- 1. Describe the following factor groups (find a known group or a naturally definable subgroup of such a group isomorphic to the given factor group).
 - a) $\mathbb{R}^{\times}/\langle \pm 1 \rangle$
 - b) $\langle a \rangle / \langle a^n \rangle$ if $G = \langle a \rangle \cong C_{\infty}$
 - c) $S_4/\langle (12)(34), (13)(24)\rangle$
 - Solution: a) $\mathbb{R}^+ := \{x \in \mathbb{R} \mid x > 0\}$ is a subgroup of \mathbb{R}^\times , $\mathbb{R}^+ \cap \{\pm 1\} = \{1\}$, and $\{\pm 1\}\mathbb{R}^+ = \mathbb{R}$ is also obvious, so \mathbb{R}^+ is a complement of the normal subgroup $\langle \pm 1 \rangle$. This implies theat $\mathbb{R}^\times / \{\pm 1\} \cong \mathbb{R}^+$.
 - b) For n=0, we have $\langle a \rangle /1 = \langle a \rangle \cong C_{\infty}$, and $\langle a^n \rangle = \langle a^{-n} \rangle$, so assume that n>0. The (normal) subgroup $N=\langle a^n \rangle = \{a^{mn} \mid m \in \mathbb{Z}\}$ has no complement in $\langle a \rangle \cong C_{\infty}$ because any subgroup $H \neq 1$ is generated by a^k for some k>0, and then $1 \neq a^{kn} \in N \cap H$. So we try to find a nice and natural transversal and determine the multiplication rule for the corresponding cosets. The elements $1, a, \ldots, a^{n-1}$ are in different cosets for N since for $0 \leq i < j < n$, the element $a^j(a^i)^{-1} = a^{j-i} \notin N$. On the other hand, every coset has an element a^r with $0 \leq r \leq k-1$ because the euclidean division m=nq+r gives $Na^m=N(a^{nq})a^r=Na^r$. So $\{1,a,\ldots,a^{n-1}\}$ is a transversal for N. The multiplication is $Na^iNa^j=Na^{i+j}=Na^r$ where r is the remainder of i+j modulo n. This is the same multiplication rule as in C_n , so $G/N \cong C_n$.

(There is a shorter proof which uses the homomorphism theorem. We have seen in problem 1.a) that for $H = \langle b \rangle \cong C_n$ there is a homomorphism $\varphi : G \to H$ with $\varphi(a) = b$. This is clearly surjective, and $a^k \in \operatorname{Ker} \varphi \Leftrightarrow \varphi(a^k) = 1 \Leftrightarrow b^k = \varphi(a)^k = 1 \Leftrightarrow n \mid k$, so $\operatorname{Ker} \varphi = \langle a^n \rangle$, and then by the homomorphism theorem, $G/\langle a^n \rangle = G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi = \langle b \rangle \cong C_n$.)

- c) We have seen in problem 4/7.b) that $V = \{1, (12)(34), (13)(24), (14)(23)\} = \langle (12)(34), (13)(24) \rangle$ is a normal subgroup of S_4 . If it has a complement H then $|H| = |S_4|/|V| = 6$. We can easily find a subgroup of 6 elements in S_4 , for example $H = \{g \in S_4 \mid 4g = 4\}$ is such a subgroup, in fact, $H = S_3$. Luckily, $H \cap V = 1$, so it also follows that $|VH| = |V| \cdot |H|/|V \cap H| = 24$, implying that $S_4 = VH$, thus H is a complement of V, consequently, $S_4/V \cong H \cong S_3$.
- **2.** Determine the factor groups of D_4 .

Solution: $|D_4| = 8$, so the order of every subgroup of D_4 is 1, 2, 4 or 8.

If |H| = 1 then H = 1, and $D_4/1 = D_4$.

If |H| = 8 then $H = D_4$, and $D_4/D_4 \cong 1$.

If |H| = 4 then $|D_4: H| = 2$, so H must be a normal subgroup, and $|D_4/H| = 2$. But every group of prime order is cyclic, thus $D_4/H \cong C_2$.

Finally, suppose that |H|=2. If it is a normal subgroup then besides $\{1\}$, there must be another 1-element conjugacy class in it. The only such conjugacy class is $\{r^2\}$ (by problem 4/8.a)), thus $H=\langle r^2\rangle=Z(D_4)$. Clearly, $|D_4/\langle r^2\rangle|=4$, and every nontrivial element of the factor group has order 2: the square of the reflections is 1, and $(r^{-1})^2=r^2\in\langle r^2\rangle$. This is the same situation as in the Klein group $V=\{1,(12)(34),(13)(24),(14)(23)\}$ It also follows that the product of any two different non-identity elements of $D_4/\langle r^2\rangle$ is the third such element because it cannot be equal to any of the two or the identity. So any bijection

 $D_4/\langle r^2 \rangle \to V$ which takes 1 to 1 is an isomorphis between the two groups, proving that $D_4/\langle r^2 \rangle \cong V$.

- **3.** Let G be a group and $H \leq G$. Are the following statements true or false?
 - a) There always exists a group L and homomorphism $\varphi: G \to L$ such that $\operatorname{Ker} \varphi = H$.
 - b) If $H \triangleleft G$, then there exists a group L and homomorphism $\varphi : G \rightarrow L$ such that $\operatorname{Ker} \varphi = H$.
 - c) There always exists a group L and homomorphism $\varphi: L \to G$ such that $\operatorname{Im} \varphi = H$.
 - d) If $\varphi: G \to L$ is a homomorphism then $\varphi(H) \leq L$.
 - e) If $H \triangleleft G$, and $\varphi : G \rightarrow L$ is a homomorphism then $\varphi(H) \triangleleft L$.
 - f) If $H \triangleleft G$, and $\varphi : G \rightarrow L$ is a homomorphism then $\varphi(H) \triangleleft \varphi(G)$.
 - g) If $\varphi: G \to L$ is a homomorphism then $|G| \mid |\varphi(G)|$.
 - h) If $\varphi: G \to L$ is a homomorphism then $|\varphi(G)| \mid |G|$.
 - i) A group L is a homomorphic image of G (that is, there exists a surjective homomorphism $G \to L$) if and only if L is isomorphic to a factor group of G.

Solution: a) False. The kernel must be a normal subgroup.

- b) True, $\varphi: G \to G/H$, $\varphi(g) = Hg$ is such a homomorphism.
- c) True, $\varphi: H \to G$, $\varphi(h) = h$ is such a homomorphism.
- d) True because $1 = \varphi(1) \in \varphi(H)$, and for $h, h' \in H$ we have $\varphi(h)\varphi(h')^{-1} = \varphi(h(h')^{-1}) \in \varphi(H)$.
- e) False. If $S \leq L$ is not a normal subgroup then for the homomorphism $\varphi : S \to L$, $\varphi(s) = s$ it is true that $S \triangleleft S$ but $\varphi(S) = S$ is not a normal subgroup in L.
- f) True. We have seen in part d) that $\varphi(H)$ is a subgroup in L (and it is clearly contained in $\varphi(G)$), furthermore, for any $\varphi(g) \in \varphi(G)$ and $\varphi(h) \in \varphi(H)$ (where $h \in H$) $\varphi(g)^{-1}\varphi(h)\varphi(g) = \varphi(g^{-1}hg) \in \varphi(H)$ because $g^{-1}hg \in H$.
- g) False, for example, if $|G| \neq 1$, and $\varphi = 1$ then $|\varphi(G)| = 1$ is not divisible by |G|.
- h) True because $\varphi(G) = \operatorname{Im} \varphi \cong G / \operatorname{Ker} \varphi$, so $|\varphi(G)| = \frac{|G|}{|\operatorname{Ker} \varphi|} |G|$.
- i) True. The homomorphism theorem ensures that if $\varphi:G\to L$ is surjective then $G/\ker\varphi\cong\operatorname{Im}\varphi=L$. Conversely, if $\varphi:G/N\to L$ is an isomorphism for some $N\lhd G$ then with the natural homomorphism $\psi:G\to G/N,\ g\mapsto Ng$, the image of $\varphi\circ\psi$ is L.
- **4.** Let $H \leq G$ and $M, N \triangleleft G$. Prove that
 - a) $H \cap N \triangleleft H$; $N \cap M \triangleleft G$;
 - b) $HN \leq G$; $NM \triangleleft G$;
 - c) if $M \leq N$ then G/N is a homomorphic image of G/M.
 - Solution: a) The intersection of subgroups is a subgroup so we only have to prove that they are closed under conjugation.
 - $x \in H \cap N$, $h \in H \Rightarrow h^{-1}xh \in H$ because $h, x \in H$, and $h^{-1}xh \in N$ because $x \in N \triangleleft G$, so $h^{-1}xh \in H \cap N$.
 - For $x \in N \cap M$, $g \in G$, $g^{-1}xg \in N$ and $\in M$, since N and M are both normal, so $g^{-1}xg \in N \cap M$.
 - b) $N \triangleleft G \Rightarrow HN = NH \Rightarrow HN \leq G$.
 - From this it also follows that $NM \leq G$. Furthermore, NM is closed under conjugation by elements of G, since for $g \in G$, $n \in N$, $m \in M$ we have $g^{-1}nmg = (g^{-1}ng)(g^{-1}mg) \in NM$.

- c) By the 2^{nd} isomorphism theorem, $(G/M)/(N/M) \cong G/N$, so G/N is a factor group of G/M, and then by problem 1.i), it is also a homomorphic image of G/M.
- **5.** Let $N \triangleleft G$. Prove that the map $H \mapsto H/N := \{Nh \mid h \in H\}$ is a bijection between the subgroups of G containing N and the subgroups of G/N. Show that this map connects normal subgroups with normal subgroups, and it preserves the inclusion of subgroups, that is, $H_1 \leq H_2$ if and only if the subgroup of G/N corresponding to H_1 is contained in the one corresponding to H_2 .

Solution: Let S(G) and S(G/N) be the set of subgroups of G and G/N, respectively, and $S(G)_{\geq N}$ the set of those subgroups of G which contain N. Let

$$\Phi: S(G) \to S(G/N), \quad \Phi(H) = \{ Nh \mid h \in H \}$$

 $(\Phi(H))$ is indeed a subgroup, since N1 = N is the identity element of G/N, $Nh_1Nh_2 = Nh_1h_2$, and $(Nh)^{-1} = Nh^{-1}$). Conversely,

$$\Psi: S(G/N) \to S(G), \quad \Psi(\{ Ng_i \mid i \in I \}) = \bigcup_{i \in I} Ng_i$$

(this also forms a subgroup, because $1 \in N$, and for $a \in Ng_i$ and $b \in Ng_j$, we have $ab \in Ng_iNg_j$ and $a^{-1} \in (Ng_i)^{-1}$, where $\bar{1} = N$, Ng_iNg_j and $(Ng_i)^{-1}$ are in the given subgroup of G/N).

Note that the elements of $\operatorname{Im} \Psi$ are subgroups containing N since $\overline{1} = N$ is in every subgroup of G/N.

We show that the restriction of Φ to $S(G)_{\geq N}$ (denote it by Φ_1) and Ψ are inverses of each other.

If $N \leq H \leq G$ then $\Psi(\Phi_1(H)) = \bigcup \{ Nh \mid h \in H \} \subseteq H$, and every element of H is in the union, since $h = 1h \in Nh$, so $\Psi(\Phi_1(H)) = H$.

Conversely, if $\mathcal{H} = \{ Ng_i \mid i \in I \} \in S(G/N)$, then $\Phi_1(\Psi(\mathcal{H})) = \{ Nx \mid x \in Ng_i \text{ for some } i \in I \}$. But for these elements x we have $Nx = Ng_i$, so $\Phi_1(\Psi(\mathcal{H})) = \mathcal{H}$.

We have shown that Φ_1 (and the same way Ψ) is a bijection between $S(G)_{\geq N}$ and S(G/N). It is clear that Φ_1 (and Φ , too) and Ψ preserves inclusion, that is, if $H_1 \leq H_2$, then $\Phi(H_1) \leq \Phi(H_2)$, and if $\mathcal{H}_1 \leq \mathcal{H}_2$, then $\Psi(\mathcal{H}_1) \leq \Psi(\mathcal{H}_2)$.

If $H \triangleleft G$, then $\Phi(H)$ is also closed under conjugation: $(Ng)^{-1}(Nh)(Ng) = Ng^{-1}hg \in \Phi(H)$ because $g^{-1}hg \in H$ for every $g \in G$. Conversely, if $\mathcal{H} \triangleleft G/N$, then for every $g \in G$ and $a \in Ng_i \in \mathcal{H}$, we have $g^{-1}ag \in (Ng)^{-1}Ng_iNg \in \mathcal{H}$.

6. Prove that if $N \triangleleft G$, and |G:N| is even then there is an H with $N \leq H \leq G$ such that |H:N|=2.

Solution: |G/N| is even, so it has an element of order 2 (see problem 3/1, or the Cauchy theorem, which we are going to prove later on in the lecture), and this generates a subgroup \mathcal{H} of order 2. The map Ψ of the previous problem assigns a subgroup H to \mathcal{H} which is the union of two cosets of N ($N \cup Nt$ for $t \in G \setminus N$), so $N \leq H$, and |H:N| = 2.

7. Let $N \triangleleft G$, $H \leq G$, |G| = 24, |N| = 4, and |H| = 6. What can be the cardinality of H at the natural homomorphism $G \rightarrow G/N$? Give an example for each case.

of order 4.

Solution: The image of H by the natural map $G \to G/N$ is $NH/N \cong H/(N \cap H)$, so its cardinality is $|H|/|N\cap H|$. Since $|N\cap H|$ is a divisor of |N|=4 and of |H|=6, so it divides gcd(4,6) = 2, hence $|N \cap H| = 1$ or 2. Thus the cardinality of the image of H is either 6 or 3.

Both cases are possible. If $G = S_4$, $N = \langle 1, (..)(..) \rangle$ is the Klein group and $H = S_3 =$ $\langle (12)(123) \rangle$ then $N \cap H = 1$, so the image of H has cardinality 6. If $G = \langle a \rangle \cong C_{24}$, $N = \langle a^6 \rangle$ and $H = \langle a^4 \rangle$ then $N \cap H = \langle a^{12} \rangle \cong C_2$, so the image of H has cardinality 3.

8. What is the number of elements of order 4 in A_8 ?

Solution: In the disjoint cycle decomposition of an element q of order 4, there is at least one 4-cycle, and apart from the 4-cycles, there are only 2-cycles and fixed-points. If $g \in A_n$ then g has evenly many cycles of even length, so it either contains two 4-cycles or one 4cycle and one 2-cycle. Of the first type, there are $\binom{8}{4}(3!)^2 \cdot \frac{1}{2} = 1260$ elements in A_8 , of the second, there are $\binom{8}{4}3!\binom{4}{2}=2520$ elements, so A_8 contains altogether 3780 elements

9. Prove that the elements (123) and (234) of A_4 are conjugate in S_4 but they are not conjugate in A_4 .

Solution: Let g = (123) = (123)(4) and h = (234) = (234)(1). The two elements have the same cycle structure, so they are conjugate in S_4 .

The element h can be written in three different ways, keeping the order of the cycle lengthes aligned with those of q: we can permute the elements in the 3-cycle cyclically. We can determine the conjugating elements of S_4 according to the given form of h.

$$(123)(4)$$
 $(123)(4)$ $(123)(4)$ $(234)(1)$ $(342)(1)$ $(423)(1)$

The corresponding conjugating elements (that map every element of the base set to the one below it) are (1234), (1324), and (14), respectively, and neither of them are in A_4 , so g and h are not conjugate in A_4 .

- **HW1.** Let $G = \langle a \rangle \cong C_{24}$ and $N = \langle a^{40} \rangle$. Determine the order of the (normal) subgroup N and of the factor group G/N. Find an element $g \in G$ such that $o(\overline{g}) = 4$ in G/N but $o(g) \neq 4$ in q.
- **HW2.** Suppose that $N \triangleleft G$, $H \triangleleft G$, |G| = 100, |N| = 20 and |H| > 20. Prove that there is a subgroup $L \leq H$ with |H:L| = 5. (Hint: what can be the order of NH?)