- 1. Determine the number of symmetries (and describe these symmetries) for the following geometrical objects:
 - a) a square;
 - b) a rectangle which is not a square;
 - c) a circle;
 - d) the part of the plane enclosed by two parallel lines;
 - e) a cube;
 - f) a regular tetrahedron.
- **2.** Suppose that a geometrical object in \mathbb{R}^2 or \mathbb{R}^3 has a symmetry which reverses the orientation. Prove that in this case the given object has the same number of orientation preserving and orientation reversing symmetries.
- **3.** Let $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_n\}$ be an arbitrary basis of the euclidean space \mathbb{R}^n and $f: \mathbb{R}^n \to \mathbb{R}^n$ a linear transformation. Prove that f is orthogonal if and only if $f(\mathbf{v}_i) \cdot f(\mathbf{v}_j) = \mathbf{v}_i \cdot \mathbf{v}_j$ for all i, j.
- **4.** Prove that every orthogonal transformation of \mathbb{R}^2 is either a rotation about the origin or a reflection through a line containing the origin. What can we say about the orthogonal transformations of \mathbb{R}^3 ?
- **5.** Let H be a set of at least two elements. Prove that the power set P(H) is not a group with respect to the intersection or union operation but it is a group with respect to the symmetric difference (i.e. with the operation $A \triangle B := (A \cup B) \setminus (A \cap B)$).
- **6.** Prove that the axiom of associativity implies that the value of a product $a_1 \cdot a_2 \cdot \cdots \cdot a_n$ is the same for any distribution of parantheses.
- 7. Check whether the following sets form a group with respect to the usual addition or multiplication:
 - a) $n \times n$ real matrices with determinant equal to 1;
 - b) $n \times n$ real matrices with positive determinant;
 - c) $n \times n$ integral matrices;
 - d) $n \times n$ integral matrices with nonzero determinant;
 - e) $n \times n$ integral matrices with determinant equal to 1;
 - f) $n \times n$ upper triangular real matrices.
- **8.** Let K be field and consider the set of all $K \to K$ mappings. Prove that the subset $\{x \mapsto ax + b \mid a, b \in K, a \neq 0\}$ forms a group with respect to the composition of functions. Find nontrivial subgroups of this group. (Recall that a subgroup is called trivial if it is equal to the one element subgroup or the full group.)
- **9.** Let S be a semigroup with 1. Prove the following:
 - a) if a and b are invertible, then both ab and ba are invertible;
 - b) if both ab and ba are invertible then a and b are also invertible.

Show that invertibility of ab does not imply the invertibility of a or b by giving an example.

- 10. a) Prove that the intersection of any system of subgroups in a group must be a subgroup.
 - b) Show that the union of two subgroups is a subgroup if and only if one of the subgroups contains the other.