First homework set, Due March 13, 16:00

- 1. (4p.) Determine the I-divergences $D(\mathbb{P}||\mathbb{Q})$ and $D(\mathbb{Q}||\mathbb{P})$ if
 - (a) \mathbb{Q} is an arbitrary distribution over a finite set A and $\mathbb{P}(a) = \frac{\mathbb{Q}(a)}{\mathbb{Q}(B)}$ if $a \in B$ and 0 otherwise, where $B \subset A$ and $\mathbb{Q}(B) = \sum_{a \in B} Q(a) > 0$.
 - (b) P and Q are defined as follows. A hat contains k₁ slips of paper marked with 1, k₂ slips of paper marked with 2 ... and k_r slips of paper marked with r. Let n be equal to k₁ + ··· + k_r. We draw n times from the hat (i) without replacement (ii) with replacement. For a given sequence x = x₁ ... x_n ∈ {1,...,r}ⁿ let P(x) and Q(x) denote the probability of drawing the given sequence in cases (i) and (ii), respectively. Is there any connection with part (a)?
 - (c) Calculate also the entropies of \mathbb{P} and \mathbb{Q} defined in part (b)! Which entropy is the larger?
- 2. (3p.) (Universal source coding with fixed length codes of rate R)

Let $A_n \subset \mathcal{X}^n$ be the union of all type classes T_P^n with $H(P) \leq R$. Show that

$$\frac{1}{n}\log|A_n| \to R \tag{1}$$

and that

$$Q^n(A_n) \to 1 \tag{2}$$

for every distribution Q on \mathcal{X} with H(Q) < R. More exactly, prove that

$$Q^{n}(A_{n}^{c}) = 2^{-n \cdot e_{Q}(R) + o(n)}, \ e_{Q}(R) = \min_{P:H(P) \ge R} D(P||Q).$$
(3)

Hint: Use the results of Section 2 of the lecture notes.

Remark: For each n take a fixed length n-code C_n as follows. Let $l_n = \lceil \log |A_n| \rceil$ and choose an injective mapping $f_n : A_n \to \{0\} \times \{0, 1\}^{l_n}$. Then let $C_n : \mathcal{X}^n \to \{0, 1\}^{l_n+1}$ be the code which encodes the element of A_n using f_n and encode all the other sequences of \mathcal{X}^n with the all 1's sequence of length l + 1. According to this exercise the code sequence $\{C_n, n = 1, 2, ...\}$ uses asymptotically R bits per source symbol, moreover, it is true simultaneously for each Q with H(Q) < R that the Q^n probability that the source sequence can not be recovered from its code tends to 0 with exponent $e_Q(R)$ as $n \to \infty$.

3. (3p.) Let $Q = \{Q_n\}_{n=1}^{\infty}$ be the iid process on the alphabet $\{1,2\}$ with marginal distribution $Q_1(1) = \frac{9}{10}$ and $Q_1(2) = \frac{1}{10}$. Determine the codeword assigned to $x_1^7 = 1211112$ by arithmetic coding determined by coding process Q, for both versions of arithmetic coding found on pages 427-428 of the lecture notes.

Supplement: When you divide the interval $J(x_1^n)$ into two parts, let $J(x_1^n 1)$ be the left and $J(x_1^n 2)$ be the right subinterval.