1*. Let R be a finite commutative ring. Prove that R has an identity if and only if $a R \neq\{0\}$ for any $0 \neq a \in R$.
2. Let $1 \in R$ be a ring with no zero divisors. Prove that a right inverse of any element is also its left inverse.
3. What are the (right, left, two-sided) ideals in the following rings?
a) \mathbb{Z}_{n};
b) $\mathbb{R}^{n \times n}$;
c) $\mathbb{R}[x] /\left(x^{2}+1\right)$;
d) $\mathbb{C}[x] /\left(x^{2}+1\right)$;
e) $n \times n$ upper triangular matrices over \mathbb{Z}.
4. Describe the elements of the ideal generated by x and y^{2} in the ring $K[x, y]$, where K is a (commutative) field. Give a transversal of the cosets of the ideal. Find the ideals of the factor ring.
5. Let $R=2 \mathbb{Z}$ be the ring of even integers, and $R_{1}=\{(a, m) \mid a \in R, m \in \mathbb{Z}\}$ the usual exension of R to a ring with identity. Prove that R_{1} is not isomorphic to \mathbb{Z}.
6. Determine the fraction field of $2 \mathbb{Z}$.
7. Prove that a ring has no proper right ideal if and only if it is a (skew) field or a zero ring of prime order.
8. Prove that every finite integral domain is a field.
9. Prove that the ideal of $\mathbb{Z}[x]$ generated by 2 and x is not a principal ideal.
10. Prove that $\mathbb{Z}[i]=\{a+b i \mid a, b \in \mathbb{Z}\}$ is a euclidean ring.

HW1. Prove that the nilpotent elements of a commutative ring form an ideal.
HW2. Let R be a commutative ring with identity. Prove that $I, J \triangleleft R$ and $I+J=R$ implies $I J=I \cap J$.
HW3. Let $R=\mathbb{Z}[x]$, and let I be the ideal of R generated by 2 and x^{2}. Prove that the factor ring R / I has 4 elements, and that its multiplicative semigroup is isomorphic to the multiplicative semigroup of \mathbb{Z}_{4}.

