1. For a group G let $G^{\circ}=(G, *)$ be the group on the same underlying set with the multiplication performed in the reverse order: $a * b:=b \cdot a$. Prove that $G^{\circ} \cong G$.
2. Let K be a subset of the group G. Prove that at most one subgroup of G can have K as a left coset, furthermore, if K is a left coset then it is also a right coset of an appropriate subgroup of G.
3. Let \mathbb{Z} be the additive group of integers and $m \mathbb{Z}$ its subgroup generated by a number $m>1$. Describe the cosets of $m \mathbb{Z}$ in \mathbb{Z}.
4. Prove that every nontrivial subgroup of C_{∞} has a finite index, i. e. it has finitely many cosets.
5. Which of the following statements are true?
a) If $|G|=81$ and there exists an element $g \in G$ with $g^{29} \neq g^{2}$ then G is cyclic.
b) If $|G|=54$ and there exists an element $g \in G$ with $g^{29} \neq g^{2}$ then G is cyclic.
c) If $|G|=81$ and there exists an element $g \in G$ with $g^{29}=g^{2}$ then G is not cyclic.
6. Prove the Dedekind law: for any subgroups A, B and C of a group G, the condition $A \leq C$ implies that $A(B \cap C)=A B \cap C$.
7. Let $\langle X\rangle=G$ and let $\varphi, \psi: G \rightarrow H$ be group homomorphisms with $\varphi(x)=\psi(x)$ for all $x \in X$. Prove that $\varphi=\psi$.
8. Let $\varphi: G \rightarrow H$ be a group homomorphism and $g \in G$. Prove that $o(\varphi(g)) \mid o(g)$.
9. What can be the order of the image of an element of order 6 when we apply homomorphisms between the following pairs of groups?
a) $C_{6} \rightarrow C_{15}$
b) $C_{6} \rightarrow C_{12}$
c) $C_{12} \rightarrow C_{6}$
10. What is the number of different homomorphisms between the following groups?
a) $C_{10} \rightarrow C_{33}$
b) $C_{n} \rightarrow C_{n}$
c) $C_{n} \rightarrow C_{m}$
d) $C_{\infty} \rightarrow C_{n}$
e) $C_{n} \rightarrow C_{\infty}$
11. Prove that conjugate elements of a group always have the same order, i. e. $o(x)=o\left(y^{-1} x y\right)$ for every x, y.
12. a) Determine the conjugate $b^{-1} a b$ of the permutation $a=(132)(45)$ by the permutation $b=(254)$.
b) Which of the elements $(123),(4523)(16),(4321)$, and (24)(314) are conjugate to (1234) in S_{6} ?
c) Determine the number of elements g of S_{7} such that conjugation by g maps the element $(123)(45)(67)$ to itself. And how many elements map it to (125)(63)(47)?
13. Prove the following statements about the conjugacy classes of a group G.
a) The product of two conjugacy classes is the union of some conjugacy classes.
b) If \mathcal{K} is a conjugacy class then so is \mathcal{K}^{-1}.
c) A subgroup H is normal if and only if it is the union of some conjugacy classes.
d) Any subgroup generated by conjugacy classes is normal.
14. Let f be a rotation of order 4 in the dihedral group D_{4} and t one of the reflections. Prove that $t^{-1} f t=t f t=f^{-1}$. Determine the conjugacy classes of D_{4}. What can we say about the conjugacy classes of D_{n} in general?
