2nd homework set, Due !!!April 2!!!

- 1. (2p.) Find out whether there exists a binary prefix code with code lengths
 - (a) 2,3,3,3,4,4,4,5,5,5,5,5,6,7,7
 - (b) 2,3,3,4,4,4,4,4,4,5,5,5,5,6

If yes, then define such a coding!

2. (1,5p.) For a closed convex set Π of distributions on A, show that P^* maximizes $H(\mathbb{P})$ subject to $\mathbb{P} \in \Pi$ if and only if P^* is the I-projection of the uniform distribution on A onto Π , and that then

$$D(\mathbb{P}||\mathbb{P}^*) \le H(\mathbb{P}^*) - H(\mathbb{P}), \text{ for all } \mathbb{P} \in \Pi.$$
(1)

- 3. (1,5p.+ 2p. + 3p.) (Hypothesis testing with both errors exponentially decreasing)
 - (a) We observe independent drawings from an unknown distribution Q on the finite set A. Let γ be a positive number and let P₀ and P₀ be strictly positive distributions on A with D(P₁||P₀) > γ. To test the (simple) null hypothesis Q = P₀ against the simple alternative hypothesis Q = P₁, let the acceptance region A_n ⊂ Xⁿ be the union of all type classes |Tⁿ_P| with D(P||P₀) ≤ γ. Show that then the probability of type 1 error decreases with exponent γ, i.e.,

$$\mathbb{P}_0^n(\mathcal{X}^n - A_n) = 2^{-n\gamma + o(n)} \quad \left(\text{or, i.e., } \lim_{n \to \infty} \frac{1}{n} \log \mathbb{P}_0^n(\mathcal{X}^n - A_n) = -\gamma \right),$$
(2)

whereas the type 2 error probability $(\mathbb{P}_1^n(A_n))$ decreases with exponent $\delta = D(\mathbb{P}^*||\mathbb{P}_1)$ where \mathbb{P}^* is the I-projection of P_1 onto the "divergence ball"

$$B(\mathbb{P}_0, \gamma) = \{\mathbb{P} : D(\mathbb{P}||\mathbb{P}_0) \le \gamma\}.$$
(3)

(b) Show that the above is the best possible, i.e., for any $\tilde{A}_n \subset \mathcal{X}^n$ satisfying (2), always

$$\liminf_{n \to \infty} \frac{1}{n} \log \mathbb{P}_1^n(\tilde{A}_n) \ge -\delta.$$
(4)

Hint: Fix an $\varepsilon > 0$. (2) implies that $\exists N$ such that $\mathbb{P}_0^n(\mathcal{X}^n - \tilde{A}_n) \leq 2^{-n(\gamma-\varepsilon)}$ if n > N. Let Q be an arbitrary *n*-type in $B(\mathbb{P}_0, \gamma - 2\varepsilon)$. What conclusion you can draw about the type class \mathcal{T}_O^n ?

(c) With the notation used above, show that the I-Projection P^{*} of P₁ onto B(P₀, γ) equals the I-projection of both P₀ and P₁ onto the linear family

$$\mathcal{L} = \{\mathbb{P} : \sum_{a \in A} \mathbb{P}(a) \log \frac{\mathbb{P}_0(a)}{\mathbb{P}_1(a)} = \delta - \gamma\} = \{\mathbb{P} : D(\mathbb{P}||\mathbb{P}_1) - D(\mathbb{P}||\mathbb{P}_0) = \delta - \gamma\},\tag{5}$$

and also equals the I-projection of \mathbb{P}_0 onto $B(\mathbb{P}_1, \delta)$. Give a geometric interpretation. Finally conclude that \mathbb{P}^* is of the form $\mathbb{P}^*(a) = c \cdot \mathbb{P}_0^{\theta}(a) \cdot \mathbb{P}_1^{1-\theta}(a)$ for some $0 < \theta < 1$.

Hint: We learned that $D(\mathbb{Q}||\mathbb{P})$ is strictly convex in \mathbb{Q} when \mathbb{P} is fixed and strictly positive. Using this fact first prove that \mathbb{P}^* is on the border of $B(\mathbb{P}_0, \gamma)$, i.e., $D(\mathbb{P}^*||\mathbb{P}_0) = \gamma$! After that, prove that $B(\mathbb{P}_0, \gamma) \cap \mathcal{L} = \{\mathbb{P}^*\}$! Then prove that the I-projection of \mathbb{P}_1 onto \mathcal{L} equals \mathbb{P}^* . Finally, prove the remaining statements!