- 1. For a group G let $G^{\circ} = (G, *)$ be the group on the same underlying set with the multiplication performed in the reverse order: $a * b := b \cdot a$. Prove that $G^{\circ} \cong G$.
- **2.** Let K be a subset of the group G. Prove that at most one subgroup of G can have K as a left coset, furthermore, if K is a left coset then it is also a right coset of an appropriate subgroup of G.
- **3.** Let \mathbb{Z} be the additive group of integers and $m\mathbb{Z}$ its subgroup generated by a number m > 1. Describe the cosets of $m\mathbb{Z}$ in \mathbb{Z} .
- 4. Prove that every nontrivial subgroup of C_{∞} has a finite index, i.e. it has finitely many cosets.
- 5. Which of the following statements are true?
 - a) If |G| = 81 and there exists an element $g \in G$ with $g^{29} \neq g^2$ then G is cyclic. b) If |G| = 54 and there exists an element $g \in G$ with $g^{29} \neq g^2$ then G is cyclic.

 - c) If |G| = 81 and there exists an element $q \in G$ with $q^{29} = q^2$ then G is not cyclic.
- **6.** Prove the Dedekind law: for any subgroups A, B and C of a group G, the condition $A \leq C$ implies that $A(B \cap C) = AB \cap C$.
- 7. Let $\langle X \rangle = G$ and let $\varphi, \psi: G \to H$ be group homomorphisms with $\varphi(x) = \psi(x)$ for all $x \in X$. Prove that $\varphi = \psi$.
- 8. Let $\varphi: G \to H$ be a group homomorphism and $g \in G$. Prove that $o(\varphi(g)) \mid o(g)$.
- 9. What can be the order of the image of an element of order 6 when we apply homomorphisms between the following pairs of groups? c) $C_{12} \rightarrow C_6$ b) $C_6 \rightarrow C_{12}$ a) $C_6 \rightarrow C_{15}$
- 10. What is the number of different homomorphisms between the following groups? e) $C_n \to C_\infty$ a) $C_{10} \to C_{33}$ b) $C_n \to C_n$ c) $C_n \to C_m$ d) $C_\infty \to C_n$
- 11. Prove that conjugate elements of a group always have the same order, i. e. $o(x) = o(y^{-1}xy)$ for every x, y.
- a) Determine the conjugate $b^{-1}ab$ of the permutation a = (132)(45) by the permutation 12. b = (254).
 - b) Which of the elements (123), (4523)(16), (4321), and (24)(314) are conjugate to (1234)in S_6 ?
 - c) Determine the number of elements g of S_7 such that conjugation by g maps the element (123)(45)(67) to itself. And how many elements map it to (125)(63)(47)?
- 13. Prove the following statements about the conjugacy classes of a group G.
 - a) The product of two conjugacy classes is the union of some conjugacy classes.
 - b) If \mathcal{K} is a conjugacy class then so is \mathcal{K}^{-1} .
 - c) A subgroup H is normal if and only if it is the union of some conjugacy classes.
 - d) Any subgroup generated by conjugacy classes is normal.
- 14. Let f be a rotation of order 4 in the dihedral group D_4 and t one of the reflections. Prove that $t^{-1}ft = tft = f^{-1}$. Determine the conjugacy classes of D_4 . What can we say about the conjugacy classes of D_n in general?