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A reaction–diffusion system consisting of one, two or three chemical species and taking
place in an arbitrary number of spatial dimensions cannot exhibit Turing instability if none of
the reaction steps express cross-inhibition. A corollary of this result – obtained by elemen-
tary calculations – underlines the importance of nonlinearity in the formation of stationary
structures, a kind of self-organization on a chemical basis. Relations to global stability of
reaction–diffusion systems, and results on multispecies systems are also mentioned. The
statements are not restricted to mass action type models. As a by-product, the solution of a
basic inverse problem of formal kinetics is also presented which extends a previous result by
Hárs and Tóth (1981) to models with arbitrary – including rational – functions as reaction
rates so often occurring, e.g., in enzyme kinetics.

1. Introduction

According to the most naive – and most widespread – belief, thermodynamical
systems tend to the same state no matter what their initial state was. To put it in terms
of mathematics: they have a single globally asymptotically stable equilibrium state.
This statement, however, is false even in the case of systems with a single degree of
freedom. In the case of systems with more degrees of freedom the discrepancy from
this simple, ideal behaviour might be great.

A phenomenon really strange if considered from the classical viewpoint above
will be treated here: the interaction between reaction and diffusion predicted by Tur-
ing [76] more than 40 years ago. The phenomenon has also been shown to exist in
an experimental setup several years ago. Here diffusion is the cause of (spatial) in-
homogeneity contrary to the general expectation that it should, in general, equilibrate
inhomogeneities.

The Le Chatelier–Braun principle [45, p. 145] and [13, p. 139] – stating that a
system in a stable equilibrium tries to escape the constraint forced upon it – would
imply that the effect of a perturbation on a reaction–diffusion system was flattened
by the reaction too, in the same way as it is done in the case of other cross effects
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(thermomechanical effect as a result of coupling between the flow of mass and energy,
Seebeck effect [13, p. 297] as a result of coupling between the flow of mass and
electricity, Peltier effect [13, p. 299], etc.).

The phenomenon contradicts the Curie principle (“neither stated nor proved by
herself” [77, p. 79]) too. This asserts that general forces can only cause flows of
the same tensorial order, i.e., a scalar force causes a scalar flow, a vectorial force
causes a vectorial flow, a tensorial force causes a tensorial flow. If the chemical
affinity is considered to be a scalar force (the question, whose gradient it is, remains
to be decided) then the corresponding scalar flow is reaction rate. The Curie principle
excludes the possibility of cross effects between forces and flows of different tensorial
order, e.g., chemical affinity cannot be combined with the concentration gradient.

Turning back to the phenomenon in question, it was A.M. Turing – a pi-
oneer in computer science too – who made an approach to the clarification of
emergence of asymmetric patterns in the embryo, totally symmetric at the begin-
ning. He constructed a system which he considered a reaction–diffusion system
(we are going to return to this point below) in which there exists a stable homo-
geneous stationary state losing its stability as a result of inhomogeneous perturba-
tions. The importance of his paper has been recognized by theoreticians mainly
of the Brussels school (see, e.g., [3,8,18,30,35,42,52,60,61]). However, no well-
defined experiments had been made until very recent years. All the systems ex-
hibiting spatial patterns either contained convection or surface effects, thus the ori-
gin of pattern formation has never been pure Turing instability. It was putting
the CIMA reaction into the gel ring reactor – designed by Noszticzius et al. [58]
– by DeKepper et al. [14,16] which is generally considered to have produced the
long-sought-for result first: the emergence of stationary patterns as a result of
diffusion driven instability. If the definition of a Turing structure is taken in a
less restrictive sense as usual as, e.g., in [65, p. 10 477], then the early experi-
ment by Flicker and Ross [29] may also be considered as an experimental realiza-
tion.

Lengyel and Epstein [47] were able to illuminate the difference between the BZ-
reaction used in [58] and the CIMA reaction used in [14,16]: the necessary difference
between the diffusion constants of the different species is provided by the starch
indicator present in the second system (cf. [64]).

In the present paper we try to elucidate the mathematical origin of Turing insta-
bility in the following way. By using elementary arguments, we show that the presence
of cross-inhibition is a necessary condition of Turing instability, at least in the case of
systems with one, two or three chemical species. This result implies that the presence
of higher-than-first-order reactions is a necessary condition of Turing instability.

The structure of our paper is a follows. Firstly, we recapitulate the notions
needed to the mathematical investigation of diffusive instabilities in reaction–diffusion
systems. In this part we also present the solution of an inverse problem of formal
reaction kinetics in the most general form. Secondly, we formulate our main results
related to systems with one, two and three internal species. Finally, we provide a
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detailed discussion on the connections of the topics with global stability of reaction–
diffusion systems and we also mention the possible applications of our mathematical
results in the field of homogeneous reaction kinetics.

The result of the present paper follows from our more general earlier result [70]
for the case of mass action type reactions. The main idea here was

• to obtain results for not necessarily mass action type kinetics,

• to provide an elementary method accessible for everyone, and finally,

• to discuss thermodynamical connections.

2. Turing instability in reaction–diffusion systems

2.1. Reaction–diffusion systems

Let us consider a vessel, i.e., a finite simply connected domain Ω in RN (N is an
arbitrary positive integer, the number of spatial dimensions). Let us suppose it contains
M (∈ N) chemical species A(1), . . . ,A(M ) among which the following reaction steps
take place:

M∑
m=1

α(m, r)A(m)→
M∑
m=1

β(m, r)A(m) (r = 1, . . . ,R). (1)

The nonnegative integers α(m, r) and β(m, r) are called stoichiometric coefficients
making up two multiindices in the following way: α(· , r) := (α(1, r), . . . ,α(M , r))
and β(· , r) := (β(1, r), . . . ,β(M , r)).

The usual mathematical model for this process, taking into account diffusion of
the species, is the system of partial differential equations

∂tcm(t, x) = fm(c(t, x)) +Dm∆cm(t, x) (m = 1, 2, . . . ,M ), (2)

where for m = 1, 2, . . . ,M , r = 1, 2, . . . ,R, c̄ := (c̄1, c̄2, . . . , c̄M ) ∈ (R+
0 )M , t ∈ R,

x ∈ Ω:

• cm(t, x) is the concentration of species A(m) at time t at the location x;

• c(t, x) := (c1(t, x), . . . , cM (t, x));

•

fm(c̄) :=
R∑
r=1

(
β(m, r)− α(m, r)

)
wr(c̄) (c̄ ∈ (R+

0 )M ); (3)

• Dm ∈ R+ is the diffusion constant of species A(m);

• wr(c̄) is the rate of the rth reaction step at the concentration c̄; and it is supposed
that wr ∈ C1((R+

0 )M , R+
0 ). We also require that

• wr(c̄) > 0 if for all m = 1, 2, . . . ,M , α(m, r) > 0 implies c̄m > 0, and that
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• wr(c̄) = 0 whenever there exists m such that c̄m = 0 and α(m, r) > 0

(see, e.g., [23,27,75]).
The ordinary differential equation with the right-hand side (3) is said to be induced

by the reaction (1).
Let us consider the example of the CIMA-reaction [14,16,47]. Here

M := 3, A(1) := I2, A(2) := I−, A(3) := ClO−2 .

As the reaction steps are

A(1)→ A(2), A(2)→ A(3), 4A(2) +A(3)→ O,

one has

α :=

1 0 0
0 1 4
0 0 1

 , β :=

0 0 0
1 0 0
0 1 0

 .

The reaction rates are usually taken to be

w1(c̄1, c̄2, c̄3) := k1c̄1, w2(c̄1, c̄2, c̄3) := k2c̄2, w3(c̄1, c̄2, c̄3) := k3
c̄2c̄3

u+ c̄2
2

with k1, k2, k3,u ∈ R+. These reaction rates obviously fulfil the three requirements
on w above. Rational functions as reaction rates also occur in enzyme kinetics.

The most often used form of wr is of the mass action type when there exist
positive real numbers kr (r = 1, . . . ,R) such that

wr(c̄) = kr

M∏
p=1

c̄α(p,r)
p ( =: kr c̄α(·,r)).

Mass action type reaction rates obviously fulfil the three mentioned requirements.
In order to uniquely define the system, initial and boundary conditions are to be

specified. We take the initial conditions

cm(0, x) = c0
m(x) (x ∈ Ω; m = 1, . . . ,M ), (4)

and we can either take fixed boundary conditions

cm(t, x) = c∗m (x ∈ Ω; m = 1, . . . ,M ), (5)

where c∗m is the mth coordinate of the homogeneous steady state, or the zero flux
boundary conditions:

∂ν(x)cm(t, x) = 0 (x ∈ ∂Ω; m = 1, . . . ,M ), (6)

where ν(x) denotes the outer normal to ∂Ω at the point x ∈ Ω.
A large number of questions relating existence, uniqueness, blowing up, long time

behaviour, etc., arises here. We only focus upon a special mechanism of emergence
of periodic structures as stationary states.
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2.2. Turing instability

Consider the kinetic differential equation

ċ(t) = f
(
c(t)
)
, (7)

where the coordinate functions of the function f := (f1, f2, . . . , fM ) are defined as
in (3). Suppose that there exists a nonnegative steady-state solution c∗ ∈ RM to (7).
In other words, c∗ fulfils f(c∗) = 0.

The steady state solution c∗ to (7) is said to be Turing unstable if it is an as-
ymptotically stable equilibrium to the kinetic differential equation (7) but it is unstable
with respect to solutions of (2), (4) and either (5) or (6) [15].

Obviously, this formal definition corresponds to the generally accepted notion
and differs from that given by [65]. Our results pertain to the usually accepted, more
stringent definition. Let us remark in passing that a rigorous treatment of the Ross
case would pose essential difficulties.

Let us introduce

σ(A) := {λ ∈ C; λ is an eigenvalue of A}

for the spectrum of an arbitrary matrix A ∈ AM×M , and let

r(A) := max
{
<(λ); λ ∈ σ(A)

}
be the spectral abscissa of A.

If the real parts of all the eigenvalues of the Jacobian f′(c∗) are negative, i.e.,

r
(
f′(c∗)

)
< 0, (8)

then the equilibrium point c∗ is called a sink. This is a sufficient condition (but it is
only necessary in the case of a linear f, see, e.g., [56]), of the asymptotic stability of the
steady state c∗ of the kinetic differential equation describing the spatially homogeneous
case. Inequality (8) obviously implies that the solution to the full nonlinear reaction–
diffusion system (2), (4) and either (5) or (6) returns to the spatially homogeneous
state c∗ after a small spatially homogeneous perturbation.

Let Ω be a sufficiently regular bounded domain in RN . It is known that all eigen-
values κ0,κ1, . . . of the Laplace operator on Ω under the given boundary conditions
are negative. Martin’s result [51] implies that if for all k = 0, 1, . . . ,

r
(
f′(c∗) + κkD

)
< 0 (9)

with D := diag(D1, . . . ,DM ) then c∗ is a globally uniformly asymptotically stable
solution of the nonlinear reaction–diffusion equation in the maximum norm.

If condition (8) is fulfilled and there exists κk for which (9) does not hold this may
imply that stable inhomogeneous stationary patterns emerge in the original nonlinear
system (2). This phenomenon has been observed numerically, but a global analytical
investigation of the nonlinear system is quite difficult even in simple special cases.
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2.3. Cross-inhibition and the absence of negative cross-effects

Before investigating some simpler special cases in detail, two further important
notions have to be introduced.

At first, we give a characterization of kinetic differential equations which is a far
reaching generalization of earlier results of [34].

Firstly, we delineate the class of differential equations within which the charac-
terization will be given.

Let M ,R be positive integers: M ,R ∈ N; ar = (a1
r, . . . , a

M
r ) ∈ (N0)M (r ∈

{1, 2, . . . ,R}) be multiindices, g(m, r) (m ∈ {1, 2, . . . ,M}, r ∈ {1, 2, . . . ,R}) be
arbitrary real numbers, and vr(ar, ·) (r ∈ {1, 2, . . . ,R}) be functions with the properties
prescribed for the functions wr above.

The function F := (F1,F2, . . . ,FM ) (which is usually used as the right-hand side
of an ordinary differential equation) with the coordinate functions

Fm(c̄) =
R∑
r=1

g(m, r)vr(ar , c̄) (m ∈ {1, 2, . . . ,M}) (10)

is said to contain negative cross-effect at the point c̄, if there exist numbers m ∈
{1, 2, . . . ,M} and r ∈ {1, 2, . . . ,R} such that

g(m, r)vr(ar , c̄) < 0 (11)

and

amr = 0. (12)

Theorem 1. The function (3) does not contain negative cross-effect at any point c̄.

Proof. Suppose that (β(m, r) − α(m, r))wr(c̄) < 0 for some m ∈ {1, 2, . . . ,M},
r ∈ {1, 2, . . . ,R} and c̄ ∈ (R+

0 )M . Since wr(c̄) > 0 and β(m, r) < α(m, r) then
(because of the nonnegativity of β(m, r)) α(m, r) should also be strictly positive. �

Theorem 2. Suppose that (10) does not contain negative cross-effect. Then, there
exists a reaction having (10) as its induced kinetic differential equation.

Proof. We construct an appropriate reaction. Let α(· , r) := ar. For the terms, for
which g(m, r)vr(ar, c̄) > 0, let

β(m, r) := α(m, r) + 1 and wr(c̄) := g(m, r)vr(ar, c̄).

For the terms, for which g(m, r)vr(ar, c̄) < 0, let β(m, r) := α(m, r) − 1 which
is a nonnegative number because of the absence of nonnegative cross-effects. Let
wr(c̄) := −g(m, r)vr(ar, c̄). It is easy to show that the reaction defined in this way
induces the given ordinary differential equation. �
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Let us recall our earlier result on the characterization of mass action type kinetic
differential equations within the class of polynomial differential equations. Suppose
the kinetic differential equation (7) is of the mass action type. Then, it is a polynomial
differential equation, but not all polynomial differential equations may be considered
to be models of chemical reactions [34], only those without negative cross-effect.

Let us consider Turing’s [76] example:

ẋ = 5x− 6y + 1, ẏ = 6x− 7y + 1.

The term −6y on the right hand side of the first equation expresses the fact that x
decreases in a process in which it does not take part, or expresses negative cross-
effect. Kinetic differential equations are characterized by the absence of such terms,
thus Turing’s example is nonkinetic and linear, contrary to Epstein’s statement [21,
p. 155]: “Turing showed that a sufficiently nonlinear set of reaction kinetics coupled
to diffusion could give rise to pattern formation . . .”

We remind the reader that our statements up to know do not help in the case
when the right hand side is ill-formulated. There is negative cross-effect in the equation
ẋ = 2y−y . . . , and no reaction can induce this equation. However, there is no negative
cross-effect in the equation ẋ = y.

Thus, we have found in the mass action case that

• negative cross-effects cannot be transformed out from an equation like Turing’s
example,

• negative cross-effect can be obtained if one allows a monomial to occur more than
once so as in the last example.

The situation will be much clearer after the next statement.

Theorem 3. Suppose that the functions vr(ar , ·), r ∈ {1, 2, . . . ,R}, are linearly in-
dependent and function (10) contains negative cross-effect at a point c̄. Then any
decomposition of it in the form (3) using the functions vr(ar , ·), r ∈ {1, 2, . . . ,R},
possibly more then once – also do contain negative cross-effect.

Proof. Suppose there exists c̄ and a term g(m, r)vr(ar, c̄) in the function

Fm(c̄) =
R∑
r=1

g(m, r)vr(ar , c̄) (13)

such that g(m, r) < 0 and amr = 0, and consider the sum

Fm(c̄) =
R∑
r=1

(∑
ρ=r

g′(m, ρ)vρ(aρ, c̄)

)
=

R∑
r=1

(∑
ρ=r

g′(m, ρ)

)
vr(ar , c̄); (14)

because of independency we have g(m, r) =
∑

ρ=r g
′(m, ρ). As g(m, r) 6 0, at least

one of the terms in the sum on the right-hand side must also be negative. �
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We have proved that under the conditions of the theorem even negative coeffi-
cients cannot be “transformed out” – let alone negative cross-effect.

Even the characterization of mass action type kinetic differential equations has
proved quite useful to study kinetic gradient systems [72], to design oscillatory reac-
tions [73], or to investigate chaos in chemical reactions [74].

A related but different notion is the presence of cross-inhibition (cf. [4]). The
chemical species A(m) is said to cross-inhibit A(p) at the concentration c̄, if ∂mfp(c̄) <
0 (m, p = 1, 2, . . . ,M ; m 6= p). Obviously, for polynomial differential equations in
general the presence of negative cross-effect implies the presence of cross-inhibition,
at least if the corresponding term does depend at all on the corresponding variable xm.
Kinetic differential equations, however, are only able to show cross-inhibition.

3. A necessary condition of Turing instability

Theorem 4. The presence of cross-inhibition is a necessary condition of Turing insta-
bility in the case of 3 chemical species.

The statement above is obviously implied by the following statement. (The
simpler cases with M = 1, 2 will separately be treated below.)

Theorem 5. Let

A :=

a11 a12 a13

a21 a22 a23

a31 a32 a33


be an essentially nonnegative matrix (i.e., amp > 0 if m 6= p; m, p = 1, 2, 3) and
suppose r(A) < 0. Then, for all

d1, d2, d3 ∈ R+
0 ,

r(Ã) < 0 holds, as well, if

Ã :=

a11 − d1 a12 a13

a21 a22 − d2 a23

a31 a32 a33 − d3

 .

Crucial as it is, the following statement will be proved first.

Lemma 6. Let

A :=

a11 a12 a13

a21 a22 a23

a31 a32 a33


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be an essentially nonnegative matrix. Then, r(A) < 0 if and only if

aii< 0, i = 1, 2, 3, (15)

Aii> 0, i = 1, 2, 3, (16)

det(A)< 0, i = 1, 2, 3, (17)

hold, where Aii (i = 1, 2, 3) is the cofactor corresponding to the element aii.

Proof of lemma 6. The characteristic polynomial of A is

λ→ λ3 − (a11 + a22 + a33)λ2 + (A11 +A22 +A33)λ− det(A).

According to the Routh–Hurwitz criterion, all the roots of this polynomial have a
negative real part (the polynomial is said to be stable in this case) if and only if

(a11 + a22 + a33) < 0, (18)

(A11 +A22 +A33) > 0, (19)

det(A) < 0, (20)

(a11 + a22 + a33)(A11 +A22 +A33) < det(A). (21)

(A) Suppose r(A) < 0. Then, (18)–(21) hold, and we have to show that (15)–(17)
hold, as well. (17) is the same as (20).

Now we show that (18)–(21) can only hold if

a11 < 0, a22 < 0, a33 < 0.

All the diagonal elements of A cannot be zero because of (18).
If two of the diagonal elements of A were 0, then – because of the essential

nonnegativity of A – the sum A11 +A22 +A33 would be nonpositive, as the definition
of the terms show, in contradiction to (19).

If one of the diagonal elements of A would be 0, then (18) and (19) would imply
the negativity of the other two diagonal elements, which excludes (20). Therefore, all
the diagonal elements of A are different from 0.

Suppose one of the diagonal elements, say a11, is negative, and the other two are
positive. Then, (18) implies

a22 + a33 < −a11,

and, because the geometric mean of positive numbers is not greater than their arithmetic
mean, we have

a22a336 (a22 + a33)2/4 = (a22 + a33)(a22 + a33)/4

< (a22 + a33)(a22 + a33) < −a11(a22 + a33),

therefore

A11 +A22 +A33 < 0

contradictory to (19).
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Suppose two of the diagonal elements, say a11 and a22, are negative, and the
third one is positive. Then, because of (19), we have

a11a22 − a12a21 > −a11a33 − a22a33 + a13a31 + a23a32 > 0,

thus

det(A) = a33(a11a22 − a12a21)− a11a32a23 − a22a13a31

+ a12a23a31 + a13a21a32 > 0,

contradicting to (20).
Thus, we have proved that (18)–(21) together imply (15).
Finally, let us prove that they also imply (16). If, on the contrary, we had, e.g.,

A11 = a22a33 − a23a32 6 0,

then we would also have

det(A) = a11(a22a33 − a23a32)− a22a13a31 − a33a12a21

+ a12a23a31 + a13a21a32 > 0

which is impossible because of (20).
(B) Suppose (15)–(17) hold. Then, in order to prove r(A) < 0, it is enough to

show the fulfilment of (18)–(21). It is trivially true that (18)–(20) is fulfilled, what
remains to prove is (21). Let us simply calculate the two sides of the inequality

(a11 + a22 + a33)(A11 +A22 +A33) < det(A)

to obtain

a11a22a33 + a2
22a33 + a2

33a22 − a11a23a32 − a22a23a32 − a33a23a32

+ a2
11a22 + a2

22a11 + a11a22a33 − a11a12a21 − a22a12a21 − a33a12a21

+ a2
11a33 + a11a22a33 + a11a

2
33 − a11a13a31 − a22a13a31 − a33a13a31

< a11a22a33 − a11a32a23 − a22a13a31 − a33a12a21 + a12a23a31 + a13a21a32.

As the above inequality is the same as

a22A11 + a33A11 + a11A33 + a22A33 + 2a11a22a33 + a11A22 + a33A22

< a12a23a31 + a13a21a32,

properties (15) and (16) imply that we only have negative terms on the left-hand side,
and essential nonnegativity implies that we only have positive terms on the right-hand
side of the inequality, and the steps can obviously be reversed. �

Proof of theorem 4. In order to prove theorem 4 it is enough to investigate if (15)–(17)
is true for the matrix Ã.

(15) is obviously true.
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Let us prove (16), e.g., for i := 1. As

(a22 − d2)(a33 − d3)− a23a32 = (a22a33 − a23a32)− d2a33 − d3a22 + d2d3

and here the first term is positive, the other terms are nonnegative, (16) is also true.
Finally,

det
(
Ã
)

= det(A)− (d1A11 + d2A22 + d3A33)

+ (d1d2a33 + d2d3a11 + d1d3a22)− d1d2d3

and inspection of all the terms shows that det(Ã) is negative.

Now we turn to the recapitulation of known results for the special cases M = 1, 2.
If M = 1 then r(f ′(c∗)) = f ′(c∗), therefore (8) implies (9) for any kind of

reaction.
If M = 2 and the reactions are of the first order with mass action type reaction

rates then (8) is equivalent to stating

a11 + a22 < 0 (22)

and

det(A) := a11a22 − a12a21 > 0. (23)

Inequality (23) can only hold if a11a22 > 0 because of the essential nonnegativity
of A. Taking into consideration (22) one obtains a11 < 0 and a22 < 0. Therefore, for
all d1, d2 ∈ R+,

a11 + a22 − (d1 + d2) < 0 (24)

and

det(A)− (d1a22 + d2a11) + d1d2 > 0. (25)

Inequalities (24) and (25) together imply (9) if one takes

d1 := −κkD1, d2 := −κkD2.

Thus, theorem 3 remains true for two chemical species as well.
A simple consequence of theorem 3 is that Turing instability cannot appear in a

reaction with first order reaction steps if the kinetics is of the mass action type.
Nevertheless, higher-than-first-order reactions with mass action rates (including

cross-inhibition) [35,57], or reactions with non mass action type rates [30,52] are
capable of producing the necessary set of inequalities.

Now let us make a final remark on the case M = 3.
Yatsimirskii et al. [78,79] and Li and Wu [50] have found three species systems

with higher order formal reaction steps (including cross-inhibition) which are capable
of producing Turing instability.
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4. Discussion

It is obvious that the proofs of the present paper are very hard to transfer to the
case of M -species systems with M > 3. Therefore, we looked for, and succeeded in
finding another method for those cases [70]. This means that all of our results remain
valid for the case M > 3 too – at least for kinetics of the mass action type.

It is an interesting question if Turing instability can emerge in a first order, time-
dependent reaction–diffusion system (e.g., in the presence of changing temperature).

We only remark in passing some of our further results on the applications of the
present statements to homogeneous kinetics to be published later. These results again
are valid for the M -species general case. Suppose we are given a mass action kinetic
homogeneous reaction with no cross-inhibition and with the property that the steady
state is a sink. Then, the steady state will remain asymptotically stable even after
adjoining autoinhibitory steps (steps, for which ∂mfm(c̄) < 0 holds). The same holds
true for putting the system into a CSTR, and letting to flow in and out the material
from the reactor according to the usual assumptions.

A next step in the theoretical investigation of Turing structures might be the search
for general sufficient conditions of not only Turing instability but of the emergence of
Turing structures which seems to be a hard task. However, Lengyel and Epstein [47]
made a promising start in this direction in the series “Systematic design of chemical
oscillations”. Farkas and Cavani (and the authors cited in their works) provided exact
sufficient conditions for special model systems in another context [15,24].

Finally, it is quite natural to recur to biology again, and try to provide detailed
chemical mechanism to biological phenomena as it has been initiated by Hjelmfelt et
al. [37,38].
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