Third homework set, Due April 17, 16:00

1. (1p.) Consider the following family of candidate distributions on $\mathcal{X}=\{1, \ldots, k\}$: the distributions of form $\mathbb{P}(x)=c \cdot \exp \left(t_{1} x+t_{2} x^{2}\right)$. Given a sample $\mathbf{x}=\left(x_{1}, \ldots, x_{n}\right)$, denote by \mathbb{P}^{*} the maximum likelihood estimate provided that it exists. Assume that each symbol of \mathcal{X} occurs in the sample \mathbf{x}. Show that the maximum likelihood estimate exists in this case. Specify linear set \mathcal{L} of distributions on \mathcal{X} such that \mathbb{P}^{*} is equal to the I-projection of the uniform distribution onto \mathcal{L}.
2. (3p.) Let \mathcal{E} be the family of binomial distributions with $n=5$ and $p \in(0,1)$, i.e.,

$$
\begin{equation*}
\mathcal{E}=\left\{\mathbb{P}: \mathbb{P}(a)=\binom{5}{a} p^{a}(1-p)^{5-a}, a \in\{0,1,2,3,4,5\}, \text { for some } p \in(0,1) .\right\} \tag{1}
\end{equation*}
$$

(a) Show that \mathcal{E} is an exponential family!
(b) We observe 200 independent drawing from an unknown distribution on $A=\{0,1,2,3,4,5\}$. The type of the observed sample $\hat{\mathbb{P}}_{200}=\left(\hat{\mathbb{P}}_{200}(0), \hat{\mathbb{P}}_{200}(1), \hat{\mathbb{P}}_{200}(2), \hat{\mathbb{P}}_{200}(3), \hat{\mathbb{P}}_{200}(4), \hat{\mathbb{P}}_{200}(5)\right)$ equals

$$
\begin{equation*}
(0.05,0.34,0.31,0.24,0.04,0.02) \tag{2}
\end{equation*}
$$

Determine the ML estimate of p without differentiation!
3. (3p.)
(a) Let $\mathbb{Q}_{1}, \ldots, \mathbb{Q}_{n}$ be arbitrary distributions over the finite sets $\mathcal{X}_{1}, \ldots, \mathcal{X}_{n}$, and \mathbb{P} be an arbitrary distribution over $\mathcal{X}_{1} \times \cdots \times \mathcal{X}_{n}$ with marginals $\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}$. Prove that

$$
\begin{equation*}
D\left(\mathbb{P} \| \mathbb{Q}_{1} \times \cdots \times \mathbb{Q}_{n}\right)=D\left(\mathbb{P} \| \mathbb{P}_{1} \times \cdots \times \mathbb{P}_{n}\right)+\sum_{i=1}^{n} D\left(\mathbb{P}_{i} \| \mathbb{Q}_{i}\right) \tag{3}
\end{equation*}
$$

Conclude that among the distributions \mathbb{P} with marginals $\mathbb{P}_{1}, \ldots, \mathbb{P}_{n}$ the I-divergence $D\left(\mathbb{P} \| \mathbb{Q}_{1} \times \cdots \times \mathbb{Q}_{n}\right)$ is minimal if $\mathbb{P}=\mathbb{P}_{1} \times \cdots \times \mathbb{P}_{n}$!
(b) Let X_{1}, \ldots, X_{n} be iid random variables over the set \mathcal{X}, and let $A \subset \mathcal{X}^{n}$ be an arbitrary measurable set. Prove that

$$
\begin{equation*}
\log \operatorname{Prob}\left(\left(X_{1}, \ldots, X_{n}\right) \in A\right) \leq-\sum_{i=1}^{n} D\left(\mathbb{P}_{i} \| \mathbb{Q}\right) \tag{4}
\end{equation*}
$$

where \mathbb{Q} is the common distribution of X_{i}-s and \mathbb{P}_{i} is the conditional distribution of X_{i} under the condition $\left(X_{1}, \ldots, X_{n}\right) \in A$.
Hint: use problem 1a of the first homework set and the result of part (a) with the following choice of \mathbb{P} : it is the conditional joint distribution of X_{1}, \ldots, X_{n} under the condition $\left(X_{1}, \ldots, X_{n}\right) \in A$.
4. (3p.) (Application of exercise 3b)

For binary valued i.i.d. X_{1}, \ldots, X_{n} with common distribution $Q=(Q(0), Q(1))=(1-q, q)$. Let $p \leq q$. Show that

$$
\begin{equation*}
\operatorname{Pr}\left(\sum_{i=1}^{n} X_{i} \leq n p\right) \leq 2^{-n D(p \| q)} \tag{5}
\end{equation*}
$$

where

$$
\begin{equation*}
D(p \| q)=p \log \frac{p}{q}+(1-p) \log \frac{1-p}{1-q} \tag{6}
\end{equation*}
$$

How is this related to Sanov's theorem?

Hint: First prove that

$$
\begin{equation*}
\operatorname{Pr}\left(X_{i}=1 \mid \sum_{i=1}^{n} X_{i} \leq n p\right) \leq p \tag{7}
\end{equation*}
$$

via determining

$$
\begin{equation*}
\operatorname{Pr}\left(X_{i}=1 \mid \sum_{i=1}^{n} X_{i}=k\right), 0 \leq k \leq n p \tag{8}
\end{equation*}
$$

