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Some facts from the arithmetics of polynomials:

Roots and reducibility: If K is a field, f(x) ∈ K[x] and deg f = 2 or 3 then
f is irreducible ⇔ f has no root in K.
It is not true for polynomials of higher degree!!

Rational root test: If f(x) = anx
n + . . . + a1x + a0 ∈ Z[x] (an, a0 6= 0) and p

q ∈ Q
(p, q ∈ Z, gcd(p, q) = 1) is a root of f then p | a0 and q | an.

Gauss lemma: If f(x) ∈ Z[x] is reducible in Q[x] then it can also be factored into a
product of polynomials of smaller degree over Z[x].

Schönemann–Eisenstein criterion: Suppose that f(x) = anx
n + . . .+ a1x+ a0 ∈ Z[x],

and there exists a prime p such that p divides an−1, . . . , a0 but p does not divide an, and
p2 does not divide a0 then f(x) is irreducible in Q[x].

1. Which of the following polynomials are irreducible over Q?
a) 2x− 3 b) x3 − 2x2 + x+ 1 c) x4 + 4x+ 3
d) x5 + 2x− 6 e) x4 + 4 f) x4 − x2 + 1

Solution: a) 2x− 3 is irreducible because its degree is 1.
b) Since the polynomial f(x) = x3 − 2x2 + x+ 1 has degree 3, it is irreducible ⇔ it has

no rational root. According to the rational root test, the rational roots can only be
±1, and f(1) = 1, f(−1) = −3, so f is irreducible.

c) It is easy to see that f(−1) = 0, so f(x) = (x + 1)g(x) for some g(x), thus f is not
irreducible.

d) x5 + 2x− 6 satisfies the condition of the Schönemann–Eisenstein criterion with p = 2,
thus the polynomial is irreducible.

e) This polynomial can be written as a difference of two complete squares, so it has
a nontrivial factorization: x4 + 4 = (x4 + 4x2 + 4) − 4x2 = (x2 + 2)2 − (2x)2 =
(x2 − 2x+ 2)(x2 + 2x+ 2), showing that x4 + 4 is not irreducible.

f) f(x) = x4−x2+1 has no rational root (by the rational root test we only need to check
±1), but we still have to see if it cannot be the product of two irreducible polynomials
of degree 2. If it can then by the Gauss lemma we may assume that the factors are
from Z[x]: f(x) = g(x)h(x), where g, h ∈ Z[x], and deg g = deg h = 2. The product
of the main coefficients is 1, so they can only be both 1 or both −1, and we may
assume the former (otherwise we can multiply both polynomials by −1). Similarly,
the constant terms can be both 1 or both −1. Finally, since the coefficient of x3 in f
is 0, the sum of the coefficients of x is g and h is 0. So there are two cases:

f(x) = (x2 + ax+ 1)(x2 − ax+ 1) or f(x) = (x2 + ax− 1)(x2 − ax− 1).

Comparing the coefficent of x2 on the two sides of the equations, we get −1 = 2− a2,
giving a2 = 3, or in the second case, −1 = −2 − a2, giving a2 = −1, and neither of
them has a solution for a in Z. We got a contradiction, so f(x) is irreducible.
(Actually, x4 − x2 + 1 is the cyclotomic polynomial Φ12(x), and it is known that all
cyclotomic polynomials are irreducible in Q[x].)

2. Determine the cardinality of the factor ring K[x]/(x2 + x+ 1) if K = Z2 or Z3. Which of
the two factor rings is a field?

Solution: In both cases the polynomials of degree less than 2 form a complete representa-
tive set for the cosets of the ideal (x2 + x+ 1), so the cardinality of the factor ring in the
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case K = Z2 is 22 = 4, in the case K = Z3 is 32 = 9. The polynomial p(x) = x2 + x+ 1 is
irreducible over Z2, because it has degree 2, and has no root in Z2 (p(0) = p(1) = 1) but
it is reducible over Z3, since there p(1) = 1 + 1 + 1 = 0. So the first factor ring is a field,
the second is not.

3. Let K = Z2 and p(x) = x3 + x + 1. Show that R = K[x]/(p(x)) is a field of 8 elements.
Find all the roots of x3 + x2 + 1 in R.

Solution: In the factor ring the polynomials of degree less than 3 form a complete repre-
sentative set for the cosets, so |R| = 23 = 8. Furthermore, p(x) is irreducible because it
has degree 3, and it has no root in Z2. So R is a field.
Let α = x + (p(x)) ∈ R. Then we know that p(α) = 0, that is, α3 = −α − 1 = α + 1,
and the elements of R can be written uniquely as polynomials of α over K of degree less
than 3: γ = a + bα + cα2. We have to find all a, b, c ∈ Z2 for which γ is a root of
f(x) = x3 + x2 + 1. We simplify the expressions, using that a2 = a for every element
a ∈ Z2, then that (x + y)2 = x2 + y2 in a field of characteristic 2, and that α3 = α + 1,
consequently, α4 = α2 + α.

(a+ bα+ cα2)2 = a+ bα2 + cα4 = a+ bα2 + c(α2 + α)

= a+ cα+ (b+ c)α2

(a+ bα+ cα2)3 = (a+ cα+ (b+ c)α2)(a+ bα+ cα2)

= a+ (ac+ ab)α+ (ab+ bc)α2 + (b+ c+ bc)α3 + (c+ bc)α4

= (a+ b+ c+ bc) + (b+ ac+ ab)α+ (c+ ab)α2

0 = f(γ) = (1 + b+ c+ bc) + (b+ c+ ac+ ab)α+ (b+ ab)α2

= (1 + b)(1 + c) + (b+ c)(1 + a)α+ (b+ ab)α2

If b = 1 then a = 1, and c = 0, 1, if b = 0 then c = 1 and a = 1.
So the roots are 1 + α, 1 + α+ α2 and 1 + α2.

4. Let α be a root of the polynomial p(x) = x2 − x+ 1 ∈ Q[x] in C.

a) What is the dimension of Q[α] = { f(α) | f(x) ∈ Q[x] } as a vector space over Q.
b) Prove that α2 and α5 are linearly dependent in this vector space.
c) Show that Q[α] ∼= Q[x]/(p(x)), and Q[α] is the smallest subfield of C containing α,

that is, Q[α] = Q(α).
d) Express 1

α2−2α as a polynomial of α of the least possible degree.

Solution: a) The subspace V spanned by 1 and α is closed under multiplication by α
(1 · α = α ∈ V and α · α = α − 1 ∈ V ), so it contains all powers of α, thus also the
whole Q[α]. On the other hand, 1 and α are independent, since p(x) is an irreducible
polynomial with α as a root, so p(x) is the minimal polynomial of α. This gives that
{ 1, α } is a basis of Q[α], consequently the dimension of this vector space is 2.

b) α2 = α− 1, α3 = α2 −α = (α− 1)−α = −1, then α5 = α3 ·α2 = −α2(= −α+ 1), so
α5 is a scalar multiple of α2.

c) Q[α] is the image of the ring homomorphism ϕ : Q[x] → C, f(x) 7→ f(α), and
Kerϕ = { f(x) | f(α) = 0 } = (p(x)), so Q[x]/(p(x)) = Q[x]/Kerϕ ∼= Imϕ = Q[α].
Since p(x) is irreducible, Q[α] ∼= Q[x]/(p(x) is a field. It contains α, and it must be
included in every field containing α, so Q[α] = Q(α).

d) By part a)and c), every element of Q(α) can be uniquely written as a+ bα (a, b ∈ Q).
α2−2α = α−1−2α = −1−α, so we want to find a+bα such that 1 = (−1−α)(a+bα) =
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−a− (a+ b)α− bα2 = −a− (a+ b)α− b(α− 1) = (b− a)− (a+ 2b)α, which gives the
system of equations b−a = 1 and a+2b = 0, so b = 1

3 , a = − 2
3 , and 1

α2−2α = − 2
3 + 1

3α.

5. Prove that Q[x]/(x2 − 2) ∼= Q[x]/(x2 − 2x− 1).

Solution: Both x2 − 2 and x2 − 2x − 1 are irreducible over Q, so they are minimal
polynomials for their roots in C over Q.

√
2 is a root of x2 − 2, 1 +

√
2 is a root of

x2−2x−1, so Q[x]/(x2−2) ∼= Q(
√

2) and Q[x]/(x2−2x−1) ∼= Q(1 +
√

2). But the latter
two fields are actually equal:

√
2 = (1 +

√
2)− 1 ∈ Q(1 +

√
2), and 1 +

√
2 ∈ Q(

√
2), hence

Q[x]/(x2 − 2) ∼= Q[x]/(x2 − 2x− 1).
(Alternatively, we may notice that x2− 2x+ 1 = (x− 1)2− 2 = p(x− 1) for p(x) = x2− 2,
so the (bijective) homomorphism ϕ : Q[x] → Q[x], f(x) 7→ f(x − 1) maps the ideal
(p(x)) to (x2 − 2x− 1). This implies that the composition of ϕ with the natural factoring

homomorphism: Q[x]
ϕ→Q[x] → Q[x]/(x2 − 2x − 1) has kernel (p(x)), and it is naturally

surjective, so by the homomorphism theorem, Q[x]/(x2 − 2) ∼= Q[x]/(x2 − 2x− 1).)

6. What is the minimal polynomial of
√

2 +
√

3 over Q and over Q(
√

6)?

Solution: Let α =
√

2 +
√

3. Then α2 = 5 + 2
√

6 ⇒ (α2 − 5)2 = 24 ⇒ α4 − 10α2 + 1 = 0,
so α is a root of the polynomial x4 − 10x2 + 1. This polynomial is irreducible since on
the one hand, it has no rational roots (it could only be ±1 but those are not roots),
on the other hand, it cannot be the product of two integral polynomials of degree 2:
such a product (where we can assume the main coefficients to be positive) can only be
(x2 + ax + 1)(x2 + bx + 1) or (x2 + ax − 1)(x2 + bx − 1), but comparing the coefficients,
we would get a2 = 12 or a2 = 8, and there is no such an integer a. Thus the minimal
polynomial of α =

√
2 +
√

3 over Q is x4 − 10x2 + 1.
We have seen that α2 = 5 + 2

√
6, that is, α is a root of the polynomial x2 − 5 − 2

√
6 ∈

Q(
√

6)[x]. It cannot be the root of a polynomial of smaller degree over Q(
√

6) because
then α would be in Q(

√
6), and that is only a second degree extension of Q (with a root

of x2 − 6). So the minimal polynomial of α over Q(
√

6) is x2 − 5− 2
√

6.

7. Suppose that for some α, β ∈ C, the numbers α + β and αβ are algebraic over Q. Prove
that α and β are also algebraic.

Solution: Let c = α + β and d = αβ. We know that then α and β are the roots of the
polynomial x2− cx+ d ∈ Q(c, d)[x], so Q(c, d, α) = Q(c, d, β) = Q(α, β) has a finite degree
over Q(c, d). But c is algebraic over Q, and d algebraic over Q, so it is also algebraic over
Q(c), thus

(Q(α, β) : Q) = (Q(α, β) : Q(c, d)) · (Q(c, d) : Q(c)) · (Q(c) : Q)

is finite, so every element of Q(α, β), in particular, α and β are algebraic over Q.

8. Let α ∈ C be a root of the polynomial x3 − 2x2 + x + 1 ∈ Q[x]. Express the reciprocal of
α2 + 2 as an at most second degree polynomial of α.

Solution: We want to find those rational coefficients A,B,C ∈ Q for which
(Aα2 +Bα+ C)(α2 + 2) = 1, that is,

Aα4 +Bα3 + (2A+ C)α2 + 2Bα+ 2C = 1.

We use that α3 − 2α2 + α+ 1 = 0, that is,

α3 =2α2 − α− 1 and

α4 =2α3 − α2 − α = 2(2α2 − α− 1)− α2 − α =

=3α2 − 3α− 2.
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(5A+ 2B + C)α2 + (−3A+B)α+ (−2A−B + 2C) = 1.

Solving the linear system of equations, 5A+2B+C = 0, −3A+B = 0, −2A−B+2C = 1,

we get A = − 1
27 , B = − 3

27 , C = 11
27 , so

1

α2 + 2
=

1

27
(−α2 − 3α+ 11).

9. What are the degrees of the extensions Q(i
√

3) and Q(i+
√

3) over Q?

Solution: The minimal polynomial of i
√

3 is x2+3, because i
√

3 is a root of this polynomial,
and the polynomial is clearly irreducible over Q. So (Q(i

√
3) : Q) = 2

Let α = i+
√

3. Then (α−
√

3)2 = −1 ⇒ α2 − 2
√

3α+ 4 = 0 ⇒
√

3 = α2+4
2α ∈ Q(α), and

i = α−
√

3 ∈ Q(α), so Q(
√

3, i) ≤ Q(i+
√

3) ≤ Q(
√

3, i), that is, Q ≤ Q(
√

3) ≤ Q(
√

3, i) =
Q(α), where the degree of the first extension is 2 (with minimal polynomial x2 − 3), and
the second cannot have degree 1, since Q(

√
3) ≤ R, but Q(α) 6≤ R. On the other hand,

i is a root of the polynomial x2 + 1 ∈ Q[x] ≤ Q(
√

3)[x], so the second extension also has
degree 2. Hence by the multiplicativiy theorem, (Q(α) : Q) = 2 · 2 = 4.

10. Determine the degrees of the following extensions over Q.

a) Q(
√

2) b) Q( 3
√

2) c) Q( 3
√

2 + 3
√

4) d) Q( 3
√

2 +
√

2)

Solution: a) The minimal polynomial of
√

2 is x2 − 2 ⇒ (Q(
√

2) : Q) = 2.
b) 3
√

2 is a root of the polynomial x3 − 2, which is irreducible (for example, by the
Schönemann–Eisenstein criterion), so this is the minimal polynomial of 3

√
2, and this

gives (Q( 3
√

2) : Q) = 3.
c) α := 3

√
2 + 3
√

4 = 3
√

2 + ( 3
√

2)2 ∈ Q( 3
√

2), so Q ≤ Q(α) ≤ Q( 3
√

2), and then

3 = (Q(
3
√

2) : Q) = (Q(
3
√

2) : Q(α)) · (Q(α) : Q).

But 3
√

2 is a root of the polynomial x2 + x− α ∈ Q(α)[x], hence (Q( 3
√

2) : Q(α)) ≤ 2,
and this degree is a divisor of 3, so it can only be 1. It follows that (Q(α) : Q) = 3.

d) It is clear that for α = 3
√

2 +
√

2 we have Q(α) ≤ Q( 3
√

2,
√

2), on the other hand,

(α −
√

2)3 = 2 ⇒ α3 − 3
√

2α2 + 6α − 2
√

2 = 2 ⇒
√

2 =
α3 + 6α− 2

3α2 + 2
∈ Q(α), and

3
√

2 = α −
√

2 ∈ Q(α), so Q(α) = Q(
√

2, 3
√

2). The degree of the latter is at most
2 · 3 = 6, as can be seen from the extensions

Q ≤ Q(
√

2) ≤ Q(
√

2,
3
√

2) = Q(α),

where the minimal polynomial of the first extension is x2−2, while that of the second
must be a divisor of x3 − 2. However, if we consider the extensions

Q ≤ Q(
3
√

2) ≤ Q(α),

we see that (Q(α) : Q) is divisible both by 2 and 3, so it can only be 6.

11. Let α be a root of the polynomial x3 +x+ 1 over Z2, and let K = Z2(α). Is the polynomial
x2 + x+ α irreducible over K?

Solution: We only have to check if the polynomial x2 + x+ α has a root in K, that is, if
there is a polynomial Aα2 +Bα+ C with coefficients A,B,C ∈ Z2 for which

(Aα2 +Bα+ C)2 + (Aα2 +Bα+ C) + α = 0.

We can rewrite the equation, using that A,B,C ∈ { 0, 1 } implies A2 = A, B2 = B s C2 =
C, and α3 = α+1, implying also α4 = α2+α. We get that Aα4+(A+B)α2+(B+1)α = 0,
that is, Bα2 + (A+B+ 1)α = 0, so A = 1, B = 0 and C is arbitrary, hence α2 and α2 + 1
are roots of x2 + x+ α, showing that the polynomial is not irreducible.


