4th homework set, Due May 12

- (1p.) Let a distribution Q, a linear family L and a convex closed subfamily L' ⊆ L on the finite set A be given with S(Q) = S(L) = A. Denote by P* the I-projection of Q onto L. Prove that the I-projections of Q and of P* onto L' are the same.
- 2. (3p.) Let \mathcal{E} be the family of binomial distributions with n = 5 and $p \in (0, 1)$, i.e.,

$$\mathcal{E} = \{\mathbb{P} : \mathbb{P}(a) = {\binom{5}{a}} p^a (1-p)^{5-a}, a \in \{0, 1, 2, 3, 4, 5\}, \text{ for some } p \in (0, 1).\}$$
(1)

- (a) Show that \mathcal{E} is an exponential family!
- (b) We observe 200 independent drawing from an unknown distribution on $A = \{0, 1, 2, 3, 4, 5\}$. The type of the observed sample $\hat{\mathbb{P}}_{200} = (\hat{\mathbb{P}}_{200}(0), \hat{\mathbb{P}}_{200}(1), \hat{\mathbb{P}}_{200}(2), \hat{\mathbb{P}}_{200}(3), \hat{\mathbb{P}}_{200}(4), \hat{\mathbb{P}}_{200}(5))$ equals

$$0.05, 0.34, 0.31, 0.24, 0.04, 0.02). (2)$$

Test the null hypothesis with type 1 error probability $\varepsilon = 0.05$ that the sample come from a distibution in \mathcal{E} using the method outlined in Remark 4.2. of the lecture notes, i.e., calculate $\frac{400}{\log e}D(\hat{\mathbb{P}}_{200}||\mathbb{P}^*)$ and check whether it exceeds the 0.95 quantile of the chi-squared distribution with appropriate degree of freedom. Hint: Theorem 3.2 is useful for determining \mathbb{P}^* .

3. (3p.) Let \mathcal{L} be the linear family of distributions on $\Omega = \{0, \ldots, r_1\} \times \{0, \ldots, r_2\}$ with prescribed marginals $(P(0 \cdot), \ldots, P(r_1 \cdot))$ and $(P(\cdot 0), \ldots, P(\cdot r_2))$. For any $Q \in \mathcal{P}(\Omega)$ with $S(Q) = \Omega$, the I-projection P^* of Q to \mathcal{L} can be computed via iterative proportional fitting. Show that P^* can be computed also by the iterative algorithm

$$b_0(i,j) = Q(i,j) \tag{3}$$

$$b_{n+1}(i,j) = b_n(i,j)\sqrt{\frac{P(i\cdot)}{b_n(i\cdot)} \cdot \frac{P(\cdot j)}{b_n(\cdot j)}}, \text{ where } b_n(i\cdot) = \sum_j b_n(i,j), \ b_n(\cdot j) = \sum_i b_n(i,j), \tag{4}$$

i.e., $b_n(i, j) \to P^*(i, j)$ for each $(i, j) \in \Omega$. Let Ξ be the exponential family corresponding to \mathcal{L} (taking for Q the uniform distirbution). Characterize the members of Ξ !

Hint: Apply the theorem on generalized iterative scaling.

4. (3p.) Define distributions \mathbb{Q}_n on the sets $\{0,1\}^n$ recursively, by $\mathbb{Q}_1 = (\frac{1}{2}, \frac{1}{2})$ and

$$\mathbb{Q}_n(x_1^n) = \mathbb{Q}_{n-1}(x_1^{n-1}) \frac{\mathbf{N}(x_n | x_1^{n-1}) + 1}{n+1}, \ n \ge 2$$

where $N(x_n|x_1^{n-1})$ denotes the number of occurrences of the bit x_n in $x_1^{n-1} = x_1 \dots x_{n-1}$.

(a) Show that for all $k \in \{0, 1, ..., n\}$

$$\mathbb{Q}_n(x_1^n) = \frac{1}{(n+1)\binom{n}{k}}$$
 if the type of x_1^n equals $\left(\frac{k}{n}, \frac{n-k}{n}\right)$,

and consequently, if the true probability of x_1^n is $\mathbb{P}^n(x_1^n) = \prod_{i=1}^n \mathbb{P}(x_i)$ (for any $\mathbb{P} = (\mathbb{P}(0), \mathbb{P}(1))$), this probability is bounded above by $(n+1)\mathbb{Q}_n(x_1^n)$.

(b) Draw the conclusion that for any memoryless source with alphabet {0,1}, if Q_n is used as coding distribution instead of the true Pⁿ, the loss in average length D(Pⁿ||Q_n) does not exceed log(n + 1).