Algebra 1 Solutions for Problem Sheet 7

1. What is the centralizer of (123) in Ay, S4 and Ss.

Solution: Let x = (123). We want to find the permutations g € Ay, Sy or S5, for which
x9 = x. We have as many different conjugating elements in the symmetric groups as the
number of ways to write x in Sy or S5, keeping the cycle structure 3 + 1 and 3 + 1 + 1,
respectively. In the first case, only the 3-cycle can be rotated, in the second, the two
fixed-points can also be swapped, so |Cg, (x)| = 3 and |Cg, (z)| = 6. The element x clearly
centralizes itself, so (x) = C5 must be in the centralizer. It follows from the sizes that then
Cs,(z) = ((123)), and in Cs, (x) we still have to find an element of order 2. Clearly, (45)
is there, so Cs, (z) = ((123), (45)). Finally, C4,(x) = A4 N Cg, () = ((123)).
Alternatively, we can find the elements of the centralizer by determining the conjugating
permutation for each form of x.

(123)(4) (123)(4) (123)(4)

(123)(4)  (231)(4)  (312)(4)
gives Cg, () = {1,(123),(132) } = Ca,(x) and
(123)(4)(5)  (123)(4)(5)  (123)(4)(5) (123)(4)(5) (123)(4)(5)  (123)(4)(5)
(123)(4)(5)  (231)(4)(5)  BI2)(4)(5) (123)(5)(4) (231)(5)(4)  (312)(5)(4)

gives Cs, (z) = {1, (123), (132), (45), (123)(45), (132)(45) }.

2. Show that for g € A, the conjugacy class of g in S, is either a conjugacy class in A, or
it 1s the union of two conjugacy classes of equal size.

Solution: Since A,, is a normal subgroup, it is the union of whole conjugacy classes of S,
but some elements that can be conjugated into each other by a permutation in S,, may not
be conjugated into each other by an element in A,, (see problem 5/9 for a counterexample).
Let H = Cg,(g). Then C4,(g9) = A, N H. Clearly, A, < A, H < S, and |S,, : A,| = 2,
so either A, H = A,, or A, H = S,,. It follows from the formula |A, H| = |A,||H|/|A, N H|
that |g4"| = |A, : Ca, (9)| = |A.|/|A, N H| = |AH|/|H| = |A,H : Cs, (g)] is either
1S, : Cs, (g)| = |g°"| or half of it. This means that the conjugacy classes of A, that fall
into one conjugacy class of S,, are either the whole conjugacy class or two conjugacy classes
of equal size.

3. Prove that Z(G x H) = Z(G) x Z(H).

Solution:
(u,v) € Z(G x H) & (u,v)(g,h) = (g,h)(u,v) Vg€ G, he H

< (ug,vh) = (gu,hv) Vg € G, he H
& ug = gu Vg € G and vh = hv Vh € H
< ueZ(G)andve Z(H) & (u,v) € Z(G) x Z(H).
4. Prove that

CL) D6 = D3 X CQ,'
b) The group of symmetries of a cube is isomorphic to Sy x Cs.
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Solution: a) Let the vertices of the regular hexagon be 1,2,3,4,5,6 (the edges being
12,23,...,61), and H = {g € Dg|g leaves the triangle 135 fixed }. Since any iso-
metry of the triangle is also an isometry of the hexagon, S3 = H < Dg. Then
|D¢ : H| = % = 2, so H<Dg. On the other hand, the rotation by 180°, denoted
by % is in Z(Dg), so Cy = (r3) < Dg. Furthermore, (r3) NG = 1, so by the orders,
H<T3> =H x <’I“3> = D6, thus D6 = Sg X 02.

b) Let G be the group of isometries of the cube. By problem 1/1.c), |G| = 48. The
endpoints of the diagonals of the faces adjacent to one vertex of the cube span a
regular tetrahedron (each of the six edges is the diagonal of a face of the cube, so
they have the same length). Let the set of isometries of this tetrahedron be H. These
isometries map the cube to itself, so H < G. Since the group action of H on the
vertices of the tetrahedron is a bijection to Sy, we have H = S4. Similarly to part
a), we get that H <G. The central reflection ¢ of the cube is in Z(G) (the elements
of G are linear transformations of the vector space with its origin in the center of the
cube, and the matrix of ¢ is —I, which clearly commutes with all matrices in GL3(R)),
giving Cy = (t) <G. Furthermore, H N (t) = 1, hence G = H x (t) = Sy x Cs.

5. What is the number of elements of order 4 and 6 in Dy x Cg?

Solution: We know that the order of (g,h) € G x H is lem(o(g),0(h)). Let’s write in a
table the possible orders of the elements in the components D4 and Cg, in parantheses the
number of elements of that order, and in the intersection the least common multiple of the
two orders.

DN\Cgs| 1(1) | 21) | 32 | 62
1| 1 2 3 6
20y 2 2 6 6
42| 4 4 12 12

Then we can see that the number of elements of order 4 in Dy x Cgis2-1+4+2-1 =4, and
the number of elements of order 6is 1-2+5-2+4+5-2 = 22.

6. For a group G and integer m let n,(G) =|{z € G|lz™ =1}|=|{z € G|o(z) | m}|.

a) Let A be a finite abelian p-group with canonical form A = [[._; A;, where A; are
cyclic p-groups, and

A1 > -+ > | Ay > pF > |Atp1] > - > AL
Prove that
npk(A) = |C'pzc X +ee X Cpk X Appq X oo X Ayl = (pk)t NAipa| - 1AL,

and the number of elements of order p* in A is ny.(A) — nyr—1(A) for k> 1.
b) Let G = Py X --- X P, be the direct product of finite p;-groups for different primes

Ply---yPr, and d = p?l ---plr. Prove that the number of elements of order d in G is
the product of the number of elements of order p?i in P;.

k
Solution: a) For g = (g1,...,9) (9; € 4;), gpk =1<% ¢ =1Vi. Since |A;| is a p-power

k
smaller than p* for i > t, o(g;) | |As| | p¥, which gives g7 = 1 for every i > ¢. On the
other hand, for i < t the cyclic group A; contains exactly one subgroup of order p?
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for d | k, so every element of order dividing p* is in the unique subgroup B; = Cpr of

A;. Thus gpk =14 g€ By x---By x Ay41 X Ay, and the order of this subgroup is
()" A - A
Finally, since the order of an element g € G with gpk = 1 is a divisor of p*, and all
proper divisors of p¥ divide p*~1, we get that o(g) = p* < gi”k =1 but gf"kf1 £ 1,
which gives that [{g|o(g) = p" } | = npr(G) — npe-1(G).

b) Let ¢ = (¢91,...,9r), where g; € P,. Then o(g;) is a p;-power, so o(g) =
lem(o(g1),...,0(g-)) = o(g1)---0(gr). It follows from the unique factorization of
natural numbers o(g) = d < o(g;) = p* for every i.

7. a) What is the number of Abelian groups of order 32 up to isomorphism? Determine the
number of elements of order 4 in each case.
b) What is the number of Abelian groups of order 360 up to isomorphism? Determine
the number of elements of order 12 in each case.

Solution: a) The possible decompositions into a direct product of cyclic groups of prime-
power orders are

Cs2, Cig x Oy, CgxC4, CgxCyxCh C4xCyxCy

C4><02><02X02, 02X02><02><C2><02.

So there are 7 Abelian groups of order 32 up to isomorphism.
By 6.a), the number of elements of order 4 is n4(G) —n2(G), and we have the following

table.

032 016><C2 CgXC4 CgXCQXCQ C4XC4><CQ C’4><Cé3 025
ny| 4 |4-2=8|4-4=16[4-2-2=16|4-4-2 =132[4-23=32[25 =32
no| 2 [2:2=4[(2-2=4[2-2-2=8[2-2-2=281[2-22=16(2°>=32

o(g)=4| 2 4 12 8 24 16 0

b) |G| =360 =23.32.5.
G = G1 x Gy x (G5 as the product of a 2-group, a 3-group and a 5-group.

G1g080rC4XCQOI‘02XCQXCQ
ngCQOI‘CgXCg
Gs = Cs

So there are 3 -2 -1 = 6 such Abelian groups up to isomorphism.

By problem 6.b), the order of g = (g1,92,93) is 12 < o(g1) = 4, o(g2) = 3 and
0(g3) = 1. In Gy there are 4 —2 =2 or 8 — 4 = 4 or 0 such elements, in G5 there are
3—1=2o0r9—1 = 8such elements, and g3 can only be 1. So the number of elements
of order 12 in the six cases are 4, 8, 0 and 16, 32, 0.

8. Suppose that G = (a) x (b), where o(a) = 4, o(b) = 6, and M = (a®b3), N = (a?b3).

a) What is the order of @ and b in the factor groups G/M and G /N
b) What are the abelian groups G, M, N, G/M and G/N in their canonical form?
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Solution: a) Both M and N are cyclic. For M the powers of the generator a®b? are a>b3,
(a3b®)? = abb® = a2, (a®b)® = a%° = ab® and (a®b3)* = a'?b'? = 1, which shows
that M = {a®b3,a% ab® 1} =2 Cy.
The powers of the generator element of N are a?b3 and (a?b3)? = a*® = 1, so
N = {a2b3,1} = CQ.
The order of @ is the smallest k such that a* € M or a* € N, respectively. So o(a) = 2
in G/M and o(a) =4 in G/N.
On the other hand, o(b) = 6 both in G/M and G//N because b, b2, b%,b*, b are not in
M or N but b5 =1 is.

b) G§C4><C6g04><02><03.
We have seen in part a) that M = Cy and M = Cj.
|G/M| = |G|/|M| =4-6/4 =6, and it is abelian, so G/M = Cy x C3 (and it is also
isomorphic to Cg, but that is not its canonical form).
G/N is abelian with order 24/2 = 12, so it can only be isomorphic to Cy x C3 or
Cy x Cy x (5. But we have seen in part a) that G/N has an element of order 4 (@ is
such an element), so the second case is impossible. Thus G/N = Cy x C5 (and it is

also cyclic: = Cy3).

1 1

HW1. Let G = GLy(Z3) and g = {0 1

<.

a) Determine the centralizer Cg(g), that is, find all invertible matrices x = [CCL 21 over

Zs3 such that xg = gx.
b) What is the size of the conjugacy class of g in G?

HW2. What is the number of Abelian groups of order 6007 What is the canonical form of the one
among them which has the most elements of order 107



