1st homework set, Due March 17

1. (4p.) Determine the I-divergences $D(\mathbb{P} \| \mathbb{Q})$ and $D(\mathbb{Q} \| \mathbb{P})$ if
(a) \mathbb{Q} is an arbitrary distribution over a finite set A and $\mathbb{P}(a)=\frac{\mathbb{Q}(a)}{\mathbb{Q}(B)}$ if $a \in B$ and 0 otherwise, where $B \subset A$ and $\mathbb{Q}(B)=\sum_{a \in B} Q(a)>0$.
(b) \mathbb{P} and \mathbb{Q} are defined as follows. A hat contains k_{1} slips of paper marked with $1, k_{2}$ slips of paper marked with $2 \ldots$ and k_{r} slips of paper marked with r. Let n be equal to $k_{1}+\cdots+k_{r}$. We draw n times from the hat (i) without replacement (ii) with replacement. For a given sequence $\mathbf{x}=x_{1} \ldots x_{n} \in\{1, \ldots, r\}^{n}$ let $\mathbb{P}(\mathbf{x})$ and $\mathbb{Q}(\mathbf{x})$ denote the probability of drawing the given sequence in cases (i) and (ii), respectively. Is there any connection with part (a)?
(c) Calculate also the entropies of \mathbb{P} and \mathbb{Q} defined in part (b)! Which entropy is the larger?
2. (4p.) Prove the Pinsker inequality (also called Csiszár-Kemperman-Kullback-Pinsker inequality)

$$
\mathrm{D}(\mathbb{P} \| \mathbb{Q}) \geq \frac{1}{2 \ln 2} \mathrm{~d}^{2}(\mathbb{P}, \mathbb{Q})
$$

where $d(\mathbb{P}, \mathbb{Q})$ is the variational distance of distributions \mathbb{P} and \mathbb{Q}, i.e.,

$$
\mathrm{d}(\mathbb{P}, \mathbb{Q})=\sum_{a \in \mathcal{A}}|\mathbb{P}(a)-\mathbb{Q}(a)|
$$

Show that this bound is tight in the sense that the ratio of $\mathrm{D}(\mathbb{P} \| \mathbb{Q})$ and $d^{2}(\mathbb{P}, \mathbb{Q})$ can be arbitrarily close to $\frac{1}{2 \ln 2}$.
Hint: With $B \triangleq\{a: \mathbb{P}(a) \geq \mathbb{Q}(a)\}, \widetilde{\mathbb{P}} \triangleq(\mathbb{P}(B), \mathbb{P}(A-B)), \widetilde{\mathbb{Q}} \triangleq(\mathbb{Q}(B), \mathbb{Q}(A-B))$, we have $\mathrm{D}(\mathbb{P} \| \mathbb{Q}) \geq$ $\mathrm{D}(\widetilde{\mathbb{P}} \| \widetilde{\mathbb{Q}}), \mathrm{d}(\mathbb{P}, \mathbb{Q})=d(\widetilde{\mathbb{P}}, \widetilde{\mathbb{Q}})$. Hence it suffices to consider the case $A=\{0,1\}$, i.e., to determine the largest c such that

$$
p \log \left(\frac{p}{q}\right)+(1-p) \log \left(\frac{1-p}{1-q}\right)-4 c(p-q)^{2} \geq 0, \text { for every } 0 \leq q \leq p \leq 1
$$

For $q=p$ the equality holds; further, the derivative of the left-hand side with respect to q is negative for $q<p$ if $c \leq \frac{1}{2 \ln 2}$ while for $c>\frac{1}{2 \ln 2}$ and $p=\frac{1}{2}$ it is positive in the neighborhood of p.
Remark: When checking the statements of the hint above, pay attention to the fact that the base of the logarithm is 2 , hence, $(\log x)^{\prime}=\frac{1}{x \ln 2}$.
3. (2p.) (A reversed Pinsker inequality)

Let \mathbb{P} and \mathbb{Q} be probability distributions on the finite set A. Let $A_{+}=\{a: \mathbb{Q}(a)>0\}$ and let

$$
\alpha_{\mathbb{Q}}=\min _{a \in A_{+}} \mathbb{Q}(a)
$$

Prove that if $\mathrm{D}(\mathbb{P} \| \mathbb{Q})<\infty$ then

$$
\mathrm{D}(\mathbb{P} \| \mathbb{Q}) \leq \frac{\mathrm{d}^{2}(\mathbb{P}, \mathbb{Q})}{\alpha_{\mathbb{Q}} \cdot \ln 2}
$$

Hint: First prove that

$$
\mathrm{D}(\mathbb{P} \| \mathbb{Q}) \leq \sum_{a \in A_{+}} \frac{\mathbb{P}(a)}{\ln 2}\left(\frac{\mathbb{P}(a)}{\mathbb{Q}(a)}-1\right)=\frac{1}{\ln 2} \sum_{a \in A_{+}} \frac{|\mathbb{P}(a)-\mathbb{Q}(a)|^{2}}{\mathbb{Q}(a)}
$$

