- 1. Determine the factor group G/N for the given group G and normal subgroup N.
 - a) G = GL(n, K), N = SL(n, K);
 - b) $G = D_4, N = \langle f^2 \rangle;$
 - c) $G = (\mathbb{R}, +), N = \mathbb{Z};$
 - d) $G = Q^{\times}, N = \{\pm 1\};$
 - e) $G = \langle a \rangle \times \langle b \rangle$, ahol o(a) = 4 és o(b) = 6, $N = \langle a^2 b^3 \rangle$.
- **2.** Let $N \triangleleft G$, $H \leq G$, |G| = 24, |N| = 4, and |H| = 6. What can be the order of the image of H under the action of the homomorphism $G \rightarrow G/N$? Give an example for each case.
- **3.** Let $Q = \{\pm 1, \pm i, \pm j, \pm k\}$ be the quaternion group, where ij = k, jk = i, ki = j ji = -k, kj = -i, ik = -j, $i^2 = j^2 = k^2 = -1$, and multiplication by -1 takes each element into its negative. Check that Q is a indeed a group and give the multiplication table for Q. Prove that every subgroup of Q is normal. Prove that Q cannot be obtained as a semidirect product of smaller groups.
- 4. For each $s \mid n$ prove that the dihedral group D_s is both a subgroup and a homomorphic image of the dihedral group D_n .
- **5.** Determine the number of elements of order 4 in A_8 .
- **6.** Prove that A_n is generated by its k-cycles if k is odd, and $3 \le k \le n$.
- 7. Prove that S_4 has only four normal subgroups: 1, S_4 , A_4 , and the four element Klein group (containing the elements of the form (..)(..) and the identity).
- 8. Prove that A_4 has no subgroup of order 6.
- **9.** Determine the conjugacy classes of A_5
- **HW1.** Let N be a normal subgroup and H a subgroup in a group G of order 100, and suppose that |N| = 20 és |H| > 20. Prove that H has a subgroup of index 5.
- **HW2.** Prove that the diagonal subgroup $T = \{(g,g) | g \in G\}$ of the direct product $G \times G$ is normal if and only if G is Abelian.
- **HW3.** Find the smallest n such that S_n or A_n , respectively, contains a subgroup isomorphic to the 8-element dihedral group D_4 .