000000000000000 000000000 00

Equivalent operator preconditioning for elliptic finite element problems

János Karátson*, Owe Axelsson

* Dept. Appl. Anal. Comp. Math. & Numnet Research Group; ELTE Univ. & Dept. Anal., Technical Univ.; Budapest, Hungary

October 17, 2016

J. Karátson

Budapest, Hungary

000000000000000 000000000 00

Outline of the talk

Basic ideas

- Equivalent operators in Hilbert space
- Operator preconditioning for elliptic problems
 - Single equations
 - Systems (transport type, saddle-point)
 - Convection-dominated equations
 - Helmholtz problems

Preconditioning in Hilbert space

00000000000000 00000000 00

Theoretical background

The problem of preconditioning

- Linear(ized) algebraic system: Ac = d.
- Preconditioning matrix: B
 Preconditioned algebraic system: B⁻¹Ac = B⁻¹d.
 CG (CGN, GCG-LS, GMRES) iteration \rightarrow auxiliary systems Bz = r
- Twofold goals:

• Faster CG convergence \rightarrow **B** \approx **A**

• Low cost \rightarrow **B** \approx **I**

Conflicting goals \rightarrow a compromise needed.

Various strategies mainly use algebraic structure of **A**.

Preconditioning in Hilbert space

00000000000000 00000000 00

Theoretical background

The problem of preconditioning

- Linear(ized) algebraic system: Ac = d.
- Preconditioning matrix: B
 Preconditioned algebraic system: B⁻¹Ac = B⁻¹d.
 CG (CGN, GCG-LS, GMRES) iteration → auxiliary systems Bz = r
- Twofold goals:
 - Faster CG convergence \rightarrow **B** \approx **A**
 - Low cost \rightarrow **B** \approx **I**

Conflicting goals \rightarrow a compromise needed.

• Various strategies mainly use algebraic structure of **A**.

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

The problem: discretized linear elliptic PDE, using FEM:

$$\mathbf{L}_h \mathbf{c} = \mathbf{d} \qquad (SLAE)$$

Disadvantage: $cond(L_h) \rightarrow \infty$ as $h \rightarrow 0$.

Advantage: for certain PDEs, (SLAE) can be solved optimally or quasi-optimally,
i.e. with O(n) or O(n log n) operations.
E.g.: such problems: symmetric elliptic equations, equations with constant coefficients; such methods: multigrid, FFT.

J. Karátson

Budapest, Hungary

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

The problem: discretized linear elliptic PDE, using FEM:

$$\mathbf{L}_h \mathbf{c} = \mathbf{d} \qquad (SLAE)$$

Disadvantage: $cond(L_h) \rightarrow \infty$ as $h \rightarrow 0$.

Advantage: for certain PDEs, (SLAE) can be solved optimally or quasi-optimally,

i.e. with O(n) or $O(n \log n)$ operations.

E.g.: such problems: symmetric elliptic equations, equations with constant coefficients; such methods: multigrid, FFT.

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

The problem: discretized linear elliptic PDE, using FEM:

$$\mathbf{L}_h \mathbf{c} = \mathbf{d} \qquad (SLAE)$$

Disadvantage: $cond(L_h) \rightarrow \infty$ as $h \rightarrow 0$.

Advantage: for certain PDEs, (SLAE) can be solved optimally or quasi-optimally,

- i.e. with O(n) or $O(n \log n)$ operations.
- E.g.: such problems: symmetric elliptic equations, equations with constant coefficients; such methods: multigrid, FFT.

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

The problem: discretized linear elliptic PDE, using FEM:

$$\mathbf{L}_h \mathbf{c} = \mathbf{d} \qquad (SLAE)$$

Disadvantage: $cond(L_h) \rightarrow \infty$ as $h \rightarrow 0$.

Advantage: for certain PDEs, (SLAE) can be solved optimally or quasi-optimally,

i.e. with
$$O(n)$$
 or $O(n \log n)$ operations.

E.g.: such problems: symmetric elliptic equations,

equations with constant coefficients; such methods: multigrid, FFT.

More general problems: nonsymmetric eqns; systems; parameter-dependent problems.

Preconditioning in Hilbert space

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Proposal: let *S* be *another elliptic operator*, such that systems $\mathbf{S}_h \mathbf{z} = \mathbf{r}$ can be solved (quasi-)optimally.

Preconditioning matrix: S_h .

CG iteration for system $\mathbf{S}_h^{-1}\mathbf{L}_h\mathbf{c} = \mathbf{S}_h^{-1}\mathbf{d}$

if the convergence is *mesh-independent*, then the original problem is solved also (quasi-)optimally (since const. O(n) = O(n))

J. Karátson

Budapest, Hungary

Preconditioning in Hilbert space

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Proposal: let *S* be *another elliptic operator*, such that systems $\mathbf{S}_h \mathbf{z} = \mathbf{r}$ can be solved (quasi-)optimally.

Preconditioning matrix: **S**_h.

CG iteration for system $\mathbf{S}_{h}^{-1}\mathbf{L}_{h}\mathbf{c} = \mathbf{S}_{h}^{-1}\mathbf{d}$

if the convergence is *mesh-independent*, then the original problem is solved also (quasi-)optimally (since const. O(n) = O(n))

J. Karátson

Budapest, Hungary

Preconditioning in Hilbert space

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Proposal: let *S* be *another elliptic operator*, such that systems $\mathbf{S}_h \mathbf{z} = \mathbf{r}$ can be solved (quasi-)optimally.

Preconditioning matrix: S_h .

CG iteration for system
$$\mathbf{S}_h^{-1}\mathbf{L}_h\mathbf{c} = \mathbf{S}_h^{-1}\mathbf{d}$$

if the convergence is *mesh-independent*, then the original problem is solved also (quasi-)optimally (since const. O(n) = O(n))

J. Karátson

Budapest, Hungary

Preconditioning in Hilbert space

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Theory of mesh-independent *linear* convergence:

Various early and later works (1966 to present)

[Dyakonov, Gunn, Concus, Golub, Elman, Widlund, Cao, Hiptmair, Mardal, Winther...

T. Manteuffel, Goldstein, Faber, Parter, Otto]

 \rightarrow a solid theoretical framework:

theory of equivalent operators in Hilbert space

Under proper assumptions:

if $L \sim S \implies$ mesh independent linear convergence

J. Karátson

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Theory of mesh-independent *linear* convergence:

Various early and later works (1966 to present)

[Dyakonov, Gunn, Concus, Golub, Elman, Widlund, Cao, Hiptmair, Mardal, Winther...

T. Manteuffel, Goldstein, Faber, Parter, Otto]

 \rightarrow a solid theoretical framework:

theory of equivalent operators in Hilbert space

Under proper assumptions:

if $L \sim S \implies$ mesh independent linear convergence

Preconditioning in Hilbert space

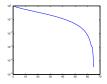
00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

Motivation: CG convergence history



2 phases: linear conv. – superlin. conv.

J. Karátson

Budapest, Hungary

Preconditioning in Hilbert space

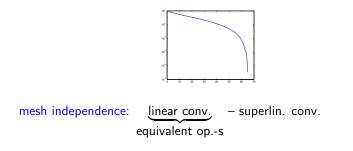
00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

Motivation: CG convergence history



Preconditioning in Hilbert space

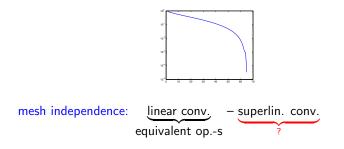
00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

Motivation: CG convergence history



Preconditioning in Hilbert space

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

(theory of mesh-independent superlinear convergence, [Axelsson-Karátson, SIAM J. Numer. Anal. 2007]).

Let *L* and *N* be unbounded coercive operators in a Hilbert space, let *L_S* and *N_S* be their suitable weak forms in an energy space *H_S*. **Def.** *L* and *N* are compact-equivalent if $L_S = \mu N_S + Q_S$, where $\mu > 0$ and Q_S is compact.

Preconditioning in Hilbert space

000000000000000 000000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

(theory of mesh-independent superlinear convergence, [Axelsson-Karátson, SIAM J. Numer. Anal. 2007]).

Let L and N be unbounded coercive operators in a Hilbert space, let L_S and N_S be their suitable weak forms in an energy space H_S .

Def. *L* and *N* are compact-equivalent if $L_S = \mu N_S + Q_S$, where $\mu > 0$ and Q_S is compact

J. Karátson

Budapest, Hungary

Preconditioning in Hilbert space

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

(theory of mesh-independent superlinear convergence, [Axelsson-Karátson, SIAM J. Numer. Anal. 2007]).

Let *L* and *N* be unbounded coercive operators in a Hilbert space, let *L_S* and *N_S* be their suitable weak forms in an energy space *H_S*. **Def.** *L* and *N* are compact-equivalent if $L_S = \mu N_S + Q_S$, where $\mu > 0$ and Q_S is compact.

Preconditioning in Hilbert space

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

(theory of mesh-independent superlinear convergence, [Axelsson-Karátson, SIAM J. Numer. Anal. 2007]).

Let *L* and *N* be unbounded coercive operators in a Hilbert space, let *L*_S and *N*_S be their suitable weak forms in an energy space *H*_S. **Def.** *L* and *N* are compact-equivalent if $L_S = \mu N_S + Q_S$, where $\mu > 0$ and Q_S is compact. Special case: if N = S is symmetric then $L_S = \mu I + Q_S$.

Preconditioning in Hilbert space

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

(theory of mesh-independent superlinear convergence, [Axelsson-Karátson, SIAM J. Numer. Anal. 2007]).

Let *L* and *N* be unbounded coercive operators in a Hilbert space, let *L_S* and *N_S* be their suitable weak forms in an energy space *H_S*. **Def.** *L* and *N* are compact-equivalent if $L_S = \mu N_S + Q_S$, where $\mu > 0$ and Q_S is compact. Special case: if N = S is symmetric then $L_S = I + Q_S$. We may let $\mu = 1 \rightarrow$ compact perturbation of the identity.

Preconditioning in Hilbert space

Operator preconditioning for elliptic problems 0000000

00000000000000 00000000 00

Theoretical background

Equivalent operator preconditioning

Theorem

If $L_S = I + Q_S$, then for any Galerkin subspace the CGN iteration for system $\mathbf{S}_h^{-1}\mathbf{L}_h\mathbf{c} = \mathbf{S}_h^{-1}\mathbf{d}$ satisfies

$$\left(rac{\|r_k\|_{\mathbf{S}_h}}{\|r_0\|_{\mathbf{S}_h}}
ight)^{1/k}\leq \ arepsilon_k \qquad (k=1,2,...,n),$$

where $\varepsilon_k \to 0$ is a sequence independent of V_h . In fact, $\varepsilon_k := \frac{2}{km^2} \sum_{i=1}^k \left(\left| \lambda_i (Q_5^* + Q_5) \right| + \lambda_i (Q_5^* Q_5) \right).$

\rightarrow Mesh-independent superlinear convergence.

J. Karátson

Budapest, Hungary

			luction					
Intr	Ô	d	11	C	t١	o		

Operator preconditioning for elliptic problems •000000

000000000000000 000000000 00

Equations

Case 1: scalar elliptic operators.

We consider elliptic operators

$$Lu \equiv -\operatorname{div}(A \nabla u) + \mathbf{b} \cdot \nabla u + cu$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu_A} + \alpha u_{|\Gamma_N} = 0$.

J. Karátson

Budapest, Hungary

			luction					
Intr	Ô	d	11	C	t١	o		

Operator preconditioning for elliptic problems •000000

000000000000000 000000000 00

Equations

Case 1: scalar elliptic operators.

We consider elliptic operators

$$Lu \equiv -\operatorname{div}(A \nabla u) + \mathbf{b} \cdot \nabla u + cu$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu_A} + \alpha u_{|\Gamma_N} = 0$.

J. Karátson

Operator preconditioning for elliptic problems $0 \bullet 00000$

000000000000000 000000000 00

Equations

Elliptic equations

Assumptions 1. (standard for having *H*¹-*coercivity*)

- (i) $\Omega \subset \mathbf{R}^d$ is a bounded piecewise C^1 domain; Γ_D, Γ_N are disjoint open measurable subsets of $\partial \Omega$ such that $\partial \Omega = \overline{\Gamma}_D \cup \overline{\Gamma}_N$;
- (ii) $A \in L^{\infty}(\overline{\Omega}, \mathbb{R}^{d \times d})$ and for all $x \in \overline{\Omega}$ the matrix A(x) is symmetric; further, $\mathbf{b} \in W^{1,\infty}(\Omega)^d$, $c \in L^{\infty}(\Omega)$, $\alpha \in L^{\infty}(\Gamma_N)$;
- (iii) we have the following properties which will imply coercivity: $\exists p > 0: \quad A(x)\xi \cdot \xi \ge p \, |\xi|^2 \quad (\forall x \in \overline{\Omega}, \ \xi \in \mathbf{R}^d); \\ \hat{c} := c - \frac{1}{2} \operatorname{div} \mathbf{b} \ge 0 \text{ in } \Omega, \quad \hat{\alpha} := \alpha + \frac{1}{2} (\mathbf{b} \cdot \nu) \ge 0 \text{ on } \Gamma_N;$

(iv) either $\Gamma_D \neq \emptyset$, or \hat{c} or $\hat{\alpha}$ has a positive lower bound.

Operator preconditioning for elliptic problems ${\rm OO}{\rm OO}{\rm OO}{\rm O}$

000000000000000 000000000 00

Equations

Characterization of compact-equivalence:

Theorem

Let the elliptic operators L_1 and L_2 satisfy Assumptions 1. Then L_1 and L_2 are compact-equivalent in $H_D^1(\Omega)$ if and only if their principal parts coincide up to some constant $\mu > 0$, i.e. $A_1 = \mu A_2$.

Operator preconditioning for elliptic problems $\texttt{OOO}{\bullet}\texttt{OOO}$

000000000000000 000000000 00

Equations

Elliptic equations

Freedom: choice of lower order coefficients.

Example: convection-diffusion operator

$$Lu \equiv -\Delta u + \mathbf{b}(x) \cdot \nabla u + c(x)u$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu} + \alpha(x)u_{|\Gamma_N} = 0$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems $\texttt{OOOO} \bullet \texttt{OO}$

000000000000000 000000000 00

Equations

Elliptic equations

Freedom: choice of lower order coefficients.

Example: convection-diffusion operator

$$Lu \equiv -\Delta u + \mathbf{b}(x) \cdot \nabla u + c(x)u$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu} + \alpha(x)u_{|\Gamma_N} = 0$

Preconditioning operator:

$$Su \equiv -\Delta u + \mathbf{w}(x) \cdot \nabla u + \sigma(x)u$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu} + \beta(x)u_{|\Gamma_N} = 0$.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems OOOOOOO

000000000000000 000000000 00

Equations

Elliptic equations

Freedom: choice of lower order coefficients.

Example: convection-diffusion operator

$$Lu \equiv -\Delta u + \mathbf{b}(x) \cdot \nabla u + c(x)u$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu} + \alpha(x)u_{|\Gamma_N} = 0$

Preconditioning operator: e.g.

$$Su \equiv -\Delta u + + \sigma \quad u$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu} + \beta \quad u_{|\Gamma_N} = 0$.

Operator preconditioning for elliptic problems $\texttt{OOOOOO} \bullet$

000000000000000 000000000 00

Equations

Elliptic equations

Freedom: choice of lower order coefficients.

Example: convection-diffusion operator

$$Lu \equiv -\Delta u + \mathbf{b}(x) \cdot \nabla u + c(x)u$$

for $u_{|\Gamma_D} = 0$, $\frac{\partial u}{\partial \nu} + \alpha(x)u_{|\Gamma_N} = 0$.

Preconditioning operator: e.g.

 $\begin{aligned} Su &\equiv -\Delta u + \sigma u \\ \text{for } u_{|\Gamma_D} &= 0, \quad \frac{\partial u}{\partial \nu} + \beta u_{|\Gamma_N} = 0 \end{aligned}$

 \rightarrow symmetric operator with constant coefficients.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

.

Systems

Elliptic systems: saddle-point

Case 2: Stokes problem

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f} \\ \operatorname{div} \mathbf{u} = \mathbf{0} \end{cases}$$

with b.c. $\mathbf{u}_{|\partial\Omega} = 0$.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

000000000000000 000000000 00

Systems

Elliptic systems: saddle-point

Case 2: Stokes problem

Regularized form:

$$\begin{cases} -\Delta \mathbf{u} + \nabla p = \mathbf{f} \\ \operatorname{div} \mathbf{u} - \sigma \Delta p = \sigma \operatorname{div} \mathbf{f} \end{cases}$$

with b.c. $\mathbf{u}_{\mid\partial\Omega} = 0$, $\partial_{\nu} p_{\mid\partial\Omega} = 0$.

J. Karátson

Budapest, Hungary

.

Operator preconditioning for elliptic problems

Systems

Elliptic systems: saddle-point

Case 2: Stokes problem

Preconditioning operator: auxiliary problems

$$\begin{pmatrix}
-\Delta \mathbf{u} = \dots \\
-\sigma \Delta p = \dots
\end{cases}$$

with b.c. $\mathbf{u}_{\mid\partial\Omega} = 0$, $\partial_{\nu} p_{\mid\partial\Omega} = 0$.

Independent Poisson equations.

FEM solution: mesh independent superlinear convergence.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: saddle-point

Case 2: Stokes problem

Preconditioning operator: auxiliary problems

$$\begin{pmatrix}
-\Delta \mathbf{u} = \dots \\
-\sigma \Delta p = \dots
\end{cases}$$

with b.c. $\mathbf{u}_{\mid\partial\Omega} = 0$, $\partial_{\nu} p_{\mid\partial\Omega} = 0$.

Independent Poisson equations.

FEM solution: mesh independent superlinear convergence.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: saddle-point

Case 2: Stokes problem

Preconditioning operator: auxiliary problems

$$\begin{pmatrix}
-\Delta \mathbf{u} = \dots \\
-\sigma \Delta p = \dots
\end{cases}$$

with b.c. $\mathbf{u}_{\mid\partial\Omega} = 0$, $\partial_{\nu} p_{\mid\partial\Omega} = 0$.

Independent Poisson equations.

FEM solution: mesh independent superlinear convergence.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Case 3: elliptic systems of transport type

We consider ℓ -tuples of operators

$$L_{i}u \equiv -\operatorname{div}(A_{i} \nabla u_{i}) + \mathbf{b}_{i} \cdot \nabla u_{i} + \sum_{j=1}^{\ell} V_{ij}u_{j} \qquad (i = 1, \dots, \ell)$$

for $u_{i \mid \Gamma_{D}} = 0,$
 $\frac{\partial u_{i}}{\partial \nu_{A}} + \alpha_{i}u_{i \mid \Gamma_{N}} = 0.$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Case 3: elliptic systems of transport type

We consider ℓ -tuples of operators

$$L_{i}u \equiv -\operatorname{div}(A_{i} \nabla u_{i}) + \mathbf{b}_{i} \cdot \nabla u_{i} + \sum_{j=1}^{\ell} V_{ij}u_{j} \qquad (i = 1, \dots, \ell)$$

for $u_{i \mid \Gamma_{D}} = 0,$
 $\frac{\partial u_{i}}{\partial \nu_{A}} + \alpha_{i}u_{i \mid \Gamma_{N}} = 0.$

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Case 3: elliptic systems of transport type

We consider ℓ -tuples of operators

$$L_{i}u \equiv -\operatorname{div}(A_{i} \nabla u_{i}) + \mathbf{b}_{i} \cdot \nabla u_{i} + \sum_{j=1}^{\ell} V_{ij}u_{j} \qquad (i = 1, \dots, \ell)$$

for $u_{i \mid \Gamma_{D}} = 0,$
 $\frac{\partial u_{i}}{\partial \nu_{A}} + \alpha_{i}u_{i \mid \Gamma_{N}} = 0.$ (matrix V)

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Assumptions:

- (i) Ω , A_i , α_i as before
- (ii) Smoothness: as before

(iii) Coercivity:

$$\lambda_{\min}(V+V^T) - \max_i \operatorname{div} \mathbf{b}_i \geq 0.$$

For example: $\operatorname{div} \mathbf{b}_i = 0$ ($\forall i$), and V is positive semidefinite.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Assumptions:

- (i) Ω , A_i , α_i as before
- (ii) Smoothness: as before

(iii) Coercivity:

$$\lambda_{\min}(V+V^T) - \max_i \operatorname{div} \mathbf{b}_i \geq 0.$$

For example: $\operatorname{div} \mathbf{b}_i = 0$ ($\forall i$), and V is positive semidefinite.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Main idea of equivalent preconditioning:

define an ℓ -tuple of separate (i.e. independent) symmetric preconditioning operators

$$S_{i}u_{i} := -\operatorname{div}(A_{i}\nabla u_{i}) + \sigma_{i}u_{i} \qquad (i = 1, \dots, \ell)$$

for $u_{i \mid \Gamma_{D}} = 0$, $\frac{\partial u_{i}}{\partial \nu_{A}} + \beta_{i}u_{i \mid \Gamma_{N}} = 0$.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

For example: let the original operators be of the form

$$L_i u \equiv -\Delta u_i + \mathbf{b}_i \cdot \nabla u_i + \sum_{j=1}^{\ell} V_{ij} u_j$$

 $(i=1,\ldots,\ell).$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

For example: let the original operators be of the form

$$L_{i}u \equiv \underbrace{-\Delta u_{i} + \mathbf{b}_{i} \cdot \nabla u_{i}}_{N_{i}u_{i}} + \sum_{j=1}^{\ell} V_{ij}u_{j} = N_{i}u_{i} + \sum_{j=1}^{\ell} V_{ij}u_{j}$$
$$(i = 1, \dots, \ell).$$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Original PDE system:

$$\begin{cases} (N_1 + V_{11})u_1 + V_{12} \ u_2 + \dots + V_{1\ell} \ u_\ell = g_1 \\ V_{21} \ u_1 + (N_2 + V_{22})u_2 + \dots + V_{2\ell} \ u_\ell = g_2 \\ \dots \\ V_{\ell 1} \ u_1 + V_{\ell 2} \ u_2 + \dots + (N_\ell + V_{\ell \ell})u_\ell = g_\ell \end{cases}$$

+ b.c.

J. Karátson

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

 ${\sf Preconditioning} \ \rightarrow \ {\sf auxiliary} \ {\sf PDE} \ {\sf systems}$

$$\begin{cases} (-\Delta + \sigma_1)u_1 &= r_1 \\ (-\Delta + \sigma_2)u_2 &= r_2 \\ \dots & \dots \\ (-\Delta + \sigma_\ell)u_\ell = r_\ell \end{cases}$$

+ b.c.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

According block structure of the stiffness matrices.

Original system:

$$\mathbf{L}_{h} = \begin{pmatrix} \mathbf{L}_{h}^{11} & \mathbf{L}_{h}^{12} & \dots & \mathbf{L}_{h}^{1\ell} \\ \mathbf{L}_{h}^{21} & \mathbf{L}_{h}^{22} & \dots & \mathbf{L}_{h}^{2\ell} \\ \dots & \dots & \dots & \dots \\ \mathbf{L}_{h}^{\ell 1} & \mathbf{L}_{h}^{\ell 2} & \dots & \dots & \mathbf{L}_{h}^{\ell \ell} \end{pmatrix}$$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

According block structure of the stiffness matrices.

Auxiliary systems:

$$\mathbf{S}_{h} = \begin{pmatrix} \mathbf{S}_{h}^{1} & 0 & \dots & \dots & 0 \\ 0 & \mathbf{S}_{h}^{2} & 0 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & \mathbf{S}_{h}^{\prime} \end{pmatrix}$$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

According block structure of the stiffness matrices.

Auxiliary systems:

Parallelizability

Cost of solution \sim cost of a single equation

J. Karátson

 \downarrow

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Example: a parabolic system in modeling air pollution.

- FEM + time discretization + Newton linearization: \rightarrow FEM solution of linear elliptic systems.
- preconditioning operators (independent, symmetric): incorporate the time-step:

$$S_i p_i := -K \Delta p_i + \frac{1}{\tau} p_i \qquad (i = 1, \dots, \ell).$$

Numerical results: mesh-independent superlinear convergence

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Example: a parabolic system in modeling air pollution.

• FEM + time discretization + Newton linearization: \rightarrow

FEM solution of linear elliptic systems.

preconditioning operators (independent, symmetric): incorporate the time-step:

$$S_i p_i := -K \Delta p_i + \frac{1}{\tau} p_i \qquad (i = 1, \dots, \ell).$$

Numerical results: mesh-independent superlinear convergence

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Case 4: Convection-diffusion equations, convection-dominated case: $\varepsilon \ll 1$,

$$\begin{cases} -\varepsilon \Delta u + \mathbf{w} \cdot \nabla u = g \\ u_{|\partial \Omega} = 0. \end{cases}$$

Assumptions (a simple model case): (i) $\Omega \subset \mathbf{R}^n$ is a polyhedral domain. (ii) $\mathbf{w} \in C^1(\overline{\Omega}, \mathbf{R}^n)$, div $\mathbf{w} = 0$. (iii) $g \in L^2(\Omega)$.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Case 4: Convection-diffusion equations, convection-dominated case: $\varepsilon \ll 1$,

$$\begin{cases} -\varepsilon \Delta u + \mathbf{w} \cdot \nabla u = g \\ u_{|\partial \Omega} = 0. \end{cases}$$

Assumptions (a simple model case):

(i)
$$\Omega \subset \mathbf{R}^n$$
 is a polyhedral domain
(ii) $\mathbf{w} \in C^1(\overline{\Omega}, \mathbf{R}^n)$, div $\mathbf{w} = 0$.
(iii) $g \in L^2(\Omega)$.

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Streamline diffusion FEM (SDFEM):

- $V_h \subset H_0^1(\Omega)$ piecewise linear subspace;
- choose paramaters $\delta_k > 0$ on elements $T_k \in \mathcal{T}$;
- replace test functions: $v_h \rightarrow v_h + \delta_k \mathbf{w} \cdot \nabla v_h$ on T_k
- \Rightarrow stabilized bilinear form

$$a_{SD}(u_h, v_h) := \int_{\Omega} \left(\varepsilon \, \nabla u_h \cdot \nabla v_h + (\mathbf{w} \cdot \nabla u_h) v_h \right) + \sum_{k=1}^N \delta_k \int_{\mathcal{T}_k} (\mathbf{w} \cdot \nabla u_h) \left(\mathbf{w} \cdot \nabla v_h \right)$$

on $V_h \times V_h$.

I Karátson

Preconditioning in Hilbert space

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Stabilized inner product: SD-inner product

$$\langle u_h, v_h \rangle_{SD} := \int_{\Omega} \varepsilon \, \nabla u_h \cdot \nabla v_h + \sum_{k=1}^N \delta_k \int_{T_k} (\mathbf{w} \cdot \nabla u_h) (\mathbf{w} \cdot \nabla v_h).$$

 \Rightarrow stable lower coercivity bound:

$$a_{SD}(u_h, u_h) \ge ||u_h||_{SD}^2$$
 (i.e. $m = 1$).

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Preconditioned CG iteration for the SLAE: apply operator preconditioning.

Preconditioner = stiffness matrix for the SD-inner product:

$$(\mathbf{S}_h)_{ij} = \langle \varphi_i, \varphi_j \rangle_{SD}$$

 $\Rightarrow \text{ here } \langle u_h, v_h \rangle_{SD} = \int_{\Omega} (S_{\varepsilon} u_h) v_h ,$

where $S_{\varepsilon} u := -\operatorname{div} (A_{\varepsilon} \nabla u)$ with $A_{\varepsilon} = \varepsilon I + \delta \mathbf{w} \cdot \mathbf{w}^{T}$

 \Rightarrow **S**_h comes from a discretized symmetric elliptic operator

 \Rightarrow optimal O(N) solvers available (multigrid, multilevel)

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Preconditioned CG iteration for the SLAE: apply operator preconditioning.

Preconditioner = stiffness matrix for the SD-inner product:

$$\left({f S}_h
ight)_{ij} = \langle arphi_i, arphi_j
angle_{SD}$$
 \Rightarrow here $\langle u_h, v_h
angle_{SD} = \int_\Omega (S_arepsilon u_h) \, v_h$,

where $S_{\varepsilon}u := -\mathrm{div}\left(A_{\varepsilon}\nabla u\right)$ with $A_{\varepsilon} = \varepsilon I + \delta \mathbf{w} \cdot \mathbf{w}^{T}$

 \Rightarrow **S**_h comes from a discretized symmetric elliptic operator

 \Rightarrow optimal O(N) solvers available (multigrid, multilevel)

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Preconditioned CG iteration for the SLAE: apply operator preconditioning.

Preconditioner = stiffness matrix for the SD-inner product:

$$(\mathbf{S}_{h})_{ij} = \langle \varphi_{i}, \varphi_{j} \rangle_{SD}$$

 \Rightarrow here $\langle u_{h}, v_{h} \rangle_{SD} = \int_{\Omega} (S_{\varepsilon} u_{h}) v_{h}$,
where $S_{\varepsilon} u := -\text{div} (A_{\varepsilon} \nabla u)$ with $A_{\varepsilon} = \varepsilon I + \delta \mathbf{w} \cdot \mathbf{w}^{T}$

 $\Rightarrow \mathbf{S}_h \text{ comes from a discretized symmetric elliptic operator}$ $\Rightarrow \text{ optimal } O(N) \text{ solvers available (multigrid, multilevel)}$

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Linear convergence estimate \rightarrow we need bounds *m* and *M*.

Seen above: m = 1.

M =?

Upper bound needed:

 $|a_{SD}(u_h, v_h)| \leq M \|u_h\|_{SD} \|v_h\|_{SD} \qquad (\forall u_h, v_h \in V_h),$

where

$$a_{SD}(u_h, v_h) = \langle u_h, v_h \rangle_{SD} + \int_{\Omega} (\mathbf{w} \cdot \nabla u_h) v_h.$$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Linear convergence estimate \rightarrow we need bounds *m* and *M*.

Seen above: m = 1.

M =?

Upper bound needed:

$$|a_{SD}(u_h,v_h)| \leq M \|u_h\|_{SD} \|v_h\|_{SD} \qquad (\forall u_h,v_h \in V_h),$$

where

$$a_{SD}(u_h, v_h) = \langle u_h, v_h \rangle_{SD} + \int_{\Omega} (\mathbf{w} \cdot \nabla u_h) v_h.$$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Streamline Poincaré-Friedrichs inequality

Theorem. (Streamline Poincaré-Friedrichs inequality). Let $\mathbf{w} \in C^1(\overline{\Omega}, \mathbf{R}^n)$ be a globally rectifiable vector field on $\overline{\Omega}$. Then there exists a constant $C_{\mathbf{w}} > 0$ (depending on \mathbf{w} but independent of v) such that

 $\|v\|_{L^2(\Omega)} \leq C_{\mathbf{w}} \|\mathbf{w} \cdot \nabla v\|_{L^2(\Omega)} \qquad (v \in H^1_0(\Omega)).$

J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Streamline Poincaré-Friedrichs inequality

Then one can derive

$$|a_{SD}(u_h, v_h)| \leq \left(1 + \frac{C_{\mathbf{w}}}{\delta_0}\right) \|u_h\|_{SD} \|v_h\|_{SD}$$

(where $\delta_0 := \min \delta_k$). That is: the upper bound of a_{SD} satisfies

$$M \leq 1 + rac{C_w}{\delta_0}$$

independently of ε .

Consequence: the PCG iterations converge with rate independently of $\varepsilon \rightarrow$ robustness.

[Axelsson–Karátson–Kovács, SIAM J. Numer. Anal. 2014]

J. Karátson

Operator preconditioning for elliptic problems

CDE

Streamline Poincaré-Friedrichs inequality

Then one can derive

$$|a_{SD}(u_h, v_h)| \leq \left(1 + \frac{C_{\mathbf{w}}}{\delta_0}\right) \|u_h\|_{SD} \|v_h\|_{SD}$$

(where $\delta_0 := \min \delta_k$). That is: the upper bound of a_{SD} satisfies

$$M \leq 1 + rac{C_w}{\delta_0}$$

independently of ε .

Consequence: the PCG iterations converge with rate independently of $\varepsilon \rightarrow$ robustness.

[Axelsson-Karátson-Kovács, SIAM J. Numer. Anal. 2014]

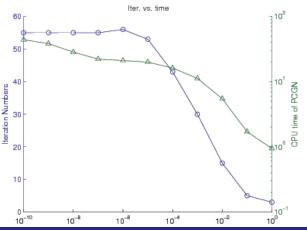
J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Numerical experiments



J. Karátson

Budapest, Hungary

Operator preconditioning for elliptic problems

CDE

Numerical experiments

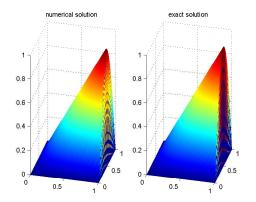


Figure : result for $\varepsilon = 10^{-10}$ –

no unphysical oscillations.
 Budapest, Hungary

J. Karátson

Operator preconditioning for elliptic problems

Complex shift

Helmholtz equations

Case 5: *Helmholtz equations and shifted Laplace preconditioners.* The Helmholtz equation:

$$\begin{cases} -\Delta u - \kappa^2 u = g \\ \left(\frac{\partial u}{\partial n} - i\kappa u\right)_{\mid \partial \Omega} = 0 \end{cases}$$
(1)

(a model problem for high-frequency wave scattering).

4

Preconditioner : the stiffness matrix of the "complex shifted Laplace" problem (using a proper "absorption" parameter)

$$-\Delta u - (\kappa^2 + i\varepsilon)u = g$$
$$(\frac{\partial u}{\partial n} - i\mu u)_{|\partial\Omega} = 0$$

[Erlangga, Gander, Magoules, Graham, Enquist, Ying, Shanks...]

Operator preconditioning for elliptic problems

Complex shift

Helmholtz equations

Case 5: *Helmholtz equations and shifted Laplace preconditioners.* The Helmholtz equation:

$$\begin{cases} -\Delta u - \kappa^2 u = g \\ \left(\frac{\partial u}{\partial n} - i\kappa u\right)_{\mid \partial \Omega} = 0 \end{cases}$$
(1)

(a model problem for high-frequency wave scattering). Preconditioner : the stiffness matrix of the "complex shifted Laplace" problem (using a proper "absorption" parameter)

$$\begin{pmatrix} -\Delta u - (\kappa^2 + i\varepsilon)u &= g \\ (\frac{\partial u}{\partial n} - i\mu u)_{|\partial\Omega} &= 0 \end{cases}$$
(2)

[Erlangga, Gander, Magoules, Graham, Enquist, Ying, Shanks...]

J. Karátson

Operator preconditioning for elliptic problems

Complex shift

Helmholtz equations

Assumptions:

discrete inf-sup-condition for both the original and auxiliary problems

Theorem. Mesh-independent superlinear convergence:

$$\left(\frac{\|r_k\|\mathbf{s}_h}{\|r_0\|\mathbf{s}_h}\right)^{1/k} \le \varepsilon_k \to 0$$

where $\varepsilon_k := \frac{M}{m_0 m_1} \cdot \frac{1}{k} \sum_{i=1}^k s_i(Q_S)$ for the GMRES, and an analogous formula holds for the CGN.

(Here $s_i(Q_S)$ = the singular values of a compact operator, arising from the weak formulations.)

J. Karátson

Operator preconditioning for elliptic problems

Complex shift

Helmholtz equations

Assumptions:

discrete inf-sup-condition for both the original and auxiliary problems

Theorem. Mesh-independent superlinear convergence:

$$\left(\frac{\|r_k\|\mathbf{s}_h}{\|r_0\|\mathbf{s}_h}\right)^{1/k} \leq \varepsilon_k \to 0$$

where $\varepsilon_k := \frac{M}{m_0 m_1} \cdot \frac{1}{k} \sum_{i=1}^k s_i(Q_S)$ for the GMRES, and an analogous formula holds for the CGN.

(Here $s_i(Q_S)$ = the singular values of a compact operator, arising from the weak formulations.)

J. Karátson

Operator preconditioning for elliptic problems

0000000000000000 000000000 00

Thank you for your attention!