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Abstract. In this paper we are interested in the class of n-ary operations

on an arbitrary chain that are quasitrivial, symmetric, nondecreasing, and

associative. We first provide a description of these operations. We then prove
that associativity can be replaced with bisymmetry in the definition of this

class. Finally we investigate the special situation where the chain is finite.

1. Introduction

Let X be a nonempty set and let n ≥ 2 be an integer. The n-ary operations
F ∶Xn → X satisfying the associativity property (see Definition 2.1 below) have
been extensively investigated since the pioneering work by Dörnte [9] and Post [15].
In the algebraic language, when F is such an operation, the pair (X,F ) is called
an n-ary semigroup. For a background on this topic see, e.g., [10, 11, 16] and the
references therein.

In this paper we investigate the class of n-ary operations F ∶Xn →X on a chain
(i.e., total order) X that are quasitrivial, symmetric, nondecreasing, and associative
(quasitriviality means that F always outputs one of its input values). After present-
ing some definitions and preliminary results in Section 2, we provide in Section 3 a
characterization of these operations and show that they are derived from associa-
tive binary operations (Theorems 3.2, 3.13, and Corollary 3.4). We also discuss the
special situation where these operations have neutral elements (Proposition 3.14),
in which case they are derived from the so-called idempotent uninorms (Corol-
lary 3.17). In Section 4 we investigate certain bisymmetric n-ary operations and
derive a few equivalences among properties involving associativity and bisymme-
try. For instance we show that if an n-ary operation is quasitrivial and symmetric,
then it is associative iff it is bisymmetric (Corollary 4.9). This observation en-
ables us to replace associativity with bisymmetry in some of our characterization
results. Finally, in Section 5 we particularize our results to the special case where
the operations are defined on finite chains (Corollary 5.1 and Theorem 5.2).

We use the following notation throughout. A chain (X,≤) will simply be denoted
X if no confusion may arise. For any chain X and any x, y ∈X we use the symbols
x ∧ y and x ∨ y to represent min{x, y} and max{x, y}, respectively. On any chain
we consider the ternary median operation

(1) median(x, y, z) = (x ∧ y) ∨ (y ∧ z) ∨ (z ∧ x).
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For any integer k ≥ 0, we set [k] = {1, . . . , k}. Finally, for any integer k ≥ 0 and any
x ∈ X, we set k ⋅ x = x, . . . , x (k times). For instance, we have F (3 ⋅ x,2 ⋅ y,0 ⋅ z) =
F (x,x, x, y, y).

2. Preliminaries

In this section we introduce some basic definitions and present some preliminary
results. Let X be an arbitrary nonempty set.

Definition 2.1. An operation F ∶Xn →X is said to be

● idempotent if F (n ⋅ x) = x for all x ∈X;
● quasitrivial (or conservative, selective) if F (x1, . . . , xn) ∈ {x1, . . . , xn} for

all x1, . . . , xn ∈X;
● symmetric if F (x1, . . . , xn) is invariant under any permutation of x1, . . . , xn;
● associative if

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)
= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)

for all x1, . . . , x2n−1 ∈X and all i ∈ [n − 1];
● bisymmetric if

F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))
for all n × n matrices [c1 ⋯ cn] = [r1 ⋯ rn]T ∈Xn×n.

Assuming that (X,≤) is a chain, an operation F ∶Xn →X is said to be

● nondecreasing (w.r.t. ≤) if F (x1, . . . , xn) ≤ F (x′1, . . . , x′n) whenever xi ≤ x′i
for all i ∈ [n].

Definition 2.2. Let F ∶Xn →X be an operation.

● An element e ∈X is said to be a neutral element of F if

F ((i − 1) ⋅ e, x, (n − i) ⋅ e) = x

for all x ∈ X and all i ∈ [n]. A neutral element need not be unique when
n ≥ 3 (e.g., F (x1, x2, x3) ≡ x1 + x2 + x3 (mod 2) on X = Z2).

● The points x and y of Xn are said to be connected for F if F (x) = F (y).
The point x of Xn is said to be isolated for F if it is not connected to
another point in Xn.

Lemma 2.3. Let F ∶Xn →X be an idempotent operation. If x = (x1, . . . , xn) ∈Xn

is isolated for F , then necessarily x1 = ⋯ = xn.

Proof. Let x = (x1, . . . , xn) be isolated for F . From the identity F (x) = F (n ⋅F (x))
we immediately derive x = (n ⋅ F (x)), that is, x1 = ⋯ = xn = F (x). �

Remark 1. We observe that any quasitrivial operation F ∶Xn →X has at most one
isolated point. Indeed, such an operation F is necessarily idempotent and hence
the result follows from Lemma 2.3 and the fact that we have

F ((n − 1) ⋅ x, y) ∈ {x, y} = {F (n ⋅ x), F (n ⋅ y)}
for any x, y ∈X.

Lemma 2.4. Let F ∶Xn →X be a quasitrivial operation and let e ∈X. If (n ⋅ e) is
isolated for F , then e is a neutral element. The converse holds if n = 2.
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Proof. We proceed by contradiction. If e is not a neutral element, then there exist
i ∈ [n] and u ∈X ∖ {e} such that

F ((i − 1) ⋅ e, u, (n − i) ⋅ e) = e = F (n ⋅ e).
It follows that (n ⋅ e) is not isolated for F , which is a contradiction. The case n = 2
was proved in [5]. �

Example 1. The following example shows that the converse of Lemma 2.4 does not
hold when n ≥ 3. Let X = {a, b, e} and let F ∶X3 →X be defined as

F (x, y, z) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

a, if there are more a’s than b’s among x, y, z,

b, if there are more b’s than a’s among x, y, z,

e, otherwise.

It is easy to see that this operation is quasitrivial and has e as the neutral element.
However, we have F (e, e, e) = F (a, b, e) and hence the point (e, e, e) is not isolated
for F .

3. Associative operations

In this section we provide a characterization of the n-ary operations on a given
chain that are quasitrivial, symmetric, nondecreasing, and associative, and we show
that these operations are derived from associative binary operations. We also ex-
amine the special case where these operations have neutral elements.

Proposition 3.1. Let X be a chain. If G∶X2 →X is quasitrivial, symmetric, and
nondecreasing, then it is associative.

Proof. This result was established in the special case where X is the real unit
interval [0,1] in [14, Proposition 2]. The proof therein is purely algebraic and
works for any nonempty chain X. �

Theorem 3.2. Let X be a chain and let F ∶Xn → X (n ≥ 3) be quasitrivial,
symmetric, and nondecreasing. The following assertions are equivalent.

(i) F is associative.
(ii) F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y) for all x, y ∈X.
(iii) There exists a quasitrivial and nondecreasing operation G∶X2 → X such

that

(2) F (x1, . . . , xn) = G(⋀n
i=1 xi ,⋁n

i=1 xi), x1, . . . , xn ∈X.

Moreover, the operation G is unique, symmetric, and associative in assertion (iii).

Proof. (iii) ⇒ (i). Let x1, . . . , x2n−1 ∈ X and k ∈ [n − 1]. We only need to prove
that

F (x1, . . . , xk−1, F (xk, . . . , xk+n−1), xk+n, . . . , x2n−1)
= F (x1, . . . , xk, F (xk+1, . . . , xk+n), xk+n+1, . . . , x2n−1).(3)

Set a = ⋀2n−1
i=1 xi and b = ⋁2n−1

i=1 xi. By quasitriviality of G we have G(a, b) ∈
{a, b}. Let us assume that G(a, b) = a (the other case can be dealt with du-
ally). We observe that if a ∈ {x`1 , . . . , x`n} for some pairwise distinct `1, . . . , `n ∈
[2n − 1], then F (x`1 , . . . , x`n) = a. Indeed, by quasitriviality and nondecreasing
monotonicity of G, we have a = G(a, a) ≤ G(a,⋁n

i=1 x`i) ≤ G(a, b) = a, where
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G(a,⋁n
i=1 x`i) = F (x`1 , . . . , x`n). Now, combining this observation with the fact

that a ∈ {x1, . . . , x2n−1} we immediately see that both sides of Eq. (3) reduce to a.
(i) ⇒ (ii). Suppose that (i) holds and (ii) does not hold. Then by quasitriviality

there exist x, y ∈X with x ≠ y such that

● either F ((n − 1) ⋅ x, y) = x and F (x, (n − 1) ⋅ y) = y,
● or F ((n − 1) ⋅ x, y) = y and F (x, (n − 1) ⋅ y) = x.

The second case cannot hold. Indeed, assuming for instance that x < y, by nonde-
creasing monotonicity we would have x < y = F ((n− 1) ⋅x, y) ≤ F (x, (n− 1) ⋅ y) = x,
a contradiction. Thus we must have F ((n − 1) ⋅ x, y) = x and F (x, (n − 1) ⋅ y) = y.
We then have

F (F (n ⋅ x), (n − 1) ⋅ y) = y ≠ x = F ((n − 1) ⋅ x,F (x, (n − 1) ⋅ y)),

which shows that F is not associative, a contradiction.
(ii) ⇒ (iii). Define G∶X2 → X as G(x, y) = F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y).

By definition, G is quasitrivial, symmetric, and nondecreasing. It is also associative
by Proposition 3.1. Now, let x1, . . . , xn ∈ X and let a = ⋀n

i=1 xi and b = ⋁n
i=1 xi. By

symmetry and nondecreasing monotonicity of F , we have

G(a, b) = F ((n − 1) ⋅ a, b) ≤ F (x1, . . . , xn) ≤ F (a, (n − 1) ⋅ b) = G(a, b),

which proves (2). We then observe that G is necessarily unique. �

Remark 2. (a) Theorem 3.2 also holds for n = 2 but brings no information in
this case. However, Proposition 3.1 shows that associativity follows from
quasitriviality, symmetry, and nondecreasing monotonicity.

(b) Each of the conditions of Theorem 3.2 is necessary as soon as n ≥ 3. Indeed,
● the sum operation F (x1, . . . , xn) = ∑n

i=1 xi over the reals X = R is
symmetric, nondecreasing, and associative, but not quasitrivial;

● the projection operation F (x1, . . . , xn) = x1 over any chain X is qua-
sitrivial, nondecreasing, and associative, but not symmetric;

● the ternary operation F ∶L2
3 → L3, with L3 = {1,2,3}, defined as

F (1,1,1) = 1, F (x, y, z) = 2, if 2 ∈ {x, y, z}, F (x, y, z) = 3 if 3 ∈ {x, y, z}
and 2 ∉ {x, y, z} is quasitrivial, symmetric, and associative, but it is
not nondecreasing;

● the ternary median operation (1) on any chain is quasitrivial, symmet-
ric, and nondecreasing, but it is not associative.

None of the four operations above is of the form given in (2).
(c) In the proof of Theorem 3.2 the symmetry condition is used only to prove

that (ii) ⇒ (iii). We observe that this condition can then be relaxed into
the following one:

F ((i − 1) ⋅ x, y, (n − i) ⋅ x) = F ((j − 1) ⋅ x, y, (n − j) ⋅ x), i, j ∈ [n], x, y ∈X.

Definition 3.3 (see [1,11]). Let F ∶Xn →X and H ∶X2 →X be associative opera-
tions. F is said to be derived from (or reducible to) H if F (x1, . . . , xn) = x1 ○⋯○xn

for all x1, . . . , xn ∈X, where x ○ y =H(x, y).

Corollary 3.4. Let X be a chain. If F ∶Xn →X is of the form (2), where G∶X2 →
X is quasitrivial, symmetric, nondecreasing, and associative, then F is associative
and derived from G.
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Proof. Clearly, F is quasitrivial, symmetric, and nondecreasing. The fact that it
is also associative follows from Theorem 3.2. To see that F is derived from G, let
x1, . . . , xn ∈ X and set a = ⋀n

i=1 xi and b = ⋁n
i=1 xi. By quasitriviality of G we have

G(a, b) ∈ {a, b}. Let us assume that G(a, b) = a (the other case can be dealt with
dually). For every i ∈ [n], we have G(a, xi) = a. Indeed, we have a = G(a, a) ≤
G(a, xi) ≤ G(a, b) = a. Now, writing G(x, y) = x ○ y, we have x1 ○ ⋯ ○ xn = a =
G(a, b) = F (x1, . . . , xn), which completes the proof. �

Remark 3. The operation H in Definition 3.3 need not be unique. For instance,
if X = {a, b, c}, then the constant ternary operation F ∶X3 → X defined as F = a
is derived from the associative operation H ∶X2 → X defined as H(c, c) = b and
H(x, y) = a for any (x, y) ≠ (c, c). However, F is also derived from the constant
operation H ′ = a. To give a second example, just consider the associative operations
F (x1, x2, x3) ≡ x1 +x2 +x3 (mod 2), H(x1, x2) ≡ x1 +x2 (mod 2), and H ′(x1, x2) ≡
x1 + x2 + 1 (mod 2) on X = Z2. It is clear that F is derived from both H and
H ′. Interestingly, we also observe that F is quasitrivial but neither H nor H ′ is
quasitrivial.

Proposition 3.5. Assume that the operation F ∶Xn → X is associative and de-
rived from associative operations H ∶X2 → X and H ′∶X2 → X. If H and H ′ are
idempotent (resp. have the same neutral element), then H =H ′.

Proof. Assume that H and H ′ are idempotent (the other case can be dealt with
similarly) and let us write H(x, y) = x ○ y and H ′(x, y) = x ◇ y. Then, for any
x, y ∈X we have

x ○ y = x ○ ⋯ ○ x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1

○ y = F ((n − 1) ⋅ x, y) = x ◇⋯ ◇ x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1

◇ y = x ◇ y,

which shows that H =H ′. �

The following proposition provides a characterization of the class of quasitrivial,
symmetric, associative operations F ∶Xn →X that are derived from quasitrivial and
associative binary operations. This result was previously known and established by
using algebraic arguments (see, e.g., [1, Corollary 4.10] and the references therein).
For the sake of self-containment we provide a very elementary proof.

We first consider a lemma.

Lemma 3.6. Assume that the operation F ∶Xn →X is symmetric, associative, and
derived from a surjective (i.e., onto) and associative operation H ∶X2 → X. Then
H is symmetric.

Proof. Let us write H(x, y) = x ○ y for all x, y ∈ X. For any x, y ∈ X there exist
y1, . . . , yn−2 ∈X and z1, . . . , zn−2 ∈X such that

H(x, y) = x ○ y = x ○ y1 ○ z1 = x ○ y1 ○ y2 ○ z2 = ⋯
= x ○ y1 ○ ⋯ ○ yn−2 ○ zn−2 = F (x, y1, . . . , yn−2, zn−2)
= F (y1, . . . , yn−2, zn−2, x) = ⋯ = y ○ x = H(y, x),

which shows that H is symmetric. �

Proposition 3.7. An operation F ∶Xn →X is quasitrivial, symmetric, associative,
and derived from a quasitrivial and associative operation H ∶X2 →X iff there exists
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a linear ordering ⪯ on X such that F is the maximum operation on (X,⪯), i.e.,

(4) F (x1, . . . , xn) = x1 ∨⪯ ⋯∨⪯ xn , x1, . . . , xn ∈X.

Proof. (Sufficiency) Trivial.
(Necessity) Since H is quasitrivial, it is idempotent and hence it is also symmetric

by Lemma 3.6. Using quasitriviality and associativity of H, it is then easy to see
that the binary relation ⪯ on X defined as

(5) x ⪯ y ⇔ H(x, y) = y , x, y ∈X,

is a linear order. Using symmetry, we then have H(x, y) = x∨⪯y for all x, y ∈X. �

Remark 4. The second example given in Remark 3 shows that the quasitriviality
of H is necessary in Proposition 3.7.

For arbitrary chains (X,≤) and (X,⪯), the operations F ∶Xn → X of the form
(4) need not be nondecreasing w.r.t. ≤. In the following proposition we characterize
the class of linear orderings ⪯ on X for which those operations F are nondecreasing
w.r.t. ≤.

Definition 3.8. Let (X,≤) and (X,⪯) be chains. We say that the linear ordering
⪯ is single-peaked w.r.t. ≤ if for any a, b, c ∈ X such that a < b < c we have b ≺ a or
b ≺ c.

Remark 5. The concept of single-peaked linear ordering was introduced for finite
chains in social choice theory by Black [3,4] (see [2,12] for more recent references).
Here we simply apply the same definition to arbitrary chains. Thus defined, ⪯ is
single-peaked w.r.t. ≤ iff, from among three distinct elements of X, the centrist one
(w.r.t. ≤) is never ranked last by ⪯.

Proposition 3.9. Let (X,≤) and (X,⪯) be chains and let F ∶Xn → X be of the
form (4). Then F is nondecreasing w.r.t. ≤ iff ⪯ is single-peaked w.r.t. ≤.

Proof. (Necessity) We proceed by contradiction. Suppose that there exist a, b, c ∈X
satisfying a < b < c such that b ≻ a and b ≻ c. Then by nondecreasing monotonicity
we clearly have

b = F (a, (n − 1) ⋅ b) ≤ F (a, (n − 1) ⋅ c) ≤ F (b, (n − 1) ⋅ c) = b

and hence F (a, (n − 1) ⋅ c) = b, which contradicts quasitriviality.
(Sufficiency) We proceed by contradiction. Suppose that there exist k ∈ [n] and

(x1, . . . , xn), (x′1, . . . , x′n) ∈Xn such that xk < x′k and xi = x′i for all i ∈ [n]∖{k} and
F (x1, . . . , xn) > F (x′1, . . . , x′n), that is,

xj ∨⪯ xk > xj ∨⪯ x′k ,
where xj = x1 ∨⪯ ⋯∨⪯ xk−1 ∨⪯ xk+1 ∨⪯ ⋯∨⪯ xn.

We only have two relevant cases to consider.

● If xk ⪯ xj ⪯ x′k, then we obtain xk < x′k < xj .
● If x′k ⪯ xj ⪯ xk, then we obtain xj < xk < x′k.

We immediately reach a contradiction since ⪯ cannot be single-peaked w.r.t. ≤ in
each of these two cases. �

The following two propositions provide characterizations of single-peakedness.
Recall first that, for any chain (X,≤), a subset C of X is said to be convex w.r.t.
≤ if for any a, b, c ∈X such that a < b < c we have that a, c ∈ C implies b ∈ C.
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Proposition 3.10. Let (X,≤) and (X,⪯) be chains. Then ⪯ is single-peaked w.r.t.
≤ iff for every t ∈X the set {x ∈X ∣ x ⪯ t} is convex w.r.t. ≤.

Proof. (Necessity) We proceed by contradiction. Suppose that there exist a, b, c, t0 ∈
X satisfying a < b < c such that a, c ∈ {x ∈ X ∣ x ⪯ t0} and b ∉ {x ∈ X ∣ x ⪯ t0}. This
means that a ⪯ t0 ≺ b and c ⪯ t0 ≺ b, a contradiction.

(Sufficiency) We proceed by contradiction. Suppose that there exist a, b, c ∈ X
satisfying a < b < c such that b ≻ a and b ≻ c. Setting t0 = a ∨⪯ c, we have
a, c ∈ {x ∈ X ∣ x ⪯ t0}. By convexity we also have b ∈ {x ∈ X ∣ x ⪯ t0}. Therefore
a ∨⪯ c ≺ b ⪯ t0 = a ∨⪯ c, a contradiction. �

Proposition 3.11. Let (X,≤) and (X,⪯) be chains. Then ⪯ is single-peaked w.r.t.
≤ iff for any x0, x1, x2 ∈X such that x0 ≺ x1 and x0 ≺ x2 we have

(6) x0 < x1 < x2 or x2 < x1 < x0 ⇒ x1 ≺ x2.

Proof. (Necessity) We proceed by contradiction. Suppose that there exist x0, x1, x2 ∈
X satisfying x0 ≺ x1 and x0 ≺ x2 for which (6) fails to hold, i.e., either (x0 < x1 < x2

and x0 ≺ x2 ≺ x1) or (x2 < x1 < x0 and x0 ≺ x2 ≺ x1), which clearly shows that ⪯ is
not single-peaked w.r.t. ≤.

(Sufficiency) We proceed by contradiction. Suppose that there exist a, b, c ∈ X
satisfying a < b < c such that b ≻ a and b ≻ c. Letting x0 = a ∧⪯ c, x1 = b, and
x2 = a ∨⪯ c, we obtain either (x0 < x1 < x2 and x0 ≺ x2 ≺ x1) or (x2 < x1 < x0 and
x0 ≺ x2 ≺ x1), which shows that (6) fails to hold, a contradiction. �

Corollary 3.12. Let (X,≤) and (X,⪯) be chains and suppose that (X,⪯) has a
minimal element x0. Then ⪯ is single-peaked w.r.t. ≤ iff (6) holds for all x1, x2 ∈X.

Proof. (Necessity) The result follows from Proposition 3.11.
(Sufficiency) We proceed by contradiction. Suppose that there exist a, b, c ∈ X

satisfying a < b < c such that b ≻ a and b ≻ c. Since x0 is the minimal element of
(X,⪯), we must have x0 ≠ b. If x0 < b, then setting x1 = b and x2 = c, we obtain
x0 < x1 < x2 and x2 ≺ x1, a contradiction. We arrive at a similar contradiction if
x0 > b. �

Using Propositions 3.1, 3.7, 3.9, Theorem 3.2, and Corollary 3.4, we easily derive
the following theorem.

Theorem 3.13. Let X be a chain and let F ∶Xn → X be an operation. The
following assertions are equivalent.

(i) F is quasitrivial, symmetric, nondecreasing, and associative (associativity
can be ignored when n = 2).

(ii) F is of the form (2), where G∶X2 → X is quasitrivial, symmetric, and
nondecreasing.

(iii) F is of the form (4) for some single-peaked linear ordering ⪯ on X.

If any of these assertions holds, then G is associative and F is derived from G.

We now investigate the particular case where the operations satisfying any of
the assertions of Theorem 3.2 have neutral elements.

Proposition 3.14. Let X be a chain and let e ∈X. Assume that F ∶Xn →X is of
the form (2), where G∶X2 → X is quasitrivial and symmetric. Then the following
assertions are equivalent.
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(i) e is a neutral element of F .
(ii) e is a neutral element of G.
(iii) The point (e, e) is isolated for G.
(iv) The point (n ⋅ e) is isolated for F .

In particular, if F has a neutral element, then it is unique.

Proof. The equivalence (i) ⇔ (ii) is straightforward. The equivalence (ii) ⇔ (iii)
and the the implication (iv) ⇒ (i) follow from Lemma 2.4. Let us now prove the
implication (iii) ⇒ (iv). Suppose that (e, e) is isolated for G and that (n ⋅ e) is not
isolated for F . Then, there exists (x1, . . . , xn) ≠ (n ⋅e) such that G(e, e) = F (n ⋅e) =
F (x1, . . . , xn) = G(⋀n

i=1 xi,⋁n
i=1 xi), which contradicts the assumption that (e, e) is

isolated for G. �

Remark 6. We observe that if an operation F ∶Xn →X is of the form (4) for some
linear ordering ⪯ on X, then F has a neutral element e ∈X iff (X,⪯) has a minimal
element x0. In this case e = x0.

Example 2. Consider the real operation F ∶ [0,1]n → [0,1] of the form (2), where
G∶ [0,1]2 → [0,1] is defined as G(x1, x2) = x1 ∨ x2, if x1, x2 > 0, and G(x1, x2) =
0, otherwise. It is easy to see that F satisfies the conditions of assertion (ii) of
Theorem 3.13 and that G does not have any neutral element. It follows that F
has no neutral element either by Proposition 3.14. By Proposition 3.7 and (5) we
see that F is of the form (4), where ⪯ is the single-peaked linear ordering on [0,1]
defined as

x ⪯ y ⇔ 0 < x ≤ y or y = 0 , x, y ∈ [0,1].
From this representation it is easy to see that F can also be expressed as

F (x1, . . . , xn) = f(⋁n
i=1 f

−1(xi)), x1, . . . , xn ∈ [0,1],
where f ∶ ]0,1] ∪ {2} → [0,1] is defined as f(y) = y, if y ∈ ]0,1], and f(2) = 0.

Example 3. Consider the real operation F ∶ [0,1]2 → [0,1] defined as F (x, y) = x∨y,
if x + y ≥ 1, and F (x, y) = x ∧ y, otherwise. It is easy to see that F satisfies the
conditions of assertion (ii) of Theorem 3.13 (with G = F ) and that it has the neutral
element e = 1

2
. By Proposition 3.7 and (5) we see that F is of the form (4), where

⪯ is the single-peaked linear ordering on [0,1] defined as

x ⪯ y ⇔ (y ≤ x < 1 − y or 1 − y ≤ x ≤ y) , x, y ∈ [0,1].
Interestingly, we observe that for every x ∈ [0,1], there is no y ∈ [0,1] such that
x ≺ y ≺ 1 − x or 1 − x ≺ y ≺ x. From this observation we can show that the chain
([0,1],⪯) cannot be embedded into the real chain (R,≤). Indeed, suppose on the
contrary that there exits an injective (i.e., one-to-one) map g∶ ([0,1],⪯) → (R,≤)
such that x ⪯ y iff g(x) ≤ g(y) for all x, y ∈ [0,1]. For any x ∈ [0,1] ∖ { 1

2
} we have

x ≠ 1 − x and hence g(x) ≠ g(1 − x). Let Ix denote the real open interval having
g(x) and g(1 − x) as endpoints. We can always pick a rational number qx in Ix.
For any distinct x, y ∈ [0,1] ∖ { 1

2
} we have Ix ∩ Iy = ∅ and hence qx ≠ qy. It follows

that the set {qx ∣ x ∈ [0,1] ∖ { 1
2
}} is uncountable, a contradiction.

Recall that a uninorm on a chain X is a binary operation U ∶X2 → X that is
associative, symmetric, nondecreasing, and has a neutral element (see [7, 17]). It
is noteworthy that any idempotent uninorm is quasitrivial. This fact can be easily
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verified by following the first few steps of the proof of [6, Theorem 3], which actually
hold on any chain.

The concept of uninorm can be easily extended to n-ary operations as follows.

Definition 3.15 (see [13]). Let X be a chain. An n-ary uninorm is an opera-
tion F ∶Xn → X that is associative, symmetric, nondecreasing, and has a neutral
element.

Lemma 3.16 (see [11]). If F ∶Xn → X is associative and has a neutral element
e ∈ X, then F is derived from the associative operation H ∶X2 → X defined as
H(x, y) = F (x, (n − 2) ⋅ e, y).

Corollary 3.17. Let X be a chain. Any idempotent n-ary uninorm F ∶Xn → X
satisfies the assertions of Theorem 3.13. In particular,

● F has a unique neutral element e;
● F ((n − 1) ⋅ x, y) = F (x, (n − 1) ⋅ y) = F (x, (n − 2) ⋅ e, y) for all x, y ∈X;
● the operation G in assertion (ii) is an idempotent uninorm with e as the

neutral element;
● the chain (X,⪯) in assertion (iii) has the minimal element e.

Proof. By Lemma 3.16, F is derived from the associative operation H ∶X2 → X
defined as H(x, y) = x ○ y = F (x, (n − 2) ⋅ e, y). By definition, H is associative,
symmetric, nondecreasing, and has a neutral element. We now show that it is also
idempotent. Although this property immediately follows from [13, Lemma 3.5] we
present here an alternative and very simple proof of it. Suppose that H(x,x) = z ≠
x. If x < z (the case x > z is similar), then by nondecreasing monotonicity of H we
have

x < z = x ○ x ≤ z ○ x = x ○ x ○ x ≤ z ○ x ○ x = x ○ x ○ x ○ x ≤ ⋯
= x ○ ⋯ ○ x

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
n

= F (x, . . . , x) = x,

a contradiction. Therefore H is an idempotent uninorm and hence it is quasitrivial
(as observed above). It follows that F is quasitrivial and hence satisfies assertion
(i) of Theorem 3.13. Also, we have

F (x, (n − 2) ⋅ e, y) = x ○ y = x ○ ⋯ ○ x
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1

○ y = x ○ y ○ ⋯ ○ y
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¶

n−1

.

The rest of the corollary follows from Proposition 3.14 and Remark 6. �

Corollary 3.18. Let X be a chain and let F ∶Xn → X be an operation. Then F
is an n-ary idempotent uninorm iff there exists an idempotent uninorm U ∶X2 →X
such that

F (x1, . . . , xn) = U(⋀n
i=1 xi ,⋁n

i=1 xi), x1, . . . , xn ∈X.

Remark 7. The results presented in this section strongly rely on the symmetry of
the operations F ∶Xn →X. The generalization of these results to the nonsymmetric
case is a topic of ongoing research. On this issue, partial results can be found, e.g.,
in [13, Lemma 3.15].
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4. Bisymmetric operations

In this section we investigate bisymmetric n-ary operations and derive a few
equivalences involving associativity and bisymmetry. For instance we show that if
an n-ary operation has a neutral element, then it is bisymmetric iff it is associative
and symmetric. Also, if an n-ary operation is quasitrivial and symmetric, then it
is associative iff it is bisymmetric. In particular this latter observation enables us
to replace associativity with bisymmetry in Theorems 3.2, 3.13, and Corollary 3.4.

Lemma 4.1 (see [5]). Let F ∶X2 → X be an operation. Then the following asser-
tions hold.

(a) If F is bisymmetric and has a neutral element, then it is associative and
symmetric.

(b) If F is associative and symmetric, then it is bisymmetric.
(c) If F is bisymmetric and quasitrivial, then it is associative.

Definition 4.2. We say that a function F ∶Xn →X is ultrabisymmetric if

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n))

for all n×n matrices [r1 ⋯ rn]T , [r′1 ⋯ r′n]T ∈Xn×n, where [r′1 ⋯ r′n]T is obtained
from [r1 ⋯ rn]T by exchanging two entries only.

Proposition 4.3. Let F ∶Xn → X be an operation. If F is ultrabisymmetric, then
it is bisymmetric. The converse holds whenever F is symmetric.

Proof. We immediately see that any ultrabisymmetric operation is bisymmetric
(just apply ultrabisymmetry repeatedly to exchange the (i, j)- and (j, i)-entries for
all i, j ∈ [n]).

Now suppose that F ∶Xn →X is symmetric and bisymmetric. Then we have

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n))

for all matrices [r1 ⋯ rn]T , [r′1 ⋯ r′n]T ∈Xn×n, where [r′1 ⋯ r′n]T is obtained from
[r1 ⋯ rn]T by permuting the entries of any column or any row. By applying three
times this property, we can easily exchange two arbitrary entries of the matrix.
Indeed, exchanging the (i, j)- and (k, l)-entries can be performed through the fol-
lowing three steps: exchange the (i, j)- and (i, l)-entries in row i, exchange the
(i, l)- and (k, l)-entries in column l, and exchange the (i, j)- and (i, l)-entries in
row i. �

Remark 8. (a) The symmetry property is necessary in Proposition 4.3. In-
deed, for any k ∈ [n], the kth projection operation F ∶Xn → X defined as
F (x1, . . . , xn) = xk is bisymmetric but not ultrabisymmetric.

(b) An ultrabisymmetric operation need not be symmetric. For instance, con-
sider the operation F ∶X2 → X, where X = {a, b, c}, defined by F (a, c) = a
and F (x, y) = b for every (x, y) ≠ (a, c). Clearly, this operation is not sym-
metric. However, it is ultrabisymmetric since F (F (x, y), F (u, v)) = b for
all x, y, u, v ∈X.

Lemma 4.4. If F ∶Xn →X is surjective (i.e., onto) and ultrabisymmetric, then it
is symmetric.
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Proof. Let x1, . . . , xn ∈X. Then there exists a matrix [r1 ⋯ rn]T ∈Xn×n such that
xi = F (ri) for i = 1, . . . , n. By ultrabisymmetry,

F (x1, . . . , xn) = F (F (r1), . . . , F (rn))
is symmetric in x1, . . . , xn. �

Remark 9. We observe that if F ∶Xn → X is idempotent or quasitrivial or has a
neutral element, then it is surjective.

Lemma 4.5. If F ∶Xn → X is quasitrivial, then for any x, y ∈ X, there exists
k ∈ [n] such that

F ((k − 1) ⋅ x, (n − k + 1) ⋅ y) = y and F (k ⋅ x, (n − k) ⋅ y) = x.

Proof. We proceed by contradiction. Suppose that there exist x, y ∈X, with x ≠ y,
such that for every k ∈ [n] we have

(7) F ((k − 1) ⋅ x, (n − k + 1) ⋅ y) = x or F (k ⋅ x, (n − k) ⋅ y) = y.

Using the fact that F (n ⋅ y) = y we see that only the second condition of (7) holds.
When k = n this gives F (n ⋅ x) = y, a contradiction. �

Proposition 4.6. If F ∶Xn → X is quasitrivial and ultrabisymmetric, then it is
associative and symmetric.

Proof. Symmetry immediately follows from Lemma 4.4 and Remark 9. Let us prove
that associativity holds. Let x1, . . . , x2n−1 ∈ X and let i ∈ [n − 1]. By Lemma 4.5
there exists k ∈ [n] such that

F ((k − 1) ⋅ xi, (n − k + 1) ⋅ xi+n) = xi+n and F (k ⋅ xi, (n − k) ⋅ xi+n) = xi.

We then have

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1)
= F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), F ((k−1)⋅xi, (n−k+1)⋅xi+n), xi+n+1, . . . , x2n−1)

Replacing xj with F (n ⋅ xj) for all j ∈ [2n − 1] ∖ {i, . . . , i + n} and then applying
ultrabisymmetry repeatedly to exchange the (n − 1)-tuples

(xi+1, . . . , xi+n−1) and ((k − 1) ⋅ xi, (n − k) ⋅ xi+n),
we see that the latter expression becomes

F (x1, . . . , xi−1, F (k ⋅ xi, (n − k) ⋅ xi+n), F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1)
= F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).

This shows that F is associative. �

Remark 10. (a) Ultrabisymmetry cannot be relaxed into bisymmetry in Propo-
sition 4.6. For instance, the kth projection operation F (x1, . . . , xn) = xk is
quasitrivial, bisymmetric, and associative, but it is not symmetric.

(b) It is an open question whether a quasitrivial and bisymmetric operation is
associative (this is true for binary operations by Lemma 4.1(c)).

Proposition 4.7. If F ∶Xn → X is associative and symmetric, then it is ultra-
bisymmetric.
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Proof. Let [r1 ⋯ rn]T , [r′1 ⋯ r′n]T ∈ Xn×n, where [r′1 ⋯ r′n]T is obtained from
[r1 ⋯ rn]T by exchanging the (i, j)- and (k, l)-entries for some i, j, k, l ∈ [n]. We
only need to prove that

F (F (r1), . . . , F (rn)) = F (F (r′1), . . . , F (r′n)).
Permuting the rows of [r1 ⋯ rn]T if necessary (this is allowed by symmetry), we may
assume that k = i+ 1. Denote by xi,j (resp. xk,l) the (i, j)-entry (resp. (k, l)-entry)
of [r1 ⋯ rn]T .

Using associativity and symmetry, we see that there exist p, q ∈ {1, . . . , n}, with
p ≠ j and q ≠ l, such that

F (F (r1), . . . , F (rn))
= F (F (r1), . . . , F (ri−1), F (xi,p, . . . , xi,j), F (xk,l, . . . , xk,q), F (rk+1), . . . , F (rn))
= F (F (r1), . . . , F (ri−1), xi,p, F (. . . , xi,j , F (xk,l, . . . , xk,q)), F (rk+1), . . . , F (rn))
= F (F (r1), . . . , F (ri−1), xi,p, F (. . . , F (xi,j , xk,l, . . .), xk,q), F (rk+1), . . . , F (rn)).

This shows that F is ultrabisymmetric since the latter expression is symmetric in
xi,j and xk,l. �

Corollary 4.8. If F ∶Xn → X is quasitrivial, then it is associative and symmetric
iff it is ultrabisymmetric.

Proof. The statement immediately follows from Propositions 4.6 and 4.7. �

Remark 11. If F ∶Xn → X is ultrabisymmetric but not quasitrivial, then it need
not be associative (e.g., F (x, y, z) = 2x + 2y + 2z when X = R).

Corollary 4.9. If F ∶Xn → X is quasitrivial and symmetric, then it is associative
iff it is bisymmetric.

Proof. The statement immediately follows from Propositions 4.3, 4.6, and 4.7. �

From Corollary 4.9 we immediately derive the following theorem, which is an
important but surprising result.

Theorem 4.10. In Theorems 3.2, 3.13, and Corollary 3.4 we can replace associa-
tivity with bisymmetry.

We end this section by investigating bisymmetric operations that have neutral
elements.

Proposition 4.11. If F ∶Xn → X is bisymmetric and has a neutral element, then
it is associative and symmetric.

Proof. Let e be a neutral element of F . Let us first prove symmetry. Let x1, . . . , xn ∈
X, let i, j ∈ [n], and let [c1 ⋯ cn] = [r1 ⋯ rn]T ∈Xn×n be defined as

rk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

((j − 1) ⋅ e, xi, (n − j) ⋅ e), if k = i

((i − 1) ⋅ e, xj , (n − i) ⋅ e), if k = j

((k − 1) ⋅ e, xk, (n − k) ⋅ e), otherwise.

By bisymmetry we have

F (x1, . . . , xi, . . . , xj , . . . , xn) = F (F (r1), . . . , F (rn)) = F (F (c1), . . . , F (cn))
= F (x1, . . . , xj , . . . , xi, . . . , xn).
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This shows that F is symmetric.
Let us now show that F is associative by using ultrabisymmetry (which follows

from bisymmetry and symmetry by Proposition 4.3). Let x1, . . . , x2n−1 ∈ X, let
i ∈ [n − 1] and let [r1 ⋯ rn]T , [r′1 ⋯ r′n]T ∈Xn×n be defined as

rk =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(xk, (n − 1) ⋅ e), if k < i

(xi, . . . , xi+n−1), if k = i

(xk+n−1, (n − 1) ⋅ e), if k > i

and

r′k =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

(xk, (n − 1) ⋅ e), if k < i + 1

(xi+1, . . . , xi+n), if k = i + 1

(xk+n−1, (n − 1) ⋅ e), if k > i + 1.

Using ultrabisymmetry, we then have

F (x1, . . . , xi−1, F (xi, . . . , xi+n−1), xi+n, . . . , x2n−1) = F (F (r1), . . . , F (rn))
= F (F (r′1), . . . , F (r′n)) = F (x1, . . . , xi, F (xi+1, . . . , xi+n), xi+n+1, . . . , x2n−1).

This shows that F is associative. �

Corollary 4.12. Assume that F ∶Xn →X has a neutral element. Then the follow-
ing assertions are equivalent.

(i) F is bisymmetric.
(ii) F is associative and symmetric.

(iii) F is ultrabisymmetric.

Proof. We have (i) ⇒ (ii) by Proposition 4.11. We have (ii) ⇒ (iii) by Proposi-
tion 4.7. Finally we have (iii) ⇒ (i) by Proposition 4.3. �

Remark 12. If F ∶Xn → X is bisymmetric and does not have a neutral element,
then it need not be associative nor symmetric (e.g., F (x, y, z) = x + 2y + 3z when
X = R). If F ∶Xn → X is ultrabisymmetric and does not have a neutral element,
then it need not be associative (e.g., F (x, y, z) = 2x + 2y + 2z when X = R).

5. Operations on finite chains

We now consider the special case when X is a finite chain. Without loss of
generality we will only consider the k-element chains Lk = {1, . . . , k}, k ≥ 1, endowed
with the usual ordering relation ≤. It is known (see, e.g., [2]) that there are exactly
2k−1 linear orderings ⪯ on Lk that are single-peaked w.r.t. ≤.

Corollary 5.1. Let F ∶Ln
k → Lk be an operation. The following assertions are

equivalent.

(i) F is quasitrivial, symmetric, nondecreasing, and associative (associativity
can be ignored when n = 2).

(ii) F is an idempotent n-ary uninorm.
(iii) There exists a linear ordering ⪯ on Lk that is single-peaked w.r.t. ≤ such

that

(8) F (x1, . . . , xn) = x1 ∨⪯ ⋯∨⪯ xn , x1, . . . , xn ∈ Lk.

If any of these assertions is satisfied, then F has the neutral element a1, where a1
is the minimal element of (Ln,⪯). Also, there are exactly 2k−1 such operations.



14 JIMMY DEVILLET, GERGELY KISS, AND JEAN-LUC MARICHAL

Proof. (i) ⇒ (iii) This implication follows from Theorem 3.13.
(iii) ⇒ (ii) This is immediate since the minimal element of (Ln,⪯) is the neutral

element of F .
(ii) ⇒ (i) This implication follows from Corollary 3.17. �

Remark 13. By Corollary 4.9 (resp. Corollary 4.8) we can replace associativity with
bisymmetry (resp. associativity and symmetry with ultrabisymmetry) in Corol-
lary 5.1.

It is easy to see that any single-peaked linear ordering a1 ≺ ⋯ ≺ ak on Lk can be
constructed as follows.

1. Choose a1 ∈ Lk.
2. For i = 2, . . . , k, choose for ai a closest element to the set Ci−1 in Lk ∖Ci−1,

where Ci = {a1, . . . , ai}.

From this observation we can now provide a graphical characterization of the idem-
potent n-ary uninorms F ∶Ln

k → Lk in terms of their contour plots.

Theorem 5.2. The following algorithm outputs the contour plot of an arbitrary
idempotent n-ary uninorm F ∶Ln

k → Lk.

Step 1. Choose the neutral element a1 ∈ Lk and set C1 = {a1}. The point (n ⋅a1) is
necessarily isolated for F with value a1

Step 2. For i = 2, . . . , k
1. Pick a closest element ai to Ci−1 in Lk ∖Ci−1

2. Set Ci = {ai} ∪Ci−1

3. Connect all the points in Cn
i ∖Cn

i−1 with common value ai

The operation thus constructed by this algorithm is then defined as (8), where a1 ≺
⋯ ≺ ak is a single-peaked linear ordering on Lk, that is,

F (x1, . . . , xn) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

a1, if a1 ∈ {x1, . . . , xn} and a2, . . . , ak ∉ {x1, . . . , xn},
a2, if a2 ∈ {x1, . . . , xn} and a3, . . . , ak ∉ {x1, . . . , xn},

⋮
ak, if ak ∈ {x1, . . . , xn}.

Figure 1 gives two possible idempotent binary uninorms on L4 (connected points
are joined by edges or paths).

Remark 14. We remark that the binary versions of Corollary 5.1 and Theorem 5.2
were established in [5] by means of elementary proofs without using Proposition 3.7.

r r r r
r r r r
r r r r
r r r r

1

2

3

4

r r r r
r r r r
r r r r
r r r r

1

2

3

4

Figure 1. Two possible idempotent binary uninorms on L4



15

We end this section by the following alternative description of the class of idem-
potent n-ary uninorms.

Theorem 5.3. An operation F ∶Ln
k → Lk with a neutral element e is an idempotent

uninorm iff there exists a nonincreasing map g∶ {1, . . . , e} → {e, . . . , k} (nonincreas-
ing means that g(x) ≥ g(y) whenever x ≤ y), with g(e) = e, such that

F (x1, . . . , xn) =
⎧⎪⎪⎨⎪⎪⎩

⋀n
i=1 xi, if ⋁n

i=1 xi ≤ g(⋀n
i=1 xi) and ⋀n

i=1 xi ≤ g(1),
⋁n

i=1 xi, otherwise,

where g∶Lk → Lk is defined by

g(x) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

g(x), if x ≤ e,

max{z ∈ {1, . . . , e} ∣ g(z) ≥ x}, if e ≤ x ≤ g(1),
1, if x > g(1).

Proof. This result was established when n = 2 in [8, Theorem 3]. The general n-ary
version then follows from Theorem 3.13. �
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