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Abstract— Solutions are proposed for the central problem of
estimating the reaction rate coefficients in homogeneous kinetics. The
first is based upon the fact that the right hand side of a kinetic
differential equation is linear in the rate constants, whereas the
second one uses the technique of neural networks. This second one
is discussed deeply and its advantages, disadvantages and conditions
of applicability are analyzed in the mirror of the first one. Numerical
analysis carried out on practical models using simulated data, and
our programs written in Mathematica.
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I. INTRODUCTION

A fundamental problem of (homogeneous) chemical kinet-
ics is to elucidate the mechanism of complex chemical

reactions. This process consists of collecting all the possible
species taking part in a reaction, enumerating the elementary
steps (perhaps by systematically decomposing an overall reac-
tion [9]), and finally, determining the reaction rate coefficient
of all the elementary steps in such a way that solving the
kinetic differential equations of the complex chemical reaction
consisting of the elementary steps with the calculated rate
constants have the same concentration versus time curves as
those measured in the experiment. The problem is a kind of an
estimation problem and the methods presented may be applied
to models from various sciences too.

The first steps to the usual approach of this problem are
almost trivial. Suppose we have Nc chemical species and Nk

elementary reaction steps, and the kinetic differential equation
is:

ċ(t) = f(c(t), k) c(0) = c0, (1)

where c(t), c0 ∈ R
Nc , k ∈ R

Nk . Then one defines the error
as the integral of the difference between the calculated and
measured concentration versus time functions:

Q(k) :=
∫ T

0

‖ck
calculated(t) − cmeasured(t)‖2dt, (2)

and tries to find the minimum of this function.
Let us mention a few problems of the basic approaches

[2],[15].
1) Not all the concentrations are measured.
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2) Measurements are not taken continuously, the discrete
time points of measurement may even differ for the
different concentrations.

3) The concentrations are measured with error.
4) There are dependencies between the parameters, only

some functions of the parameters can be estimated from
the data.

5) The function Q usually has a number of local minima.
Therefore, estimating the reaction rate constants even with
today’s computational capacities is a kind of art.

In this paper we present two novel methods to solve the
problem above. Each one of them might be useful under
certain circumstances. The first method utilizes the fact, that
the right-hand-side of the kinetic differential equations is
almost always (e.g. in the case of mass action kinetics) a
linear function of the parameters to be estimated. This method
has been proposed in [7], here we elaborate the method in
more detail, and apply them to realistic models and use it
as a reference to analyze our new approach. The second
method uses neural networks which has turned out to be really
useful in many areas such as the calculation of models as e.g.
turbulent combustion or potential energy surfaces [1],[5],[16].

II. ESTIMATION METHODS

A. Theory of the Matrix Inversion Method

The basic idea comes from the standard problem of esti-
mating the parameters in linear models [13]. Let us consider
the complex chemical reaction consisting of the reaction steps

Nc∑
m=1

α(m, r)X(m) →
Nc∑

m=1

β(m, r)X(m). (3)

The usual mass action type model of this reaction is the
Cauchy problem:

ċm(t) =
∑Nc

m=1
(β(m, r) − α(m, r))k(r)∏Nc

p=1
c
α(p,r)
p (t) (4)

cm(0) = c0
m (m = 1, 2, . . . , Nc),

where cm(t) := [X(m)](t) (m = 1, 2, . . . , Nc) is the
concentration of the mth species, and kr (r = 1, 2, . . . , Nk)
is the reaction rate coefficient of step (3). Obviously, (4) is of
the form

ċ(t) = F (c(t))k c(0) = c0 (5)

with the linear operator on any function of c, F (c(t)) ∈
R

Nk −→ R
Nc compressing the structure of the complex

chemical reaction in a certain way.
Mass action kinetics is enough to ensure the linear de-

pendence of the right hand side on the parameters to be
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estimated. However, it is not fully necessary: the condition
underpinning our method may be satisfied in other cases, as
well. Furthermore, if the right hand side is an inhomogeneous
linear function of the parameters to be estimated, our method
works still with a slight modification. The generalization of
Eq. (5) can then be rewritten as

c(tn) − c0 = (6)∫ tn

0
F (c(s))ds · k +

∫ tn

0
Fr(c(s))ds,

or, (∫ tn

0
F (c(s))ds

)�
(7)

((c(tn) − c0) − ∫ tn

0
Fr(c(s))ds) =(∫ tn

0
F (c(s))ds

)� (∫ tn

0
F (c(s))ds

)
· k.

If the matrix (
∫ tn

0
F (c(s))ds)�(

∫ tn

0
F (c(s))ds) is invertible

(a pseudoinverse of (
∫ t

0
F (c(s))ds)) can always be calculated),

an estimate of k can be obtained:

k̂ = ((∫ tn

0
F (c(s))ds

)� (∫ tn

0
F (c(s))ds

))−1

(∫ tn

0
F (c(s))ds

)�
((c(tn) − c0) (8)

− ∫ tn

0
Fr(c(s))ds).

We have an exact formula to obtain k that means if there is no
measurement error and no numerical error in the integration,
the result would equal to the real value of k̂ = k with no
estimation needed. In the cases when this simple method does
not work, we can calculate the integrals at different tn values
thus get a large set of linear equation systems and become
able to run multivariate regression on it. (Having calculated
the integrals numerically, the method already requested many
measurements, and a simultaneous measurement of the con-
centrations at every tn so these can be used for the regression
analysis too.)

B. Theory of the Neural Networks Method

A neural network, a network of formal (McCulloch-Pitts
type) neurons can be used to estimate parameters of a given
model. Our method and its main properties will be explained
in this section.

If we use an Artificial Neural Network (ANN) to estimate
the rate constants, we need some a priori conditions or distri-
bution functions for the values of the unknown parameters κ,
which is a vector with Nκ components of k. This may come
from biological, chemical, or mathematical theories.

Estimating the rate constants means to find out what their
values are using measured data of each state variable: cm. Let
the function I realize this:

I := (cm(t1), cm(t2), ..., cm(tT )) �→ k (9)

The estimated parameters (θ̂) are some components of k.
We will use a regular feedforward neural network with a
backpropagation training algorithm to simply approximate the

function I . The main idea is that we can build the training set
with the an ”inverse”–like function of I! The inverse function
can not be determined since even if we knew the estimated
parameters, the measurement error could not be determined
exactly. So our ”inverse”–like function becomes:

G : κ �→ (cκ(t1), cκ(t2), ..., cκ(tNt)). (10)

We numerically evaluate this function at some κ values:
locations determined by its PDFs. The exact methods use are
discussed in Section III-B.

We use a neural network to interpolate I since it is usually
a very complex function mapping R

Nt·Nκ → R
Nθ where 1 ≤

Nθ ≤ Nκ. (The numerical value depends on many parameters
in the method.) The input data of the neural network(s) is a set
of concentrations calculated with the G function on different
κ parameters and the output is some of its components, the θ
set of parameters, to be estimated. This is the training phase
which is the most sensitive part and determines the success.

Provided a trained network we easily get the estimated rate
constants as

θ̂ = ANN(ĉm(t1), ĉm(t2), ..., ĉm(tT )), (11)

where ĉ(ti) denotes the measured value of the parameter
vector at the ith moment.

As a last step, the estimated parameters have to be verified
with evaluating the model numerically using the estimated
values of the parameters. The result (the value of the esti-
mated concentrations) can be compared to the measured ones
applying the definition of the error function Eq. (2).

III. NEURAL NETWORK METHOD ISSUES

A. The parameters used for the supervised training

Supervised training means means to use the output of
the neurons to determine the error and modify the synaptic
strengths of the network with some strategy. At the output side
there can be either all or a subset of the parameters examined.
Also a different subset can be the estimated ones.

Since we work with the supervised backpropagation training
algorithm the constructed network might highly depend on
the number of unknown variables examined at the output of
the network. However, examining all the parameters needs
significantly more computation when the network is trained
and often makes the examination more exact (in the case
if we do not overtrain the network). We suggest that for
large systems only a limited number of parameters should
be estimated with one network because the accuracy of the
estimation is not too much worse while the training becomes
easier.

B. The problem of the many unknown parameters

For the Neural network method theoretically, there can be
an unlimited number of unknown parameters in the model
under examination. Of course there are limitations for both
this number and the number of rate constants can be estimated.

The input of the network is roughly the numerical solution
of the differential equation system. To obtain this we need
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numerical values for the unknown parameter vectors, (the
selected κs). If there are too many components in κ to deal
with than having every possible parameter vector even if there
are only two possible values for each parameter would end up
in an exponentially large training set: 2k. This is a problem
one has to think about when tries to build a neural network
with too many unknown parameters.

There are many approaches how to select the parameter
vectors [6]. We select a couple of them to apply:

• The first fixes a set of parameters which are not included
to the supervision algorithm. Even if these parameters are
fixed to a wrong but not impossible value the training of
a network succeeds and the estimation can be done with
an accuracy good enough. This method cannot be used
when there are too many parameters to fix or if the model
is sensitive to the accuracy of the fixed values.

• The second method selects a set of values of each
parameter and a set of the possible κ vectors. This
turned out to perform quite the same way and have the
feature of disregarding which is the target parameter to
be estimated.

• There can be Monte–Carlo–like solutions for this prob-
lem. It is shown in [8] that this works better than selecting
the parameter vectors randomly.

• The Latin Hypercube is a widely used method for such
a problem. The basic concepts of it is that it divides
the density function of a parameter into areas with
equivalent probability. Then the value of a parameter is
taken randomly from one of these regions. A supervised
selection of the possible κ vectors is used to avoid that
they are focused around a certain point or points in the
parameter space.

C. The problem of measurement error

According to the neural networks theory it is useful to add
a very small noise to the numerically computed training set.
This makes the function to be interpolated more smooth and
better. Theoretically the function what can be interpolated with
a neural network depends on the number of neurons it has
and on the structure of it. Usually Sigmoid function is used as
a threshold function which is monotonously increasing. This
limits the number of monotonous regions of the function can
be interpolated [16].

D. The problem of the number of training set elements

For a given network it is easy to calculate the number of the
synaptic strengths we have (w) which has to be smaller than
the elements in the training set s. There are no exact solutions
for this problem also but we say that we should have at least
ρ ≥ 1 times more training set elements than weights: s ≥ w·ρ.
We can calculate w from the network structure having

• m: the number of the measurement moments;
• v: the number of the measured variables in each moment;
• o: the number of output (supervised) parameters;
• i: the number of the hidden layers;
• h: the number of hidden neurons in a hidden layer.

It is known that the training of the network is more efficient
if there are the same number of neurons in the layers. The
neural network method can also be used even if the variables
are measured in different moments and different times but now
we focus on the simplest case where all the measured variables
are measured at the same moments. Now we can calculate w
and then:

s ≥ ((m · v + o) · h + (i − 1) · h2) · ρ. (12)

There are limitations for s in practice we can say that it
is necessary to keep it small. As it was already mentioned
there is a minimum threshold for the numbers of neurons
in the network to interpolate the function in question. It is
easy to consider that more measurements should make the
estimation better but on the other hand makes the function to
be interpolated less smooth. So basically we can say that the
more neurons needed implies s to be bigger. Since our aim
is to keep s rather small to avoid exponential computational
complexity it is likely that we should use a minimum number
of measurements that still makes the estimation good enough.

If one is having a rather large equation system there might
be rate constants and concentrations depending on each other.
Sometimes not all the concentrations can be measured too.
Regarding to these facts the question of dismissing some of
the concentrations from the estimation method comes up. We
expect that it would make the estimation more efficient without
heavily decreasing its accuracy.

There are a couple of parameters more that can be influ-
enced in the equation above (12). We can agree that ρ is a
constant although there is no theory yet to define its exact
value. The number of output neurons o for the supervised
parameters is already discussed in Section III-B.

IV. EXAMPLES

A. The triangle reaction

A reaction often studied from the theoretical point of view is
the triangle reaction (see e.g. [12]) with the kinetic differential
equation:

ċ1 = −k1c1 + k2c2

ċ2 = −k2c2 + k3c3 (13)
ċ3 = −k3c3 + k1c1.

For our purposes we rewrite the differential equation (13) of
the triangle reaction into the following form:⎛

⎝ ċ1

ċ2

ċ3

⎞
⎠ =

⎛
⎝ −c1 0 c2

c1 −c2 0
0 c2 −c3

⎞
⎠ ·

⎛
⎝ k1

k2

k3

⎞
⎠ . (14)

Originally there are three rate constants to be estimated. To
use the inverse method the right hand side should linearly
depend on the rate constants, this is true. However the derived
matrix of (13) can not be inverted. We have to reduce the
problem and estimate only two of the rate constants. As one
of the concentrations can be expressed with the two others
there cannot be more than two parameters estimated. Also
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c1 +c2 +c3 is constant so using c1(0) = 1, c2(0) = 0, c3(0) =
0 as initial conditions, the equation can be rewritten:

ċ1 = −k1c1 + k3(1 − c1 − c2)
ċ2 = −k2c2 + k1c1 (15)

Adapting the neural networks method to the triangle reaction
does not need any extra operation. However, estimations with
better accuracy are achieved when one of the three state
variables is substituted.

B. A model to describe the transport of butadiene

A simplified model to describe butadiene transport is

ċ1 = −(k1 + k2 + k3 + k4 + k5)c1

−k6c2 − k7c3 − k8c4 − k9c5 − k10c6

ċ2 = k1c1 − k6c2

ċ3 = k2c1 − (k7 + k11)c3 (16)
ċ4 = k3c1 − (k8 + k12 + k13)c4 + k14u

ċ5 = k4c1 − k9c5

ċ6 = k5c1 − (k10 + k12)c6

with the initial condition c1(0) = c2(0) = c3(0) = c4(0) =
c5(0) = c6(0) = 0. Here the function u describes the input,
the butadiene inhaled by the investigated living being and
c1 := [QB ], c2 := [QFa], c3 := [QMu], c4 := [QLi], c5 :=
[QLu], c6 := [QV i], with QX denoting the quantity of buta-
diene in the Xth compartment; (X=B(lood), Fa(t), Mu(scle),
Li(ver), Lu(ngs), Vi(scera)). The interested reader may find
the biological details of the model in References [4],[14].
Decomposing the model with our notation above it turns out
that only a subset of the parameters can be estimated with
the inverse method and the neural network method still does
not need any restrictions but a couple of preconditions for
the parameter values. These conditions, especially if they are
simple bounds, are easy to create since we have our application
from a real–world problem.

V. PARAMETER ESTIMATIONS WITH NEURAL NETWORKS
METHOD

Since all the other methods have a lot of restrictions on the
model to be estimated it is not really fair to compare them with
the Neural Networks Method. Thus, we focus on the method
and its problem itself. The numerical analysis is done with a
program written in Mathematica [17] that implements both the
methods, training set builder strategies, special training strate-
gies and uses the Neural Networks Package of Mathematica.

1) Examination of a triangle reaction: We simulated our
sample data with p1 = 1, p2 = 10, p3 = 0.1. We trained
several networks on various kinds of the parameter vector
chosen. Here we present the result gained by a couple of
successful ones by means of small error in the error function
defined with Equation 2. It can be seen that small error is
obtained with various results of the parameters. We can see
that there can be problems with the verification what will be
discussed in an upcoming work.

TABLE I
ESTIMATED PARAMETERS FOR THE TRIANGLE REACTION WITH OUR

METHOD OF NEURAL NETWORKS.

p̂1 p̂2 p̂3 SE(θ̂)
0.001 4.11248 50 0.0804988
0.001 2.25639 50 0.0801564
0.001 0.72205 0.1 0.0760324
0.001 0.0151956 50 0.075681

2) Results for the Butadiene transport: Here, separate net-
works are used for each variable (that also implies that only
one unknown parameter was supervised at the output of the
network), and typically a rather small network of one hidden
layer consisting of 5 neurons was used. The estimation results
with two error functions are presented on Table II, one for the
quadratic errors EQ(i) = (θi − θ̂i)2, another for the per cent

error for each parameter EP(i) = |θ̂i−θi|
θi/100

. Table III shows the
error of the concentrations.

TABLE II
ERROR OF THE BUTADIENE REACTION PARAMETERS

param. θi θ̂i EQ(i) EP(i)

p12 0.01994 0.00992 0.0001004 50.2553
p21 4.40816 4.02575 0.146237 8.67504
p13 10.9914 9.86131 1.27712 10.2817
p31 19.5918 23.5071 15.3292 19.9841
p33 199.728 219.185 378.588 9.74194
p14 160.514 148.071 154.826 7.75194
p41 122.449 129.802 54.068 6.00503
p40 437.764 500.568 3944.27 14.3464
p400 1200 1114.06 7385.95 7.1618
p4466 13.5 15.4851 3.94046 14.7042
p15 1.18299 1.19148 0.000072 0.718041
p51 44.2041 60.3704 261.349 36.5719
p16 30.2877 43.7812 182.075 44.5511
p61 54.6122 50.8239 14.3516 6.93682

TABLE III
ERROR OF THE ESTIMATED BUTADIENE CONCENTRATIONS

St. var. SEQ,F9(θ̂) SEAP,F9(θ̂) SEQ(θ̂) SEAP(θ̂)

c1 8.87101 23.3943 12.6193 57.8262
c2 72.3346 32.9736 1369.24 99.1937
c3 0.59479 15.7107 0.0576155 56.68
c4 8.08449 12.5928 10.6377 51.5965
c5 15.5919 1.59616 51.6394 59.0677
c6 20.3892 47.3815 65.1695 64.4624

VI. CONCLUSIONS ON ADVANTAGES AND DISADVANTAGES
OF THE METHODS

We have presented a method with some extra properties that
might be useful in applications and what classical methods do
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not have. The basic problems are discussed and some princi-
ples and guidelines are laid down about the selection of the
training set and the network what is the most difficult question
when one uses Neural Networks as a function approximator.
Let us explain a couple of properties of the Neural Network
Method that no other methods have:

• Not all the concentrations must be measured and there
can be almost any number of parameters to be estimated.

• The training takes time but needs no measurements and
once a network is trained for a model it can do the estima-
tion even if the parameters vary with the measurements.

• There is no need to measure all the variables in the same
moments what is often very useful and we neglect the
inaccuracy of simultaneous measurements.

• There can be any kind of input output model that can be
evaluated at certain parameter vectors, this method is not
restricted on any specific application.

It takes a large work to train a neural network for a given
structure but once it is done the estimation is easy and can
be applied to the same reaction under different circumstances
as well (different initial concentrations, temperature, pressure
etc.).
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