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Abstract—Operator splitting is a widely used method in the numerical solution of air pollution transport equations. This paper presents an analysis of splitting error for advection-reaction problems. Our investigations are focused on Molenkampf–Crowley advection and chemical reactions. A necessary and sufficient condition is derived under which the splitting error vanishes. Some numerical experiments are presented for two-dimensional models.

Key-words: Molenkampf–Crowley advection, chemical reactions, numerical solution of PDEs, splitting error, operator splitting, air pollution modeling.

1. Introduction

Air pollution has become one of the main environmental problems due to increasing human activity in the fields of transport and industry (Havasi et al., 2001). Reducing the amount of air pollutants emitted into the atmosphere is an important task. The efficient treatment of this problem requires the study of the mathematical models of air pollution transport. In the description of this process advection-diffusion-reaction equations are widely used. Models describing the evolution of pollutant concentrations are based on the mass conservation law and represent different processes acting in the atmosphere (namely advection, diffusion, emission, chemical reactions, and deposition) in the form of a system of partial differential equations. To find the symbolic solution of these equations is practically impossible, therefore we use some numerical method to obtain an approximate solution of the equations. However, even the numerical treatment of the problem is complicated. To get a sufficiently precise approximation in reasonable time we apply the splitting method (see e.g. Zlatev, 1995). Operator splitting is a tool to make the numerical treatment simpler and to use our numerical methods more efficiently.
The technique of splitting to help solve this system of equations was used for a long time in different ways. A kind of special splitting was introduced by Marchuk and Strang (Marchuk, 1968; Strang, 1968) which has higher order accuracy. A splitting method was used in the solution of the diffusion equation by McRae et al. (1984). For advection-diffusion-reaction problems Lanser and Verwer (1999) analyzed the error caused by splitting. A study on splitting techniques applicable for problems with stiff operators can be found in Sportisse (2000).

A theoretical background of operator splitting and a detailed study of the splitting error in the case of air pollution models has been presented by Havasi et al. (2001) in the present journal. Here we heavily rely on their results especially on the condition for the splitting error to be zero.

In this paper we focus on the advection-reaction problem. We apply the result of Havasi et al. (2001) on L-commutation and we determine the condition of L-commutativity in the case of advection and reaction operators. Furthermore we present the results of some numerical computation for advection-reaction models. Section 2 introduces the transport equation used in air pollution modeling. Section 3 contains a review of the splitting method and a definition of the splitting error. In Section 4 we give a characterization of the splitting error and derive the error for the advection-reaction problem in general. In Section 5 we derive a necessary and sufficient condition for a two-dimensional advection-reaction model with Molenkampf–Crowley advection under which the operators (advection and reaction) commute, i.e., the splitting error is zero. In Section 6 we present our numerical results for this advection-reaction model. Section 7 discusses results and further plans.

2. The air pollution transport equation

The system of partial differential equations to describe advection, diffusion and reaction in air pollution modeling is as follows.
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see, e.g., Zlatev (1995). Here 
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 is a vector-valued function and contains the concentration 
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 of each species as a function of space (
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) and time (
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· the function 
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 denotes the velocity of flow depending on space and time;

· 
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 is the diffusion coefficient matrix of pollutant i, it also depends on space and time;
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 represents the formation rate of pollutant i as a result of chemical reactions at place 
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 and at time 
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 The function 
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 is usually nonlinear and may depend on the concentration of all the species. (This dependence is polynomial, if mass action type kinetics is assumed, as it is the case most often, or 
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 are rational functions e.g. in the case if also enzymatic or saturation processes are present, or if we are dealing with binding kinetics.) Therefore, 
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 links the equations belonging to the different pollutants; further, this term leads to the greatest difficulties in handling the model equations;
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 represents the emission of pollutant i;
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 is the sedimentation coefficient.

3. The splitting method
For simplicity we introduce the splitting procedure on a finite dimensional problem, i.e. on the example of a system of ordinary differential equations. Let us consider the initial value problem
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where 
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 is the unknown vector function and 
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 can be written as a sum of two simpler operators 
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 Now let us take a short time 
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 and let us split the problem into the following simpler problems:
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and
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The solution of the splitted problem at time 
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 is 
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The basic idea of splitting is to decompose the operator on the right hand side into the sum of simpler operators, and to solve the subproblems corresponding to the operators successively in each time step. More accurately, we solve the equation only with operator 
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 until time 
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 (as if only the subprocess represented by 
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 were present) and the solution in time 
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 will be the initial condition of the equation with 
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 It means that we return to the initial time and solve the equation with 
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 as well. The solution of the second equation in time 
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 will be the approximate solution of the original problem in time 
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 This procedure is then repeated on the interval 
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 etc. Thus, the simpler subproblems are connected to each other through the initial conditions.

It is clear, that the numerical treatment of the separate subproblems is simpler. The most significant advantage of splitting is that we can exploit the special properties of different subproblems and apply the most suitable numerical method for each of them. Thus we can obtain a more precise solution in a shorter time.

The splitting error at time 
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 can be defined as some norm of the difference between the solutions of the exact and splitted problems (2) at time 
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An operator can obviously be splitted into more than two summands, and this way the method can be extended. If we apply the method to our more complicated Eq. (1), then a possible decomposition of the operator corresponding to the right hand side might correspond to terms describing advection, diffusion, formation rate (chemical reactions), emission, and  sedimentation of pollutants.

In the case of partial differential equations like (1) the splitting procedure is formally the same but the operators act on functions with values in an infinite dimensional (as opposed to finite dimensional above) space. If we consider the air pollution transport equation in chapter 2 then the operator 
[image: image38.wmf]A

 in Eq. (2) corresponds to the whole right hand side of Eq. (1), that is 
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 represents all the effects in the transport process which are presented in Eq. (1). We can split 
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 to more, simpler operators corresponding to the physical effects that are presented in the equation. One possible splitting is: advection (
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), diffusion (
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), emission (
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), reaction (
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), sedimentation (
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); i.e. there will be 5 subproblems corresponding to the 5 subprocesses. Of course there are other possible splittings of the problem, but it is not our aim to go into details in this question.

4. Investigation of the splitting error

For the investigation of the splitting error Lie-operators can give us some useful help. In this section we define the basic concepts of the theory of Lie-operators which play role in the determination of the splitting error. With the help of Lie-operators we can give a condition for zero splitting error which is the main result of Havasi et al. (2001). At the end of this section we analyze this condition for the special case of advection and chemistry operators which are presented in Eq. (1).

4.1 The splitting error

The zero splitting error can be characterized via the Lie-operator, see also Varadarajan (1974). The Lie-operator 
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 of the operator 
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 is a linear operator acting on the space of differentiable operators and it is defined for a differentiable operator 
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 as follows:
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where 
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 denotes differentiation with respect to 
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 If evaluated at the identity operator it is actually the original operator. It is not the aim of this paper to give a very detailed description of Lie-operators and their connection with the splitting error. A more detailed discussion of this issue can be found in Havasi et al. (2001). Here we just mention the main points of the argument for the condition of zero splitting error. 

For the solution 
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 of (2) using the Taylor-series expansion we can write:
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For the solution of the splitted problem in the same way we obtain:
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where 
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 are the Lie-operators of the operators 
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 which are presented in the problems (1), (2) and (3). Taking the difference of (5) and (6) and applying simple changes we get


[image: image63.wmf]121221

()()

spspsp

()()(())()()()()()().

tteIteeeIt

tttt

tt

++

+-+=-+-

AAAAAA

ccccc

  (7)
The second term of the right hand side is the local splitting error which arises through the use of splitting on the time interval 
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 The first term express the error coming from the local splitting error of earlier time steps. Considering Eq. (7) we see that the splitting error vanishes for all functions 
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 if and only if
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Let us define the commutator of 
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 denotes the composition of the operators 
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 Havasi et al. (2001) have shown by the investigation of the Baker–Campbell–Hausdorff-formula that the relation (8) holds if and only if the commutator of the operators 
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 and 
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 evaluated at the identity operator I is zero, that is the operators 
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 and 
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 commute on the operator I. Applying the definition of the Lie-operator we obtain the following form of the necessary and sufficient condition:
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Hereafter we will use this condition to analyze the splitting error of a given splitting procedure. Henceforth, if the Lie-operators of 
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 and 
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 commute we say that the operators 
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 L-commute, furthermore we will use the notation:
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We remark that if 
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 are linear operators then the L-commutation is equivalent to the usual commutation, although 
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4.2 L-commutativity of the advection and chemistry operators

Now we investigate the condition of L-commutativity in the case of advection and chemistry operators. We study the conditions under which the advection and chemistry operators presented in Eq. (1) L-commute. Related studies can be found in Dimov et. al. (1999), Dimov et. al. (2002), Faragó and Havasi (2001), and Hundsdorfer and Verwer (1994). Let us denote the advection operator from now on by 
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Let the chemistry operator 
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or using another notation emphasizing that 
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 acts on the space of functions:
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Since the operator 
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 is linear, its derivative is 
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 itself. The derivative of the operator 
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is a n-dimensional vector valued function whose ith coordinate function is given by
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We remark that for the scalar function 
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where
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Applying that identity we obtain
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The operators L-commute if and only if the expression (9) is equal to zero. A sufficient condition for this is
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hold for all 
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. Obviously, in case the flow is divergence free and the rate of chemical reactions depends only on the concentrations and time, the above sufficient conditions are satisfied.

5. An advection-reaction model with Molenkampf–Crowley advection

In this section we present our results for a specialized two-dimensional model, henceforth 
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 denotes the two spatial coordinates 
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 We study a problem with special advection, called Molenkampf–Crowley advection and chemistry processes:


[image: image115.wmf](

)

(

)

(

)

(

)

(

)

,,,

,,,,1,2,...,.

iii

i

ctctct

yxrttin

txy

¶¶¶

=-+=

¶¶¶

xxx

xcx


We give necessary and sufficient conditions under which the operator of the Molenkampf–Crowley advection and the operator of chemical reactions L-commute.

5.1 Molenkampf–Crowley advection

The operator 
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 of the advection is linear, its derivative is 
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 itself. For n species the operator is defined as
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This is a special case of the general advection presented in Eq. (1). We obtain it if problem (1) is reduced into two spatial dimension and the function 
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The Molenkampf–Crowley advection is often used as a test in the investigation of different methods, see e.g. in Zlatev (1995). It is also known as cone-test. As a simple advection it is suitable for us to investigate the behavior of the splitting error. The solution of the problem
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5.2. Main result: necessary and sufficient condition of L-commutativity

Now we show which special type of chemistry operators L-commute with the Molenkampf–Crowley advection. The operator of the chemical reactions 
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 has the same form as defined before. Let us consider the ith coordinate of the L-commutator of 
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 and 
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 in two spatial dimensions:
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Substituting the functions 
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 we obtain that the splitting error is zero for any initial function if and only if the equality
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holds for 
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 This is a first order homogeneous linear partial differential equation for 
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where 
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 is an arbitrary continuously differentiable function. This provides a necessary and sufficient condition for the L-commutation of Molenkampf–Crowley advection and chemistry. As we have mentioned, the chemistry operator represents the rate of the reactions between the pollutants. It usually depends on the concentrations and on a coefficient, which is modeled by the Arrhenius-equation:
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 are physical constants (see in Atkins, 1998; Seakins and Pilling, 1996). Hence the coefficient k depends on the spatial coordinates and on time through temperature. Thus the condition of L-commutativity of the operators 
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This means geometrically that the isotherms form concentric circles in space.

6. Numerical examples

In this section we present some numerical results for models with Molenkampf–Crowley advection and chemistry operators. Thus the problem is two-dimensional and we have only one species so 
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 We study the following initial value problem:
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We will call this full equation since both operators are present. The splitting problem in the first time step will be as follows:


[image: image161.wmf](

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

111

1

0

,,,,,,

    ,,0.

cxytcxytcxyt

yxcxyc

txy

¶¶¶

=-=

¶¶¶


and
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We solve both the full and the splitting problem numerically on a bounded domain: on a square. We choose three different functions 
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 to present the chemical reactions, and solve the problem with each of them. However, our 
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 functions typically do not represent real-life processes but they are adequate to analyze the splitting error arising in the solution of the problems. We choose the functions for 
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 in such a way that we know the exact solution of the problem, hence we can compare it with the approximate solutions. Thus we can calculate the errors of the approximations which are in every given case the maximum norm of the difference between the exact solution and the approximation. We compare the solution of the full and the splitting problem to the exact solution in each time step.

6.1 Numerical experiments

The numerical treatment requires temporal and spatial discretisation of the equations. See Stoer and Bulirsch (1993). Let us consider the following division of our domain:
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Hence we obtain a 
[image: image167.wmf]10×10

 square grid. The grid parameter h was 1.0 in each problem. The time step of the numerical scheme and the time step of the splitting were equal to 0.015. We approximated the derivatives with first order finite differences. To approximate the spatial derivatives in the advection term we used central scheme and on the boundary of the domain the appropriate forward or backward Euler scheme. To approximate the time derivative on the left side we used the Euler forward scheme. We solved the equations by applying both explicit and implicit schemes. As initial value we chose the value of the exact solution at time 
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 In every problem we calculated the relative error as the maximum norm of the difference between the exact and the numerical solution. We compared these errors in different ways to analyze the effect of splitting. On the figures we plot the errors against time steps.

In the first problem we had 
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 The exact solution is 
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 with the corresponding initial condition 
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 As we can see it easily, the condition of L-commutativity does not hold in this problem. On the figures we can see that the error in the solution of the splitting problem is greater than in that of the full problem. Fig. 1 shows the relative errors of the solutions of the full and splitting problems. Both of the problems were solved numerically by explicit Euler scheme. Fig. 3 shows the same calculations by implicit Euler scheme. Figs. 2 and 4 show the difference between the relative errors of the splitting and full solutions in order generated by an explicit scheme and implicit schemes. The implicit scheme provides a more accurate solution compared to the explicit scheme. We can observe that the implicit scheme equilibrates the effect of splitting and its error much more then the explicit scheme. Fig. 5 shows the difference between the relative error of the full and splitting problem solutions generated by explicit and implicit schemes. On Fig. 5 we can see how the splitting affects the accuracy with implicit and explicit schemes. See also Fig. 6, which shows the relative error of the solution of the splitting problem generated by explicit and implicit schemes.

In the second problem we had 
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 The splitting error is not zero. The exact solution of this problem is 
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 In this special case the applied finite difference schemes provide the exact solution for the full problem. Using an implicit scheme we obtain the exact solution with splitting too. The explicit scheme provides a solution different from the exact solution. See Fig. 7, which shows the relative errors of the solutions of the full and splitting problems. Both of the problems were solved numerically by explicit Euler scheme. The solution of the full problem was equal to the exact solution; so its relative error is constantly zero. We may observe significant difference between solutions generated by the different numerical schemes for the splitting problem. We can say that the splitting procedure is sensitive to the choice of the applied numerical scheme. The splitting error does not appear in the solution generated by the implicit scheme.
In the third problem we had 
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 Note that in this problem the condition of L-commutativity is satisfied. The function of chemical reaction rate has a form 
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 The exact solution of the problem is 
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 Compared to the previous problems we can see that we obtain more accurate solutions of the splitting problem compared to the full one than before. There are intervals in which the solution of the splitting problem is closer to the exact solution than the solution of the full problem. See Fig. 8, which shows the difference between the relative errors of the solutions of the full and splitting problems. Both of the problems were solved numerically by an implicit Euler scheme. Also in this third problem we can say that the implicit scheme provides a more accurate solution than the explicit scheme. Furthermore the implicit scheme equilibrates the effect of splitting and its error much more then the explicit scheme. See also Fig. 9, which shows the difference between the relative error of the full and splitting problem solutions generated by explicit and implicit schemes.

6.2 Conclusion of the numerical experiments

The solutions of different problems show that the errors generated by splitting are sensitive to the choice of the numerical method. We can say in general that the implicit scheme equilibrates the effect of splitting and its error much more then the explicit scheme. We also obtained a result where the theoretically non-zero splitting error did not appear in the solution.

7. Discussion and perspectives

We applied the general result by Havasi et al. (2001) on zero splitting error. We investigated the condition of L-commutativity in the case of Molenkampf–Crowley advection and chemistry operators. We derived a necessary and sufficient condition on the L-commutation of the advection and chemistry operators. We performed some numerical experiments with Molenkampf–Crowley advection and different chemistry operators.

After we split the problem we use a numerical method to solve the subproblem. That means we don’t solve the subproblem exactly so the L-commutativity does not provide direct information about the error of the obtained solution. To have a quantitative estimation of the error we need to study the approximation operators defined by the numerical methods. As we saw it in all the three problems we studied we obtain very different results regarding the effect of splitting when using different numerical methods.

Our future plan is to do a systematic study on reaction diffusion equations. We would like to study the effect of splitting in reaction diffusion equations. Our main aim is to characterize the splitting error if it is not zero to map the advantages of splitting in running time and accuracy.
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