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Abstract

We give a new and direct proof of the nonexistence of limit cycle in a bimolecular system and
the characterization of the unique bimolecular oscillator. The proof is an application of classification
theorems on vector fields with homogeneous second degree polynomial perturbations.
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Résumé

On donne une nouvelle démonstration de la non existence de cycle limite dans un systeme bi-
moleculaire et la caractérisation de I'unique oscillateur bimoléculaire. La preuve est une application
directe des théoremes de classification des champs de vecteurs polynomiaux avec une perturbation
homogéne quadratique.
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1. Introduction

One of the fundamental statements on the oscillatory behavior of two species second
order reactions is the nonexistence of limit cycles. (As we only consider mass action type
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kinetics the expressiorsecond ordeandbimolecularare thought to be synonymous in

the present paper.) This statement has been formulated and argued for first by Hanusse [7].
Next Tyson and Light [15] gave a proof neglecting some less probable and less important
cases. Finally, Pota [11] gave a full proof of the statement using a theorem of Dulac
(different from the one we are going to use here).

Another, related problem, of which we shall not present the whole history is to find the
smallest or simplest chemical oscillator. One possible approach to this problem was shown
by Téth and Hars [14] who has shown that it is again the Lotka—\Volterra model which gives
the answer: if the linear part is given then no other model than this can have as few species
and reaction steps as this. Here, we prove indeed that the smallest chemical oscillator is the
unigue one.

The structure of our paper is as follows. First we define the class of polynomial
differential equations for which there exist classification theorems in the most succint form:
in terms of complex variables. Then we summarize the theorems by Dulac [4], Bautin
[1,18], Loud [9] and Chicone [2]. Next we rewrite the equation in real form, and consider
it as one obtained by a translation of the stationary point to the origin. Thus, in order
to return to the original kinetic equation we have to translate the equation back to the
stationary point generally taken to be an arbitrary point in the first orthant. Then we have
the most general form of polynomial equations which can be classified. At this point we
present the system of inequalities expressing the fact that the polynomial system is kinetic
(i.e. it contains no negative cross effect). Then we check whether individual conditions of
the classification theorems can be fulfilled or not. We shall almost always find a negative
answer, exceptin the single case of the Lotka—\Volterra reaction corresponding to the result
we wanted to reproduce.

In the last section we shall formulate a few problems (both mathematical and kinetic)
which hopefully can be attacked by the present methods.

2. The class of equations and some mathematical preliminaries

Below we shall use several times classification theorems related to the class of polyno-
mial differential equations which can be written in terms of complex variables as follows

2= (i + M)z + a2z’ + a112Z + ap2z’, 1)

where is a real parameter (in some it equals to zero), and the coefficigfnts 1, ag2 are
arbitrary complex numbers. The unknown complex valued functignn general defined
on some finite or infinite interval of the real line.

Together with the conditions we also give their names in parentheses which may also
be a formula, as e.g. in the second case of Loud’s theorem below.

Definition 2.1. The origin is said to be a@enterto Eq. (1) if all the orbits in a small
neigbourhood of it are closed curves surrounding the origin.

Theorem 2.2[4,18]. The origin is a center for the polynomial differential equatidn iff
A =0and at least one of the four conditions is satisfied
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1. (H.C.)azo = —a11 (Hamiltonian centey;

2. (D.C.azo = 2a11, |a11|2 = |a02|2 (Darboux centey,
3. (L.V.) a11 = 0 (Lotka—Volterrg;

4. (S.C.)3(azoa11) = J(a3ya02) = 0 (symmetric centgr

Definition 2.3. A center is said to bdsochronousif all the periodic orbits in a
neighbourhood of the origin have the same period.

Theorem 2.4[9]. The origin is an isochronous center for the polynomial differential
equation(1) iff » = 0 and at least one of the five conditions is satisfied

1. (h.1.C)a11 = ap2 = 0 (holomorphic center

2. (0 =1)azo=a11,a02=0;

3. (1.C.1)az0 = 3a1, la11l? = §lac2l?;

4.(1.C.2)azo = a1, lax1? = 4aozl?;

5. (H.I.C.)azo = a11 = ag2 = 0 (Hamiltonian isochronous center

The conditions of this theorem imply those of the Dulac theorem (as they should) as
follows:

1.=3 1l.=4 2.=4. 3. =4 4.=4. 5.=1,2,3.,4

of which only the fourth and fifth implications need some calculation.

It is an important and general problem to find the stratification of the center variety by
isochronous centers; e.g. in the Hamiltonian case [13] it has been shown that (H.C.) implies
(H.1.C.) for homogeneous polynomial perturbations of any degré&#in

Definition 2.5. The trivial equilibrium point (the origin) of system (1) is said to have a
cyclicity k with respect to the space of all quadratic systems if any quadratic perturbation
of system (1) has at mogtlimit cycles in a neighbourhood of the origin, akds the
smallest number with this property.

Theorem 2.6[1]. The cyclicity of the trivial equilibrium point = 0 of system(1) with
respect to the space of all quadratic systems is less than or eqg@al to

We recall the structure of the first return map given by Bautin (see for example [18]):

Theorem 2.7.1f L(r) denotes the first intersection of the positive semitrajectory with
the x-axis starting fromr > 0 (i.e. L is thefirst return map)and if it is of the form
Lr)y=r+ Z@lelez"“, then its coefficients are generated by the following three
polynomialgcalledfocal values):

v3 = —213(az0a11), vs = (—27 /3)3((2a20 + a11) (a20 — 2a11)a11a02),

v7 = (=57 /D3 ((la11? — lao2l?) (2az0 + a11)a%ao2).

A consequence of this theorem formulated?cnyadek follows.
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Theorem 2.8.The cyclicity of the trivial equilibrium point is

0,if A £0;

1,if A =0, J(az0011) #0;

2, if A = J(azoa11) =0, azo — 2a11 # 0;
3,if A=apg— 2a11=0.

We recall the cyclicity of the equilibrium point in the isochronous case:

Theorem 2.9[2]. Letagg # 0. Then, the number of limit cycles of Efj) which can bifurcat
e from an isochronous center with respect to the space of all quadratic systems is at most

e 0,if A #£0;
e 1,if A=0,and Eq(1)is in the clasgh.l.C);
e 2if =0, and Eq.(1) is in one of the classg® = 1), (1.C.1), (1.C.2)

Remark. The number of limit cycles which can bifurcate from a Hamiltonian isochronous
center (H.I1.C.) is 3 as a corollary of the Bautin’s theorem.

3. The system of two real equations translated to the stationary point

We should like to consider Eq. (1) as if it were obtained by a translation of the stationary
point to the origin and now we make the inverse transformation. Before that let us rewrite
the equation in the form of two real variables as this form will have an immediate chemical
meaning.

If we introduce the following notations

z=:x+1iy, azo =: a20+ iB20,

aj1=:a11+ip11, aoz =: ao2 + ifo2. (2)
and assume that

X:=x+4+& Y:=y+n, withé& n>0, 3)

then Eq. (1) will have the following form

X = n— A& + &% (20 + a11+ a02) — 261(B20 — Po2) + n*(—a20+ @11 — o2)

+ X (A — 28 (@20 + a11 + @02) + 2n(B20 — Bo2))

+ Y (=14 26(B20— Bo2) — 2n(—a20+ 11 — @02))

+ X?(ar20 + 011+ @02) — 2XY (B2 — Po2) + Y2 (—az0+ 011 — a02), (4
Y = —& — A+ E%(Bao+ Bra+ Po2) + 261 (ct20 — @02) + n*(—B20+ P11 — Po2)

+ X(1—28(B20+ P11+ Bo2) — 2n(a20 — a02))

+ Y (A — 28 (a20 — @02) — 2n(—B20+ B11— Bo2))

+ X?(B2o+ P11+ Bo2) + 2XY (@20 — @02) + Y2 (—B20+ 11— fo2).  (5)
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The system of equations (4)—(5) is a kinetic equation iff no negative cross effects (see
e.g. [14] and the references therein) are present, i.e. the following inequalities hold:

1 — AE + &2 (a0 + @11 + @02) — 261 (B20 — Po2) — n*(@20 — a11+ ao2) =0, (6)

=1+ 28(B20— Bo2) + 2n(a20 — a1+ @02) = 0, (7)
—a0+ 11 — ap2 = 0, 8)
—& — A+ E%(B20+ P11+ Po2) + 2En(a20 — c02)

—n?(B20— P11+ Bo2) >0, 9)
1 —2£(B20+ P11+ Po2) — 2n(az0 — ao2) > 0, (10)
B20+ P11+ Poz2 = 0. (11)

In the next section, we show that the unique kinetic bimolecular system with periodic
orbits is the Lotka—Volterra system.

4. On the existence of a center

Theorem 4.1.The system of Eq$4)—(5) can only have a center if conditiofi..V.) of
Dulac’s theorem holds. It cannot have an isochronous center.

In order to have either a center or an isochronous center) should hold.

We consider the case of Theorems 2.2, and 2.4 with condiiogs= a1, ¢ €
{1,2, 3, £}, which correspond to the casgh= 1), (D.C.), (1.C.1), (1.C.2) Since,az0 =
ea11 and B0 = —eB11, we obtain from Egs. (6)—(11)

N+ &%((e + D1y + a02) — 26n(—ef11— Po2)

+1%((— + Doz — an2) =0, (12)
—1+2£(—¢p11— Po2) — 2n((—¢& + D11 — ao2) > 0, (13)
(=& + Doa1 — o2 >0, (14)
&+ 52((—8 + D)B11+ Boz) + 260 (11 — 002)

+1%((e + 11— oz) >0, (15)
1—2¢((—& + D11+ Boz) — 2n(ca11 — app) >0, (16)
(—e+Dp11+ Po2>0. (17)

Egs. (13) and (14) imply

—&f11— Po2 =0, (18)

Ed. (1514 £Eq. (16) is equivalent te-£%((—e + 1) f11+ Bo2) + n*((e + 1)B11— Po2) =0,
and by Eq. (17), we obtain

(e +1B11— Po2 =0, (19)

Eq. (12)+nEq. (13) is equivalent te-n?((—e + D11 — a02) +£2((e + a1 + aoz) = 0,
and by Eq. (14), we obtain



B. Schuman, J. T6th / Bull. Sci. math. 127 (2003) 222—-230 227

(¢ + Da11+ a2 = 0. (20)

Eqg. (14)+ Eq. (20) is equivalent ta11 > 0, Eq. (17)+ Eq. (19) is equivalent t@11 > O,
Eq. (17)+ Eq. (18) is equivalent to—2¢ + 1) 811 > 0. Because for all the values efwe
have(—2¢ + 1) < 0, but we have just learned thai; > 0, we have a contradiction.

(H.1.C.) case: Hamiltonian isochronous cenéep = o11 = cp2 = 0, B20 = B11 = Bo2 =
0. Itis impossible by Eq. (9) as it would megn< 0.

(h.I1.C.) case: holomorphic isochronous centgl. = 811 = ao2 = Bo2 = 0.
By the transformation — &.z, £ € C* :=C\ {0}, we can choosgop =0, i.e.azo € R.
By Eq. (8)a20 < 0, and Eg. (7) is equivalent te 1 + 2naop > 0, which is impossible.
(H.C.) case: Hamiltonian centero = — 211, f20 = 311
Eq. (19) is equivalent t§ f11 — Boz > 0 ¢ Po2 < 3P11.
Eq. (17)+ Eq. (19) is equivalent t@11 > 0,
Eq. (17) is equivalent td 11 + Boz > 0, and with Eq. (19) we obtaigpi1 > oz >
3
—35P11.
After the action of; — £.z, £ € C*, on the system (1), we can chog%g = 0. Hence,
Boz2=0.
So, Eq. (13) is equivalenttol—2n (311 — o) > 0, a contradiction tGa11—ag2 > 0
obtained from Eq. (14).
(S.C.) case: Symmetric cent&itazoa11) = J(a3ya02) = 0.
By the transformation — £.z, £ € C*, we can choose thafy; = pg2 € RT. So, the
algebraic conditions (S.C.) giv&a20a11) =0, andts(ago) = 0. Hence,

kim
ax=p2e3, keZ, ppoeR"
If k=1, Eq. (1) is equivalent to
z=iz+ pzoe%z2 +ai11zz + ,00222.
By S(e%all) =0 anda11 = p11€/"1, we obtaif11 + Z = k'm, k' € Z. For the value
2T
K =1, 011 = —,
1=
and Eq. (1) z =iz + pzoe%”z2 + plleizT”zZ + po2z2. Now, by the transformation
z> €% z, Eq. (1) is equivalent to
. ir =in i2r im e
=iz +poe3e3 22+ prie 3 e3 2z + poe ™ z?
& i=iz+ 20z’ + p112Z — po2z®.

This procedure allows us to reduce the algebraic condition to the kasg) =
S(a11) = J(ao2) = 0, i.e. we obtain thaBzg = B11 = Bo2 = 0 (for example, in the case
azg = pgoez'T”, we usez — e%z, if we choosefi; = % k' = 0. We use the same
procedure to reduce, in all cases, the coefficients to real ones).

From inequality (8),(—a20 + a11 — @o2) > 0, we obtain that the kinetic condition
Eq. (7),—1— 2n(—a20+ a11 — ap2) = 0 is impossible.
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(L.V.) case: Lotka—\olterra centaerg; = 11 =0.
Now Eq. (6)+ nEq. (7) implies(€2 4+ 1?) (20 + @02) > 0, but because of Eq. (8)

a20+ g2 =0 (21)

should hold. Similarly, Eq. (9)- £Eq. (10) implies— (24 %) (B20+ Bo2) > O, but because
of Eq. (11) we have

B20+ Poz2=0. (22)
Egs. (21) and (22) together imply that the system of Egs. (4)—(5) now reduces to
X = (n+4EnBo2) — 4Xnfoz — Y (1 + 4Bo2) + 4XY Boz, (23)
Y = —(& + 4nao2) + 4Y Eaoz + X (1+ 4nao2) — 4XYao2. (24)

As the above system should still be a kinetic equation, we have to eliminate negative cross
effects, which here means that

1+4£B02> 0, —(1+4&Bo2) =0, (25)
1+ 4nao2 >0, —(1+4nag2) >0, (26)
should simultaneously hold. Therefore,
1+45B02=0, 1+4nap2=0 (27)
which then give for Egs. (4)—(5) in that case
X:X(E—Y), Y:Y(X—§>, (28)
§ n

which is the well known Lotka—\Volterra system with periodic orbits around the equilibrium
point(%, D).
We now recall the definition of the smallest chemical system [17]:

Definition 4.2. Thesmallest bimolecular systecan be characterized by the following four
features:

lowest number of reactants,

lowest number of quadractic terms,

minimal number of parameters, i.e. minimal number of reactions,
minimal number of bimolecular reactions.

Remark 4.3. As the obtained model is the smallest one in the sense of Definition 4.2, we
reproduced also the result of the paper [14].
5. On the nonexistence of a limit cycle

We now state the result concerning the nonexistence of a limit cycle in a two species
system with second order kinetics [7].
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Theorem 5.1.The system of Eq&4)—(5)cannot have a limit cycle.

For the proof, it is sufficient to check the conditions that ensure the bifurcation of limit
cycles from a center, since there is no isochronous center two species system with second
order kinetics.

We study the cases where the cyclicity of the equilibrium point is:

3. It is the case ifupg0 — 2a11 = 0. It turned out from the proof of Theorem 4.1, in
the Darboux case (D.C.) that it is impossible to obtain a kinetic system which fulfils this
algebraic condition.

2.3 (az0a11) =0, a20— 2a11# 0. If Eq. (1) is defined on the (H.C.) or (S.C.), thereis no
kinetic system. In the (D.C.) an immediate contradiction is obtained. In the case of (L.V.),
all the focal values are equal to O (existence of a center by Theorem 2.7), and no limit cycle
can appear.

1. J(az0a11) # 0. This condition implies that it is impossible for Eq. (1) to be the case
(S.C)or(L.V.).Asinthe case (H.C.) we havgai1 = —% la11/?, thereforarzgas1 is a real
number, thus we cannot haWéuzoa11) # 0. Similarly, in the (D.C.) casezoa11 = 2|a11/%,
therefore again the imaginary part of a real number cannot be different from zero.

6. Discussion and perspectives

It has been shown in [8] that a three component system with only bimolecular reactions
can show limit-cycle oscillations (see also [10,12]). In [17], the model for the minimal
oscillating chemical reaction with Hopf bifurcation is given. In [5] (and in a certain sense
also in [12]) the problem of the classification of chemical oscillators is presented. Finding
the simplest chemical models with given behavior in an exact or approximate way has
always been an interesting question [3,6,14,16]. Our aim is to give a unified approach to
these kinds of problems.
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