Some facts from the arithmetics of polynomials:

Roots and reducibility: If K is a field, $f(x) \in K[x]$ and deg f = 2 or 3 then f is irreducible $\Leftrightarrow f$ has no root in K.

It is not true for polynomials of higher degree!!

Rational root test: If $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$ $(a_n, a_0 \neq 0)$ and $\frac{p}{q} \in \mathbb{Q}$ $(p, q \in \mathbb{Z}, \gcd(p, q) = 1)$ is a root of f then $p \mid a_0$ and $q \mid a_n$.

Gauss lemma: If $f(x) \in \mathbb{Z}[x]$ is reducible in $\mathbb{Q}[x]$ then it can also be factored into a product of polynomials of smaller degree over $\mathbb{Z}[x]$.

Schönemann–Eisenstein criterion: Suppose that $f(x) = a_n x^n + \ldots + a_1 x + a_0 \in \mathbb{Z}[x]$, and there exists a prime p such that p divides a_{n-1}, \ldots, a_0 but p does not divide a_n , and p^2 does not divide a_0 then f(x) is irreducible in $\mathbb{Q}[x]$.

1. Which of the following polynomials are irreducible over \mathbb{Q} ?

a)
$$2x - 3$$

b)
$$x^3 - 2x^2 + x + 1$$
 c) $x^4 + 4x + 3$
e) $x^4 + 4$ f) $x^4 - x^2 + 1$

c)
$$x^4 + 4x + 3$$

d)
$$x^5 + 2x - 6$$

e)
$$x^4 + 4$$

f)
$$x^4 - x^2 + 1$$

2. Find the minimal polynomial of α , that is, an irreducible polynomial of $\mathbb{Q}[x]$ which has α as a root if α is

a)
$$i\sqrt{3}$$

b)
$$\sqrt[3]{2}$$

c)
$$\sqrt{1+\sqrt{3}}$$

d)
$$\sqrt[3]{2} + \sqrt[3]{4}$$

Do not forget to prove that the polynomial is, indeed, irreducible.

- **3.** Show that $\mathbb{Q}[x]/(z^2-2x-3)\cong\mathbb{Q}\oplus\mathbb{Q}$
- **4.** Let R be the ring of $n \times n$ upper triangular matrices over a field K. Prove that the matrices where all elements which are not in the upper right corner are zero form an ideal J, and every nontrivial ideal of R contains J. Consequently, R cannot be written as a direct sum of nontrivial rings.
- **5.** Prove that $R = \mathbb{R}[x]/((x-1)^2)$ is isomorphic to the ring $\left\{ \begin{bmatrix} a & b \\ 0 & a \end{bmatrix} \mid a, b \in \mathbb{R} \right\}$.
- **6.** Let p(x) = a(x)b(x) where, $p(x), a(x), b(x) \in K[x]$ for some field K, and assume that gcd(a(x),b(x))=1. Prove that

$$K[x]/(p(x)) \cong K[x]/(a(x)) \oplus K[x]/(b(x)).$$

- 7. Let $\mathbb{Z}[i] = \{a + bi \mid a, b \in \mathbb{Z}\} \subset \mathbb{C}$ be the set of gaussian integers.
 - a) Prove that $\mathbb{Z}[i]$ is a euclidean ring with norm $N(a+bi)=a^2+b^2$.
 - b) Find an element $u \in \mathbb{Z}[i]$ such that the ideal (1+3i,5)=(u).
- **HW1.** Determine the minimal polynomial of $\mathbb{Q}(\sqrt{4-\sqrt{2}})$ over \mathbb{Q} .
- **HW2.** Prove that $\mathbb{R}[x]/(x^3+x) \cong \mathbb{C} \oplus \mathbb{R}$.