a11 < 0 and on the western hemisphere of the onion

F ′

1x
> 0, thus, a11 > 0 and we can see that F ′

1x
> 0, thus a11 > 0 in the

Allée-effect zone. The onion is similar to this in case of ratio-dependence
shown in Figures 6, 7, 8.

0.00

0.05

0.10

x

0.000

0.005

0.010

y1

0.000

0.002

0.004

y2

Figure 6: Typical zero-cline of prey in case of r = 3 in 3–dimensions
(r = 3, K = 0.1, m1 = 16, a1 = 4, m2 = 18, a2 = 2)

If F ′

1yi
< 0 (namely yi is predator of x) then a11 > 0 holds also

in higher dimension in the Allée-effect zone. To see this, let us consider

F1(x, y1, . . . , yn) = rxg(x,K)−
n

∑

i=1

yipi

(yi

x

)

and surface F1(x, y1, . . . , yn) =

0, which is the prey zero isocline surface. Let be E1 = (x1, y1
1, . . . , y

1
n), E2 =

(x2, y2
1, . . . , y

2
n) two different points in the Allée-effect zone on the prey
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x

0.00

0.01

0.02

0.03y1

0.00

0.01

0.02

y2

Figure 7: Typical zero-cline of prey in case of r = 7 in 3–dimensions
(r = 7, K = 0.1, m1 = 16, a1 = 4, m2 = 18, a2 = 2)

isocline surface, where x1 < x2, y1
i < y2

i , , i = 1, . . . , n.

0 = F1(x
2, y2

1, . . . , y
2
n) − F1(x

1, y1
1, . . . , y

1
n)

= {F1(x
2, y2

1, . . . , y
2
n) − F1(x

2, y1
1, y

2
2 . . . , y2

n)}

+ {F1(x
2, y1

1, y
2
2 . . . , y2

n) − F1(x
2, y1

1, y
1
2, y

2
3, y

2
4, . . . , y

2
n)}

+ {F1(x
2, y1

1, y
1
2, y

2
3, y

2
4, . . . , y

2
n) − F1(x

2, y1
1, y

1
2, y

1
3, y

2
4, . . . , y

2
n)} + . . .

+ {F1(x
2, y1

1, y
1
2, y

1
3, . . . , y

1
n−1, y

2
n) − F1(x

2, y1
1, y

1
2, y

1
3, . . . , y

1
n−1, y

1
n)}

+ {F1(x
2, y1

1, y
1
2, y

1
3, . . . , y

1
n) − F1(x

1, y1
1, . . . , y

1
n)}.

Expressions in the brackets are negative except the last bracket be-
cause of F ′

yi
< 0, thus Fx > 0 must hold.

It is reasonable to say that E∗ lies outside the Allée-effect zone if a11 < 0
and E∗ lies in the Allée-effect zone if a11 > 0.
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Figure 8: Typical zero-cline of prey in case of r = 10 in 3–dimensions
(r = 10, K = 0.1, m1 = 16, a1 = 4, m2 = 18, a2 = 2)

Remark 2.1. Theorem 2.3. means that if E∗ lies outside the Allée-
effect zone then delay does not change the stability behaviour of the system
in this special case.

This remark is a direct generalization of Case 1 of [1] on page 226.
The meaning of conditions (2.23), (2.24) is the following:
Conditions a2

11 > a2
33, a2

11 > a2
22 mean that intraspecific competition in

prey species is greater than intraspecific competition in predators species.
The meaning of conditions a2

33 > −a13a34, a2
22 > −a12a24 is in connection

with the phenomenon of their consume strategy, namely do they try to
ensure their survival by having a relatively high or low growth rate and
are able or not to raise their offspring on a scarce supply of food. We
will discuss this very interesting meaning of conditions (2.23), (2.24) in
case of (1.3) and (1.4) or (1.5) in the following section.
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2.2. Strategies

The condition a11 ≤ 0 can be ensured by a relative high intrinsic growth
rate r of prey. This means that there is enough food for predators in
order to reproduce well. If this statement is valid in a long term, then
we expect even more, that a predator species has an advantage that need
more food and has a high growth rate. The parameter ai > 0 is the half
saturation constant of predator i. This means that when the quantity
of prey reaches value ai then the per capita birth rate of predator i
reaches half of the maximal birth rate, as one can see in case of a simple
Holling model where pi(x, ai) = mi

x
ai+x

, mi is ”the maximal birth rate”
of the i-th predator, and pi(ai, ai) = mi

2
. In case of ratio-dependent

models parameter ai has a similar meaning, namely the greater ai is the
more food is needed for predator i. To see this let us consider the ratio-
dependent Holling function, given by (1.4). In this case at a fixed value of
yi, pi(x, yi, ai) = mi

2
if x = aiyi. Similarly in case of the ratio-dependent

Ivlev function, given by (1.5) at a fixed value of yi, pi(x, yi, ai) = mi

2
if

x = aiyi ln 2. Thus, a predator with a big half saturation constant can be
considered as an r-strategist and with a lower one as a K-strategist (Cf.
[6], [4]). Thus, we expect that the parameters ai cannot be arbitrary
small, because the mentioned effect is stronger in that case when the
time average of prey quantity over the past has the same influence on
the present growth rates of different predators. The following theorems
express this situation.

Theorem 2.4. Let matrix Ad be given by (2.18) in case of n = 2
satisfying conditions (2.15),(2.16),(2.17) for i = 1, 2 (i.e. Ad has the
same sign pattern as (2.19)) and the function g, pi are given by (1.3),
(1.4), respectively. If ai > 1 for i = 1, 2 then conditions (2.23), (2.24)
are satisfied.

Proof. Calculate a2
33 > −a13a34, a2

22 > −a12a24 by substituting
(1.3), (1.4) and the statement follows.

Theorem 2.5. Let matrix Ad be given by (2.18) in case of n = 2
satisfying conditions (2.15),(2.16),(2.17) for i = 1, 2 (i.e. Ad has the
same sign pattern as (2.19)) and the function g, pi are given by (1.3),
(1.5), respectively. If ai > 1

2
for i = 1, 2 then conditions (2.23), (2.24)

are satisfied.
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Proof. Calculate a2
33 > −a13a34, a2

22 > −a12a24 by substituting
(1.3), (1.5), then we get:

ai >
di

mi
− mi−di

mi
ln mi

mi−di

(ln mi

mi−di
)2

. (2.26)

Let us denote x = mi

mi−di
, x > 1. Thus,

ai(x) =
1 − 1

x
− 1

x
ln x

(ln x)2
,

where limx→1+0 ai(x) = 1
2

and ai(x) is monotone decreasing for x > 1

because its derivative is: ai(x)′ =
1

x2
((ln x)2−2x+2+2 ln x)

(ln x)3
and the numerator

is negative because it is zero if x = 1 and the derivative of ((lnx)2−2x+
2+2 ln x) is negative for x < 1. Thus, the maximum of the righthand side
of (2.26) is equal to 1

2
and theorem holds. The meaning of Theorems 2.4.,

2.5. corresponds to our expectation, namely in case of delayed models
the advantage of the r-strategist can be seen over the K-strategist. This
advantage is greater in case of a ratio-dependent Holling model than in
case of a ratio-dependent Ivlev model.

2.3. One prey, n predators with delay

Now let the number of predators n be an arbitrary positive integer and
let us consider system (1.1) with its coefficient matrix given by (2.12).
Let us denote the entries of (2.12) by aij, thus

A =





























a11 a12 . . . . . . . . . a1n

a21 a22 0 . . . . . . 0

a31 0 a33 . . . . . . 0
...

...
...

...
... 0

an−1,1 0 0 . . . an−1,n−1 0

an1 0 0 . . . 0 ann





























. (2.27)

If we modify system (1.1) with delay we get system (2.10), which after
linearization has the coefficient matrix given by (2.18). We have seen
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that (2.18) can be obtained from the entries of A as follows:

Ad =





























a11 a12 a13 . . . a1n 0

0 a22 0 . . . 0 a21

0 0 a33 . . . 0 a31

...
...

...
...

...
...

0 0 0 . . . ann an1

α 0 0 . . . 0 −α





























. (2.28)

Theorem 2.6. Let matrix Ad be given by (2.18) for arbitrary positive
integer n, and suppose it satisfies conditions (2.16) and (2.17) for all
i = 1, 2, . . . , n; and let a11 < 0. If α is small enough or large enough then
Ad is stable, and E∗

d is an asymptotically stable equilibrium state of the
delayed system (2.10).

Proof. Let us consider the characteristic polynomial D(λ) :=
det(Ad − λE) of (2.28). Let us denote column i of matrix Ad by ci,
(i = 1, 2, . . . , n) and let us make the following column operations: first
c1 =⇒ c1 + cn+1, then cn+1 =⇒ cn+1 − c1. Now we get

det(Ad − λE) =





























a11 − λ a12 . . . a1n −(a11 − λ)

a21 a22 − λ . . . 0 0

a31 0 a33 − λ 0

. . . . . .
. . . . . . . . .

an1 . . . . . . ann − λ 0

−λ 0 . . . 0 −α





























.

(2.29)
Let us make the following partition of this determinant:
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det(Ad − λE) =

det























A − λE |

















−(a11 − λ)

0
...

0

















− − − − − | − −−

−λ 0 . . . . . . 0 | −α























= det

[

A − λE B

C D

]

.

Applying the Schur theorem [9, Theorem 3.1.1] we get:

det(Ad − λE) = det(A − λE) det(Ad − λE|A − λE),

where (Ad−λE|A−λE) is the Schur-complement of A−λE in Ad−λE,
namely (Ad − λE|A− λE) = D −C(A− λE)−1B and suppose that λ is
not an eigenvalue of A.

(Ad − λE|A − λE) = D − C(A − λE)−1B

= −α − [ −λ 0 . . . 0 ](A − λE)−1

















−(a11 − λ)

0
...

0

















= −α − λ(a11 − λ)A−1
11 ,

where A−1
11 := 1

det(A−λE)
(a22 − λ) · · · · · (ann − λ), thus,

det(Ad − λE|A − λE) = −α − λ
(a11 − λ) · · · · · (ann − λ)

det(A − λE)
.

We get the following relation (true for all λ ∈ C)

det(Ad − λE) = −α det(A − λE) − λ(a11 − λ) · · · · · (ann − λ)

= (−1)(α det(A − λE) + λ

n
∏

i=1

(aii − λ)). (2.30)
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Now we prove that the coefficients of this polynomial have the same sign,
using the fact that A being sign stable, hence the coefficients of det(A−
λE) have the same sign. Let us denote the coefficients of det(A − λE)
by ai, namely:

det(A − λE) = (−λ)n + an−1(−λ)n−1 + · · · + a0.

Thus,

det(Ad − λE) = (−1){α(−λ)n + αan−1(−λ)n−1 + · · · + αa0

+λ((−λ)n + (a11 + · · · + ann)(−λ)n−1

+(a11a22 + · · · + an−1n−1ann)(−λ)n−2

+ · · · + (a11a22 · · · · · ann))}

= (−λ)n+1 + (a11 + · · · + ann − α)(−λ)n

+(a11a22 + · · · + an−1n−1ann − αan−1)(−λ)n−1

+ · · · + (a11a22 · · · · · ann − αa1)(−λ) − αa0.

Since det(A − λE) is a stable polynomial, hence if n is even, then a2k

is positive, and a2k+1 is negative for all k. Thus, the coefficients with
even indices of det(Ad − λE) are negative, and those with odd indices
are positive, and all the coefficients of (λ)j (j = 0, 1, . . . , n + 1) in
det(Ad − λE) are negative.

For the case of n odd we can repeat the above proof. Thus the
necessary condition of stability of the polynomial det(Ad − λE) holds.

This means that if det(Ad − λE) is not a stable polynomial then it
has to have a pair of complex conjugate roots with nonnegative real part.

Now let us consider the case when α is very large. Then the eigen-
values of det(Ad − λE) are close to the eigenvalues of A and there is a
remaining root with an unknown sign. But this root should also be a
negative real number, because it has no pair to be a member of a complex
conjugate pair, and because the coefficients of the characteristic polyno-
mial are positive. Thus, for sufficiently large α � 0 the matrix Ad is
stable.

If α is very small then the eigenvalues of det(Ad−λE) are close to the
roots of λ

∏n

i=1(aii − λ) = 0. It has n negative real roots and one more
root left with an unknown sign. And again, this should be a negative real
number, because it has no pair to be a member of a complex conjugate
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pair, and because the coefficients of the characteristic polynomial are
positive. Thus, for sufficiently small α 6= 0 the matrix Ad is stable. This
completes the proof of the theorem.

The meaning of this theorem is the following. If α is small then the
measure of the influence of the past is large. In this case the equilibrium
point E∗

d is locally asymptotically stable.

If α is large then the measure of the influence of the past is small, the
system’s behaviour is close to the behaviour of the system without delay,
of which the equilibrium E∗ was stable. Thus, the results correspond
to our expectations. But all these are true outside the Allée-effect zone,
where the stability is stronger than inside.

2.4. Numerical examples

Example 2.7. Let us consider a three dimensional Holling type ratio-
dependent model with delay, namely g is given by (1.3) and pi is given
by (1.4). Let the constants be given as follows: m1 = 16, m2 = 18, d1 =
8, d2 = 12, a1 = 4, a2 = 2, K = 0.1. The equilibrium point of the
system depending on r is E∗ =

(

0.1(1 − 5
r
), 1

40
(1 − 5

r
), 1

40
(1 − 5

r
)
)

. In this
case the interaction matrix of the system without delay is given by:

A =











8 − r −4 −8

1 −4 0

1 0 −4











. (2.31)

The characteristic polynomial of A is:

D(λ) = (−4 − λ)
(

λ2 + (r − 4)λ + 4(r − 5)
)

.

This is a stable polynomial for r > 5 and A is sign stable for r ≥ 8 .
The equilibrium point of the delayed system depending on r is

Ed
∗ =

(

0.1(1 −
5

r
),

1

40
(1 −

5

r
),

1

40
(1 −

5

r
), 0.1(1 −

1

r
)

)

.
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The coefficient matrix of the delayed system linearized at Ed
∗ is

A =

















8 − r −4 −8 0

0 −4 0 1

0 0 −4 1

α 0 0 −α

















. (2.32)

The characteristic polynomial of Ad is:

Dd(λ) = (−4 − λ) ((8 − r − λ)(−4 − λ)(−α − λ) − 12α) .

Let us check conditions (2.23), (2.24). It is easy to see that in case of
r > 12 these are satisfied. The conditions of Theorem 2.3. hold, Ed

∗ is
asymptotically stable. Time evolution of the species is shown on the left
side of Fig. 9, whereas the right side shows the corresponding trajectory
together with the equilibrium point. The form of (2.22) with r = 13 is

2 4 6 8 10

0.02

0.04

0.06

0.08

0.10

0.04
0.06

0.08
0.10x

0.02
0.04

0.06
0.08

0.10
y1

0.02

0.04

0.06

0.08

0.10

y2

Figure 9: Left: Time evolution of the species in case of r = 13, α = 1.
Right: The trajectory tends to the asymptotically stable equilibrium
point. (x is red, q is green, y1 is dashed blue, y2 is yellow.)

shown in Fig. 10. This corresponds to Fig. 1, case 1c. It is easy to
see that the equilibrium point of the delay system remains asymptotically
stable for any α > 0. We note that in this case the equilibrium point is
outside the Allée-effect zone, see Fig. 8.
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Figure 10: The function (2.22) with r = 13

If 12 ≥ r > 5 then conditions (2.23), (2.24) are not valid, and there
are such cases when Ed

∗ is stable and there are cases when it is unsta-
ble. Time evolution of the species is shown on the left side of Fig. 11,
whereas the right side shows the corresponding trajectory together with
the equilibrium point. The form of (2.22) with r = 7 is shown in Fig.

2 4 6 8 10

0.01

0.02

0.03

0.04

0.00
0.01

0.02
0.03

0.04

x

0.000
0.002

0.004
0.006

0.008y1

0.000

0.002

0.004

0.006

0.008

y2

Figure 11: Left: Time evolution of the species in case of r = 7, α = 1.
Right: The trajectory leaves the neighborhood of the unstable equilib-
rium point. (x is red, q is green, y1 is dashed blue, y2 is yellow.)

12. It is easy to see that there are values of α for which H(α) < 0, thus,
the equilibrium point of the delay system is unstable, and also values for
which H(α) > 0, thus, the equilibrium point of the delay system is asymp-
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Figure 12: The function (2.22) with r = 7

totically stable. We note that in this case the equilibrium point is inside
the Allée-effect zone, see Fig. 7.

Of course this study is not complete. There are many interesting
trajectories, periodic orbits, see e. g. Fig. 13, 14.

10 20 30 40 50 60 70
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0.06

0.08

0.00
0.02

0.04
0.06

0.08
x

0.000

0.005

0.010y1

0.000

0.005

0.010
y2

Figure 13: Left: Time evolution of the species in case of r = 7, α = 1.
The solution seems to be periodic at first sight. (The reason of this
phenomenon may also be numerical errors.) Right: The corresponding
trajectory. (x is red, q is green, y1 is dashed blue, y2 is yellow.)

The interested reader can experiment with the parameters and initial
conditions of the model using the Mathematica program on the page
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Figure 14: Left: Seemingly time periodic evolution of the species in case
of r = 8, α = 0.2. Right: The corresponding periodic orbit. (x is red, q
is green, y1 is dashed blue, y2 is yellow.)

http://www.math.bme.hu/˜jtoth.html#kktj. E. g. it is also interesting
how the trajectories change if we reduce ai. In case of r ≤ 5 there is no
positive equilibrium point E∗

d .
The mentioned program produces figures like Fig. 15. In case of an

Ivlev model similar situations may occur.
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Figure 15: Snapshot of manipulation. r = 8 and α = 0.25.
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