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Abstract

The goal of digital shape reconstruction is to create computer representations from
measured data. The process starts with fitting a triangular mesh onto the data points,
which is then segmented into disjoint regions. This is followed by region classification,
where the best-suited mathematical surface types are determined and assigned to each
region, thus optimizing the forthcoming fitting of the individual surfaces. In this paper
our goal is to detect and reconstruct swept surfaces, which represent a special surface class
created by sweeping a planar profile curve along a 3D spine curve. We focus on practical
aspects, and attempt to eliminate difficulties due to noise and incomplete data. First an
enhanced vector field of principal curvatures is created to be covered by a grid of curvature
lines. Using these, we estimate a sequence of sweeping planes, and compute a curve-based
representation with a best-fit profile and a spine curve. The surface reconstruction is
considered successful, if the swept surface remains within a prescribed tolerance. After
discussing the steps of the algorithm, real measured data sets are used to show the
difficulties and the results.

1. Introduction

Digital shape reconstruction (reverse engineering) is an expanding, challenging area of
Computer Aided Geometric Design [Várady & Martin (2002)]. This technology is uti-
lized in various applications where a given physical object is scanned in 3D, and a com-
puter representation is produced in order to perform various complex computations.
A wide range of applications emerges in engineering, medical sciences, and to preserve
the cultural heritage of mankind [Marks (2005)]. Examples include redesigning and re-
manufacturing old mechanical parts, creating surface geometries from clay models, or
producing surfaces matching human body parts for hearing aids, dentures, prosthetics,
etc.

1.1. Digital shape reconstruction

Digital shape reconstruction consists of the following technical phases: (1) 3D data acqui-
sition (scanning), (2) filtering and merging point clouds, (3) creating triangular meshes,
(4) simplifying and repairing meshes, (5) segmentation (partitioning into regions), (6) re-
gion classification, (7) fitting surfaces, (8) fitting connecting surfaces (e.g. fillets), (9) per-
fecting surfaces (including constrained fitting and surface fairing), (10) exporting to
CAD–CAM systems for downstream applications.

The goal of segmentation is to partition the triangular mesh into disjoint regions based
on locally estimated geometric characteristics. First, we “remove” the so-called separator
sets that have strong curvatures, then the remaining parts — primary regions — are
classified, i.e., the best-suited surface types for approximating the underlying data points
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of the region are selected. The structure of the primary regions corresponds to the struc-
ture of the faces in the final CAD model. The literature considers segmentation the most
crucial phase of digital shape reconstruction, as it fundamentally determines the quality
of the final model. In this paper we assume that segmentation has already taken place,
and the input of our algorithm — a primary region — is ready to be processed.

Correct classification is not an easy task, as we have discrete and noisy data, and we
need to determine the type of a full surface from only partially available region informa-
tion. Classification generally takes place in a sequential order, i.e., we set hypotheses and
continue classification until the region meets the expected geometric properties of the
hypothetical surface type. We start with simple surface types, and continue with more
and more complex ones, as follows:

1. Planes
2a. Extruded surfaces (cylinders, or extrusions with a general profile)
2b. Drafted extrusions (cones, or drafted surfaces with a general profile)
3. Surfaces of revolution (spheres, tori, or surfaces with a general profile)
4. General swept surfaces with constant profile
5. Swept surfaces with a varying profile (lofting)
6a. Open free-form surfaces (disk topology)
6b. Closed (periodic) free-form surfaces (cylindrical topology)

Our goal is to confirm or reject the hypothesis that a given region can be well approx-
imated by a swept surface. If it is true, we determine the optimal geometric parameters;
if not, we step forward to the next item in the list. When only the planar sweeping
property is valid, this is utilized for reconstructing sweeps with varying profiles, or for
parameterizing free-form surfaces.

1.2. Swept surfaces

Swept surfaces are generated by moving a planar profile curve along another curve called
spine or directrix. When the spine is a straight line or a circular arc, and the profile is
constant, we create simple extruded or rotational surfaces. For general sweeps, the spine
is a 3D curve with an associated sweeping plane and a local coordinate system defined
by means of a rotational function. The profile can be constant, or constant with scaling
or varying in shape.

Let us denote the continuously parameterized planar (z = 0) set of profile curves
by p(u, v) : R2 → R3; the twice differentiable, not self-intersecting spine curve by
γ(u) : R → R3. Let r : R → R3 be the rotational function perpendicular to the spine,
i.e., 〈γ̇(u), r(u)〉 = 0. Thus u is the longitudinal parameter, that aligns the positions of
the sweeping plane, and v is the cross-sectional parameter that defines a point on the
current profile in the given plane. Mr(u) denotes the rotational matrix that turns the
vector (1, 0, 0)> into the direction r(u), and (0, 0, 1)> into γ̇(u), and let us denote the
longitudinal scaling matrix by Msc(u). Then the equation of the swept surface is given
as

S(u, v) = γ(u) +Mr(u)Msc(u)p(u, v).

For sweeps with constant profile the equation can be simplified:

S(u, v) = γ(u) +Mr(u)p(v).

These sort of surfaces frequently occur in Computer Aided Design, and their curve-
based, perfect representation is essential for data exchange and manufacturability. In the
next sections we will work with discrete data sets, and create only polylines. To convert
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Figure 1. Incomplete input mesh with noise and holes in the interior.

these into standard parametric curves is a well-known task, and we do not deal with this
in the paper.

1.3. Problems

To decide on the swept surface hypothesis, we need to estimate curvatures on noisy
and discrete data sets, and we need to trace stable curvature lines over often unevenly
distributed triangular regions. We compute the sweeping planes and the defining curves
of the surface from noisy data, therefore filtering and smoothing the data is important
in each phase of the algorithm.

Most engineering parts are bounded by trimmed surface portions, which have been
constructed in the CAD process through surface–surface intersections. Accordingly, the
corresponding regions, from which we wish to reconstruct the original surfaces, may also
be incomplete, having holes in the region interior. Also, we need to pay attention to the
termination of the sweeps, as the trim curves at the ends will not necessarily lie in sweep
planes perpendicular to the spine, and may not contain the full profile. Consequently,
the algorithm must handle incomplete grids of curvature lines, i.e., the holes must be
bypassed or jumped over, and we must be able to compose the profile curve from partial
sections, as well. These problems are illustrated in Figure 1.

1.4. Previous work

There is a wide range of publications that may be associated with our paper, including
reverse engineering of shapes, segmentation over meshes, tracing curvature lines, and
extracting feature curves, but — according to our best knowledge — the reconstruction of
swept surfaces over incomplete, noisy data for mechanical engineering CAD has not been
explored in detail. We have selected only a few interesting publications. An early paper
on swept surfaces was published in Ueng et al. (1998); data points were approximated
by B-spline curves and related tensor product surfaces, but no direct attempt was made
to extract the feature curves of the sweeps. Lee & Kim (2004) reconstructed pipe and
canal surfaces from measured data, and presented an interesting technique for thinning
a set of points to generate spine curves. Huysmans et al. (2006) investigated cylindrical
parameterization methods for tubular surfaces, however, they did not utilize the sweeping
property and curvature-based structures. Quad-dominant meshing was also a topic of
high interest, where fairly complex structures of quadrilaterals were built from a set of



Reconstructing swept surfaces 4

numerically traced principal curvature lines (Alliez et al. (2003), Marinov & Kobbelt
(2004)). Related investigations included the robustness of curvature estimations (called
trusted curvatures) and overcoming meshing problems due to the occurrence of umbilical
points within the global net of curvature lines.

Our paper is structured as follows. In Section 2, we deal with the numerical esti-
mation of curvatures, and methods to unify and smooth the curvature vector field. In
Section 3, we discuss how to trace curvature lines, and create consistent grids from them.
In Section 4, we compute the optimal profile and spine curves, followed by the numerical
evaluation of the surface representation obtained. Finally, future research topics conclude
the paper.

2. Creating and repairing curvature vector fields

In this section we generate an enhanced vector field for tracing curvature lines in the
forthcoming phases.

2.1. Local curvature estimations

It is well-known from classical differential geometry, that at each point p of a twice
continuously differentiable surface S, the surface curvature is defined by two principle
curvature values κmin(p) and κmax(p), and two associated principle directions, denoted
by tmin(p) and tmax(p). The lines of curvature follow the principal directions — i.e., their
tangents always coincide with one of the principal directions, and these constitute an
orthogonal grid of curves on the surface. Exceptions occur at umbilical points, where the
principal directions do not exist; the κmin and κmax values are equal, and the normal
curvature is identical in every direction.

There are many published results concerning the estimation of local surface characteris-
tics based on triangular meshes [Benkő & Várady (2004), Botsch et al. (2010)]. Planarity
is a scalar measure, that quantifies whether a local neighborhood of a point is flat or not.
The Gauss (G) and mean (H) curvatures are also important scalar measures, that can
be well estimated based on triangle fans around the given points. It is also well-known
that these mutually determine κmin and κmax, i.e.,

G = κminκmax, H =
κmin + κmax

2
,

and

κmin,max = H ±
√
H2 −G.

The principal directions tmin and tmax can be estimated by means of fitting a local
cylinder in least-squares sense, which leads to solving an eigenvalue equation. It is suffi-
cient to compute the tmin vector, as tmax is orthogonal to this. The principal directions
of a triangular region are shown in Figure 2; the little dashes are being set according to
the stronger direction of curvature.

2.2. Unifying and smoothing vector fields

In order to produce a consistent grid of curvature lines, we need a unified vector field
with reduced noise, and without min-max flips. It is also necessary that the region does
not contain umbilical points, otherwise it would be impossible to parameterize the swept
region by a full grid.

It often occurs that the lines of a curvature grid first follow minimal curvature lines,
then at a point they continue along maximal curvatures; this is called min-max flipping.
This is depicted in Figure 4.1, where apparently creating a united curvature grid is not
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Figure 2. Estimating principal directions. Figure 3. Curvature stability map.

possible. The procedures of curve tracing are likely to get terminated, as the curvature
estimations are very unstable at these places (Figure 4.2). To overcome this problem, we
detect the flipping areas, and swap the direction of the tracing from minimal to maximal
or vice versa. A corresponding sequence is illustrated in Figure 4. The algorithm for
repairing the vector fields can be split into four phases (the term ”weak” will be defined
in the next sections):

(a) detecting areas of unstable curvatures,
(b) discovering and avoiding min-max flips,
(c) unifying vector fields,
(d) smoothing vector fields in the weak areas.

2.3. Curvature stability filter

This filter selects points within a triangular mesh, where the estimated principle direc-
tions are stable, i.e., roughly identical within a given neighborhood. At these points the
curvature estimation is robust, and the points have strong curvature. In the areas of weak
curvature, the variance of the principal directions is high, i.e., the vectors span large an-
gles around the points. In these areas, including areas where flipping takes place, curve
tracing is likely to get stuck, or yield an incorrect result, see Figure 3.

Formally, let us denote the vector field of the minimal principal directions by κmin,
and take an n-element neighborhood of a given point p, denoted by Ω(p, n) (i.e., one or
two layers of triangle fans). A point p is of strong curvature, if for a prescribed angular
tolerance ε

∀ pu, pv ∈ Ω(p, n) : 〈κmin(pu), κmin(pv)〉 > 1− ε.

2.4. Region classification and unification

In order to generate a curvature grid, we are going to create a unified vector field. In
the previous phase we have computed disjoint subregions by minimal principal curva-
tures. These subregions have vector fields perpendicular to each other, see Figure 4.2.
Now our goal is to locally qualify the subregions, and decide whether the κmin or κmax

principal curvatures will be incorporated into the final vector field. The weak points of
curvature will also be repaired and/or replaced to match the curvature flow of the merged
subregions.

Let us start from an initial vector field of κmin curvature, and align the adjacent regions
to match this. We qualify the subregions as type Vmin or Vmax, indicating whether the
κmin or κmax curvature vector field will be actually used. In the first step we pick a
starting point p0 contained in Vmin, then by parallel traversal we qualify each point p of
strong curvature, by whether the previously visited neighbors of κmin(p) are aligned with
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Figure 4. Stabilizing vector fields: 1. Local estimations, 2. Detecting areas with weak curvature,
3. Local area classification, 4. Unification, 5. Uniting and smoothing, 6. A sequence of profiles.

the vectors of Vmin or Vmax. After traversing all points of strong curvature, these will be
assigned either to Vmin or Vmax.

2.5. Smoothing areas of weak curvature

Now we can create a united vector field κmin−max by merging Vmin and Vmax. κmin−max

is going to be interpreted for the areas of weak curvature. Assume p is a point with weak
curvature, and the set of points with strong curvature around p is denoted by Ω+(p,m).
Using the average of these points, we replace the curvature at p by

A(p) =
∑

q∈Ω+(p,m)

κmin−max(q)

m
.

To sum this up,

κmin−max(p) =

 κmin(p), for p ∈ Vmin(p)
κmax(p), for p ∈ Vmax(p)

A(p), otherwise

Note: It makes sense to repeat the above steps once or twice, i.e., to rerun the curvature
filter on the obtained vector field κmin−max, and perform averaging again for the data
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Figure 5. Curvature lines traced on a car model.

points of weak curvature. The enhanced vector field enables tracing curvature lines in a
more robust manner.

3. Curvature lines and grids

In this section we discuss how curvature lines can be traced and merged in order to obtain
an orthogonal grid.

3.1. Curvature lines

We have a mesh with estimated principle directions at each vertex. This discrete vector
field can also be interpreted on the edges of the triangles, and at interior points, as
well, if we weight the vectors at the vertices by barycentric coordinates. Our goal is
to compute a surface curve (an integral curve), whose derivative always points to the
direction of the vector field, i.e., we numerically solve the differential equation ϕ̇ = κmin

or ϕ̇ = κmax. We will generate a polyline, whose points lie either on the edges or in the
interior of the triangles. The polyline, G : R → R3, can always be parameterized by
approximate arc-length or by scalar curvature values. The points of G are denoted by
V (G) = {p0, p1, . . . , pn}, the edges by E(G) = {e1, e2, . . . , en}, where ek connects the
vertices pk−1 and pk.

In the course of curve tracing we typically step from edge to edge, though the polyline
may contain interior points, as well. Let us denote the maximal step-length by smax.
Take a point pi that lies on edge li, or in the triangle hi. In order to determine the next
point pi+1, we take the surface normal ni estimated at pi, and intersect the edges of hi
by a plane with normal ni × κ(pi), that also contains pi. If |q − pi| < smax, this yields a
new point q; otherwise the new point pi+1 will fall into the interior of the triangle. This
process can be refined by applying the well-known Runge–Kutta method. Compute the
next point q by the above algorithm and define an intermediate point q∗ = pi+q

2 , then
using q∗ we can determine pi+1.

In the case of points within the interior of the region, tracing is started by two opposite
directions, and the two traced polylines will be merged later. Curves are terminated when
we reach a boundary of the region, or an area of weak curvature. Of course, the boundaries
of the holes are treated in the same way as the perimeter loop. A set of curvature lines
are shown in Figure 5.

Tracing closed polylines requires special attention. Assume that we wish to generate a
closed curvature line on a region with cylindrical topology, but the polyline initiated at
point p fails to get back accurately to this point due to noise of the vector field and errors
of the estimations. At the same time, it is expected that for closed curves the polyline will
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Figure 6. Inaccurate closed curves and Hermite blending.

Figure 7. Closed curves before and after repair.

return to a neighborhood of the initial point, characterized by a radius ε. This situation
can easily be recognized. We qualify a curve “almost” closed, if there exists a point q1, for
which p 6= q1 and |p − q1| < ε. We assume that while tracing to the opposite direction,
we locate another close point q2, as shown in Figure 6. Assume that we want to blend
together two parameterized curves r1(u) and r2(u) in such a way, that the result curve
r(u) inherits the position and tangent of the start point of r1, and those of the endpoint
of r2. Then we can blend by a cubic Hermite function:

r(u) = r1(u)H(u) + r2(u)H(1− u), where H(u) = 2u3 − 3u2 + 1

We apply the same logic to merge our imperfect curves. If r1(u) runs from p to q1,
and r2(u) from q2 to p, the blended curve r(u) starts at p and arrives to p, moreover,
it retains the original tangent direction of p. This method is depicted in Figure 7; the
curves to be closed are shown on the left, the repaired curves on the right.

3.2. Curvature grids

A curvature grid is a collection of curvature lines defined by the vector fields of principal
curvatures Rv = {v1, v2, . . . , vn} and the orthogonal counterpart Rh = {h1, h2, . . . , hk}.
We expect that the distribution of curvature lines in a grid correspond to the scalar fields
of the principal curvatures, i.e., in areas of high curvature the density of the curves is
higher, in flat parts it is lower. A local curvature grid exists almost everywhere, but in
general a globally connected, quadrilateral curvature grid cannot always be generated
due to the umbilical points on the surface.

For swept surfaces the quadrilateral curvature grid always exists, but due to holes only
a certain subset of the grid can be computed. Let the curves Rv run in the cross-sectional
direction along the profiles, while the curves Rh longitudinally, “in parallel” to the spine
curve. Let us parameterize a selected longitudinal curve Rh by its principal curvature,
and generate the orthogonal cross-sectional curves vi in accordance with this. Let us take
a section e on the longitudinal curve, and let l(e) = |e|(c+ κ(e)), where κ(e) denotes the
normal curvature of the surface by direction e, and c denotes a constant for corrections
to be applied in the almost flat areas, where the curvature is practically zero; without
this we may obtain extremely sparse grids. This correction term also helps to stabilize
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Figure 8. Linking cross-sectional curves in a region with multiple holes.

Figure 9. Blue curves indicate good profile candidates by a tight planarity tolerance.

uncertain values coming from the numerical curvature estimations, thus yielding a better
parameterization. We apply the above formula to compute the density of curvature lines
in the cross-sectional direction.

If a region does not contain holes, it is sufficient to only trace along a single longitudinal
auxiliary curve, and then it is straightforward to link the sequence of cross-sectional
curves to it. At the same time, the algorithm must be able to handle regions with holes,
see Figure 1. Currently, we can handle configurations where there are no opposite holes at
a given cross-section, i.e., the profiles can be partial, but must always be singly connected
in the sweeping plane. In this case, we can link the cross-sectional curves by using several
auxiliary curves, as it is shown in Figure 8. The first auxiliary curve is terminated as we
reach the first hole. Then using the last linked cross-sectional curve, we attempt to pick
new points for starting the next auxiliary curve. The one will be chosen, which produces
the longest auxiliary curve for collecting the most possible cross-sections. Therefore, the
whole grid structure can be characterized by an alternating “auxiliary curve — cross-
sectional curve — . . . ” sequence.

4. Computing the profile and the spine curve

Based on the auxiliary curve (curves) we obtain a sequence of cross-sectional curves. In the
longitudinal direction we parameterize by curvature, and in the cross-sectional direction
by arc-length, for the time being. In order to determine an optimal profile representation,
first (i) we replace the cross-sectional curves by best-fit planar curves, then (ii) all profile
candidates are projected into a common work plane. After (iii) aligning and (iv) averaging
these, we compute the best approximation of the profile curve, which (v) is transformed
back into the original sweep planes in a way these were sampled formerly. Finally, (vi)
we slightly adjust these to find the best local fit of the ideal profile to the underlying
triangles. (vii) A well-chosen reference point on the relocated profile curves define a 3D
sequence of points, and that will the be the basis for fitting the final spine.

The cross-sectional curves need to be qualified by their planarity [Benkő & Várady
(2004)]. It is easy to fit a plane onto the data points by least-squares fitting of the
distances, and the sum of the squared distances can be interpreted as an indicator of
planarity. This is illustrated in Figure 9. If the profiles do not satisfy the planarity
criterion, the region cannot be represented as a swept surface. If the curve is nearly
planar, it is projected into its best-fit plane and will be considered a profile candidate.
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Figure 10. Profile candidates after preliminary fitting.

Figure 11. Averaged profile curves.

Preliminary fitting. The previously computed sweeping planes and profile candidates
now get transformed into a common work plane by means of the auxiliary curves. Our
goal is to properly align these. We assume that the consecutive profile candidates share
common reference points in the work plane and we search for the best translations and
rotations to get the best alignments, see Figure 10. This figure also illustrates that the
profile candidates — due to the nature of measured data and numerical curve tracing
— do not perfectly fit onto each other; however, this pile of curves is suitable to find
an optimal profile using the well-known ICP technique, [Besl & McKay (1992)]. We can
assume that the consecutive profile candidates have changed only to a moderate extent,
thus we have appropriate initial alignments.

Accurate fitting with ICP. The Iterative Closest Point method is used to find the best-
fit alignment of two given point sets A and B. The basic idea is that for all points a ∈ A
we locate the closest points cl(a) ∈ B. Then we search for the best transformation, that
moves point set A to B by minimizing the squared distances between these point pairs.
After applying this transformation to A, the algorithm is repeated or performed on B
in respect to A. This makes sense, as in each new step other point pairs of A and B
will be coupled for the least squares minimization. This iteration converges to the best
alignment between the two point sets. Profile candidates aligned by ICP are depicted in
Figure 11.

Note: In each step of the iteration we compute the best linear transformation, but we
retain only the best translation and rotation. This yields less accurate results, but can
be computed efficiently. This inaccuracy does not count in spite of a somewhat larger
number of iterations, but in overall there is a significant gain in computational efficiency
(see Eggert et al. (1997)). This method is suitable to align partial profiles, as well, see
the pile of curves on the left side in Figure 11. It may also be useful to filter out the
outliers using a two-pass filtering at the beginning.

The optimal transformation matrices, computed by means of the ICP alignment, need
to be stored as these are going to be utilized later.

Averaging the profiles. After the ICP phase, the final profile curve can be computed
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Figure 12. Steps of the surface reconstruction: 1. initial region, 2. mean-curvature map,
3. sweeping planes, 4. profile curves on the surface, 5. optimized profile and spine curves, 6. de-
viation map.

by averaging the transformed profile candidates using simple heuristics. Take the longest
profile candidate (recall that we typically we work with partial curves) and parameterize
the other profile candidates by this long one. Take the average of the data points that lie
in the vicinity of the long profile with a thickness δ to obtain the points of the final profile.
This polyline will be approximated by a B-spline curve. The result of the procedure is
depicted in Figure 11.

Computing the spine. The final surface representation will be completed by computing
the spine curve and the rotational function. The final profile curve P was computed by
merging and averaging the profile candidates Gi, each having a transformation matrix
Ti. The final profile can be put back to the surface by the inverse transformation T−1

i P
for each Gi, which will match the original cross-sectional lines of curvatures (Figure 12).
By means of these operations the points of the spine can also be computed: let v ∈ P an
arbitrary point, then the points pi = Tiv

−1 define the points of the spine, which will be
approximated by a B-spline. The discrete values of the rotational function are also given
by a sequence ri = T−1

i (1, 0, 0)>, thus the transformation matrix can also be defined in a
continuous form by fitting a multi-dimensional B-spline onto the elements of the matrix.

5. Evaluating the results

In digital shape reconstruction we search for the best possible surface representation. By
means of our algorithm, one can decide — using a planarity tolerance — whether (i) the
cross-sectional curves are planar or not. If the answer is yes, the sweeping planes can be
characterized by a smooth, continuous spine curve. (ii) It can also be decided, whether
the surface can be represented accurately by sweeping a single profile curve, i.e., the
optimal profile curve and the profile candidates are within a profile tolerance or not. (iii)
Finally, the representation is accepted as a swept surface, if the distances between the
data points and the surface remain within a distance tolerance. Generally, a very small
percentage of the data points are considered as outliers to be ignored, and the decision is
made by the remaining points, computing either the maximal or the average deviation.
If this value remains within the prescribed tolerance, the swept surface representation is
considered valid.

The measured data points and the reconstructed surface model can be visually analyzed
using a deviation map. This shows the distribution of the signed distances, and locates the
most inaccurate areas. Figure 12 shows such a deviation map using rainbow color-coding;
the grey areas indicate that the deviation map has no meaning over the holes.
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Figure 13. A test part: exhaust pipes and surface reconstruction.

6. Conclusion and future research

We have discussed an algorithm to detect and produce an optimal curve-based repre-
sentation for swept surfaces with constant profile, see Figure 13. It is to support the
classification of segmented regions with measured data points, which is an important
chapter within digital shape reconstruction. The algorithm is capable of creating surface
approximations over noisy and incomplete data sets, as well. A consistent, repaired and
smoothed vector field is produced, by which a grid of curvature lines is created. This
drives the computation of the sweeping planes, the optimal profile and the spine curve.
We have analyzed the deviations from the data points, and qualified the surface whether
the constant-profile sweeping property holds or not. The algorithm has been tested on
real measured data sets, as well.

One of our future goals is to extend our classification, when the above hypothesis
fails. Then we wish to decide whether the given region can be well-approximated by a
scaled profile (including monotone shrinking or growing). If this hypothesis also fails, it
is still possible that the region can be modeled by a lofted surface with variable profiles.
If only the planar sweeping property remains in effect, it is beneficial to use this for
parameterizing the given data points for fitting free-form surfaces.
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