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1 Introduction

We are concerned with the linear functional equation

n∑
i=1

aif(bix+ ciy) = 0 (x, y ∈ C) (1)

where ai, bi, ci are given complex numbers, and f : C → C is the unknown
function.

We shall use the following notations. Let (G,+) be an Abelian group. The
difference operator ∆h is defined by

∆hf(x) = f(x+ h)− f(x) (x, h ∈ G)

for every f : G → C. A function f : G → C is called a generalized polynomial
if there is an n such that ∆h1 . . .∆hn+1f(x) = 0 for every h1, . . . , hn+1, x ∈ G.
The smallest n for which f satisfies this condition is called the degree of f. We
note that every polynomial p : C→ C is a generalized polynomial with the same
degree but the family of generalized polynomials are wider. We say that the
function f : G → C is additive, if f is a homomorphism of G into the additive
group of C. A function f is a generalized polynomial of degree 1 if and only if
there is an additive function a such that f − a is constant.

By a well-known result of L. Székelyhidi [10], under some mild conditions
on the equation (see (2) below), every solution of equation (1) is a generalized
polynomial. But the finer structure of the solutions has been investigated only
recently. The description of the space of solutions is the main object of the
dissertation.

Let CG denote the linear space of all complex valued functions defined on G
equipped with the product topology. By a variety on G we mean a translation
invariant closed linear subspace of CG. A function is a polynomial if it belongs
to the algebra generated by the constant functions and the additive functions.
A nonzero function m ∈ CG is called an exponential if m is multiplicative; that
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is, if m(x+y) = m(x) ·m(y) for every x, y ∈ G. An exponential monomial is the
product of a polynomial and an exponential, a polynomial-exponential function
is a finite sum of exponential monomials. If a variety contains an exponential
element, then we say that spectral analysis holds on this variety. If a variety is
spanned by exponential monomials, then we say that spectral synthesis holds on
this variety. If spectral analysis or synthesis holds in every variety on G, then
we say that spectral analysis or synthesis holds on G, respectively.

The most important contribution of our results to the theory of linear func-
tional equations is the application of spectral analysis and synthesis to some
varieties related to the spaces of solutions of the equations. The idea of the
algebraic point of view of the spectral analysis and synthesis on locally compact
Abelian groups goes back to the pioneer work of L. Schwartz [8]. The inves-
tigation for case of the discrete Abelian groups started by M. Laczkovich, G.
Székelyhidi and L. Székelyhidi [5, 6, 11]. The idea of applying spectral analysis
to the varieties related to the space of solutions first appeared in [3]. The method
of spectral synthesis was first used in [1] and in full generality was proved in [2].

2 Existence of nonzero solutions of linear func-
tional equations

By the result of L. Székelyhidi [10], the following condition on the parameters
implies that every solution of (1) is a generalized polynomial.

The numbers a1, . . . , an are nonzero, and there exists an 1 ≤ i ≤ n
such that bicj 6= bjci holds for any 1 ≤ j ≤ n, j 6= i.

(2)

Hereinafter, we assume this condition hence every solution is a generalized
polynomial, although without this assumption there can be found some other
solutions of (1). For some special case we can describe the space of solutions
but for full generality it is still open.

We shall restrict our attention to the solutions defined on a subfield K of C,
more regularly on the field Q(b1, . . . , bn, c1, . . . , cn). This is justified in that any
function f : K → C satisfying

∑n
i=1 aif(bix + ciy) = 0 for every x, y ∈ K can

be extended to a solution on C.
The idea of applying spectral analysis to varieties on K∗ = {x ∈ K : x 6=

0} (which is an Abelian groups with the multiplication) and on (K∗)k was
introduced in [3] .

For the existence of non-constant solutions it needs two ingredients. First,
we use the fact that if there is a non-constant solution of (1), then there exists
a nonzero additive solution, as well. The second one is following:

Theorem 2.1. There is a nonzero additive solution of (1) if and only if there
exists a solution of (1) which is an automorphism φ : C → C or, equivalently,
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an automorphism satisfying

n∑
i=1

aiφ(bi) = 0 and

n∑
i=1

aiφ(ci) = 0. (3)

.

Theorem 2.1 has many applications. We show a generalization of the theorem
of A. Varga [12].

Theorem 2.2. (i) Suppose that the parameters b1, . . . , bs are algebraic num-
bers and bs+1, . . . , bn are algebraically independent over Q, where 0 ≤ s <
n. If the parameters a1, . . . , an are algebraic numbers, then

n∑
i=1

aif(bix) = 0 (4)

has no nonzero additive solution.

(ii) Suppose that the parameters a1, . . . , as are algebraic numbers and as+1, . . . , an
are algebraically independent over Q, where 0 ≤ s < n. If the parameters
b1, . . . , bn are algebraic numbers, then (4) has no nonzero additive solution.

We can generalize Theorem 2.1 for the existence of generalized polynomials
of degree k > 1 in the following way.

Theorem 2.3. For every positive integer k the following are equivalent.

(i) There exists a generalized polynomial of degree k which is a solution of
(1).

(ii) There exist field automorphisms φ1, . . . , φk of C such that φ1 · . . . · φk is a
solution of (1).

(iii) There exist field automorphisms φ1, . . . , φk of C such that

n∑
i=1

ai
∏
j∈J

φj(bi)
∏
j′ /∈J

φj′(ci) = 0

for every J ⊆ {1, . . . , k}.

3 Space of solutions of (1)

In this section we also assume that the every solution is generalized polynomial,
which is true if we assume condition (2).
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3.1 Algebraic inner parameters

First we deal with the additive case (k = 1), moreover we start with the special
case when bi and ci are algebraic numbers. The following theorem is a direct
application of spectral synthesis proved in [6].

Theorem 3.1. Let b1, . . . , bn, c1, . . . , cn be algebraic numbers, and put
K = Q(b1, . . . , bn, c1, . . . , cn). Then every additive solution of (1) defined on
K is of the form

d1φ1 + · · ·+ dkφk,

where d1, . . . , dk are complex numbers and φ1, . . . , φk : K → C are injective
homomorphisms satisfying

n∑
i=1

aiφj(bi) = 0 and

n∑
i=1

aiφj(ci) = 0 (5)

for every j ∈ {1, . . . , k}.

This result can be easily generalized composing Theorems 2.3 and 3.1.
Theorem 3.1 might suggest that if there are many injective homomorphisms

which are solutions of (1), then the closed linear space generated by these injec-
tive homomorphisms contains every additive solution as well. This is not true
in general.

Theorem 3.2. Let K ⊂ C be a field which contains a transcendental number.
Then there exist linear functional equations of the form

n∑
i=1

aif(bix+ ciy) = 0

such that bi, ci ∈ K for every i = 1, . . . , n, and there exists an additive solu-
tion d on K which is not contained by the variety generated by the injective
homomorphism solutions.

A function h : K → K is a derivation on K if h is additive and satisfies the
Leibnitz’s rule (i.e.: h(xy) = h(x)y + xh(y) for every x, y ∈ K). We note that
the additive solution d in Theorem 3.2 is a derivation on K. This motivates the
direction of our investigation of the general case.

3.2 Differential operators on a field

Suppose that the complex numbers t1, . . . , tn are algebraically independent over
Q. The elements of the field Q(t1, . . . , tn) are the rational functions of t1, . . . , tn
with rational coefficients. By a differential operator on Q(t1, . . . , tn) we mean
an operator of the form

D =
∑

ci1,...,in ·
∂i1+···+in

∂ti11 · · · ∂t
in
n

, (6)
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where ∂/∂ti are the usual partial derivatives, the sum is finite, in each term the
coefficient is a complex number, and the exponents i1, . . . , in are nonnegative
integers. If i1 = . . . = in = 0, then by ∂i1+···+in/∂ti11 · · · ∂tinn we mean the
identity operator on Q(t1, . . . , tn). The degree of the differential operator D is
the maximum of the numbers i1 + . . .+ in such that ci1,...,in 6= 0.

Let K be an arbitrary finitely generated subfield of C. Then it can be written
of the form

K = Q(t1, . . . , tn, α)

where t1, . . . , tn are algebraically independent over Q and α is in algebraic over
Q(t1, . . . , tn). It can be proved that if there is a differential operator D on
Q(t1, . . . , tn), then it is uniquely extended as a differential operator (on K).

3.3 Spectral sythesis and the space of additive solutions

Theorem 3.3. Suppose that the transcendence degree of the field K over Q is
finite. Let f : K → C be additive, and let m be an exponential on K∗. Let φ
be an extension of m to C as an automorphism of C. Then the following are
equivalent.

(i) f = p ·m on K∗, where p is a generalized polynomial on K∗.

(i) f = p ·m on K∗, where p is a polynomial on K∗.

(iii) There exists a unique differential operator D on K such that f = φ ◦ D
on K.

Theorem 3.4. Suppose that the transcendence degree of the field K over Q
is finite. Then spectral synthesis holds in every variety on K∗ consisting of
additive functions (with respect to addition).

The proof of the Theorem 3.4 is based on relatively new result of (local)
spectral synthesis on countably generated Abelian groups [4].

As an application of Theorems 3.3 and 3.4 we describe the additive solutions
of the linear functional equation (1). We denote by Sk the set of solutions of
degree k of (1). We can show that

S∗1 = {f |K∗ : f ∈ S1}

is a variety on K∗. For k > 1 the analogue statement is not true, we need to
extend our attention for k-additive functions.

The next theorem is our main result concerning the additive solutions of
linear functional equations and it has many applications

Theorem 3.5. The linear space S1 is spanned by the functions φ ◦D, where φ
and D are as above.
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3.4 Spectral synthesis and the space of solutions of higher
degree

As it was mentioned before the analogues theorems of Theorem 3.3 and 3.4 can
be proved for the k-additive functions on Kk and (K∗)k instead of K and K∗,
respectively. Finally, we may obtain the following result:

Theorem 3.6. The linear space Sk is spanned by the functions
∏k
i=1 φi ◦Di,

where φi are an automorphism of C and
∏k
i=1 φi in Sk, and Di are differential

operators on K.

We remark that most of the cases there is no boundary for the number of
terms in Di’s in general, nevertheless it is a finite expression.

3.5 The discrete Pompeiu problem

In the last section we are concerned with the discrete Pompeiu problem and its
connection to linear functional equations. The problem is stemmed from the
classical Pompeiu problem and from the question asked by L. Pósa.

Question 3.7 (Pósa). Suppose that the function f : R2 → R has the property
that the sum of the values of f at the vertices of any square of fix size is zero.
Is it true that f ≡ 0?

Let D be a finite set of R2 and let G be a transformation group on R2.
We say that D has the discrete Pompeiu property with respect to G if for every
function f : R2 → C the equation∑

d∈σ(D)

f(d) = 0 (7)

for all σ ∈ G implies f ≡ 0.
The answer to Pósa’s question is affirmative.

Theorem 3.8. Let D be the vertex set of the unit square. Then D has the
discrete Pompeiu property with respect to the congruences of R2.

The proof of Theorem 3.8 uses spectral analysis and some results of Eu-
clidean Ramsey theory based on the following theorem of L. E. Shader [9].

Theorem 3.9. For any 2-coloring of the plane all right triangles are Ramsey.

Pósa’s question can be generalized as follows:

Question 3.10 (Discrete Pompeiu problem). Let D ⊂ R2 be a finite set. Is it
true that D has the discrete Pompeiu property with respect to the congruences?

In full generality this question remains open.
We denote by Σ the similarity group of R2. it can be shown that the discrete

Pompeiu problem with respect to Σ is equivalent to the existence of non-constant
solution of a linear functional equation.

Theorem 3.11. Suppose that D is a nonempty finite subset of C. Let f : R2 →
C be a function which satisfies equation (7) for every σ ∈ Σ. Then f ≡ 0.
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[8] L. Schwatz, Théorie génerale des fonctions moyenne-périodiques Ann. of
Math. 48 (1947), 857-929.

[9] L. E. Shader, All right triangles are Ramsey in E2!, Journ. Comb. Theory
(A) 20 (1976), 385-389.
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