Problem set 9

- **1**^{*}. Let R be a finite commutative ring. Prove that R has an identity if and only if $aR \neq \{0\}$ for any $0 \neq a \in R$.
- **2.** Let $1 \in R$ be a ring with no zero divisors. Prove that a right inverse of any element is also its left inverse.
- 3. What are the (right, left, two-sided) ideals in the following rings?
 - a) \mathbb{Z}_n ;
 - b) $\mathbb{R}^{n \times n}$;
 - c) $\mathbb{R}[x]/(x^2+1);$
 - d) $\mathbb{C}[x]/(x^2+1);$
 - e) $n \times n$ upper triangular matrices over \mathbb{Z} .
- 4. Describe the elements of the ideal generated by x and y^2 in the ring K[x, y], where K is a (commutative) field. Give a transversal of the cosets of the ideal. Find the ideals of the factor ring.
- **5.** Let $R = 2\mathbb{Z}$ be the ring of even integers, and $R_1 = \{(a, m) | a \in R, m \in \mathbb{Z}\}$ the usual exension of R to a ring with identity. Prove that R_1 is not isomorphic to \mathbb{Z} .
- **6.** Determine the fraction field of $2\mathbb{Z}$.
- 7. Prove that a ring has no proper right ideal if and only if it is a (skew) field or a zero ring of prime order.
- 8. Prove that every finite integral domain is a field.
- **9.** Prove that the ideal of $\mathbb{Z}[x]$ generated by 2 and x is not a principal ideal.
- **10.** Prove that $\mathbb{Z}[i] = \{ a + bi | a, b \in \mathbb{Z} \}$ is a euclidean ring.
- **HW1.** Prove that the nilpotent elements of a commutative ring form an ideal.
- **HW2.** Let R be a commutative ring with identity. Prove that $I, J \triangleleft R$ and I + J = R implies $IJ = I \cap J$.
- **HW3.** Let $R = \mathbb{Z}[x]$, and let *I* be the ideal of *R* generated by 2 and x^2 . Prove that the factor ring R/I has 4 elements, and that its multiplicative semigroup is isomorphic to the multiplicative semigroup of \mathbb{Z}_4 .