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Abstract
Polynomial differential equations showing chaotic behavior are inves-

tigated using polynomial invariants of the equations. This tool is more
effective than the direct method for proving statements like the one: the
Lorenz equation cannot be transformed into an equation which would be
a mass action type kinetic model of a chemical reaction.
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1 Introduction

There is a considerable interest in whether or not real chemical systems can
exhibit chaos [2, 18, 19], be it understood in any sense usually used.

As the overwhelming majority of chaotic polynomial differential equations
cannot be considered as chemical kinetic models, the question is still open: are
realistic models of chemical reactions able to exhibit chaotic behavior? As a
contribution to the answer to this question Tóth and Hárs [27] investigated
orthogonal transforms of the Lorenz equation and of a model by Rössler. Here
we present a more effective method to obtain similar results which is based on
the use of algebraic invariants.
Let us suppose we have a complex chemical reaction with a finite number (M)
of chemical species X1, X2, ...XM and suppose there are a finite number (R) of
reaction steps. The reaction can be displayed as:

M∑
m=1

µ(m, r)Xm
kr−→

M∑
m=1

ν(m, r)Xm (r = 1, 2, . . . , R) (1)

∗This paper is in final form and no version of it will be submitted for publication
elsewhere.—Dedicated to the memory of K. S. Sibirsky.
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The positive real numbers kr are the reaction rate coefficients, and the non-
negative integers µ(m, r) and ν(m, r) are the stoichiometric coefficients. The
usual mass action type deterministic model of the reaction above is a polynomial
differential equation:

ẏm =
R∑

r=1

(ν(m, r)− µ(m, r))kr

M∏
p=1

ya(p,r)
p (m = 1, 2, . . . , M), (2)

where the dependent variables are the concentrations of species (ym := [Xm])
and the independent variable is the time.

Equation (2) is the induced kinetic differential equation of reaction (1). Ki-
netic differential equations are polynomial differential equations. But not every
polynomial differential equation can be considered as being induced by a reac-
tion. Let us consider the Lorenz equation [8]:

ẋ = −σ(x− y)

ẏ = rx− y −xz (σ, b, r ∈ R+)

ż = xy − bz

This equation is not a kinetic one as it contains the term −xz . Such a term is
said to express negative cross-effect as it expresses that y decreases in a process
in which it does not take part. (A mathematical definition will be presented in
the next section.) This characteristic property of kinetic differential equations
has been used to study kinetic gradient systems [24], to design oscillatory reac-
tions [26], to obtain necessary conditions for oscillation [17], or for the Turing
instability [22, 23] etc.

Another quite well-known nonkinetic, polynomial differential equation is the
Rössler equation [12]:

ẋ = x− xy − y

ẏ = x2 − ay (a, b, c, d ∈ R+)
ż = bx− cz + d

Tóth and Hárs [27] investigated the question whether there exist orthogonal
transformations to specific nonkinetic models (e.g. the Lorenz and the Rössler
equation) which transform these models into kinetic ones. They had shown by
lengthy calculations with the coefficients that no transformation of the form
MA (where M is an orthogonal and A is a positive definite diagonal trans-
formation) transforms the Lorenz equation into a kinetic one, and there exists
no universal transformation to a similar model by Rössler transforming it to a
kinetic equation at all the values of the parameters. This result can be achieved
much easier by using algebraic invariants.

Many interesting polynomial differential equations showing other types of ex-
otic behavior, like oscillation (the harmonic oscillator, the Van der Pol oscillator)
or pattern formation (Turing’s example, [28, p. 42–43]) are also nonkinetic in
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the sense defined above, and methods have been proposed to eliminate negative
cross-effects.

Why would it be useful to transform chaotic equations into kinetic ones and
which are the methods to achieve this goal? The answers to the first question are
obvious: Having kinetic equations one can construct (at least, formal) chemical
reactions with a given type of exotic behavior. Another advantage would be a
small contribution to the structural characterization of polynomial differential
equations with chaotic behavior. The characterization would reflect behavior
under certain transformations: under linear, nonsingular, orthogonal ones.

As an answer to the second question we mention two methods. Samardzija
et al. [16] proposed the following transformation. First, the stationary point
would be transformed into the first orthant of the state space, and then the jth
right hand side would be multiplied by the jth variable. The equation obtained
in this way will really become a kinetic equation as it will be a polynomial
equation of the Kolmogorov type: ẏj = yjfj ◦ yj (j = 1, 2, . . . ,M. Scott [18,
p. 125–126] accepts the transformation proposed by Samardzija et al. as a
chemical model for the harmonic oscillator and for the Lorenz equation. Al-
though the qualitative resemblance of the solutions of the two models to each
other is quite good in this case, the method in general gives a model which
has different eigenvalues of the Jacobian at the equilibrium point. (Contrary to
the expectation of Peng et al. [9] who say that ’the transform does not alter
the qualitative features of a particular model, thus allowing known dynamical
features to be applied to a corresponding chemical system.’) To exclude this, an
additional condition should be met, which has, by the chance, happened in the
special cases investigated in [16]. A criticism from the chemical side has been
expressed by Györgyi and Field [4, p. 48], who say that the resulting models
more autocatalytic steps than found in any known chemical system.

Another method has originally been by Korzukhin, improved by Farkas and
Noszticzius [3], and reinvented by Poland [10]. The method relies heavily upon
chemical intuition, although the results can be supported by mathematical
proofs based upon singular perturbation [29]. The essence is to construct a
chemical reaction whose quasi steady state approximation is the given original
(nonkinetic) differential equation.

In this paper we apply the theory of algebraic invariants of differential equa-
tions [20] to study the effect of transformations. We are looking for polynomial
invariants which take on values different from that taken on by any kinetic
differential equation. If such an invariant has been found the transformations
corresponding to this invariant cannot transform the given equation into a ki-
netic one. Application of algebraic invariants is an especially powerful method
because as large equations can be treated by this method as we wish. We will
show an example of coupled models with a negative value of such an invariant
which can only be nonnegative for coupled kinetic differential equations.

The structure of our paper is as follows. Sec. 2 presents the fundamental
definitions and statements connected with algebraic invariants of polynomial
differential equations. Sec. 3 applies algebraic invariants to obtain negative
results similar to the ones obtained before. In cases where it is not impossible
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we try to find linear transformations to transform nonkinetic equations into
kinetic ones using Mathematica in Sec. 4. Finally, we discuss the possible
directions of further investigations.

2 Algebraic Invariants

Let us consider the following differential equation (in this article we always use
Einstein’s summation convention)

ẏi =
∑

ω∈Ω

ai
j1j2...jω

yj1yj2 ...yjω (i, j1, . . . , jω = 1, 2, . . . , n; ai
j1j2,...,jω

∈ R) (3)

where Ω is a finite set of different natural numbers. Here max(Ω) is said to be
the degree of the right hand side.

Definition 1 (Negative cross-effect) Equation (3) is said to contain a neg-
ative cross-effect if there exists ai

j < 0 such that ji = 0.

Theorem 1 ([5]) A polynomial differential equation can be considered as the
mass action type deterministic model of a chemical reaction if and only if it does
not contain terms expressing negative cross-effect.

Remark 1 This definition and theorem have been generalized for nonpolyno-
mial equations in [23].

Let GL(n,R) := {q ∈ Rn×n; det(q) 6= 0} be the general linear group of linear,
invertible transformations, and let Q ⊂ GL(n,R) be a group with respect to
multiplication of transformations. If By = {y1, y2, . . . , yn} is the vector of
unknown variables of (3) then ŷ := qy obeys the equation

˙̂yr =
∑

ω∈Ω

br
r1,...,rω

ŷr1 . . . ŷrω (r, r1, . . . , rω = 1, . . . , n; br
r1,...,rω

∈ R). (4)

The relation between the coefficient tensors of equation (3) and (4) can be
expressed as

b = B(a, q) (5)

where B denotes the vector of polynomial expressions of the elements of a and
q.

Definition 2 (Polynomial invariant) Let us denote by A the set of all pos-
sible coefficients a. I : A → R is said to be a polynomial invariant of equation
(3) under the group Q, if there exists a functional (called multiplier) λ : Q → R
for which I(B(a, q)) = λ(q)I(a) (q ∈ Q, a ∈ A) holds.

Definition 3 (Absolute/relative invariant) If λ(q) = 1 for all q ∈ Q then
I is an absolute invariant, otherwise I is a relative invariant.

EJQTDE, 2003*** No. 1, p. 4



Definition 4 We will also use the following groups:

Orthogonal group O(n,R) = {q ∈ Rn×n, qqT = I}
Special orthogonal group SO(n,R) = {q ∈ Rn×n, qqT = I, det(q) = 1}.

Remark 2 In reference to GL,O and SO we can state the following relation-
ship SO ⊂ O ⊂ GL.

Definition 5 (Reducible polynomial invariant) A polynomial invariant is
said to be reducible if it is a polynomial of polynomial invariants of lower degree.

Definition 6 (Generating system) B is said to be a generating system if
all the polynomial invariants of equation (3) under Q can be obtained as a
polynomial of the elements of the set B.

Example 1 Let us consider the following (linear) system

ẏi =
∑

ai
jy

j (Ω = {1}; i, j = 1, 2; ai
j ∈ R).

A generating system of invariants of the system above under Q = GL is

I1(a) = a1
1 + a2

2 = tr(a)

I2(a) = tr(a2)

I3(a) = tr(a3) (I3 is reducible as tr(a3) = tr(a2)tr(a)− 1
2
tr(a)(tr2(a)− tr(a2)))

I4(a) = ... (reducible)
...

Consequently {I1, I2} is a generating system.

Definition 7 (Minimal generating system) The generating system B is said
to be minimal, if no elements of it can be discarded without destroying the gen-
erating property.

As no elements of the set {I1, I2} can be discarded without destroying the
generating property, it is a minimal generating system.

Definition 8 (Signature) The components of the signature tensor ε is defined
in the following way:

εp1p2...pn =





1 if (p1, p2, . . . pn) is an even permutation of (1, 2, . . . n);
−1 if (p1, p2, . . . pn) is an odd permutation of (1, 2, . . . n);

0 if there are i, j ∈ (1, 2, . . . n) such that i 6= j but pi = pj .

(6)
εp1p2...pn is not defined if p1, p2, . . . pn are not from the first n positive integers.
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Definition 9 (Alternation, generalized alternation) Let us start from the
tensor (ai1i2...ik

j1j2...jl
) and let us multiply it with a signature tensor (εj2j3...jn+1) and

let us apply Einstein’s convention of summing for identical indices to obtain the
tensor (bi1i2...il

j1jn+1jn+3jl
) in the following way:

bi1i2...il
j1jn+1jn+3jl

:= ai1i2...ik
j1j2...jl

εj2j3...jn+1 .

Then, tensor b is obtained by alternation from the tensor a with respect to the
lower indices. One can do the same with upper indices. If lower and upper
indices are taken as well, then b is obtained by generalized alternation from the
tensor a.

Definition 10 ((Generalized) complete contraction) If a tensor has the
same number of upper and lower indices, then one can form pairs from upper
and lower indices and making them equal, afterwards one can apply Einstein’s
convention of summing for identical indices. This process is said to be a com-
plete contraction. If pairs are formed from indices no matter where the indices
are, the process is said to be a generalized complete contraction.

Theorem 2 A base of polynomial invariants of equation (3) under GL(n,R)
(under O(n,R)) can be obtained by alternation followed by complete contraction
(by generalized alternation followed by generalized complete contraction) of the
indices of the products of the coefficient tensors.

Let us consider the equation

ẏj = aj
αyα + aj

αβyαyβ (j, α, β = 1, 2, . . . , n).

This equation is a special case of (3) with the conditions:

Ω = {1, 2}, (i, j1, j2, . . . , jω = 1, 2, . . . , n).
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A minimal generating system of polynomial invariants of not more than the
second degree of this equation is:

I∗1 = aα
α GL ≥ 1

I∗2 = ap
qε

pq SO = 2

I∗3 = aα
α,pε

p GL = 1

I∗4 = aα
βaβ

α GL ≥ 2

I∗5 = aα
βaα

β O ≥ 3

I∗6 = ap
qa

r
sε

pqrs SO = 4

I∗7 = ap
qa

α
αrε

pqr SO = 3

I∗8 = aα
q ap

αrε
pqr SO = 3

I∗9 = ap
ra

q
ααεpqr SO = 3

I∗10 = aα
αβaβ

γγ O ≥ 3

I∗11 = aα
αγaβ

βγ O ≥ 2

I∗12 = aα
ββaα

γγ O ≥ 2

I∗13 = aα
βγaα

βγ O ≥ 2

I∗14 = aα
βγaβ

αγ O ≥ 2

I∗15 = aα
αpa

q
ββεpq SO = 2

I∗16 = ap
αqa

r
αsε

pqrs SO = 4

The first column contains the sign of the invariant and the invariant itself, where
ε is the signature tensor defined above. The second column shows the the sign of
the group under which the given invariant is really invariant. The third column
contains the dimension of the equation which the invariant is related to.

3 Application of Algebraic Invariants

In this section we test in the case of several concrete more than two dimensional
nonkinetic models whether the negative cross-effect can be transformed out of
them. First of all we offer some remarks.

1. Let us start with the following model (equation (3)):

ẏj =
∑

ω∈Ω

aj
j1j2...jω

yj1yj2 ...yjω (j, j1, . . . , jω = 1, 2, . . . , n) (7)

and its (orthogonal or nonsingular) transform

˙̂yj =
∑

ω∈Ω

br
r1r2...rω

ŷr1 ŷr2 ...ŷrω (r, r1, . . . , rω = 1, 2, . . . , n). (8)
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2. Orthogonal or regular invariants are looked for which take on different
values when calculated from the coefficients of (7) and from those of (8).
One can only know the sign of the invariants as we know only the general
form of the transformation hence the exact numeral value of the invariants
are unknown. Therefore, those invariants are looked for which take on
values of different sign when calculated from the coefficients of (7) and
from those of (8). In this case we can tell that there are no (orthogonal
or nonsingular) transformations which transform the negative cross-effect
out of the nonkinetic differential equation.

3. In this paper we examine second degree, at most 4-dimensional equations
and investigate the polynomial invariants of not more than second degree.
(Should the model contain terms of the degree higher than two, it causes
no problem as the coefficients of the ith degree terms in the transformed
equation only depend on the ith degree terms in the original one. There-
fore, these invariants are invariants of equations containing higher degree
terms too.)

4. The invariants I∗2 , I∗3 , I∗6 , I∗15 and I∗16 are not related to 3-dimensional equa-
tions, so they cannot be used. If we are interested in 4-dimensional equa-
tions, we might try to use I∗6 or I∗16. I∗6 only contains nonnegative coef-
ficients in the case of kinetic differential equations, its sign, however, can
be negative or positive as well. I∗16 can also be positive or negative.

5. I∗1 and I∗11 are polynomials of coefficients irrelevant from the point of view
of negative cross-effect (see Definition 1), they cannot be used either.

6. The invariants I∗5 , I∗12, I
∗
13 are sums of squares, therefore they are nonneg-

ative for all possible coefficients.

7. The sign of the invariants I∗7 , I∗8 , I∗9 , I∗10, I
∗
14 is not unambiguously defined

(even it is known that they are calculated from the coefficients of a kinetic
differential equation), that is why they generally cannot be used either.

8. The sign of the invariant I∗4 is always nonnegative when calculated from
the coefficients of a kinetic differential equation as

I∗4 = aα
βaβ

α = (a1
1)

2 + (a2
2)

2 + (a3
3)

2 + 2(a1
2a

2
1 + a1

3a
3
1 + a2

3a
3
2),

thus I∗4 might be appropriate. But only such equations should be consid-
ered in which negative cross-effects are manifested in first degree terms,
as I∗4 is a polynomial of linear terms. (Therefore e.g. the Lorenz equation
cannot be investigated by this invariant.)

Let us consider the following four-dimensional model.
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Example 2 ([14])

ẋ = −y − z

ẏ = x +
1
4
y + w (9)

ż = 3 + xz

ẇ = −1
2
z +

1
20

w

I∗4 = −387
200

I∗4 being negative, the equation cannot be transformed into a kinetic differential
equation.

The table below contains the value of I∗4 for a series of models. As it can be
seen for some values of the parameters, it can have a negative sign, therefore
for these values of the parameters (which form an open set in the parameter
space) the models cannot be transformed into kinetic differential equations.
(The boxed term(s) here and below show(s) the negative cross-effect.) Nothing
can be said about other parts of the parameters space.
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No. Equations I∗4 Reference
ẋ = −y − z

1 ẏ = x + ay a2 + c2 − 2 [18, p. 94],[11, 13]
ż = b− cz + xz

ẋ = x −z − xy

2 ẏ = x2 − ay 1 + a2 + c2 − 2b [6]
ż = bx− cz + d

ẋ = ax −y − bz

3 ẏ = x + 1.1 a2 + (c− 1)2 − 2− 2bc [6]
ż = c(1− z2)(x + y)− z

ẋ = −y − z

4 ẏ = x + ay a2 + c2 − 2− 2b [6]
ż = b− cz + xz

ẋ = −ax −z − xy

5 ẏ = −x + by + cz a2 + b2 − 2f [6]
ż = b + exz + fx

ẋ = −y − z

6 ẏ = x b2 − 2 [6]

ż = a(y −y2 )− bz

ẋ = (z − β)x −ωy

7 ẏ = ωx + (z − β)y 2β2 + α2 − 2ω2 [7],[18, p. 244]
ż = λ + αz + εzx3

− z3

3 −(x2 + y2)(1 + %z)

ẋ = µx −ky − λ − x3

8 ẏ = τx− τy µ2 + τ2 − 2kτ [1]
Finally, let us consider a model obtained by (linear) diffusional coupling form

two smaller models.

Example 3 Coupling the four-dimensional model of Example 2 and model 6
form the table above gives

ẋ1 = −y1 − z1 + D1
12(x2 − x1)

ẏ1 = x1 + D2
12(y2 − y1)

ż1 = a(y1 − y2
1)− bz1 + D3

12(z2 − z1)
ẇ1 = D4

12(w2 − w1)
ẋ2 = −y2 − z2 + D1

21(x1 − x2)

ẏ2 = x2 +
1
4
y2 + w2 + D2

21(y1 − y2)

ż2 = 3 + x2z2 + D3
21(z1 − z2)

ẇ2 = −1
2
z2 +

1
20

w2 + D4
21(w1 − w2).
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A general statement for coupled models follows. The phenomenon above is
a particular case of a special statement.

Remark 3 Models with a nonnegative value of I∗4 coupled with linear diffusion
result in a model with a nonnegative value of I∗4 .

4 Transforming nonkinetic equations into kinetic
ones

Let us consider the following hypothetical model.

Example 4 (2-dimensional predator-prey system.)

ẋ = −ax −by + cxy (10)

ẏ = dy −ex − fxy

Here we find that I∗4 = a2 + d2 + 2be which is always nonnegative. This means
that the value of I∗4 does not exclude the possibility that (10) can be transformed
into a kinetic differential equation. Calculating the eigenvalues of the coefficient
matrix of the linear part it turns out that they are both real (one negative, one
positive). Therefore, turning to the Jordan-form of the linear part we receive
a linear part without negative cross-effects. This argument holds for all such
linear parts whose eigenvalues are real. (This is not the case if we treat e.g. the
model of the harmonic oscillator.) But in each single case we should study the
effect of this transformation on the nonlinear terms. In the present case let us

introduce the new variables by the definition:
(

ξ
η

)
:= U−1

(
x
y

)
, where U is the

matrix of the eigenvectors of
(−a −b
−e d

)
. A straightforward calculation shows

that negative cross-effects do appear in the second degree terms.

5 Discussion and perspectives

As a part of a possible structural approach to chaotic and kinetic differential
equations we investigated if it was possible to transform out negative cross-
effects from chaotic nonkinetic equations. It turned out that the investigations
can greatly be simplified by the use of some algebraic invariants. We also think
that the use of other invariants may provide similar results for other models,
and for other qualitative properties [17], as well.

Another approach to extend the results and methods of [27] would be to
automatize the calculations, i.e. to carry out the transformations and the proof
of insolvability of the emerging inequalities by a mathematical program package.
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