First homework set, Due March 13, 16:00

1. (4p.) Determine the I-divergences $\mathrm{D}(\mathbb{P} \| \mathbb{Q})$ and $\mathrm{D}(\mathbb{Q}|\mid \mathbb{P})$ if
(a) \mathbb{Q} is an arbitrary distribution over a finite set A and $\mathbb{P}(a)=\frac{\mathbb{Q}(a)}{\mathbb{Q}(B)}$ if $a \in B$ and 0 otherwise, where $B \subset A$ and $\mathbb{Q}(B)=\sum_{a \in B} Q(a)>0$.
(b) \mathbb{P} and \mathbb{Q} are defined as follows. A hat contains k_{1} slips of paper marked with $1, k_{2}$ slips of paper marked with $2 \ldots$ and k_{r} slips of paper marked with r. Let n be equal to $k_{1}+\cdots+k_{r}$. We draw n times from the hat (i) without replacement (ii) with replacement. For a given sequence $\mathbf{x}=x_{1} \ldots x_{n} \in\{1, \ldots, r\}^{n}$ let $\mathbb{P}(\mathbf{x})$ and $\mathbb{Q}(\mathbf{x})$ denote the probability of drawing the given sequence in cases (i) and (ii), respectively. Is there any connection with part (a)?
(c) Calculate also the entropies of \mathbb{P} and \mathbb{Q} defined in part (b)! Which entropy is the larger?
2. (3p.) (Universal source coding with fixed length codes of rate R)

Let $A_{n} \subset \mathcal{X}^{n}$ be the union of all type classes T_{P}^{n} with $H(P) \leqslant R$. Show that

$$
\begin{equation*}
\frac{1}{n} \log \left|A_{n}\right| \rightarrow R \tag{1}
\end{equation*}
$$

and that

$$
\begin{equation*}
Q^{n}\left(A_{n}\right) \rightarrow 1 \tag{2}
\end{equation*}
$$

for every distribution Q on \mathcal{X} with $H(Q)<R$. More exactly, prove that

$$
\begin{equation*}
Q^{n}\left(A_{n}^{c}\right)=2^{-n \cdot e_{Q}(R)+o(n)}, e_{Q}(R)=\min _{P: H(P) \geqslant R} D(P \| Q) \tag{3}
\end{equation*}
$$

Hint: Use the results of Section 2 of the lecture notes.
Remark: For each n take a fixed length n-code C_{n} as follows. Let $l_{n}=\left\lceil\log \left|A_{n}\right|\right\rceil$ and choose an injective mapping $f_{n}: A_{n} \rightarrow\{0\} \times\{0,1\}^{l_{n}}$. Then let $C_{n}: \mathcal{X}^{n} \rightarrow\{0,1\}^{l_{n}+1}$ be the code which encodes the element of A_{n} using f_{n} and encode all the other sequences of \mathcal{X}^{n} with the all 1 's sequence of length $l+1$. According to this exercise the code sequence $\left\{C_{n}, n=1,2, \ldots\right\}$ uses asymptotically R bits per source symbol, moroever, it is true simultaneously for each Q with $H(Q)<R$ that the Q^{n} probability that the source sequence can not be recovered from its code tends to 0 with exponent $e_{Q}(R)$ as $n \rightarrow \infty$.
3. (3p.) Let $Q=\left\{Q_{n}\right\}_{n=1}^{\infty}$ be the iid process on the alphabet $\{1,2\}$ with marginal distribution $Q_{1}(1)=\frac{9}{10}$ and $Q_{1}(2)=\frac{1}{10}$. Determine the codeword assigned to $x_{1}^{7}=1211112$ by arithmetic coding determined by coding process Q, for both versions of arithmetic coding found on pages 427-428 of the lecture notes.
Supplement: When you divide the interval $J\left(x_{1}^{n}\right)$ into two parts, let $J\left(x_{1}^{n} 1\right)$ be the left and $J\left(x_{1}^{n} 2\right)$ be the right subinterval.

