Third homework set, Due April 17, 16:00

- 1. (1p.) Consider the following family of candidate distributions on $\mathcal{X} = \{1, \ldots, k\}$: the distributions of form $\mathbb{P}(x) = c \cdot \exp(t_1 x + t_2 x^2)$. Given a sample $\mathbf{x} = (x_1, \ldots, x_n)$, denote by \mathbb{P}^* the maximum likelihood estimate provided that it exists. Assume that each symbol of \mathcal{X} occurs in the sample \mathbf{x} . Show that the maximum likelihood estimate exists in this case. Specify linear set \mathcal{L} of distributions on \mathcal{X} such that \mathbb{P}^* is equal to the I-projection of the uniform distribution onto \mathcal{L} .
- 2. (3p.) Let \mathcal{E} be the family of binomial distributions with n = 5 and $p \in (0, 1)$, i.e.,

$$\mathcal{E} = \{\mathbb{P}: \mathbb{P}(a) = {\binom{5}{a}} p^a (1-p)^{5-a}, a \in \{0, 1, 2, 3, 4, 5\}, \text{ for some } p \in (0, 1).\}$$
(1)

- (a) Show that \mathcal{E} is an exponential family!
- (b) We observe 200 independent drawing from an unknown distribution on $A = \{0, 1, 2, 3, 4, 5\}$. The type of the observed sample $\hat{\mathbb{P}}_{200} = (\hat{\mathbb{P}}_{200}(0), \hat{\mathbb{P}}_{200}(1), \hat{\mathbb{P}}_{200}(2), \hat{\mathbb{P}}_{200}(3), \hat{\mathbb{P}}_{200}(4), \hat{\mathbb{P}}_{200}(5))$ equals

$$(0.05, 0.34, 0.31, 0.24, 0.04, 0.02). (2)$$

Determine the ML estimate of p without differentiation!

3. (3p.)

(a) Let Q₁, ..., Q_n be arbitrary distributions over the finite sets X₁, ..., X_n, and ℙ be an arbitrary distribution over X₁ × · · · × X_n with marginals ℙ₁, ..., ℙ_n. Prove that

$$D(\mathbb{P}||\mathbb{Q}_1 \times \dots \times \mathbb{Q}_n) = D(\mathbb{P}||\mathbb{P}_1 \times \dots \times \mathbb{P}_n) + \sum_{i=1}^n D(\mathbb{P}_i||\mathbb{Q}_i).$$
(3)

Conclude that among the distributions \mathbb{P} with marginals $\mathbb{P}_1, ..., \mathbb{P}_n$ the I-divergence $D(\mathbb{P}||\mathbb{Q}_1 \times \cdots \times \mathbb{Q}_n)$ is minimal if $\mathbb{P} = \mathbb{P}_1 \times \cdots \times \mathbb{P}_n$!

(b) Let X_1, \ldots, X_n be iid random variables over the set \mathcal{X} , and let $A \subset \mathcal{X}^n$ be an arbitrary measurable set. Prove that

$$\log Prob\left((X_1,\ldots,X_n)\in A\right) \le -\sum_{i=1}^n D(\mathbb{P}_i||\mathbb{Q})$$
(4)

where \mathbb{Q} is the common distribution of X_i -s and \mathbb{P}_i is the conditional distribution of X_i under the condition $(X_1, \ldots, X_n) \in A$.

Hint: use problem 1a of the first homework set and the result of part (a) with the following choice of \mathbb{P} : it is the conditional joint distribution of X_1, \ldots, X_n under the condition $(X_1, \ldots, X_n) \in A$.

4. (3p.) (Application of exercise 3b)

For binary valued i.i.d. X_1, \ldots, X_n with common distribution Q = (Q(0), Q(1)) = (1 - q, q). Let $p \le q$. Show that

$$Pr\left(\sum_{i=1}^{n} X_i \le np\right) \le 2^{-nD(p||q)}$$
(5)

where

$$D(p||q) = p \log \frac{p}{q} + (1-p) \log \frac{1-p}{1-q}.$$
(6)

How is this related to Sanov's theorem?

Hint: First prove that

$$Pr\left(X_i = 1 \middle| \sum_{i=1}^n X_i \le np\right) \le p \tag{7}$$

via determining

$$Pr\left(X_i = 1 \Big| \sum_{i=1}^n X_i = k\right), \ 0 \le k \le np.$$
(8)