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Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

Theoretical background

The problem of preconditioning

Linear(ized) algebraic system: Ac = d.

Preconditioning matrix: B
Preconditioned algebraic system: B−1Ac = B−1d.

CG (CGN, GCG-LS, GMRES) iteration → auxiliary systems Bz = r

Twofold goals:

Faster CG convergence → B ≈ A
Low cost → B ≈ I

Conflicting goals → a compromise needed.

Various strategies mainly use algebraic structure of A.
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Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

Theoretical background

Equivalent operator preconditioning

The problem: discretized linear elliptic PDE, using FEM:

Lhc = d (SLAE )

Disadvantage: cond(Lh)→∞ as h→ 0.

Advantage: for certain PDEs, (SLAE) can be solved optimally or
quasi-optimally,
i.e. with O(n) or O(n log n) operations.

E.g.: such problems: symmetric elliptic equations,
equations with constant coefficients;

such methods: multigrid, FFT.

More general problems: nonsymmetric eqns; systems;
parameter-dependent problems.
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Theoretical background

Equivalent operator preconditioning

Proposal: let S be another elliptic operator, such that systems
Shz = r can be solved (quasi-)optimally.

Preconditioning matrix: Sh.

CG iteration for system S−1
h Lhc = S−1

h d
↓

if the convergence is mesh-independent, then the original problem
is solved also (quasi-)optimally (since const.·O(n) = O(n))

J. Karátson Budapest, Hungary

Equivalent operator preconditioning for elliptic finite element problems



Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

Theoretical background

Equivalent operator preconditioning

Proposal: let S be another elliptic operator, such that systems
Shz = r can be solved (quasi-)optimally.

Preconditioning matrix: Sh.

CG iteration for system S−1
h Lhc = S−1

h d
↓

if the convergence is mesh-independent, then the original problem
is solved also (quasi-)optimally (since const.·O(n) = O(n))
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J. Karátson Budapest, Hungary

Equivalent operator preconditioning for elliptic finite element problems



Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

Theoretical background

Equivalent operator preconditioning

Theory of mesh-independent linear convergence:

Various early and later works (1966 to present)

[Dyakonov, Gunn, Concus, Golub, Elman, Widlund, Cao, Hiptmair,
Mardal, Winther...

T. Manteuffel, Goldstein, Faber, Parter, Otto]

→ a solid theoretical framework:
theory of equivalent operators in Hilbert space

Under proper assumptions:

if L ∼ S ⇒ mesh independent linear convergence
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Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

Motivation: CG convergence history
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Theoretical background

Equivalent operator preconditioning

Compact-equivalent operators in Hilbert space

(theory of mesh-independent superlinear convergence,
[Axelsson-Karátson, SIAM J. Numer. Anal. 2007]).

Let L and N be unbounded coercive operators in a Hilbert space,
let LS and NS be their suitable weak forms in an energy space HS .

Def. L and N are compact-equivalent if
LS = µNS + QS , where µ > 0 and QS is compact.

Special case: if N = S is symmetric then LS = µI + QS .
We may let µ = 1 → compact perturbation of the identity.
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Theoretical background

Equivalent operator preconditioning

Theorem

If LS = I + QS , then for any Galerkin subspace the CGN iteration
for system S−1

h Lhc = S−1
h d satisfies(

‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk (k = 1, 2, ..., n),

where εk → 0 is a sequence independent of Vh. In fact,

εk := 2
km2

k∑
i=1

(∣∣λi (Q∗S + QS)
∣∣+ λi (Q∗SQS)

)
.

→ Mesh-independent superlinear convergence.
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Equations

Elliptic equations

Case 1: scalar elliptic operators.

We consider elliptic operators

Lu ≡ − div(A∇u) + b · ∇u + cu

for u|ΓD
= 0, ∂u

∂νA
+ αu|ΓN

= 0.
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Equations

Elliptic equations

Assumptions 1. (standard for having H1-coercivity)

(i) Ω ⊂ Rd is a bounded piecewise C 1 domain; ΓD , ΓN are disjoint open
measurable subsets of ∂Ω such that ∂Ω = ΓD ∪ ΓN ;

(ii) A ∈ L∞(Ω,Rd×d) and for all x ∈ Ω the matrix A(x) is symmetric;
further, b ∈W 1,∞(Ω)d , c ∈ L∞(Ω), α ∈ L∞(ΓN);

(iii) we have the following properties which will imply coercivity:
∃p > 0: A(x)ξ · ξ ≥ p |ξ|2 (∀x ∈ Ω, ξ ∈ Rd);
ĉ := c − 1

2 divb ≥ 0 in Ω, α̂ := α + 1
2 (b · ν) ≥ 0 on ΓN ;

(iv) either ΓD 6= ∅, or ĉ or α̂ has a positive lower bound.

J. Karátson Budapest, Hungary
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Equations

Elliptic equations

Characterization of compact-equivalence:

Theorem

Let the elliptic operators L1 and L2 satisfy Assumptions 1. Then
L1 and L2 are compact-equivalent in H1

D(Ω) if and only if their
principal parts coincide up to some constant µ > 0, i.e. A1 = µA2.
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Equations

Elliptic equations

Freedom: choice of lower order coefficients.

Example: convection-diffusion operator

Lu ≡ −∆u + b(x) · ∇u + c(x)u

for u|ΓD
= 0, ∂u

∂ν + α(x)u|ΓN
= 0.

Preconditioning operator:

Su ≡ −∆u + w(x) · ∇u + σ(x)u

for u|ΓD
= 0, ∂u

∂ν + β(x)u|ΓN
= 0.
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Equations

Elliptic equations

Freedom: choice of lower order coefficients.

Example: convection-diffusion operator

Lu ≡ −∆u + b(x) · ∇u + c(x)u

for u|ΓD
= 0, ∂u

∂ν + α(x)u|ΓN
= 0.

Preconditioning operator: e.g.

Su ≡ −∆u + σu

for u|ΓD
= 0, ∂u

∂ν + βu|ΓN
= 0

→ symmetric operator with constant coefficients.
J. Karátson Budapest, Hungary
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Systems

Elliptic systems: saddle-point

Case 2: Stokes problem

Regularized form: {
−∆u + ∇p = f

divu+σ∆p = 0

with b.c. u|∂Ω = 0.
Independent Poisson equations.

FEM solution: mesh independent superlinear convergence.
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Systems

Elliptic systems: saddle-point
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Preconditioning operator: auxiliary problems{
−∆u+∇p = ...

divu+−σ∆p = ...

with b.c. u|∂Ω = 0, ∂νp|∂Ω = 0.

Independent Poisson equations.

FEM solution: mesh independent superlinear convergence.
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J. Karátson Budapest, Hungary

Equivalent operator preconditioning for elliptic finite element problems



Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

Systems

Elliptic systems: transport problems

Case 3: elliptic systems of transport type

We consider `-tuples of operators

Liu ≡ − div(Ai ∇ui ) + bi · ∇ui +
∑̀
j=1

Vijuj (i = 1, . . . , `)

for ui |ΓD
= 0,

∂ui
∂νA

+ αiui |ΓN
= 0.
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Systems

Elliptic systems: transport problems

Case 3: elliptic systems of transport type

We consider `-tuples of operators

Liu ≡ − div(Ai ∇ui ) + bi · ∇ui +
∑̀
j=1

Vijuj︸ ︷︷ ︸
coupling

(i = 1, . . . , `)

for ui |ΓD
= 0,

∂ui
∂νA

+ αiui |ΓN
= 0. (matrix V )

J. Karátson Budapest, Hungary
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Systems

Elliptic systems: transport problems

Assumptions:

(i) Ω, Ai , αi as before

(ii) Smoothness: as before

(iii) Coercivity:

λmin(V + V T )−max
i

divbi ≥ 0.

For example: divbi = 0 (∀i), and
For example: V is positive semidefinite.
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Systems

Elliptic systems: transport problems

Main idea of equivalent preconditioning:

define an `-tuple of separate (i.e. independent) symmetric
preconditioning operators

Siui := −div(Ai ∇ui ) + σiui (i = 1, . . . , `)

for ui |ΓD
= 0, ∂ui

∂νA
+ βiui |ΓN

= 0.
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Systems

Elliptic systems: transport problems

For example: let the original operators be of the form

Liu ≡ −∆ui + bi · ∇ui +
∑̀
j=1

Vijuj

(i = 1, . . . , `).
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Systems

Elliptic systems: transport problems

For example: let the original operators be of the form

Liu ≡ −∆ui + bi · ∇ui︸ ︷︷ ︸
Niui

+
∑̀
j=1

Vijuj = Niui +
∑̀
j=1

Vijuj

(i = 1, . . . , `).

J. Karátson Budapest, Hungary
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Systems

Elliptic systems: transport problems

Original PDE system:

(N1 + V11)u1 + (N1+V12)u2 + · · ·+ (N1+V1`)u` = g1

(N1+V21)u1 + (N2 + V22)u2 + · · ·+ (N1+V2`)u` = g2

. . . . . .

(N1+V`1)u1 + (N2+V`2)u2 + · · ·+ (N` + V``)u` = g`

+ b.c.

J. Karátson Budapest, Hungary
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Systems

Elliptic systems: transport problems

Preconditioning → auxiliary PDE systems

(−∆ + σ1)u1+(N1 + V12)u2 + · · ·+ (N1 + V1`)u=̀ r1

(N1 + V21)u1+(−∆ + σ2)u2+ · · ·+ (N1 + V2`)u` = r2

. . . . . .

(−∆ + σ`)u` = r`

+ b.c.

J. Karátson Budapest, Hungary
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Systems

Elliptic systems: transport problems

According block structure of the stiffness matrices.

Original system:

Lh =


L11
h L12

h . . . . . . L1`
h

L21
h L22

h . . . . . . L2`
h

. . . . . . . . . . . . . . .
L`1h L`2h . . . . . . L``h
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Systems

Elliptic systems: transport problems

According block structure of the stiffness matrices.

Auxiliary systems:

Sh =


S1
h 0 . . . . . . 0

0 S2
h 0 . . . 0

. . . . . . . . . . . . . . .
0 . . . . . . 0 Sl

h
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Systems

Elliptic systems: transport problems

According block structure of the stiffness matrices.

Auxiliary systems:

↓

Parallelizability

Cost of solution ∼ cost of a single equation

J. Karátson Budapest, Hungary
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Systems

Elliptic systems: transport problems

Example: a parabolic system in modeling air pollution.

FEM + time discretization + Newton linearization: →

FEM solution of linear elliptic systems.

preconditioning operators (independent, symmetric):
incorporate the time-step:

Sipi := −K ∆pi +
1

τ
pi (i = 1, . . . , `).

Numerical results: mesh-independent superlinear convergence
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CDE

Convection-dominated equations

Case 4: Convection-diffusion equations, convection-dominated
case: ε� 1, {

−ε∆u + w · ∇u = g

u|∂Ω = 0.

Assumptions (a simple model case):

(i) Ω ⊂ Rn is a polyhedral domain.

(ii) w ∈ C 1(Ω, Rn), divw = 0.

(iii) g ∈ L2(Ω).

J. Karátson Budapest, Hungary

Equivalent operator preconditioning for elliptic finite element problems



Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Case 4: Convection-diffusion equations, convection-dominated
case: ε� 1, {

−ε∆u + w · ∇u = g

u|∂Ω = 0.

Assumptions (a simple model case):

(i) Ω ⊂ Rn is a polyhedral domain.

(ii) w ∈ C 1(Ω, Rn), divw = 0.

(iii) g ∈ L2(Ω).
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CDE

Convection-dominated equations

Streamline diffusion FEM (SDFEM):

Vh ⊂ H1
0 (Ω) piecewise linear subspace;

choose paramaters δk > 0 on elements Tk ∈ T ;

replace test functions: vh → vh + δk w · ∇vh on Tk

⇒ stabilized bilinear form

aSD(uh, vh) :=

∫
Ω

(
ε∇uh·∇vh+(w·∇uh)vh

)
+

N∑
k=1

δk

∫
Tk

(w · ∇uh) (w · ∇vh)

on Vh × Vh.
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CDE

Convection-dominated equations

Stabilized inner product: SD-inner product

〈uh, vh〉SD :=

∫
Ω
ε∇uh · ∇vh +

N∑
k=1

δk

∫
Tk

(w · ∇uh) (w · ∇vh) .

⇒ stable lower coercivity bound:

aSD(uh, uh) ≥ ‖uh‖2
SD (i.e. m = 1 ).

J. Karátson Budapest, Hungary
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CDE

Convection-dominated equations

Preconditioned CG iteration for the SLAE:
apply operator preconditioning.

Preconditioner = stiffness matrix for the SD-inner product:

(Sh)ij = 〈ϕi , ϕj〉SD

⇒ here 〈uh, vh〉SD =

∫
Ω

(Sεuh) vh ,

where Sεu := −div
(
Aε∇u) with Aε = εI + δw ·wT

⇒ Sh comes from a discretized symmetric elliptic operator

⇒ optimal O(N) solvers available (multigrid, multilevel)
J. Karátson Budapest, Hungary

Equivalent operator preconditioning for elliptic finite element problems



Introduction Preconditioning in Hilbert space Operator preconditioning for elliptic problems

CDE

Convection-dominated equations

Preconditioned CG iteration for the SLAE:
apply operator preconditioning.

Preconditioner = stiffness matrix for the SD-inner product:

(Sh)ij = 〈ϕi , ϕj〉SD

⇒ here 〈uh, vh〉SD =

∫
Ω

(Sεuh) vh ,

where Sεu := −div
(
Aε∇u) with Aε = εI + δw ·wT

⇒ Sh comes from a discretized symmetric elliptic operator

⇒ optimal O(N) solvers available (multigrid, multilevel)
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CDE

Convection-dominated equations

Linear convergence estimate → we need bounds m and M.

Seen above: m = 1.

M =?

Upper bound needed:

|aSD(uh, vh)| ≤ M ‖uh‖SD‖vh‖SD (∀uh, vh ∈ Vh),

where

aSD(uh, vh) = 〈uh, vh〉SD +

∫
Ω

(w · ∇uh)vh .
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CDE

Streamline Poincaré-Friedrichs inequality

Theorem. (Streamline Poincaré-Friedrichs inequality). Let
w ∈ C 1(Ω,Rn) be a globally rectifiable vector field on Ω. Then
there exists a constant Cw > 0 (depending on w but independent
of v) such that

‖v‖L2(Ω) ≤ Cw ‖w · ∇v‖L2(Ω) (v ∈ H1
0 (Ω)).
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CDE

Streamline Poincaré-Friedrichs inequality

Then one can derive

|aSD(uh, vh)| ≤
(

1 +
Cw

δ0

)
‖uh‖SD‖vh‖SD

(where δ0 := min δk).
That is: the upper bound of aSD satisfies

M ≤ 1 +
Cw

δ0

independently of ε.

Consequence: the PCG iterations converge with rate independently
of ε → robustness.

[Axelsson–Karátson–Kovács, SIAM J. Numer. Anal. 2014]
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CDE

Numerical experiments
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CDE

Numerical experiments

Figure : result for ε = 10−10 – no unphysical oscillations.
J. Karátson Budapest, Hungary
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Complex shift

Helmholtz equations

Case 5: Helmholtz equations and shifted Laplace preconditioners.

The Helmholtz equation:{
−∆u − κ2u = g

(∂u∂n − iκu) |∂Ω = 0
(1)

(a model problem for high-frequency wave scattering).

Preconditioner : the stiffness matrix of the ”complex shifted
Laplace” problem (using a proper ”absorption” parameter){

−∆u − (κ2 + iε)u = g

(∂u∂n − iµu) |∂Ω = 0
(2)

[Erlangga, Gander, Magoules, Graham, Enquist, Ying, Shanks...]
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Complex shift

Helmholtz equations

Assumptions:

discrete inf-sup-condition for both the original and auxiliary problems

Theorem. Mesh-independent superlinear convergence:(
‖rk‖Sh

‖r0‖Sh

)1/k

≤ εk → 0

where εk := M
m0m1

· 1
k

k∑
i=1

si (QS) for the GMRES, and an analogous

formula holds for the CGN.

(Here si (QS) = the singular values of a compact operator, arising
from the weak formulations.)
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Thank you for your attention!
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