- 1. Prove that G cannot be simple if
 - a) |G| = 45, 56, 80, 36;
 - b) $|G| = p^a m$, where p is a prime and p > m > 1, a > 0;
 - c) |G| = pq, p^2q or p^2q^2 , where p, q are prime numbers.
- **2.** Prove that A_5 is the smallest non-abelian simple group.
- **3.** a) What can be the number of Sylow 3-, 5- or 7-subgroups in a group G of order 105?
 - b) Prove that one of the Sylow subgroups of G must be normal.
 - c) Prove that the Sylow 7-subgroup is always normal in G.
- 4. By examining the Sylow subgroups, prove that every group of order 15 is cyclic.
- **5.** Find a group of order 21 in S_7 .
- **6.** Consider the pure imaginary elements of the quaternions \mathbb{H} as vectors of \mathbb{R}^3 (where i, j, k are the elements of the standard basis). Show that the product of the vectors $\mathbf{u}, \mathbf{v} \in \mathbb{R}^3$ in \mathbb{H} is $-\mathbf{u}\mathbf{v} + \mathbf{u} \times \mathbf{v}$, where $\mathbf{u}\mathbf{v}$ is the dot product and $\mathbf{u} \times \mathbf{v}$ is the cross product in \mathbb{R}^3 .
- 7. Let G be a finite group and R = KG the group algebra of G over K. Prove that $I = K(\sum_{g \in G} g)$ and $J = \{\sum_{g \in G} \lambda_g g \mid \sum_{g \in G} \lambda_g = 0\}$ are both ideals in R, and also subspaces in the vector space KG_K .
- **8.** Prove that \mathbb{H} is not isomorphic to $\mathbb{R}Q$ where Q is the quaternion group.
- **9.** What can we say about a ring R where the set $\{0, a\}$ is an ideal of R for every $a \in R$?
- **HW1.** Let G be a group of order 140. Prove that G has at least two normal Sylow subgroups. Using this, show that G has an element of order 35.
- **HW2.** Prove that the nilpotent elements (that is, the elements r for which there exists a positive integer n with $r^n = 0$) of a commutative ring form an ideal.