3rd homework set, Due April 19

1. (1p.) Consider the following family of candidate distributions on $\mathcal{X} = \{1, \ldots, k\}$: the distributions of form $\mathbb{P}(x) = c \cdot \exp(t_1 x + t_2 x^2)$. Given a sample $\mathbf{x} = (x_1, \ldots, x_n)$, denote by \mathbb{P}^* the maximum likelihood estimate provided that it exists. Assume that each symbol of \mathcal{X} occurs in the sample \mathbf{x} . Show that the maximum likelihood estimate exists in this case. Specify linear set \mathcal{L} of distributions on \mathcal{X} such that \mathbb{P}^* is equal to the I-projection of the uniform distribution onto \mathcal{L} .

2. (3p.)

(a) Let Q₁, ..., Q_n be arbitrary distributions over the finite sets X₁, ..., X_n, and P be an arbitrary distribution over X₁ × · · · × X_n with marginals P₁, ..., P_n. Prove that

$$D(\mathbb{P}||\mathbb{Q}_1 \times \dots \times \mathbb{Q}_n) = D(\mathbb{P}||\mathbb{P}_1 \times \dots \times \mathbb{P}_n) + \sum_{i=1}^n D(\mathbb{P}_i||\mathbb{Q}_i).$$
(1)

Conclude that among the distributions \mathbb{P} with marginals $\mathbb{P}_1, ..., \mathbb{P}_n$ the I-divergence $D(\mathbb{P}||\mathbb{Q}_1 \times \cdots \times \mathbb{Q}_n)$ is minimal if $\mathbb{P} = \mathbb{P}_1 \times \cdots \times \mathbb{P}_n$!

(b) Let X_1, \ldots, X_n be iid random variables over the set \mathcal{X} , and let $A \subset \mathcal{X}^n$ be an arbitrary measurable set. Prove that

$$\log Prob\left((X_1, \dots, X_n) \in A\right) \leqslant -\sum_{i=1}^n D(\mathbb{P}_i||\mathbb{Q})$$
(2)

where \mathbb{Q} is the common distribution of X_i -s and \mathbb{P}_i is the conditional distribution of X_i under the condition $(X_1, \ldots, X_n) \in A$.

Hint: use problem 1a of the first homework set and the result of part (a) with the following choice of \mathbb{P} : it is the conditional joint distribution of X_1, \ldots, X_n under the condition $(X_1, \ldots, X_n) \in A$.

- 3. (3p.) For a finite set \mathcal{X} , consider on $\mathcal{X} \times \mathcal{X}$ those distributions whose two marginals are equal. Let \mathcal{L} denote the family of these distributions on $\mathcal{X} \times \mathcal{X}$.
 - (a) Determine the I-projection to L of Q̃ = Q₁ × Q₂.
 Hint: Show first that the I-projection P̃ has to be of product form, P̃ = P × P (use problem 1a of this homework set), so that D(P̃||Q₁ × Q₂) = D(P||Q₁) + D(P||Q₂). Writing the right side as one sum, show via the log-sum inequality that its minimum is attained when P(x) = c√Q₁(x)Q₂(x).
 - (b) Apply the result of (a) to testing the null hypothesis that an unknown distribution on X × X has equal marginals, when the alternative hypothesis is that this distribution is Q₁ × Q₂. Show that for tests with first kind error probability bounded by any 0 < ε < 1, the best possible exponent of the second kind error is -2 log Σ_{x∈X} √Q₁(x)Q₂(x). Express this exponent via the Hellinger divergence of Q₁ and Q₁ (f-divergence with f(t) = 1 √t).
- 3. (3p.) Let Ξ be the log-linear family of distributions on $\Omega = \underset{i=1}{\overset{d}{\times}} \{1, \ldots, r_i\}$ with interactions $\gamma \in \Gamma$ where $\Gamma = \{\{1, 2\}, \{2, 3\}, \ldots, \{d-1, d\}\}$ (taking for Q the uniform distribution on Ω).
 - (a) Show that P ∈ P(Ω) with S(P) = Ω belongs to Ξ if and only if it corresponds to a Markov chain, i.e., it equals the joint distribution of random variables X₁,..., X_d such that for each 3 ≤ j ≤ d the conditional distribution of X_j on the condition X₁ = x₁,..., X_{j-1} = x_{j-1} does not depend on x₁, ..., x_{j-2}. Hint: Show first the following two statements:
 - If $\mathbb{P} \in \Xi$, i.e., $\operatorname{Prob}(X_1 = x_1, \dots, X_d = x_d) = \prod_{i=1}^{d-1} B_i(x_i, x_{i+1})$, then for X_1, \dots, X_d with joint distribution \mathbb{P}

$$\operatorname{Prob}(X_d = x_d | X_1 = x_1, \dots, X_{d-1} = x_{d-1}) = \frac{\operatorname{Prob}(X_1 = x_1, \dots, X_d = x_d)}{\sum_{x'_d \in \{1, \dots, r_d\}} \operatorname{Prob}(X_1 = x_1, \dots, X_d = x'_d)}$$

does not depend on $x_1, ..., x_{d-2}$.

- The $\{1, \ldots, d-1\}$ marginal of P, given by the sum in the denominator above, belongs to the log-linear family of distributions on $\Omega' = \underset{i=1}{\overset{d-1}{\times}} \{1, \ldots, r_i\}$ with interactions $\{1, 2\}, ..., \{d-2, d-1\}$.
- (b) Draw the conclusion that among all distributions $\mathbb{P} \in \mathcal{P}(\Omega)$ with prescribed marginals $\mathbb{P}^{1,2}$, $\mathbb{P}^{2,3}$, ..., $\mathbb{P}^{d-1,d}$, that with largest entropy $H(\mathbb{P})$ is the joint distribution of the Markov chain $X_1,...,X_d$ with X_i, X_{i+1} having joint distribution $\mathbb{P}^{i,i+1}$, for $i = 1, \ldots, d-1$. Hint: Use Problem 2 of the second homework set