
Algebra 1 Solutions for Problem Sheet 7

1. What is the centralizer of (123) in A4, S4 and S5.

Solution: Let x = (123). We want to find the permutations g ∈ A4, S4 or S5, for which
xg = x. We have as many different conjugating elements in the symmetric groups as the
number of ways to write x in S4 or S5, keeping the cycle structure 3 + 1 and 3 + 1 + 1,
respectively. In the first case, only the 3-cycle can be rotated, in the second, the two
fixed-points can also be swapped, so |CS4

(x)| = 3 and |CS5
(x)| = 6. The element x clearly

centralizes itself, so 〈x〉 ∼= C3 must be in the centralizer. It follows from the sizes that then
CS4

(x) = 〈(123)〉, and in CS5
(x) we still have to find an element of order 2. Clearly, (45)

is there, so CS5(x) = 〈(123), (45)〉. Finally, CA4(x) = A4 ∩ CS4(x) = 〈(123)〉.
Alternatively, we can find the elements of the centralizer by determining the conjugating
permutation for each form of x.

(123)(4)
(123)(4)

(123)(4)
(231)(4)

(123)(4)
(312)(4)

gives CS4(x) = { 1, (123), (132) } = CA4(x) and

(123)(4)(5)
(123)(4)(5)

(123)(4)(5)
(231)(4)(5)

(123)(4)(5)
(312)(4)(5)

(123)(4)(5)
(123)(5)(4)

(123)(4)(5)
(231)(5)(4)

(123)(4)(5)
(312)(5)(4)

gives CS5
(x) = { 1, (123), (132), (45), (123)(45), (132)(45) }.

2. Show that for g ∈ An, the conjugacy class of g in Sn is either a conjugacy class in An or
it is the union of two conjugacy classes of equal size.

Solution: Since An is a normal subgroup, it is the union of whole conjugacy classes of Sn

but some elements that can be conjugated into each other by a permutation in Sn may not
be conjugated into each other by an element in An (see problem 5/9 for a counterexample).
Let H = CSn

(g). Then CAn
(g) = An ∩H. Clearly, An ≤ AnH ≤ Sn, and |Sn : An| = 2,

so either AnH = An or AnH = Sn. It follows from the formula |AnH| = |An||H|/|An∩H|
that |gAn | = |An : CAn(g)| = |An|/|An ∩ H| = |AnH|/|H| = |AnH : CSn(g)| is either
|Sn : CSn

(g)| = |gSn | or half of it. This means that the conjugacy classes of An that fall
into one conjugacy class of Sn are either the whole conjugacy class or two conjugacy classes
of equal size.

3. Prove that Z(G×H) = Z(G)× Z(H).

Solution:

(u, v) ∈ Z(G×H) ⇔ (u, v)(g, h) = (g, h)(u, v) ∀g ∈ G, h ∈ H

⇔ (ug, vh) = (gu, hv) ∀g ∈ G, h ∈ H

⇔ ug = gu ∀g ∈ G and vh = hv ∀h ∈ H

⇔ u ∈ Z(G) and v ∈ Z(H) ⇔ (u, v) ∈ Z(G)× Z(H).

4. Prove that
a) D6

∼= D3 × C2;
b) The group of symmetries of a cube is isomorphic to S4 × C2.
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Solution: a) Let the vertices of the regular hexagon be 1, 2, 3, 4, 5, 6 (the edges being
12, 23, . . . , 61), and H = { g ∈ D6 | g leaves the triangle 135 fixed }. Since any iso-
metry of the triangle is also an isometry of the hexagon, S3

∼= H ≤ D6. Then
|D6 : H| = 12

6 = 2, so H /D6. On the other hand, the rotation by 180◦, denoted
by r3 is in Z(D6), so C2

∼= 〈r3〉 /D6. Furthermore, 〈r3〉 ∩G = 1, so by the orders,
H 〈r3〉 = H × 〈r3〉 = D6, thus D6

∼= S3 × C2.
b) Let G be the group of isometries of the cube. By problem 1/1.c), |G| = 48. The

endpoints of the diagonals of the faces adjacent to one vertex of the cube span a
regular tetrahedron (each of the six edges is the diagonal of a face of the cube, so
they have the same length). Let the set of isometries of this tetrahedron be H. These
isometries map the cube to itself, so H ≤ G. Since the group action of H on the
vertices of the tetrahedron is a bijection to S4, we have H ∼= S4. Similarly to part
a), we get that H /G. The central reflection t of the cube is in Z(G) (the elements
of G are linear transformations of the vector space with its origin in the center of the
cube, and the matrix of t is −I, which clearly commutes with all matrices in GL3(R)),
giving C2

∼= 〈t〉 /G. Furthermore, H ∩ 〈t〉 = 1, hence G = H × 〈t〉 ∼= S4 × C2.

5. What is the number of elements of order 4 and 6 in D4 × C6?

Solution: We know that the order of (g, h) ∈ G × H is lcm(o(g), o(h)). Let’s write in a
table the possible orders of the elements in the components D4 and C6, in parantheses the
number of elements of that order, and in the intersection the least common multiple of the
two orders.

D4\C6 1 (1) 2 (1) 3 (2) 6 (2)

1 (1) 1 2 3 6

2 (5) 2 2 6 6

4 (2) 4 4 12 12

Then we can see that the number of elements of order 4 in D4×C6 is 2 · 1 + 2 · 1 = 4, and
the number of elements of order 6 is 1 · 2 + 5 · 2 + 5 · 2 = 22.

6. For a group G and integer m let nm(G) = | {x ∈ G |xm = 1 } | = | {x ∈ G | o(x) | m } |.
a) Let A be a finite abelian p-group with canonical form A =

∏r
i=1 Ai, where Ai are

cyclic p-groups, and

|A1| ≥ · · · ≥ |At| ≥ pk > |At+1| ≥ · · · ≥ |Ar|.

Prove that

npk(A) = |Cpk × · · · × Cpk ×At+1 × · · · ×Ar| = (pk)t · |At+1| · · · |Ar|,

and the number of elements of order pk in A is npk(A)− npk−1(A) for k ≥ 1.
b) Let G = P1 × · · · × Pr be the direct product of finite pi-groups for different primes

p1, . . . , pr, and d = pb11 · · · pbrr . Prove that the number of elements of order d in G is

the product of the number of elements of order pbii in Pi.

Solution: a) For g = (g1, . . . , gr) (gi ∈ Ai), g
pk

= 1 ⇔ gp
k

i = 1 ∀i. Since |Ai| is a p-power

smaller than pk for i > t, o(gi) | |Ai| | pk, which gives gp
k

i = 1 for every i > t. On the
other hand, for i ≤ t the cyclic group Ai contains exactly one subgroup of order pd
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for d | k, so every element of order dividing pk is in the unique subgroup Bi
∼= Cpk of

Ai. Thus gp
k

= 1 ⇔ g ∈ B1 × · · ·Bt × At+1 × Ar, and the order of this subgroup is
(pk)t · |At+1| · · · |Ar|.
Finally, since the order of an element g ∈ G with gp

k

= 1 is a divisor of pk, and all

proper divisors of pk divide pk−1, we get that o(g) = pk ⇔ gp
k

= 1 but gp
k−1 6= 1,

which gives that | { g | o(g) = pk } | = npk(G)− npk−1(G).

b) Let g = (g1, . . . , gr), where gi ∈ Pi. Then o(gi) is a pi-power, so o(g) =
lcm(o(g1), . . . , o(gr)) = o(g1) · · · o(gr). It follows from the unique factorization of
natural numbers o(g) = d ⇔ o(gi) = pbii for every i.

7. a) What is the number of Abelian groups of order 32 up to isomorphism? Determine the
number of elements of order 4 in each case.

b) What is the number of Abelian groups of order 360 up to isomorphism? Determine
the number of elements of order 12 in each case.

Solution: a) The possible decompositions into a direct product of cyclic groups of prime-
power orders are

C32, C16 × C2, C8 × C4, C8 × C2 × C2, C4 × C4 × C2,

C4 × C2 × C2 × C2, C2 × C2 × C2 × C2 × C2.

So there are 7 Abelian groups of order 32 up to isomorphism.
By 6.a), the number of elements of order 4 is n4(G)−n2(G), and we have the following
table.

C32 C16 × C2 C8 × C4 C8 × C2 × C2 C4 × C4 × C2 C4 × C3
2 C5

2

n4 4 4 · 2 = 8 4 · 4 = 16 4 · 2 · 2 = 16 4 · 4 · 2 = 32 4 · 23 = 32 25 = 32

n2 2 2 · 2 = 4 2 · 2 = 4 2 · 2 · 2 = 8 2 · 2 · 2 = 8 2 · 23 = 16 25 = 32

o(g)=4 2 4 12 8 24 16 0

b) |G| = 360 = 23 · 32 · 5.
G = G1 ×G2 ×G3 as the product of a 2-group, a 3-group and a 5-group.

G1
∼= C8 or C4 × C2 or C2 × C2 × C2

G2
∼= C9 or C3 × C3

G3
∼= C5

So there are 3 · 2 · 1 = 6 such Abelian groups up to isomorphism.

By problem 6.b), the order of g = (g1, g2, g3) is 12 ⇔ o(g1) = 4, o(g2) = 3 and
o(g3) = 1. In G1 there are 4− 2 = 2 or 8− 4 = 4 or 0 such elements, in G2 there are
3−1 = 2 or 9−1 = 8 such elements, and g3 can only be 1. So the number of elements
of order 12 in the six cases are 4, 8, 0 and 16, 32, 0.

8. Suppose that G = 〈a〉× 〈b〉, where o(a) = 4, o(b) = 6, and M = 〈a3b3〉, N = 〈a2b3〉.
a) What is the order of a and b in the factor groups G/M and G/N
b) What are the abelian groups G, M , N , G/M and G/N in their canonical form?
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Solution: a) Both M and N are cyclic. For M the powers of the generator a3b3 are a3b3,
(a3b3)2 = a6b6 = a2, (a3b3)3 = a9b9 = ab3 and (a3b3)4 = a12b12 = 1, which shows
that M = { a3b3, a2, ab3, 1 } ∼= C4.
The powers of the generator element of N are a2b3 and (a2b3)2 = a4b6 = 1, so
N = { a2b3, 1 } ∼= C2.
The order of a is the smallest k such that ak ∈M or ak ∈ N , respectively. So o(a) = 2
in G/M and o(a) = 4 in G/N .
On the other hand, o(b) = 6 both in G/M and G/N because b, b2, b3, b4, b5 are not in
M or N but b6 = 1 is.

b) G ∼= C4 × C6
∼= C4 × C2 × C3.

We have seen in part a) that M ∼= C4 and M ∼= C2.
|G/M | = |G|/|M | = 4 · 6/4 = 6, and it is abelian, so G/M ∼= C2 × C3 (and it is also
isomorphic to C6, but that is not its canonical form).
G/N is abelian with order 24/2 = 12, so it can only be isomorphic to C4 × C3 or
C2 × C2 × C3. But we have seen in part a) that G/N has an element of order 4 (a is
such an element), so the second case is impossible. Thus G/N ∼= C4 × C3 (and it is
also cyclic: ∼= C12).

HW1. Let G = GL2(Z3) and g =

[
1 1
0 −1

]
∈ G.

a) Determine the centralizer CG(g), that is, find all invertible matrices x =

[
a b
c d

]
over

Z3 such that xg = gx.
b) What is the size of the conjugacy class of g in G?

HW2. What is the number of Abelian groups of order 600? What is the canonical form of the one
among them which has the most elements of order 10?


