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It is shown that none of the proper or improper orthogonal transformations transforms the Lorenz-equation into a kinetic
equation, ie. into an equation representing reasonable chemistry. It is also shown that none of the proper orthogonal
transformations transforms a model by Réssler into a kinetic model either. The importance of the presence of negative

cross-effects is hereby emphasized.

1. Introduction

There is considerable interest in whether or not
real chemical systems can exhibit chaos. The re-
view paper by Epstein [3] describes and cites many
experimental examples and asserts of certain mod-
els that the chemical relevance of differential equa-
tions is questionable.

The question which of the polynomial differen-
tial equations are chemically relevant was treated
in our previous paper [6] as follows. The complex
chemical reaction

M

> a(m, r)X(m)ki:) Zilﬁ(m,r))((m)

m=1
(r=1,2,...; R} (1.1)
is usually described by the first order explicit

polynomial differential equation (called the kinetic
differential equation of (1.1))

() =2 (B(m,r) —a(m,r))

r=1

X k(r)ml;llcm,(r)“{m"), (1.2)

where ¢, is interpreted as the concentration of the
chemical component X(m): ¢,,:=[X(m)} and ¢ is
interpreted as time. An essentially simple but dif-
ficult to formulate characterization can be given of
the kinetic differential equations among the poly-
nomial differential equations. A polynomial dif-
ferential equation can be considered the kinetic
differential equation of a complex chemical reac-
tion if and only if it does not contain negative
cross-effect, i.e. if its right-hand side does not
contain terms expressing the decrease of a compo-
nent in processes in which the component in
question does not take part (cf. [4]). As an example
let us consider the Lorenz-equation [11],

y=rx—y—xz,

(a,r,b€R"), (13)

X = —ax+oy, Z=xy— bz

where —xz is a term expressing the decrease of y
in a process in which y does not take part.
According to this necessary and sufficient condi-
tion (that is rather mild, see the discussion) the
models with chaotic behaviour cited by Epstein [3]
are nonkinetic. Furthermore, most of the chaotic
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models in the literature are nonkinetic too. On the
other hand, it is true that Rossler [15], Schulmeis-
ter [16], Gilpin [5], Tomita and Tsuda [18], Arneodo
et al. [1], and Willamowski and Rgssler [21] were
able to provide kinetic differential equations with
chaotic behaviour.

In the present paper we should like to take a
step towards algebraic-structural characterization
of polynomial differential equations with chaotic
behaviour from another side than it has been done
by King [9]. Aiming at this we show that no
proper orthogonal transformation turns the
Lorenz-equation into a kinetic one. Secondly, no

improper orthogonal transformation does this
either. Thirdly, this statement is slightly gener-
alized. Then it is also shown that none of the
proper orthogonal transformations transform a
model by Rossler into a kinetic equation either. (It
is sensible to restrict ourselves to the case of linear
transforms both because they are easy to handle
and because they yield polynomial equations while
a nonlinear transformation does not do this in
general.)

Based upon these calculations we believe that
chaotic behaviour is closely connected with the
occurrence of uneliminable negative cross-effects.

2. Proper orthogonal transforms of the Lorenz-equation

The Lorenz-equation is [11]
x=—=0x+ oy,
y=rx—y—xz, (o,r,bER")
Z=xy— bz,

or shortly

x=fox. (2.1)

The question is if there exists such a proper orthogonal transformation A:R?®— R? (i.e. a linear
transformation with A4T=1, det A=1 or 4 € SO(3)) that £:= Ax obeys a kinetic differential equation
(i.e. an equation without negative cross-effects [6] such as e.g. —xz is in the original system).

The differential equation for £ =: (£, 7, {)7 is

f=Ai=Afox=Af o A%

Let us introduce the following notations: ¢, = cosx, s := sin x(x € [0,27)). With these the generic
proper orthogonal transformation of R? may be written as a product of three plane rotations, see e.g. [2,

§18]:

Gy Wy O g 0 g1 0 0
A= -5, & Bl 0 1 0|0 & 5 [=4,.8C
[ 00 0 1|[-s; 0 |0 -5, ¢
i Cupﬁ CYSQ—CQS‘QS), Cacys,ﬂ+ S&SY
=| —cps, G+ R €Sy —Cy885 |5 (2.2)
L _Sﬁ e CES)‘ CHCT

where a, 8,y €[0,27), and § = 8,858, We shall need below ¢ := c g4, as well.
A is orthogonal thus 47! = 4T,
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Thus we get at first 471§, secondly fo 4 £, and, finally, the coordinate equations of the transformed
differential equation

f=AfoA 1t (2.3)

arc

£=¢ [(0 + # Yo pplessy — guss V= Blop sp+ s.msy)2 - o(cncﬁ)2 — e, —~ cﬂsﬁsy)z]
+m [crc,,cﬂ(cacv + B+ 8, ) —Fea8, 0,8, — 6,858, ) — G5, + 626,858, —6.85, +0, 8858,
- b(casﬂsi +cle, e85, — 6,88, — cacfsasf;)] + ¢ —ocp(cgs, — s5) —rsglc,s, — Cu848,)
—bege, (e85 +5,8,) + s, (cs,— casﬁsy)]
+£20 — ey 8 + § 08,85 + Enc,ces, — Ebeeas, + né’(cﬁsi - sf;)
n=¢ [ — B8, (6,8, — C.8,8, —6,60) +7e 50k % 5)
- b(casusi + 6%, 88, — 6,88, — cacfsusé) +1070, 838, — 6625, — G55, + cas&sfgsy]
+1 [ = (o +r)egs, (e, +8) —blc,s, — cjrsmsfs)2 — e8], — (e, + §)2]
+¢ [ac‘gsm(cﬁsy ~igg)~replee + B)=bege (o5, — 6 5.8,) — s, (o + 5)]
+£2 [ ~ a8 — cfcﬁcysasf,sy] +070 + §ca85 + Encys ,Sp + é{(sﬁ - cfcj) +EC 05
F=¢ [osﬁ(—cysﬂ — €S58y T 08y ) — reggs, — boge (c£i85 +5,8,) + a8, (c,848, + CYS,I)]
+n [ —osglce, +5+cgs,) + regs, s, + bege, (—c,8, +¢,8,8) + s, (e, + E)]
+¢ [osl\g(c}{.;.sY — sg) + regsgs, — bege? — césﬂ
+E%cghs, — o Lgs, + 20+ fnci(c2 — s2) — £{cgs,.5; — n8eLyS,-

The requirement that there is no negative cross-effect implies for the coefficients of the second order
terms:

CS,8 =10, (2.4)
CaSn = S 7 (2.5)
CC855 =0, (2.6)
sz oZec?, (2.7)
CaCiS =0, (2.8)
cgel = ofss. (2.9)

Starting from (2.4) three cases seem to be possible. Either c; =0, but then sfg =1, and this contradicts to

(2.5); or s, =0, but then s, =0 and C,f =1, and this contradicts to (2.7); or Sg= 0, but then cg = 1 and
¢, = 0, and this contradicts to (2.9).
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3. Improper orthogonal transformations

Thus the assumption that a proper orthogonal transformation can remove negative cross-effects has been
shown to lead necessarily to contradiction. Now let us turn to improper orthogonal transformations, i.e. to
linear transformations B with BBT =1, det B= —1. Obviously all such transformations can be decom-
posed into the product of a fixed improper orthogonal transformation and a proper orthogonal transforma-

tion. If reflexion to the origin is taken as the fixed improper orthogonal transformation and it is denoted by
P, then

= 0 0
P=1:.0 " =1 0
0 0 =71
and for all improper B there exists a proper 4 such that B = PA. In general, if P, is the fixed improper
orthogonal transformation then B = PyPJB, P Py =1I, thus A = P/B will do.
It is obvious that on denoting the right-hand side of (2.3) by g the equation obtained under B is
X=—-go(-X) (X:=Bx=PAx=P¢). (3.1)
(It is the same as the equation obtained from
f=got (3.3)
under P.)

The requirement that there is no negative cross-effect in (3.10) implies for the coefficients of the second
order terms:

CpSa8p =0, (3.2)
Casi < s, (3.3)
C Sy = 0, (3.4)
s <23, (3.5)
s, =0, (3.6)
Caes < cgst. ‘ (3.7)

These are the same inequalities as before except that signs are reversed. The reader may wish to check that
(3.2)—(3.7) is obtained as well if the fixed improper orthogonal transformation is, say,

=], 0 0
P=| 0 1 0|
0 0 1
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Starting from (3.2) three cases seem to be possible. Either c; = 0, but then sf; =1, and this contradicts to
(3.5); or s, =0, but then ¢ =1 and ¢z = 0 leading to the same contradiction as before; or sz = 0, but then
C'[‘} =1 and s, =0 implying contradiction as in the second case.

Thus it has been shown that improper orthogonal transformations are also unable to eliminate negative
cross-effects.

As the effect of a positive definite diagonal transformation is that a nonkinetic equation remains a
nonkinetic one, it follows from our results above that the Lorenz-equation remains nonkinetic even under
transformations of the form D = MA, where 4 is an arbitrary (proper or improper) orthogonal transforma-
tion, and M is a positive definite diagonal transformation.

The polar decomposition theorem by Cauchy asserts that any nonsingular transformation C can be
decomposed into the product of a positive definite transformation ¥ and an orthogonal transformation 4,
ie.

C=VA,. (3.8)

On the other hand, according to the spectral decomposition theorem ¥ can be decomposed into the product
of two orthogonal transformations and a positive definite diagonal transformation, i.e.

V=TMTT. (3.9)
Egs. (3.8) and (3.9) together imply the decomposition
C=TMT"4,=TMA (A isorthogonal).

This last equation shows that in order to prove that any linear transformation transforms the
Lorenz-equation into a nonkinetic one it would suffice to show either the general statement that proper
orthogonal transformations do not affect this property or the special statement that the transform of the
Lorenz-equation under a linear transformation of the form MA cannot be transformed into a kinetic
equation under a proper orthogonal transformation 7.

4. Proper orthogonal transforms of the Rassler equation
Rossler [14] proposed as a more realistic alternative to the Lorenz-model the following equation:
X=x—xy—z,

y=x>—ay, (a,b,c,dER™) (4.1)

Z=bx—cy+d.

Investigating this case some of the calculations above may be used. Let 4 be an arbitrary proper
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orthogonal transformation. Then the first expression to differ is fo 4 '£. The coordinate equations of the
transformed differential equation are

£=¢ [cfcg — B85 = CtpSaS, — (C,5, — Co8g8, ) a + (e 35+ 5,5,) + (begy — c(c,s, — cusﬁsy))]
+?T[— Cehs . — Cleas, + 85,8 — (0,8, — 0,858, ) a(cp, +8) — (8,85 + 5,5, ) (begs, +eleg, + E))]
+ §[— CLa5p — Cop+ (C,8, — €848, ) acss, — (c 8,55+ s“sy)(bsﬁ - ccﬁsy)]
+£20 +1%(cie, s, ) + £2(c, 5,53 — cusg8, ) + £n(—Gcg)
+E¢(—Cs s+ cjcﬁsy) + 17§(3<:0,c,3§5,i — 038, — 2¢4¢ 825, — Ge 54 ) + (cL,88 +5,5,)d,
7= §[ —CL4S,+ 8,85+ Cpszs, — (cg, +5)a(c,s, —c,805,)
+ (e85, — cysusﬁ)(bcacﬁ, ~ (6,8, = casﬁs,{))]
+7 [c§s§ SO 80— (e, §)%a— (e85, — ;8,8 ) (begs, +eleg, + é))]
+§ [ep8485 + o8, + ats, + acgSs, — (c,8, — ¢,5,85)(bss — cegs, )|
+&%(Ccg) + 20+ §2(c‘,(:},sfi + §) + Sn( —cﬁcysa)
4 §§( — G L% ,8, — CgbSp— c,fcﬁcysﬁ) + n{(Esasﬂ + cﬁsis,{) + ((:msY — €y 8,85) d,
{= 5[ —C a8+ Cf, 55 — S+acys, (c,5, — €845, ) + g, (begy — cle,s, — casgsy))]
+7 [cﬁsnsﬁ +C,8p8. — C,8,55 + acgs (cc, +5) - cﬁcy(bcﬂsﬂ +¢fee, + §))]
+§[s§ + ¢y, 85 — acgs2 — cge, (bsg — ccﬁsv)] + £2 [Esﬂsﬁ— c‘fcﬁs\,] + 1]2[—65(15,8 - cﬁsisy] +{%0

. 2 2 _ 2 = 2
+Sn[2cac,ﬁsas?+ cacﬁc?sﬁ—cscysasﬁ] +$§[casﬁsy cysﬂsﬁ] +n§[ § cacysr@] + cge,d.

Now exclusion of negative cross-effects in the case of second order terms does nor lead to a contradiction
as in the second section, thus a more complicated proof is needed which has been put off to the appendix.
The structure of the proof is as follows:

(i) All the parameters a, b, ¢ and 4 on the right-hand side of (4.2) are taken zero. Because of continuity
a necessary condition of the absence of negative cross-effects is the solvability of the system of inequalities
(A.1)—(A.18).

(ii) Most branches of a sorting of cases leads to a contradiction as in the second section.
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(ii1) In some cases the system of inequalities seem to have a solution. In these cases the solution
candidates are to be put back into the coefficients. Then it turns out that the first order terms necessarily
contain negative cross-effect if only a, b, ¢ and d are positive.

5. Discussion

One is thus led to the conjecture that chaotic
effects are closely related to the occurrence of
uneliminable negative cross-effects. Fig. 1 has been
devised 1n order to enlighten the more subtle rela-
tions between different models with chaotic solu-
tions. It displays references to known examples as
elements of different sets of differential equations
which may be considered important in connection
with modelling chemical kinetics.

It is possible to assume the point of view that
even the models in (PN W)\M are chemically
not all reasonable. (In ref. 6 we regarded the
equations of P N W as kinetic.) The result of the
present paper is (shown by crossed arrows) that
two specific examples, the Lorenz-equation and a
model by Réssler will not be an element of P N W
after a linear transformation. This is a rather mild
requirement because most people consider equa-

Fig. 1. Classification of differential equations with chaotic
solutions. The numbers refer to the list of references, the letters
to different sets of differential equations: A-autonomous,
P-polynomial, M—mass conserving, W-those without negative
cross-effects, D-kinetic differential equations of uncondition-
ally detailed balanced reversible second order mass conserving
reactions with mass action kinetics

tions of D kinetic in accordance with the pioneer-
ing paper by Wei [20].

The wavy arrow has been drawn in order to
express that the model of Willamowski and Rossler
[21] can be considered as an approximation of a
model that fulfils the strictest requirements. In
other words, this is the most reasonable (ap-
proximate) chaotic model from the chemical point
of view.

In accordance with all the examples considered
the following conjecture is proposed: if a non-
kinetic differential equation shows chaotic be-
haviour then it cannot be transformed into a kinetic
equation by any of the linear (or orthogonal)
transformations.

One possible extension of the present paper
could be the investigation of other specific models
such as those in [9, 10] or the 4-D model by
Hudson and Raéssler in [7]. Another possible con-
tinuation (and a more promising one) would be a
systematic classification of kinetic differential
equations. It might become possible using the alge-
braic invariant theory of differential equations as
outlined, e.g. by Sibirsky [17].
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The system of inequalities expressing a neces-
sary condition of the lack of negative cross-effects
is as follows.

coale s 58 — s, — 0,8, )20, (A1)
—ca(sp+cge,) 20, (A.2)
cﬁc.rsa >0, (A3)
s8g(c,8.80—€,8,) 20, (A.4)
cg(3c,855 + 2,55 — 26,5254 —cds.s,) 20,

AS)
€085+ 58,20, (A 6)
cﬁ( =%, GRS, B+ sisy) >0, (A.7)
g8, (85 +cec,) 2 0, (A.8)
ccpe, 20, (A.9)
splogss +5,8.) 20, (A.10)
q,(c,,sasT +e,5p+ cicysﬁ) <0, (A.11)
c¥y— 585D, (A12)
—sglep—upmpras )z, (A.13)
$p(CaSq + €o8, — €,5,55) 20, (A.14)
c.Cs(c,8,55—€,8,) 20, (A.15)
— g8, (cosp+8,8,)20, (A.16)
cg(2¢,8,5, + cZ,55—¢,s %) 2 0, (A.17)
cg¢, = 0. (A.18)

As s is the number occurring most often let us
start the sorting of cases with the case s; > 0.

1.54>0

In this case the system of inequalities reduces to

cale 8.8 — Cs84— €:5,) 2 0, (A.1.1)
c.Cplsp+cpe,) <0, (A2.1)
ege. 8,20, (A.3.1)
C,8485 — CaSy =0, (A.4.1)+(A121)

03(3%55,3 + c‘fcysﬁ = ZCYSiS,g - CaC;%Sasy) 20,
(A5.1)

eo St s 20, (A6.1)=(A.10.1)

(¢4 'Y_
cﬁ( —C 85, ¥ 005,85+ sﬁsy) >0, (A.7.1)
CpS,(sg+cpe,) 2 0, (A8.1)
cLhe, =0, (A9.1)
calCa8,8, + €55 + ¢, sg) <0, (A.11.1)
CLi— 8.8+ 5,8,20, (A13.1)
CaS,y +C,8,—€,8,820, (A.14.1)
Ceple s 80,80 20, (A.15.1)
a8, lcL 55+ 5,8,) <0, (A.16.1)
cﬁ(ansus +c§cyspfcysisﬂ)g0, (A17.1)
cgc, = 0. (A.18.1)

Let us consider the subcase when ¢, > 0.
11.¢,>0
In this case the system of inequalities reduces to

&, (6, 5858, ~c,8,) 20, (A1.11)
c,(sp+cse,) <0, (A2.11)
¢85 0, (A.3.11)
5,85 — C,8, =0, (A.4.11)
30,855t 00 85— 20, 8,85~ 6.£45,8,20,

(A.5.11)
CL Spt8,8,20, (A.6.11)
—~ps, ¥ SR8 88 20, (A.7.11)
S.(sp+cpc,) 20, (A.8.11)
¢, =0; (A.9.11)
Cub a8t Cspd elssa <, (A.11.11)
eLp— CL, 85+ 8,8, <0, (A.13.11)
Gy, T+ E.8, — 6,885,210, (A.14.11)
e, (c §,55—¢,5.)20; (A.15.11)
So(CCySp+8,8,) =0, (A.16.11)
2c,5,8,+ ¢ 85— ¢ 85852 0, (A.17.11)
¢,20. (A.18.11)
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Table 1
Sorting of cases

143

L 200 Ll igg>0 1IL ;>0 B 1 O
1112 s5,=0
112 ¢ =0
1:2: Gy 120§, =0
22 5730
1.23. 5, #0,s_#0*
1.3 oy =0 13L& <0 1311 5,=0
1312 e, =0
1313. ¢, <0
1325 =0
2. s5=0 21.0,=0*
22 e,=0 221 g, =0
222, 5,=0%
3osg <l Al ueps0 S311 g 20 3111 e, >0
3112, ¢, =0*
3r2: &=0
32. =0 321 5,=0
322 5,=0
323, 5,#0,5,#0*
33, 6<0 331 ¢ >0 33.1.1. ¢, >0,5,>0
3312 ¢, =05, =1
3313 ¢, =1,5,=0
332 ¢,=0

Two subsubcases may occur.
1.1.1.¢,>0

In this case the system of inequalities leads to a
contradiction as (A.3.11) implies that

s, =0, (A.3.111)
and (A.9.111) implies that
c,=0. (A.9.111)

1.1.1.1. Suppose that s, > 0 holds, then (A.6.11)
and (A.16.11) implies that

CESgt8,8,=0 (A6.1111)

The positivity of s, and s, implies that either
cg,=s,=0, but thene¢,=s,=0,¢,=s,=1 and
(A.4.1111)

€,8.85 = 0.

holds in contradiction to the positivity of all of the
factors, or

c,>0 (A.9.1111)

and s < 0. But then

s5+cyc, =0 (A2.1111) + (A.8.1111)
should hold that is impossible because of the posi-
tivity of all of the numbers Sgs Cgs Cy-

1.1.1.2. Suppose that s_ = 0 holds, then

(A.4.1112)

but ¢, cannot be zero if s, =0, thus s, = 0. There-
fore ¢, = 1, thus

Cu(sg+c5)=0 (A2.1112)

implying that ¢, =0. But because of (A.9.111)
¢, = 0 must hold in contradiction to s, = 0.

Now let us have an overview of the cases. The
cases in table I can be investigated in the same
way as before except for the cases denoted by a
star. Let us consider one of these, e.g. subsubcase
1.2.3. In this case s;=1 and the system of in-
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equalities reduces to

CySa = C,8., (A.4.123)
ey + 88,20, (A.6.123)
= RS 0. (A.13.123)

(A.4.123) implies that a =y ora=vy+ 7 but a =
v + 7 is impossible because of (A.6.123). Thus
a =7 and we get from (A.13.123) s2 < ¢2. A short
calculation after substitution shows that in this
case the coefficients of the first order terms in
(4.3a) are 0, —¢ and —b; in (4.3b) are 0, —a and
0; and in (4.3¢) are ¢ — s2, 0 and 1. Among these
nine numbers the second and the third one express
negative cross-effect thus showing the impossibility
of transforming the Lorenz-equation into a kinetic
one.

The same kind of argument can be used in all
the other remaining star-denoted cases.
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