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CONTENTS 1

Introduction

In my thesis I will focus on iterated function systems construated with overlapping

parts. These IFSs are from a special family, namely where the linear part in each

map are the same. This linear part is a concrate contraction which can be interpreted

as a reciprocal of a natural number, and the translations are chosen from a lattice

in Zd.
This document �rst gives a brief overview in Section 1 of the corresponding re-

sults on geometric measure theory. The following sections will examine the literature

about the topics, including the studies done by Richard Kenyon [3] on the projec-

tion of the Sierpi«ski carpet. A more recent study from 2000 by Lau, Ngai and

Rau [6] gave a matrix expression which fully represents an IFS. Section 3 shows a

method introduced by Víctor Ruiz [5] to investigate the relation between Hausdor�

dimensions and absolute continuity.

In Section 5 we extend the results of Bárány, Rams [4, Theorem 1.2], concerning

orthogonal projections of the Sierpi«ski carpets.



1. PRELIMINARIES 2

1 Preliminaries

Here we introduce some de�nitions, properties and well known results. In this section

we follow the book in preparation by K. Simon and B. Solomyak [10].

Self-similar measures

For some integers m ≥ 2 and d ≥ 1, we call the collection S = {S1, . . . , Sm} of m
contracting similarity transformations acting on Rd a self-similar IFS on Rd with

contraction ratios 0 < ri < 1, i = 1, . . . ,m if

∀i ≤ m, ∀ x,y ∈ Rd, ||Si(x)− Si(y)|| = ri||x− y||.

The IFS {f1, . . . , fm} on Rd is de�ned by

fi(x) = riMix+ bi, i = 1, . . . ,m,

where bi ∈ Rd andMi is a d×d orthogonal matrix. Let Ω be the set {1, . . . ,m}, and
let Ωk denote the set of all words of length k in Ω, and let Ω∗ =

∞⋃
k=1

Ωk denote the set

of all �nite words in Ω. For i ∈ Ωk, j ∈ Ωn, let ij ∈ Ωk+n denote the concatenation

of i and j.

In the above case we choose our favourite non-empty compact set H satisfying

Si(H) ⊂ H ∀ i = 1, . . . ,m.

We can always choose H as a large enough closed ball

B := B̄(0, R) for R := max
i

{
||Si(0||
1− ri

}
. (1)

De�nition 1. The set of points
⋃

i1,...,in+1

Si1,...,in+1(H) is a decreasing sequence of

non-empty compact sets.

Their intersection, the attractor Λ, which can be interpreted as the set of all

points that remain after in�netely many iterations:

Λ :=
m⋂
n=1

⋃
(i1...in)∈{1,...,m}n

Si1...in(H), (2)

where Si1...in is the level n cylinders.

Suppose we are given a probability vector p = (p1, . . . , pm) and a self-similar IFS

S = {S1, . . . , Sm} on Rd with contracton ratios 0 < ri < 1.
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De�nition 2. For an IFS F = {fi}mi=1 we denote the symbolic space by

Σ := {1, . . . ,m}N and the elements of Σ by i = (i1, i2, . . . ), j = (j1, j2, . . . ).

The natural projection Π: Σ→ Λ is de�ned by

Π(i) := lim
n→∞

fi1...in(0) =
∞⋂
n=1

fi1...in(B), (3)

for the closed ball B de�ned in Equation (1). Let

Λi1...in := Si1...in(Λ)

and call these sets the level-n cylinders of the attractor Λ.

Consider the push-down measure of the in�nite product measure

pN := (p1, . . . pm)N : ν := Π∗p
N,

that is, ν(A) := pN(Π−1(A)) for Borel A ⊂ Rd. We say that ν is the invariant

measure (stationary measure, self-similar measure) for the IFS S with probability

vector p. The support spt(ν) of an invariant measure ν is Λ. Observe that the

simplest example of a self-similar measure is the restriction of the Lebesgue measure

to the interval [0, 1].

By considering the self-similar measure ν with probability vector p the following

equation holds for all Borel set A ⊂ Rd:

(A) = p1ν(S−1
1 (A)) + · · ·+ pmν(S−1

m (A)). (4)

Alternatively we can view ν as a �xed point of the operator:

FS,p : ν 7→
m∑
k=1

pk · (ν ◦ S−1
k ),

which acts on an appropriately chosen space of Borel probability measures.

De�nition 3. For a self-similar IFS and for a probability vector p, the only Borel

probability measure satisfying Equation (4) is the self-similar measure ν = Π∗p
N.

In this way, Equation (4) can serve as an equivalent de�nition of the self-similar

measures.

Hausdor� and similarity dimension [14]

De�nition 4 (Box dimension). Let E ⊂ Rd, E 6= ∅, bounded. Nδ(E) be the smallest

number of sets of diameter δ which can cover E. Then the lower and upper box

dimensions of E:

dimB(E) := lim inf
r→0

logNδ(E)

− log δ
, (5)
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¯dimB(E) := lim sup
r→0

logNδ(E)

− log δ
. (6)

If the limit exists then we call it the box dimension of E.

De�nition 5 (Hausdor� measure on Rd). Let Λ ⊂ Rd and let t ≥ 0. We de�ne

Ht(Λ) = lim
δ→0

{
Ht
δ(Λ)

}
, (7)

where

Ht
δ(Λ) = inf

{
∞∑
i=1

|Ai|t : Λ ⊂
∞⋃
i=1

Ai; |Ai| < δ

}
. (8)

Then Ht is a metric outer measure. The t-dimensional Hausdor� measure is the

restriction of Ht to the σ-�eld of Ht-measurable sets which include the Borel sets.

Let Λ ⊂ Rd and 0 ≤ α < β. Then

Hβ
δ (Λ) ≤ δβ−αHα

δ (Λ).

Using that Ht(Λ) = lim
δ→0
Ht
δ(Λ):

Hα(Λ) <∞⇒ Hβ(Λ) = 0 for all α < β.

0 < Hβ(Λ)⇒ Hα(Λ) =∞ for all α < β.

Figure 1: Hausdor� dimension [14]

De�nition 6. The Hausdor� dimension of Λ is

dimH(Λ) = inf{t : Ht(Λ) = 0} = sup{t : Ht(Λ) =∞}.

De�nition 7. In all cases the solution of the equation

rs1 + · · ·+ rsm = 1

is called the similarity dimension of the self-similar IFS S.
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Lemma 8. The Hausdor� dimension of a self-similar IFS in Rd is always less than

or equal to the minimum of d and the similarity dimension s,

dimH Λ ≤ min{d, s}.

Moreover, Hs(Λ) <∞.

For self-similar sets having the Open Set Condition (see De�nition 10(2)), the

similarity dimension, the box-dimension and the Hausdor� dimension should be the

same. For the veri�cation it is necessary to estimate the Hausdor� dimension.

A measure µ on Rd is a mass distribution if the support of µ is compact and

0 < µ(Rd) <∞. For example the Lebesgue measure L is not a mass distribution on

R, but the restriction of L to any compact set is a mass distribution on R.

Lemma 9 (Mass distribution principle). Let ν be a mass distribution on Rd such

that spt(ν) ⊂ E. Assume that for some t > 0 there exist c > 0 and δ > 0 such that

|A| < δ ⇒ ν(A) < c · |A|t.

Then we have

Ht(E) ≥ ν(E)

c
and dimH(E) ≥ t.

This lemma is the simplest way to estimate the Hausdor� dimension of a Borel

set E ⊂ Rd.

Novel properties and conditions (SSP, OSC, SOSC, WSP)

De�nition 10. Let F = {f1, . . . , fm} is a contractiong IFS and Λ is its attractor.

1. The Strong Separation Property (SSP) holds for F if

fi(Λ) ∩ fj(Λ) = ∅ ∀i 6= j.

2. The Open Set Condition (OSC) holds for F if there exists a non-empty

open set V ⊂ Rd such that

(a) fi(V ) ⊂ V holds for all i = 1, . . . ,m;

(b) fi(V ) ∩ fj(V ) = ∅ for all i 6= j.

The OSC was introducet by P.A.P. Moran in 1946, and became widely known

after the work of J. Hutchinson in 1981.
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Theorem 11 (Moran, Hutchinson). Assume that the self-similar iterated function

system S = {S1, . . . , Sm} acts on Rd and satis�es the OSC. The similarity ratio

of Si is 0 < ri < 1, i = 1, . . . ,m. Let s be the similarity dimension, that is,

rs1 + · · ·+ rsm = 1. Then for the attractor Λ of the IFS S we have

0 < Hs(Λ) <∞.

Moreover,

dimH(Λ) = dimH(Λ) = s,

where part of the assertion is that the box dimension exists, that is, the lower and

upper box dimensions coincide.

De�nition 12. We say, that The Strong Open Set Condition (SOSC) holds

for the IFS S if the OSC holds with an open set V such that V ∩ Λ 6= ∅. That is,

1. Si(V ) ⊂ V holds for all i = 1, . . . ,m;

2. Si(V ) ∩ Sj(V ) = ∅ for all i 6= j;

3. V ∩ Λ 6= ∅.

Theorem 13 (Bandt, Graf and Schief). For a self-similar IFS S the following are

equivalent:

1. OSC

2. SOSC

3. 0 < Hs(Λ),

where s is the similarity dimension.

De�nition 14 (WSP). The IFS satis�es the Weak Separation Property

(WSP) if there exists an l ∈ N such that for any i ∈ Ω∗ and every k ≥ 1, ev-

ery rk-ball contains at most l distinct points fji(0) for j ∈ Λk.

In particular if {Sj}Nj=1 is homogeneous IFS of the form

Sj(x) = Lx+ ti, 0 < L < 1

and {Sj}Nj=1 then {Si}Nj=1 satis�es the WSP if and only if

Sσ(x0) = Sσ′(x0) or |Sσ(x0)− Sσ′(x0)| ≥ a
1

Ln
,

where |σ|, |σ′| = n.
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It was shown that any IFS satisfying the OSC possesses the WSP, however the

converse is not true. No similar relations between the �nite type condition and the

WSP have been established. In [1] Ngai and Wang introduced the notation of �nite

type IFS.

Theorem 15 (Nguyen [2]). If the IFS is of �nite type, then it possesses the WSP.

Dimension of a mass distribution

De�nition 16 (Local dimension). Let µ be a Borel probability measure on Rd and

x ∈ spt(µ). We de�ne the local dimension of the measure µ at x by

dµ(x) := lim
r→0

log µ(B(x, r))

log r
,

if the limit exists. Otherwise we take lim inf and lim sup instead of lim and we obtain

the lower local dimension dµ(x) and the upper local dimension d̄µ(x) respectively.

De�nition 17. Consider a probability space (Ω,F , P ) and a measurable mapping

T : Ω→ Ω.

1. We say that T is measure preserving if T∗P = P , where (T∗P )(H) := P (T−1H)

for a Borel set H.

2. The T -invariant σ-algebra is de�ned by IT = {F ∈ F|T−1(F ) = F}.

3. We say that T is P -ergodic if P (F ) is either zero or one for all F ∈ IT .

4. Let X be a random variable. We say that X is T -invariant if X ◦T = X. [15]

Theorem 18 (Birkho�-Khinchin ergodic theorem). Let p ≥ 1, let X be a variable

with pth moment and let T be measure preserving and ergodic. Then lim
n→∞

1
n

n∑
k=1

X ◦

T k−1 = EX almost surely and in Lp.[15]

Assume that S is a self-similar IFS satisfying the SSP and µ is an arbitrary

ergodic measure on the symbolic space. ν is the push-down measure of µ. It follows

from the Birkho� Ergodic Theorem (Theorem 18) that the local dimension of ν exists

and is equal to a constant at ν-almost all points. If µ is a Bernoulli measure, that is,

µ is the in�nite product measure µ = pN for a probability vector p = (p1, . . . , pm),

then for ν-almost all x the limit above exists and is given by

ν = π∗p
N for ν a.a. x : dν(x) =

−
m∑
i=1

pi log pi

−
m∑
i=1

pi log ri

=:
hp
X p

r
, (9)
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where r = (r1, . . . , rm) is the vector of contraction ratios of the maps from the

IFS S = {Si(x) = rix + ti}mi=1. If ν is the natural measure for S then dν(x) ≡ s, s

is the similarity dimension of S.

De�nition 19. Let µ be a mass distribution. The Hausdor� dimension of µ is

de�ned as

dimH(µ) := inf{dimH E : µ(Ec) = 0}.

We can compute the Hausdor� dimension of a measure in terms of its lower

dimension.

Theorem 20. Let µ be a mass distribution. Then

dimH(µ) = inf{α : dµ(x) ≤ α for µ-almost all x}.

If µ(E) = 1 and dµ(x) = α holds for all x ∈ E, then dimH(E) = α.

Corollary 21. If S is a self-similar IFS on Rd satisfying the SSP with contraction

ratios r, ν is the invariant measure for S with a probability vector p, then the

Hausdor� dimension of ν can be calculated as in Equation (9):

dimH(ν) = π∗p
N for ν a.a. x : dν(x) =

−
m∑
i=1

pi log pi

−
m∑
i=1

pi log ri

=:
hp
X p

r
.

There is a frequently used method (called the potential theoretical caracteri-

sation) to estimate the Hausdor� dimension of a measure based on the following

lemma:

Lemma 22. Let µ be a mass distribution. Then

dimH(ν) ≥ sup{α :

∫ ∫
|x− y|−αdν(x)dν(y) <∞}.

In case of self-similar measures, this inequality becomes an equality.
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2 Kenyon's result on the projection of the Sierpi«ski

carpet

In 1997 Richard Kenyon formulated a theorem in [3], where he gave a condition on

projected one-dimensional Sierpinski gaskets. He showed that the projection of Λ

in any irrational direction has Lebesgue measure 0, and in a rational direction p
q
has

Hausdor� dimension less than 1, unless p+q ≡ 0 mod 3. In this case the projection

has nonempty interior and measure 1
q
.

Theorem 23 (Kenyon-[3]). The projection of Λ be the Sierpi«ski carpet, then the

orthogonal projection of Λθ in direction θ satis�es:

• If θ 6∈ Q then L(Λθ) = 0

• If θ ∈ Q and θ = p
q
, (p, q) = 1, then

� dimH Λθ < 1 if p+ q 6≡ 0 mod3.

� Λθ has non-empty interior if p+ q ≡ 0 mod3.

Figure 2: The set Λ de�ned in (10).
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Now we de�ne the right-angled Sierpi«ski gasket (see Figure 2). Namely let

Λ ⊂ R2 be the attractor of the IFS:

f1 : (x, y) 7→
(x

3
,
y

3

)
,

f2 : (x, y) 7→
(
x+ 1

3
,
y

3

)
,

f3 : (x, y) 7→
(
x

3
,
y + 1

3

)
. (10)

Let Λu be the linear projection of Λ onto the x-axis,

Λu = πu(Λ), where πu =

(
1 u

0 0

)
.

Observe that the set Λu ⊂ R is the attractor for the three linear maps

x 7→ x

3
,

x 7→ x+ 1

3
,

x 7→ x+ u

3
. (11)

In Theorem 23 the measure of Λu is computed for every u. This is the �rst

nontrivial example of a dynamically de�ned set all of whose projected measures can

be computed explicitely.
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3 Ruiz' method

In this section we review a method introduced by Víctor Ruiz [5]. Although his

name is knonwn only by a few, he had great ideas and observations. However, the

article[5] where his method was introduced is hard to understand. Hereby I interpret

and clearify his results to make them more accessible.

Let µ be a compactly supported �nite Borel measure on Rd.

Consider an iterated function system (IFS) S : {S1, . . . , Sn}, with contractivity

ratio 1
L
, where L ≥ 2, L ∈ Z. Let Si be in the form of

Si(x) =
1

L
x+ ti, (12)

where ti = ci(1−L−1) is the translation vector with centres ci ∈ Zd in a lattice.

We remark that the assumption ti = ci(1−L−1) can be replaced with the assump-

tion that tis are selected from an arbitrary lattice on Rd. This follows immediately

from the form of the natural projection Π de�ned in Equation (3).

Example 1. The IFS from the previous section in Equation (11) can be expressed

with the above formula by choosing d = 1, n = 3, t1 = 0, t2 = 1
3
and t3 = u

3
, where

u satis�es the above conditions, µ� L for wi = 1
3
, i ∈ {1, 2, 3}.

Let µ be the self-similar measure associated to the weighted system of contractive

similarities, that is the unique Borel probability measure with

µ =
n∑
i=1

wi · µ ◦ S−1
i , (13)

where {w1, . . . , wn} are the weights with the properties wi > 0,
n∑
i=1

wi = 1.

Since µ is a homogeneus rational self-similar measure, it includes cases with the

open set condition (OSC), for which dimµ is known. We are interested in those

cases where this condition is not satis�ed, since our aim is to calculate dimµ.

For example the Sierpi«ski gasket can be written in the following form:

• S1(x) = 1
2
x

• S2(x) = 1
2
x + (1

2
, 0)ᵀ

• S3(x) = 1
2
x + (1

4
,
√

3
4

)ᵀ,

where t1 = (0, 0)ᵀ, t2 = (1
2
, 0)ᵀ, t3 = (1

4
,
√

3
4

)ᵀ, and L = 2.

In my thesis I only consider one dimensional systems. For this, in the above

case, we take the natural projection of the IFS, getting the following S:
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(
1
4
,
√

3
4

)

(
1
2
,
√

3
2

)

(0, 0)
(

1
4
, 0
) (

1
2
, 0
)

(1, 0)

Figure 3: Sierpi«ski gasket

• S1(x) = 1
2
x,

• S2(x) = 1
2
x+ 1

2
,

• S3(x) = 1
2
x+ 1

4

with wights w1 = w2 = w3 = 1
3
.

3.1 Matrix expression of the IFS

Preposition

Consider the kth iteration. ∀k = 0, 1, . . . let Jk = {[(i− 1) · L−k, i · L−k] : i ∈ Z} be
the class of closed intervals. Dk is the class of cubes in Rd, the cartesian products

of the elements of Jk. By deviding Dk into Ld parts we get Dk+1 with the property

Dk ⊂ Dk+1.

It is immediate that Si(Dk−1) = Dk and S−1(Dk) = Dk−1 for all k and i.

The overlaps are nothing else but the union of the boundaries of the cubes in

Dk. We need to see that their measure is zero.

Lemma 24 (Ruiz [5]). Let µ be the self-similar measure associated to a weighted

system of contractive similarities {(Si, pi) : i = 1, . . . , n} ∈ Rd, possibly having over-

laps. If A is not dense in the self-similar set E and
n⋃
j=1

S−1
j (A) ⊂ A, then µA = 0.

Proposition 25 (Ruiz [5]). For k ≥ 0 we have µAk = 0.

There are a �nite number of cubes in D0, since the support of µ is compact.

These are 〈1〉, . . . , 〈N〉. Let M = {1, . . . , Ld}. Each 〈j〉1≤j≤N , splits into Ld cubes
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in D1, which are 〈j; i1〉, i1 ∈ M . 〈j; i1〉 also splits into Ld cubes in D2. Following

the iteration, for i = (i1, i2, . . . , ik) ∈ Mk, 〈j; i〉 = 〈j; i1, i2, . . . , ik〉 in the cube Dk.
We see that j represents the primary cube.

Now we have the following lemma.

Lemma 26 (Ruiz [5]).

1. Each Sl〈j〉 is a set 〈i;m〉.

2. We have Sl〈j〉 = 〈i;m〉 if and only if Sl〈j; i〉 = 〈i;m, i〉 for all k ≥ 0 and

i ∈Mk.

3. If S−1
l 〈i;m, i〉 cannot be represented as a set 〈j; i〉 for any j then µ(S−1

l 〈i;m, i〉) =

0.

Proof.

1. We have Sl〈j〉 = 〈i;m〉 ∈ D1 and µ(Sl〈j〉) =
n∑
t=1

wt ·µ(S−1
t Sl〈j〉) ≥ wl ·µ〈j〉 > 0.

2. It follows from the similarity of Sl.

3. In spite of the �rst part of Lemma 26, although S−1
l 〈i;m〉 ∈ D0 it can be that

it is not a set 〈j〉. If S−1
l 〈i;m〉 6= 〈j〉 for j = 1, . . . , N , then if it intersects some

set 〈j〉 then it does so in the boundary of it. But we know, that the boundary

has the measure 0, so µ(S−1
l 〈i;m〉) = 0. From the second part of Lemma 26

it follows that µ(S−1
l 〈i;m, i〉) = 0.

Construction of the matrices

In the previous subsection we saw that the number of the main cubes are N ,

and for each j ∈ {1, . . . N}, 〈j〉 splits into Ld cubes, namely 〈i;m〉, where i ∈
{1, . . . , N},m ∈M = {1, . . . , Ld}. Remember that the contractivity ratio is L.

For allm ∈M let Zm denote the matrix with dimension N×N with the following

properties:

• Zm(i, j) = wl if Sl〈j〉 = 〈i;m〉 for some l and

• Zm(i, j) = 0 otherwise,

• Zm(i, j) = wl if S
−1
l 〈i;m, i〉 = 〈j; i〉.
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The last property follows from the the second part of Lemma 26 and the bijec-

tivity of Sl.

We can assume that for all l each Sl are di�erent. If ∃l, k such that Sl = Sk then

Zm(i, j) = wl + wk, if Sl〈j〉 = Sk〈j〉 = 〈i;m〉.

To obtain the formula for computing the matrices Zm is easy. For d = 1 let us

consider the closed intervals I(j) = [j − 1, j] for j = 1, . . . , max
1≤l≤n

cl. For simplicity

we assume that min
1≤l≤n

cl = 0. Note that each 〈i〉 must be a set I(j), but some of the

sets I(j) can have null measure and hence not be sets 〈i〉. We have

Sl(x) =
cl + (x− cl)

L

and

SlI(j) =

[
cl +

j − 1− cl
L

, cl +
j − 1− cl

L
+

1

L

]
.

From this we have

j − 1− cl
L

= floor

(
j − 1− cl

L

)
+ frac

(
j − 1− cl

L

)
.

Now consider, for j = 1, . . . , max
1≤l≤n

cl and m = 1, . . . , L, the closed intervals

I(j,m) = [j − 1 + m−1
L
, j − 1 + m

L
], so that if I(j) = 〈i〉 then I(j,m) = 〈i;m〉.

It is easy to check that for given l, j there are a unique i and a unique m with

SlI(j) = I(i,m). Now we obtain i − 1 = cl + floor( j−1−cl
L

) and m−1
L

= frac( j−1−cl
L

),

and hence these i,m are

i = cl + 1 + floor

(
j − 1− cl

L

)
,

m = j − cl − L · floor

(
j − 1− cl

L

)
.

Assume that 〈i〉 = I(ti) for i = 1, . . . , N . We have Zm(i, j) = wl if SlI(tj) =

I(ti,m), and hence we can obtain the matrices Zm from the two expressions above.

The formula for d > 1 can be obtained by considering an expression with d

coordinates for m, i, j and cl.

Examples

The understanding of the matrix construction is not easy, therefore let me provide

two examples with explanation below.
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Example 2. Rotated Sierpi«ski carpet with tgα = 1

S1

S2

S3

S4

S5

0
3
6 1

〈1〉 〈2〉

〈1; 1〉 〈1; 2〉 〈1; 3〉 〈2; 1〉 〈2; 2〉 〈2; 3〉

Figure 4: Rotated Sierpi«ski carpet

• S1(x) = 1
3
x

• S2(x) = 1
3
x+ 1

6

• S3(x) = 1
3
x+ 2

6

• S4(x) = 1
3
x+ 3

6

• S5(x) = 1
3
x+ 4

6

• w1 = w5 = 1
8

• w2 = w3 = w4 = 1
4

The matrices are

Z1 =

(
w1 0

w4 w3

)
, Z2 =

(
w2 w1

w5 w4

)
,

Z3 =

(
w3 w2

0 w5

)
.

Explanation

In this case, we have two main cubes, and each cube splits into three parts, since

L = 3 and d = 1. Therefore we will have three matrices.

Consider the case, when i = 1, j = 2,m = 3︸ ︷︷ ︸
Z3(1,2)=w2

.
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S2 〈1; 3〉

S2

= 〈2〉

Now we are in the cube 〈2〉, and we want to �nd the function Sl that projects

〈2〉 to 〈1; 3〉. Now we can use the �rst and second property: Zm(i, j) = wl if

Sl〈j〉 = 〈i;m〉 for some l and Zm(i, j) = 0 otherwise. Thus the l we are looking for

is l = 2.

We can see that S3 also covers 〈1; 3〉, but if we devide S3[1, 6] into 2, we get 〈1〉
`above' 〈1; 3〉 instead of 〈2〉.

We get Z3(1, 2) = w2 = 1
4
.
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Example 3. Example for L = 3, d = 1, N = 3, tgα = 2

1
3

2
3

α

S1

S2

S3

S4

S5

S6

S7

0 1

〈1〉 〈2〉 〈3〉

Z1 =


w1 0 0

w4 w3 w2

w7 w6 w5



Z2 =


w2 w1 0

w5 w4 w3

0 w7 w6



Z3 =


w3 w2 w1

w6 w5 w4

0 0 w7



The functions Si are the followings:

• S1(x) = 1
3
x

• S2(x) = 1
3
x+ 1

9

• S3(x) = 1
3
x+ 2

9

• S4(x) = 1
3
x+ 3

9

• S5(x) = 1
3
x+ 4

9

• S6(x) = 1
3
x+ 5

9

• S7(x) = 1
3
x+ 6

9



3. RUIZ' METHOD 18

In case of the projection of the original Sierpi«ski carpet, the weights wi are

w1 = w2 = w6 = w7 =
1

8
w4 = 0

w3 = w5 =
2

8
.

3.2 Measure of the basic cubes

In Subsection 3.1 I introduced the basic cubes and gave a de�nition of the matrices.

Now I would like to continue with the calculation of the basic cubes' measure.

Since Zm(i, j) = wl, if S
−1
l 〈i;m, i〉 = 〈j; i〉,

wl · µ(S−1
l 〈i;m, i〉) = Zm(i, j) · µ〈j; i〉.

From Lemma 26(3)

µ〈i;m, i〉 =
n∑
l=1

wl · µ(S−1
l 〈i;m, i〉) =

N∑
j=1

Zm(i, j) · µ〈j; i〉. (14)

Let ej = (0, . . . , 0, 1︸︷︷︸
j

, 0, . . . , 0) the row N -vector with 1 in the jth entry and

zero elsewhere.

Let µ〈·; i〉 = (µ〈j; i〉 : j = 1, . . . , N)ᵀ for i ∈Mk, so that

µ〈j; i〉 = ejµ〈·; i〉. (15)

The equation (14) can be expressed as

µ〈·;m, i〉 = Zmµ〈·; i〉. (16)

Let

pᵀ = µ〈·〉 = (µ〈1〉, . . . , µ〈N〉)ᵀ.

From (16) we get

µ〈·; i〉 = Ziµ〈·〉 = Zip
ᵀ.

Using (15) we can obtain

µ〈j; i〉 = ejZip
ᵀ, (17)

if j = 1, . . . , N, k ≥ 0, i ∈Mk, where Zi = Zi1 · · ·Zik if i = (i1, . . . , ik).

The above expression is a very important and useful result. This formula can

be used to decide whether an IFS is absolute continuous or not. Moreover, it is

easy to calculate. We have already seen the construction of the matrices, and in the

followings the method to calculate p will be detailed.
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Matrix properties

In this subsection, the propositions are quite important, hence I would like to show

their proofs, which can be found in [5].

Proposition 27 (Ruiz [5]).

Z =
∑
m∈M

Zm, M = {1, . . . , Ld}.

Then

1. Z is irreducible,

2. its transpose is stochastic,

3. its greatest eigenvalue is 1 and it is simple.

Proof. Irreducibility:

Lemma 28 (Ruiz [5]). Let µ be a self-similar measure. If D is an open set, and

µ(D) ≥ 0, then µ a.e. x ∃k ≥ 1 and l1, . . . , lk ∈ {1, . . . , n}, with S−1
lk
◦ · · · ◦S−1

l1
(x) ∈

D. [16]

From Proposition 25 it follows that int〈i〉 and int〈j〉 are open sets with positive

measures. By Lemma 28 ∃x ∈ int〈i〉 such that S−1
lk
◦ · · · ◦ S−1

l1
(x) ∈ 〈j〉.

Sl1 ◦ · · · ◦ Slk〈j〉 = 〈t; i1, . . . , ik〉 3 x⇒ t = i:

Sl1 ◦ · · · ◦ Slk〈j〉 = 〈i; i1, . . . , ik〉. (18)

t0 = j, tk = i. From Equation (18) and Lemma 26(1), (2) we have that ∃t1, . . . , tk−1,

Slk〈t0〉 = 〈t1; tk〉 and

Slk−u
◦ Slk−u+1

◦ · · · ◦ Slk〈j〉 = Slk−u
〈tu; ik−u+1, . . . , ik〉

= 〈tu+1; ik−u, ik−u+1, . . . , ik〉

where u = 1, . . . , k−1. From here with Lemma 26(2) it follows that Zik−u
(tu+1, tu) =

wlk−u
> 0, u = 0, . . . , k − 1.

Hence, for (i, j) = (tk, t0) we have

Zk(i, j) ≥ Zi1(tk, tk−1)Zi2(tk−1, tk−2) . . . Zik(t1, t0) > 0,

so Z is irreducible.

Stochasticity:
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From Lemma 26(1) Sl〈j〉 = 〈i;m〉 ∀l, j, so for all columns of Z :=
n∑
i=1

wi = 1.

Therefore the transpose of Z is a stochastic matrix.

Eigenvalue property:

We use the Perron-Frobenius theorem, which completes the proof.

Proposition 29 (Ruiz [5]). The unique probability vector x solving the equation

Zx = x is pᵀ.

Proof. By Proposition 25 µA0 = 0, hence µ(〈i〉) = 0. Since E = suppµ ⊂
N⋃
i=1

and

µE = 1 it follows that pᵀ is a probability vector.

Since µA1 = 0 and from Equation 16

Zpᵀ =
∑
m∈M

Zmµ〈·〉 =
∑
m∈M

Zmµ〈·;m〉 = µ〈·〉 = pᵀ.

Because of the previous proposition, 1 is a simple eigenvalue of Z which proves

the uniqueness.

As I mentioned in the end of the previous subsection, this result gives us an

explicit calculation for pᵀ and then for the µ〈j; i〉. It also can be used to identify

the sets 〈i〉.

Dimension of the self-similar measure

Let η be the auxiliary measure that is constructed by considering the restrictions of

µ to the cubes 〈j〉, translating them to a given �xed cube and piling the restrictions

up together. Visually, it is like taking the Sierpi«ski gasket, and putting the right

half on top of the left half of it as is shown in Figure 5.

Let 〈0〉 = [0, 1]d the unit cube, and gj a translation function with gj〈0〉 = 〈j〉 for
j = 1, . . . , N . Therefore for i ∈Mk g−1

j 〈j; i〉 = 〈0; i〉.

η =
N∑
j=1

ηj is a Borel measure with ηj = µj◦gj, and µj(·) = µ(〈j〉∩·). Furthermore,

since µ is a probability measure and the overlaps of the sets 〈j〉 have null µ-measure,

η〈0; i〉 =
N∑
j=1

µ〈j; i〉,

and hence η is also a probability measure.

dimη = α⇒ dimµ = α Let Q be the measure on the product σ-algebra on M∞

given by

Q[i] = eZip
ᵀ, i ∈Mk, k ≥ 1, e =

∑
ej. (19)
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0 1
2

1 0 1
2

1

'uspstairs'

'downstairs'

1
4

1
4

Figure 5: Piling up the restrictions [12]

Q is the distribution of an ergodic hidden Markov chain, which is denoted by

V = V (Zm : m = 1, . . . , Ld) = (V1, V2, . . . ).

By the Shannon-McMillan-Breiman Theorem lim
k→∞
− 1
k

log2Q[i1, . . . , ik] = H.

Let Dk(x) denote the set 〈0; i1, . . . , ik〉, which containes x.

Proposition 30 (Ruiz [5]).

lim
k→∞
−1

k
log2 ηDk(x) = H ∀η a.e. x ∈ 〈0〉.

Theorem 31 (Ruiz [5]). Let µ be a homogeneous rational self-similar measure as

in Equation (12). Let V = V (Zm : m = 1, . . . , Ld) be the associated ergodic hidden

Markov chain as above, and let H be its Shannon entropy. Then µ is an exact

dimensional measure with

dimµ =
H

log2 L
.

Absolute continuity and singularity

Ruiz obtained the following important results on absolute continuity (Proposition 32)

for homogeneous rational self-similar measures, using the above theorem and the re-

sult on Shannon entropy: H(V1, . . . , Vk) ≤ log2(Lkd) with equality if and only if

P{(V1, . . . , Vk) = i} = L−kd ∀i ∈Mk, where P{(V1, . . . , Vk) = i} = Q[i] = eZip
ᵀ.
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Proposition 32 (Ruiz [5]). Equivalent properties:

1. µ� L

2. dimµ = d

3. eZip
ᵀ = L−kd ∀k, i ∈Mk

4. η is the Lebesgue measure on [0, 1]d

5. µ is not singular.

Su�cient conditions for absolute continuity

Corollary 33 (Ruiz [5]). If eZm = L−de for all m ∈ M , or Zmp
ᵀ = L−dpᵀ for all

m ∈M , then µ� L.

Proof.

• If eZm = (Ld)−1e for all m ∈ M then eZi = (Ld)−ke and hence eZip
ᵀ =

(Ld)−kepᵀ = L−kd for all k and i ∈Mk. Then Proposition 32(3) holds.

• If Zmp
ᵀ = L−dpᵀ for all m ∈ M then Zip

ᵀ = (Ld)−kpᵀ and hence eZip
ᵀ =

(Ld)−kepᵀ = L−kd for all k and i ∈Mk. Then Proposition 32(3) holds.

Corollary 34 (Ruiz [5]). Let Sj =
∑
{wl : ∈ {1, . . . , n}, cl ∈ J(L, j)}. If Sj = L−d

for all j ∈ I then µ� L.
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4 Lau, Ngai, Rau's matrix representation

In [6] a di�erent matrix expression was de�ned to decide weather an invariant mea-

sure for an iterated function system in a form of Equation (12) is absolute continuous

or singular. However, the matrix introduced by Víctor Ruiz is di�erent from the one

de�ned in this section, in the future I will try to give a bijection between the two.

4.1 Corresponding theorems from [6]

In the following below I list some theorems corresponding to the singularity of S.
Let Σn denote the set of multi-indices σ = (j1, . . . , jn), |σ| = n be the length of

σ, and Sσ = Sj1 ◦ · · · ◦ Sjn .
In [6] it is shown that the WSC holds for the iterated function system Sj =

1
L
x + tj, L ≥ 2 integer. Let tj = crj with c ∈ R, rj ∈ Q. Setting x0 = 0 and

σ = (j1, . . . , jn),

Sσ(x0) = Sσ(0) = c
n∑
i=1

rji
Li−1

=
c

q

n∑
i=1

bji
Li−1

,

where bj = qrj, for 1 ≤ j ≤ N , are integers. By taking a = c
q
in the second formula

in De�nition 14, it is seen that the weak separation property is satis�ed.

Let µ be the self-similar measure as de�ned in Equation (13) and S = {Sj}Nj=1

be the IFS with associated weights {wj}Nj=1. Let

Σ = {σ̄ = (j1, j2, . . . ) : ji ∈ {1, . . . , N}}

be the trajectory and let Σn be the set of σ with length n. Let Π be the natural

projection of Σ to Rd de�ned by the formula in Equation (3).

Theorem 35 (Lau, Ngai, Rau [6]). Let S be an IFS on Rd as in Equation (12) and

assume that it satis�es the WSC. Suppose that wj >
1
Ld for at least one j. Then the

self-similar measure is singular.

This theorem has an interesting consequence corresponding to the density func-

tion of µ.

Theorem 36 (Lau, Ngai, Rau [6]). Suppose that S satis�es the WSC. If µ is absolute

continuous, then the density function f = Dµ will be bounded; that is, f ∈ L∞(Rd).

Moreover, f satis�es

f(x) =
N∑
j=1

wjf ◦ S−1
j (x), x ∈ Rd.
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Corollary 37 (Lau, Ngai, Rau [6]). Suppose that S satis�es the WSC. Then the

self-similar measure µ is absolutely continuous if and only if the L2-density of µ

exists.

De�nition 38 (Lau, Ngai, Rau [6]). Let Sj(x) = Aj(x + dj), where j = 1, . . . N

with Aj = ρRj. Let C̃ = ( 2ρ
1−ρ) maxj |dj|, and let

S̃ = {S ∈ S : |S(0)| ≤ C̃}.

We say that {Sj}Nj=1 satis�es the weak separation condition* (WSC*) if S̃ is a

�nite set.

4.2 The new matrix expression

Let S denote the set of maps S = S−1
σ Sσ′ for (σ, σ′) ∈

∞⋃
n=1

(Σn × Σn). S will

be considered as a state space and de�ne an (in�nete) transition matrix on S as

follows. For S ∈ S , let

T (S) =
∑
S′∈S

w(S,S′)S
′

where

w(S,S′) =
∑
i,j

{wiwj : S−1
i ◦ S ◦ Sj = S ′}.

T can be written as (
T̃ 0

Q T ′

)
where T̃ is a sub-Markov matrix on the states S̃ , since the sum of each column

of T is 1, the sum of each column of T̃ is ≤ 1. T̃ is a �nite matrix by the WSC*.

Let I be the identity map in S̃ . Let SI be the T̃ -irreducible component of S̃

that contains I. Let TI be the truncated square matrix of T̃ on SI ; then TI is

irreducible and is a �nite matrix by the WSC*.

Theorem 39 (Lau, Ngai, Rau [6]). Suppose that S is an IFS on Rd as in Equa-

tion (12) and satis�es the WSC*. Then µ is absolutely continuous if and only if

λmax = qd

where λmax is the maximal eigenvalue of TI .

For the special case in Section 3 let S be an iterated function system on R with

Sj(x) = 1
L
x + tj, where 0 < 1

L
< 1. Without loss of generality we assume that
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0 = t1 < t2 < · · · < tN . By the induction that the state S = S−1
σ Sσ′ ∈ S has the

form

S(x) = x+ s, x ∈ R

for some s ∈ R. The map S can be represented by the translation number s. The

set S can be constructed inductively, starting from s = 0, by letting

s′ = L(s+ tj − ti), 1 ≤ i, j ≤ N.

The set S̃ can be obtained by keeping those s′ with |s′| ≤ C̃ =
2
L

1− 1
L

L ∗ tN . The
matrix T will send s into the states s′ with weight

ws,s′ =
∑
{wiwj : L(s+ tj − ti) = s′}.

According to [6] the above de�ned S has the WSC*. In this case T̃ = TI and T̃

can be reduced further to smaller size by the symmetry of the S̃ .

To see exactly how the matrix construction works in practice, I constructed the

matrices for the IFS' showed in Example 2 and 3. To see the structure of the corre-

sponding matrices see Figure 6a and Figure 6b, where the white area corresponds to

zero elements, same color area corresponds to the same pozitive elements. We can

see, that the matrices have a strangely symmetric structure, which can be exploited

for further matrix-reductions.

(a) Matrix form of Example 2 (b) Matrix form of Example 3

Figure 6: Matrices of Examples 2 and 3. White area corresponds to zero elements,

same color area corresponds to the same pozitive elements.
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5 Sierpi«ski-like carpets

The case of the projected Sierpi«ski-like carpets is a subset of the set of IFS' in the

form de�ned in Equation (12). In [4] Bárány and Rams showed a su�cient condition

that for a �xed rational slope the dimension of almost every intersection w.r.t the

nautral measure is strictly greater than dimH µ − 1, where µ is the measure of the

carpet. They also showed that the dimension of almost every intersection w.r.t the

Lebesque measure is strictly less than dimH µ − 1, and gave partial multifractal

spectra for the Hausdor� and packing dimension of the slices.

De�nition 40 (Bárány, Rams [4]). Let L ≥ 2 be an integer and let Ω be a subset

of {0, . . . , L− 1} × {0, . . . , L− 1}. Suppose that L+ 1 ≤ ]Ω. Let

Sk,l(x, y) :=
1

L
(x, y) +

1

L
(k, l) for (k, l) ∈ Ω (20)

The attractor Λ ∈ R2 of the iterated function system S = {Sω}ω∈Ω is called a

Sierpi«ski-like carpet.

For example, the usual Sierpi«ski carpet (Figure 7a) can be expressed as L = 3,

Ω = {0, 1, 2}×{0, 1, 2}\{(1, 1)}, and the usual Sierpi«ski gasket (Figure 7b), similar

to the carpet, has the notation L = 2, Ω = {0, 1} × {0, 1}\{(1, 1)}.

(a) 3× 3 Sierpi«ski carpet (b) usual Sierpi«ski gasket

Figure 7: Sierpi«ski-like carpets

The main purpose of the paper [4] is to investigate the dimension theory of the

slices with �xed slope. For an angle θ denote projθ the θ-angle projection onto the

y-axis. Hence, projθ(x, y) = y − x tan θ, and for a point a ∈ projθΛ let

Lθ,a := {(x, y) ∈ Rd : a = y − x tan θ} and Eθ,a = Lθ,a ⊂ Λ
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be the corresponding slice of the attractor. Without loss of generality we can assume

that θ ∈ [0, π
2
) by applying rotation and mirroring transformations on Λ.

For some notations, let ν be the unique self-similar measure satisfying

ν =
∑
ω∈Ω

1

]Ω
ν ◦ F−1

ω ,

the natural measure supported on Λ. Furthermore, νθ = ν ◦ proj−1
θ is the projection

of the natural measure, ν = Hs|Λ
Hs(Λ)

, where s = log ]Ω
logL

.

For me, the most interesting and relevant result of the article is that under

certain conditions the Hausdor� dimension droppes, hence the projected measure is

not absolute continuous with respect to the Lebesgues measure.

Proposition 41 (Bárány, Rams [4]). Let L ≥ 2 be integer and Ω ⊂ {0, . . . , L−1}×
{0, . . . , L− 1} then for every �xed θ ∈ [0, π

2
)

dimH Eθ,a = dimB Eθ,a =
log ]Ω

logL
− dimH νθ for νθ-a.e a.

In particular,

dimH Eθ,a = dimB Eθ,a >
log ]Ω

logL
− 1 for νθ-a.e a.⇔ dimH νθ < 1,

when L+ 1 ≤ ]Ω. In [4] they prove that in the case of rational slopes the stricct

inequality is satis�ed whenever L - ]Ω.

This topic is also discussed in [8] and [7]. Proposition 41 is an extension of the

results in these two articles.

In [8, Theorem 9], Manning and Simon proved that for the usual 3×3 Sierpi«ski

carpet, the inequality

dimH Eθ,a = dimB Eθ,a >
log 8

log 3
− 1

holds.

Let the usual Sierpi«ski gasket

∆ = S0(∆) ∪ S1(∆) ∪ S2(∆), where

S0(x, y) =

(
1

2
x,

1

2
y

)
, S1(x, y) =

(
1

2
x+

1

2
,
1

2
y

)
, S2(x, y) =

(
1

2
x+

1

4
,
1

2
y +

√
3

4

)
.

In [7, Theorem 1.4] Bárány, Ferguson and Simon showed a similar result for ∆, that

is
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• for Lebesgue almost all a ∈ ∆θ

α(θ) := dimB Eθ,a = dimH Eθ,a < s− 1,

• for νθ-almost all a ∈ ∆θ

β(θ) := dimB Eθ,a = dimH Eθ,a > s− 1,

where s = dimB ∆ = log 3
log 2

and ∆θ = projθ∆ is the projection of ∆.

Based on these results, Bárány and Rams[4] proved the following two important

theorems:

Theorem 42 (Bárány, Rams [4]). Let L ≥ 2 be integer and Ω ⊂ {0, . . . , L − 1} ×
{0, . . . , L− 1} such that L+ 1 ≤ ]Ω and L - ]Ω. Then for every �xed θ ∈ [0, π

2
) such

that tan θ ∈ Q there exists a constant α(θ) depending only on θ such that

α(θ) = dimH Eθ,a = dimB Eθ,a >
log ]Ω

logL
− 1 for νθ-a.e a.

A similar theorem can be formalized for Lebesgue-typical points of the projection.

Theorem 43 (Bárány, Rams [4]). Let L ≥ 2 be integer and Ω ⊂ {0, . . . , L − 1} ×
{0, . . . , L− 1} such that L+ 1 ≤ ]Ω and L - ]Ω. For every �xed θ ∈ [0, π

2
) such that

tan θ ∈ Q and projθΛ = [− tan θ, 1] there exists a constant β depending only on θ

such that

β(θ) = dimH Eθ,a = dimB Eθ,a <
log ]Ω

logL
− 1 for Leb.-a.e a ∈ projθΛ.

In the proof of Theorem 42, Bárány and Rams introduced and used a new matrix

expression, which structure is similar to the one de�ned in Section 3. The main

di�erence is that the latter one is more general than the former.

In the rest of this section, by using similar methods as they used in the proof, I

will give a proof of Theorem 44. Basically it is a generalization of the result on νθ

in [4].

Theorem 44. Let µ be the self-similar measure associated to rational weights

wi =
pi
qi
, gcd(pi, qi) = 1 for ∈ {1, . . . , n}

with the properties wi > 0,
n∑
i=1

wi = 1. That is

µ =
n∑
i=1

wi · µ ◦ S−1
i .
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Let us denote

R = lcm(q1, . . . , qn). (21)

Let the S = {Si}ni=0 be the IFS in the form of

Si(x) =
1

L
x+ ti,

where ti = ci(1− L−1) is the translation vector with centres ci ∈ Zd in a lattice.

Let µ be the measure de�ned above.

Then, if L - R then dimH µ < 1.

Remark 1. If L > R then dimH µ < 1. If this condition holds, then the IFS can be

considered as a projected Sierpi«ski-like carpet with a proper θ. Then with Λ ⊂ R2

and Ω from De�nition 40, and with the substitution R = ]Ω we have dimH Λ = log ]Ω
logL

,

which is less then 1 if ]Ω < L. From this, it is obvious that the projected dimension

is also less then 1.

Remark 2. I proove it for d = 1, but the results can be extended trivially to higher

dimensions.

Remark 3. In the proof below we will follow the steps of the proof of Bárány, Rams

[4, Theorem 1.2], but it is more convinient for us to use some notation from Ruiz

[5]. We use the following substitutions:

]Ω = R, N = L, p+ q = N.

Proof. First let us check that the IFS S de�ned in Theorem 44 includes the case of

the projected Sierpi«ski carpets from [4, Theorem 1.2].

Let (x, y) be a point from a Sierpi«ski-like carpet. Let θ is the angle of the

projection onto the y-axis. Then the projected iterated function system φ = {fω}
of {Sω}ω∈Ω, where Sω is in the form of Equation (20). Then

fk,l(x) =
x

L
+
−k tan θ + l

L
, for every (k, l) ∈ Ω.

Since k, l ∈ Z, tan θ = p
q
, p, q ∈ Z and x ∈ I, where I = [− tan θ, 1]. Let us modify

I by multiplying with q and translate it with p. Then, for I ′ = [0, p+ q], let

f ′k,l(x) =
x

L
+
−kp+ lq + Lp

L
, for every (k, l) ∈ Ω.

From this we can see that the IFS in Equation 12 with translation ti = L·ci−ci
L

includes the system φ′ = {f ′ω}.
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Let us consider the matrices and the notations introduced and used in Section 3.

In Proposition 27 we have seen that the matrix Zᵀ is stochastic, therefore the equa-

tion
N∑
i=1

∑
m∈M

(Zm)i,j = 1 for every j = 1, . . . , N

holds. From this,

Zᵀ =
∑
m∈M

Zᵀ
m

de�nes a Markov-chain on Θ := {1, . . . , N}.
We consider the closed intervals I(j) = [j − 1, j] for j ∈ {1, . . . , N}. Moreover,

I(j,m) = [j − 1 + m−1
L
, j − 1 + m

L
], so that if I(j) = 〈i〉 then I(j,m) = 〈i;m〉.

Let us devide the set of states into two parts.

Θr = {i ∈ Θ: µ(I(i)) > 0}

Θt = {i ∈ Θ: µ(I(i)) = 0}.

Note that each 〈i〉 must be a set I(j), but some of the sets I(j) can have null

measure and hence not be sets 〈i〉 [5].

Lemma 45. The set Θr is a recurrent class and Θt is a transient class of the

Markov-chain de�ned by Zᵀ. Moreover, Θr is aperiodic.

Proof. First show that if i ∈ Θr and Zᵀ
i,j > 0 then j ∈ Θr. Since Zᵀ

i,j > 0 there

exist k ∈ {1, . . . , n} and m ∈ {1, . . . , L} such that Sk(I(i)) = I(j,m). Therefore

0 < µ(Sk(I(i))) = µ(I(j,m)) ≤ µ(I(j)).

On the other hand, for every K > 0 su�ciently large and for every j ∈ Θr there

exists a vector k ∈ {1, . . . , n}K such that Sk(I) ⊂ I(j). This implies that for every

j ∈ Θr and every i ∈ Θ ((Zᵀ)K)i,j > 0, which proves the statement.

From the theory of Markov-chains there exists a unique probability vector p such

that p is the stationary distribution of Zᵀ, i.e. pᵀZᵀ = pᵀ. In particular,(∑
m∈M

Zᵀ
m

)
p = p.

Let us observ, that pi = µ(Ii).

From Equation (17) we know that

µ〈j; i〉 = ejZ
ᵀ
i p

ᵀ = Q[i], i ∈Mk, k ≥ 1,

where e =
∑

ej, ej denotes the i
th element of the natural basis of Rp+q, and Q is a

shift-invariant and ergodic probability measure.[5]
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Denote Zr
m the submatrix of Zᵀ

m by deleting the rows and columns of Θt. If

j ∈ Θr and i ∈ Θt then (Zm)i,j = 0 for every m ∈M . Hence,∑
i∈Θr

∑
m∈M

(Zr
m)i,j = 1 (22)

for every j ∈ Θr.

Lemma 46. For any i, j ∈ Θr and m1, . . . ,mn ∈M

(Zᵀ
m1
. . . Zᵀ

mn
) = (Zr

m1
. . . Zr

mn
)i,j.

Proof. Prove by induction. For n = 2

(Zᵀ
m1
Zᵀ
m2

)i,j =
N∑
k=1

(Zᵀ
m1

)i,k(Z
ᵀ
m2

)k,j =
∑
k∈Θr

(Zᵀ
m1

)i,k(Z
ᵀ
m2

)k,j = (Zr
m1
Zr
m2

)i,j.

We used in the second equation that (Zm2)k,j = 0 whenever k ∈ Θt. Then

(Zᵀ
m1
. . . Zᵀ

mn
Zᵀ
mn+1

)i,j =
N∑
k=1

(Zᵀ
m1
. . . Zᵀ

mn
)i,k(Z

ᵀ
mn+1

)k,j.

Again, (Zmn+1)k,j = 0 whenever k ∈ Θt, so

∑
k∈Θr

(Zᵀ
m1
. . . Zᵀ

mn
)i,k(Z

ᵀ
mn+1

)k,j = (Zr
m1
. . . Zr

mn+1
)i,j.

An important consequence of the previous lemma is that for every m1, . . . ,mn ∈
M and i ∈ Θr

µ〈j; i〉 = êjZ
r
i p̂

ᵀ,

where p̂ = (µ(Ii))i∈Θr and êi is the ith element of the natural basis of R]Θr .

Now de�ne a left/shift invariant measure κ on the symbolic space Σ = MN =

{1, . . . , L}N. Endow Σ with the metric d(m, ζ) = L−n for m = (m1,m2, . . . ) and

ζ = (ζ1, ζ2, . . . ), where n is the larges integer such that mi = ζi(1 ≤ i ≤ n). For a

cylinder set [m1, . . . ,mn] = {(ζ1, ζ2, . . . ) ∈ Σ: ζk = mk, k = 1, . . . , n} let

κ([m1, . . . ,mn]) := êZr
i p̂

ᵀ, (23)

where ê =
∑
i∈Θr

îi. By Equation (22), κ is a probability measure.

Lemma 47. The probability measure κ is σ-invariant and mixing and hence ergodic,

where σ denotes the left-shift operator on Σ.
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Proof. First, we prove the invariance. It is enough to prove for the cylinder sets.

Since the vector ê is a left-eigenvector of
L∑

m=0

Zm (follows from Equation (22)), then

for a cylinder set [m1, . . . ,mn]

κ(σ−1[m1, . . . ,mn]) =
L∑

m=1

κ([m,m1, . . . ,mn]) =

=
L∑

m=0

êᵀZr
mZ

r
m1
· · ·Zr

mn
p̂ = êᵀZr

m1
· · ·Zr

mn
p̂

= κ([m1, . . . ,mn]).

To prove the mixing property it is enough to show that for any cylinder sets

[m1, . . . ,mk] and [ζ1, . . . , ζl]

lim
n→∞

κ([m1, . . . ,mk] ∩ σ−1[ζ1, . . . , ζl]) = κ([m1, . . . ,mk])κ([ζ1, . . . , ζl]).

By the de�nition of κ in Equation (23), for su�ciently large n

κ([m1, . . . ,mk] ∩ σ−n[ζ1, . . . , ζl]) =
L∑

i1,...,in−k=1

êᵀZr
m1
· · ·Zr

mk
Zr
i1
· · ·Zr

in−k
Zr
ζ1 · · ·Zr

ζl
p̂ =

êᵀZr
m1
· · ·Zr

mk

(
L∑
i=1

Zr
i

)n−k
Zr
ζ1 · · ·Zr

ζl
p̂.

Applying Lemma 45 and the basic properties of aperiodic, irreducible Markov

chains, we have

lim
n→∞

(
L∑
i=1

Zr
i

)n−k

= p̂êᵀ,

which implies the mixing property.

In the proof of the next lemma we will need two well-known theorems:

Theorem 48 ([9, Theorem 4.10]). If T : X → X is measure-preserving and A is a

�nite sub-algebra of B then 1
n
H

(
n−1∨
i=0

T−iA
)

decreases to h(T,A).

Theorem 49 ([9, Theorem 4.18]). If T is a measure-preserving transformation (but

not necessarily invertible) of the probability space (X,B,m) and if A is a �nite sub-

algebra of B with
∞∨
i=0

T−iA .
= B then h(T ) = h(T,A).

Lemma 50. Denote by hκ the entropy of measure κ. If L - R then hκ < logL.
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Proof. We argue by contradiction. Suppose that hκ = logL.

By Theorem 48 and 49 we have that

hκ = lim
n→∞

− 1

n

L∑
m1,...,mn=1

êᵀZr
m1
· · ·Zr

mn
p̂ log êᵀZr

m1
· · ·Zr

mn
p̂,

and the left hand side decreases as n→∞. That is, hκ = logN if and only if

êᵀZr
m1
· · ·Zr

mn
p̂ =

1

Ln
, (24)

for every n ≥ 1 and m1, . . . ,mn ∈ {1, . . . , L}.

By Lemma 45 there exists a K > 0 such that

(
L∑

m=1

Zr
m

)K
> 0, because each

element of the matrix is strictly positive. Without loss of generality, we may assume

that K > N2 + 1. Then there exists a word (ζ1, . . . , ζK) of length K such that(
L∑

m=1

Zr
m

)K
− Zr

ζ1
· · ·Zr

ζK
> 0. Let A := {1, . . . , L}K{(ζ1, . . . , ζK)}. By Perron-

Frobenius theorem there exists a ρ > 0 and u,v vectors such that ρ is the largest

eigenvalue of the matrix
∑
m∈A

Zr
m and u,v are the corresponding left and right eigen-

vectors. Moreover,

lim
n→∞

1

qn

(∑
m∈A

Zr
m

)n

= vuᵀ. (25)

By the assumption in Equation (24)

1

n
log êᵀ

(∑
m∈A

Zr
m

)n

p̂ = log
]A
LK

= log
LK − 1

NK
.

On the other hand, by Equation (25)

lim
n→∞

1

n
log êᵀ

(∑
m∈A

Zr
m

)n

p̂ = log ρ.

So ρ = 1− L−K but, because of the de�nition of R in Equation (21), R · Zr :=

R
∑
m∈A

Zr
m ∈ ZN×N , hence Rρ = R−RL−K ∈ Q\Z. But we arrived to a contradiction

because this cannot be a root of characteristic polynomial of R·Zr, which is a matrix

of integer coe�cients.

Now we �nish the proof of Theorem 44. By using Theorem 31 from Subsection 3.2

we conclude that

dimH µ =
hκ

logL
< 1.
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Conclusion

In my thesis I focus on iterated function systems construated with overlapping parts.

These IFSs are from a special family, namely where the linear part in each map are

the same. This linear part is a concrate contraction which can be interpreted as a

reciprocal of a natural number, and the translations are chosen from a lattice in Zd.
This thesis gives a brief overview of the corresponding results on geometric mea-

sure theory. During the investigation of the corresponding literature, I studied

Richard Kenyon's work [3] on the projection of the Sierpi«ski carpet. A more recent

paper from 2000 by Lau, Ngai and Rau [6] gave a matrix expression which fully

represents an IFS. Using matrix representations for such IFSs is quite useful, and

better for computations. Thus Víctor Ruiz [5] shows a new method for this purpose,

then with the help of the matrices Ruiz investigates the relation between Hausdor�

dimensions and absolute continuity. In future work it would be interesting to �nd

a relation between the two types of matrices, hence absolute continuity could be

prooven easier and with more e�ciency.

The thesis contains a new, original result. Namely, I extend a theorem due to

Balázs Bárány and Michal Rams, about the dimension of the projection of self-

similar measures of the generalized Sierpinski Gasket, to more general IFSs on the

line. I verify that the same method can be applied in this more general settings.
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