
Algebra 1 Midterm Test 2 18 November 2024

1. Consider the regular triangle below divided into 9 small congruent triangles. How many
ways are there to colour three of the small triangles black, up to isometries of the big
triangle?
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(7 points)

Solution: The number of all colourings is
(
9
3

)
= 84. The group of isometries D3 acts on

these colourings, and the number of essentially different colourings is the number of orbits
of this group action. We use the orbit-counting lemma. The elements of D3 and their
number of fixed-points are:

1: 84

rotations by ±120◦: 3

reflections: 1 + 3 · 3 = 10

(For the rotations, if one corner or mid-edge or inside cell is black then all three such cells
are black, and nothing else, so there are 3 options. For the reflections, we can either colour
the three cells on the axis, or only one on the axis, and chose one on one side and its
reflection.)
This gives altogether 1

|D3| (84 + 2 · 3 + 3 · 10) = 120
6 = 20 colourings up to symmetries.

2. What is the number of elements of order 4 in D4 ×Q, where D4 is the dihedral group of 8
elements and Q is the quaternion group? (7 points)

Solution: In a table below are the possible orders of the elements of D4 and Q, in
parantheses the number of elements of that order, and in the intersection the least common
multiple of the two orders.

D4\Q 1 (1) 2 (1) 4 (6)

1 (1) 1 2 4

2 (5) 2 2 4

4 (2) 4 4 4

Then the number of elements of order 4 in D4 ×Q is 1 · 6 + 5 · 6 + 2 · 8 = 52.

3. What is the number of abelian groups of order 200 up to isomorphism? List the canonical
decompositions of those among them that have elements of order 4 but do not have elements
of order 50? (7 points)

Solution: If G is abelian, and |G| = 200 = 23 · 52 then G = G1 ×G2, where |G1| = 8 and
|G2| = 25, so G1

∼= C8, C4 × C2 or C2 × C2 × C2, while G2
∼= C25 or C5 × C5. This gives

3 · 2 = 6 possibilities up to isomorphism.
Every element of order 4 must be in G1, and every cyclic group of order divisible by 4
contains elements of order 4, so G has elements of order 4 ⇔ G1

∼= C8 or C4 × C2 (in
C2×C2×C2 the square of every element is 1). (g1, g2) ∈ G1×G2 has order 50⇔ o(g1) = 2
and o(g2) = 25, since |G1| = 23 and |G2| = 52 are coprime. But G1 always has an element
of order 2, so there is no element of order 50 in G ⇔ G2 has no element of order 25
⇔ G2

∼= C5 × C5. The Abelian groups of order 200 satisfying the extra conditions are:
C8 × C5 × C5 and C4 × C2 × C5 × C5.

4. Let G be a group of order 33 · 13. What can be the number of Sylow 3- and 13-subgroups
of G? Show that one of the Sylow-subgroups is normal.



Solution: Let s3 = |Syl3(G)|, s13 = |Syl13(G)|, P3 ∈ Syl3(G) and P13 ∈ Syl13(G).
s3 | 13 ⇒ s3 = 1 or 13, and both satisfiy s3 ≡ 1 (mod 3).
s13 | 27 ⇒ s13 = 1, 3, 9, 27, but only s13 = 1 and 27 of these satisfy s13 ≡ 1 (mod 13).
So s3 = 1 or 13, and s13 = 1 or 27.
If s13 = 1 then P13 / G.
If s13 = 27, then, since |P13| = 13 is a prime, the Sylow 13-subgroups intersect each other
trivially, so there are 27 ·12 elements of order 13 in G. This leaves only 27 ·13−27 ·12 = 27
elements for the Sylow 3-subgroups. But |P3| = 27, so there cannot be any other Sylow
3-subgroups. This implies that in this case |Syl3(G)| = 1 and P3 / G.

5. Suppose that the finite group G has a normal subgroup N whose order is a p-power for
some prime p. Show that every Sylow p-subgroup of G contains N . (7 points)
Solution: 1st solution: Since N is a p-subgroup, Sylow (1+) implies that ∃P ∈ Sylp(G):
N ≤ P . Now by Sylow (3), for any Q ∈ Sylp(G) ∃g ∈ G: Q = P g, so Q = P g ≥ Ng = N ,
since N / G.
2nd solution: Let P ∈ Sylp(G) any Sylow p-subgroup of G. Then, since N / G, 〈P,N〉 =
PN , and |PN | = |P | · |N |/|P ∩ N | is a p-power. But P ≤ PN , and |P | is the maximal
p-power divisor of |G|, so we get that P = PN , that is, N ≤ P .

6. a) Let I be an ideal in the ring R, and J = { b ∈ R | ab = 0 ∀a ∈ I }. Prove that J / R.
b) What is J if R is the group of 3 × 3 upper triangular matrices over R, and I is the

ideal of strictly upper triangular matrices, that is, where all the diagonal elements are
zero. (7 points)

Solution: a) 0 ∈ J because a0 = 0 for every a ∈ I.
If b ∈ J then a(−b) = −(ab) = −0 = 0 for ∀a ∈ I, so −b ∈ J .
If b, b′ ∈ J then a(b+ b′) = ab+ ab′ = 0 + 0 = 0 ∀a ∈ I, so b+ b′ ∈ J .
If b ∈ J and r ∈ R then a(br) = (ab)r = 0r = 0 ∀a ∈ I,
and a(rb) = (ar)b = 0b = 0 ∀a ∈ I since I / R gives ar ∈ I. So br, rb ∈ J .

b)  0 x y
0 0 z
0 0 0

 a b c
0 d e
0 0 f

 =

 0 dx ex+ fy
0 0 fz
0 0 0


must be the zero matrix for every x, y, z for the second matrix to be in J . This is true
⇔ d = e = f = 0, that is,

J =


 a b c
0 0 0
0 0 0

 ∣∣∣ a, b, c ∈ R

 .


