- **semigroup:** A set with an associative binary operation.
- **group:** A set with an associative binary operation, which has a neutral (identity) element, and every element has an inverse.
- \circ **subgroup:** For a group G and $H \subseteq G$

$$H \le G \Leftrightarrow \begin{cases} 1 \in H \\ x, y \in H \Rightarrow xy \in H \\ x \in H \Rightarrow x^{-1} \in H \end{cases} \Leftrightarrow \begin{cases} 1 \in H \\ x, y \in H \Rightarrow xy^{-1} \in H \end{cases}$$

 \circ generated subgroup: For a subset $S \subseteq G$,

$$\langle S \rangle = \bigcap_{S \subseteq H \le G} H = \{ s_1^{\varepsilon_i} s_2^{\varepsilon_2} \cdots s_m^{\varepsilon_m} \mid s_i \in S, \ \varepsilon_i = \pm 1 \}$$

- o **normal subgroup:** $N \triangleleft G \Leftrightarrow N \leq G$ and $g^{-1}ng \in N \ \forall n \in N \ (\Leftrightarrow Ng = gN \ \text{for any} \ g \in G)$
 - $(\Leftrightarrow \text{ there is a homomorphism } \varphi \text{ from } G \text{ such that } N = \text{Ker } \varphi)$
- \circ order of a group: number of elements, |G|
- \circ order of an element: o(g) is the smallest positive integer k such that $g^k = 1$. $o(g) = \infty$ if no such k exists. (Equivalently, $o(g) = |\langle g \rangle|$)
- \circ cyclic groups: $\langle g \rangle$ (notation: C_n or C_{∞})
- \circ dihedral groups: D_n is the group of symmetries (=isometries) of a regular n-gon (n rotations, n reflections)
- \circ symmetric groups S_{Ω} and S_n : S_{Ω} is the group of bijections $\Omega \to \Omega$ (that is, permutations of Ω), where the operation is the composition from left to right. The permutations act an the right: $\omega \mapsto \omega g$.
 - S_n if $|\Omega| = n$, usually, $\Omega = \{1, 2, \dots, n\}$
- alternating group A_n : the group of even permutations in S_n .
 - $A_n \triangleleft S_n, |S_n : A_n| = 2.$
- $\circ GL_n(K)$: multiplicative group of invertible $n \times n$ matrices over the field K
- o $SL_n(K)$: multiplicative group of $n \times n$ matrices over K with determinant 1. $SL_n(K) \triangleleft GL_n(K)$
- \circ **cycles:** $g = (a_1 a_2 \dots a_k) \in S_{\Omega}$, where a_1, \dots, a_k are distinct elements of Ω . g maps $a_1 \mapsto a_2 \mapsto \dots \mapsto a_k \mapsto a_1$ and $b \mapsto b$ for every other $b \in \Omega$.
- disjoint cycle decomposition (dcd): product of cylces with no common element (it is unique up to the order of the cycles and rotations of the cycles themselves)
- o operations with permutations in dcd:

product: apply the permutations from left to right

kth power: take the kth power of each cycle in the dcd (using k steps instead of one)

inverse: substitute each cycle in the dcd with the reverse cycle

order: the least common multiple of the cycle lengths in dcd

- \circ even and odd permutations: A permutation g is even
 - \Leftrightarrow the corresponding permutation matrix M(g) has determinant 1
 - $\Leftrightarrow q$ can be written as a product of an even number of transpositions
 - \Leftrightarrow a (not necessarily disjoint) cyclic decomposition of g has an even number of cycles of even length).

A permutation is odd if it is not even.

- transpositions: 2-cycles
- \circ set product: For $X, Y \subseteq G$: $XY := \{ xy \mid x \in X, y \in Y \} \subseteq G$.
- \circ cosets: For $H \leq G$ and $g \in G$, $Hg := H \{g\}$ is a right coset, $gH := \{g\}H$ is a left coset containing g.

- \circ index of a subgroup: For $H \leq G$, the index |G:H| is the number of right cosets (the same as the number of left cosets) of H in G. If G is finite then |G:H| = |G|/|H|.
- o **transversal:** For $H \leq G$ a subset $R \subseteq G$ is a right transversal for H if every right coset contains exactly one element of R (equivalently, G is the disjoint union of the cosets Hr $(r \in R)$. The left transversal is defined similarly.
- ∘ **factor group:** For $N \triangleleft G$, the factor group $G/N = \{ Ng \mid g \in G \}$ with the set product as operation.
 - For this, NaNb = Nab, N1 = N is the identity element, and $(Na)^{-1} = Na^{-1}$.
- \circ complement of a normal subgroup: For $N \triangleleft G$, $\leq G$ is a complement of N if NH = G and $N \cap H = 1$ (equivalently, $H \leq G$ is a transversal for N)
- \circ homomorphism and isomorphism: $\varphi: G \to H$ is a group homomorphism if $\varphi(gg') = \varphi(g)\varphi(g')$ for every $g, g' \in G$. A bijective homomorphism is an isomorphism.
- \circ kernel and image: For a homomorphism $\varphi: G \to H$,

$$\operatorname{Ker} \varphi = \{ g \in G \, | \, \varphi(g) = 1 \} \triangleleft G$$
$$\operatorname{Im} \varphi = \{ h \in H \, | \, \exists g \in G : \, \varphi(g) = h \} \leq H$$

- \circ conjugation: $g^h = h^{-1}gh$. For every h conjugation by h is an automorphism of G (that is, isomorphism from G to G)
- **conjugacy classes:** The conjugacy class of g in G is $g^G := \{g^h \mid h \in G\}$. G is the disjoint union of its conjugacy classes.
- \circ conjugation of permutations: If $g: \alpha \mapsto \beta$ then $h^{-1}gh = g^h$ maps αh to βh . From the dcd of g we get the dcd of g^h by applying h on the elements of the cycles of g.
- \circ cycle structures and partitions in S_n : Cycle structure: describes how many cycles and what lengths appear in the dcd of the permutation. To this belongs a partition of n into a sum of positive integers, 1's belonging to fixed-points.

Theorems and propositions

- Disjoint cycle decomposition (dcd): $|\Omega| < \infty \Rightarrow g \in S_{\Omega}$ can be written as a product of disjoint cycles and this decomposition is unique up to cyclic permutations of the elements in each cycle, and up to the order of the cycles.
- Subgroups and orders of elements of a cyclic group:
 - **P** Every subgroup of a cyclic group is cyclic, and for every $0 < d \mid n$
 - \circ a) there is exactly one subgroup of order d in C_n ;
 - \circ b) the number of elements of order d in C_n is $\varphi(d)$.
- \circ Order of a permutation: If $g = c_1 \cdots c_k$ is a dcd, and c_i is of length n_i then $o(g) = \text{lcm}(n_1, \dots, n_k)$.
- **P Lagrange Theorem:** If $|G| < \infty$ and $H \le G$, then $|H| \mid |G|$. (More generally: $|G| = |H| \cdot |G| \cdot H|$ for any G and $H \le G$.)
- Order of group and element: If $|G| < \infty$ and $g \in G$ then $o(g) \mid |G|$.
- Order of a homomorphic image of an element: If $\varphi : G \to H$ is a homomorphism, $g \in G$ and $o(g) < \infty$ then $o(\varphi(g)) \mid \gcd(o(g), |H|)$.
- **P** Homomorphism Theorem: If $\varphi: G \to H$ is a hom., then $G/\operatorname{Ker} \varphi \cong \operatorname{Im} \varphi$.
- ∘ Normal subgroups and kernels: $N \triangleleft G \Leftrightarrow \exists$ hom. $\varphi : G \to H$ such that $N = \text{Ker } \varphi$.
- Complement of a normal subgroup If a normal subgroup $N \triangleleft G$ has a complement $H \leq G$, i.e. $N \cap H = 1$ and NH = G, then $G/N \cong H$.
- Action of conjugation: The conjugation by $g \in G$ is an isomorphism from G to G, so it preserves product, inverses and orders of elements.
- \circ Conjugacy as an equivalence relation: G is the disjoint union of its conjugacy classes.
- **P** Conjugacy classes of S_n : $g, h \in S_n$ are conjugate
 - ⇔ their cycle structures are the same

- \Leftrightarrow they belong to the same partition of n.
- \circ 1st Isomorphism Theorem: If $N \triangleleft G$ and $H \leq G$ then $NH/N \cong H/N \cap H$.
- o 2nd Isomorphism Theorem: If $M \le N \le G$ and $M, N \triangleleft G$ then $G/N \cong (G/M)/(N/M)$.
- Order of an element in G/N: for $\bar{g} := Ng \in G/N$ $o(\bar{g})$ is the smallest pos. int. k such that $g^k \in N$. If no such k exists then $o(\bar{g}) = \infty$.
- Normal subgroups of S_4 : The only normal subgroups of S_4 are 1, V, A_4 and S_4 .

Other important facts from the problem sheets

2/6, 3/3, 5, 6.a), 4/6, 5/4