1. Prove that G is solvable if the order of G is
a) $p^{2} q^{2}$, with p és q different primes;
b) $p q r$, with p, q, r different primes;
$\left.c^{*}\right) p^{3} q$, with p and q different primes.
2. Give a composition series for the dihedral group D_{n} and the group $G L(3,2)$.
3. Prove the following isomorphisms for the given finitely presented groups.
a) $\left\langle x, y, z \mid x^{2}=y^{2}=z^{3}=1, x y=y x, z^{-1} x z=y\right\rangle \cong A_{4}$;
b) $\left\langle x, y \mid x^{2}=y^{2}=1, x y x y=y x y x\right\rangle \cong D_{4}$;
c) Every finite non-Abelian homomorphic image of $\left\langle x, y \mid x^{2}=y^{2}=1\right\rangle$ is isomorphic to one of the dihedral groups.
4. Give a presentation of S_{4} with transpositions as generators. Give a presentation of A_{5} with 3 -cycles as generators.

5*. Prove that $\left\langle x, y, z \mid y^{-1} x y=x^{2}, z^{-1} y z=y^{2}, x^{-1} z x=z^{2}\right\rangle=1$.
6. Give a presentation for the following groups.
a) $C_{2} \times C_{2} \times C_{4}$
b) $C_{3} \times C_{8}$
c) Q
7. Suppose that $x^{2}=x$ for every element x of a ring R. Prove that R is commutative.
8. Let R be a ring with an identity and let $a \in R$ be a nilpotent element, i. e. $a^{n}=0$ for some positive integer n. Prove that $1+a$ is invertible.
9. Let R be a ring with $1 \in R$ and let $a, b \in R$ such that $1+a b$ is invertible. Prove that $1+b a$ is also invertible.
10. Prove that the invertible elements of a ring with an identity form a group with respect to multiplication. Do they (together with the 0 element) also form a (skew) field with respect to the ring operations?
11. Let R be a ring with an identity and with no zero divisors. Prove that the right inverse of an element is necessarily an inverse.
12. What can we say about the ring R if for every element $a \in R$ the set $\{0, a\}$ is an ideal of R ?

HW1. Prove that the group G is solvable if $|G|=8 p$ with some odd prime p.
HW2. Prove that $\left\langle x, y \mid y^{-1} x y=x^{2}, x^{-1} y x=y^{2}\right\rangle=1$
HW3. Suppose that N is a normal subgroup of the group G, and $N \cap G^{\prime}=1$. Prove that $N \leq Z(G)$.

