
Applied algebra Vector spaces, linear maps. . . 2017, Fall semester

LINEAR ALGEBRA AND ITS APPLICATIONS
Lukács Erzsébet, 2017

Assumed to be known (no review):
Gaussian elimination for solving linear systems of equations
matrix operations (including inversion)
determinant

Reviewed shortly:
vector spaces, linear maps and their matrices,
eigenvalues, eigenvectors, diagonalization

Introductory problem: There are n people sitting around a round table, everyone has a
coin in front of them. They play the following game. Everyone checks the coin in front of
their right side neighbour (at the same time) and if they see the head then they flip their
own coins, if they see the tail then they don’t do anything. They repeat this until all the
coins show their tail sides. Which are those numbers n for which the game will end after
a while, starting with any position of the coins?

Vector spaces, linear maps and matrices

Pl. R
n, Rn×m, R[x], C[x], C[0, 1], etc.

V is a vector space over the field K
vectors: u,v, . . . ∈ V ,
scalars: x, y, α, β, . . . , λ, . . . ∈ K,
operations: u+ v ∈ V , λv ∈ V ,
axioms: ∃0, ∃ − v, identities.

K may be R, C, or other subfields of C, or finite fields, e.g. for a prime p
Fp = { 0, 1, . . . , p− 1 }, +, · modulo p.

Important: here α+ . . .+ α = nα = 0, if p | n,
(α+ β)p = αp + βp (from the binomial theorem)

subspace: nonempty subset of V which is closed under the operations,
notation: W ≤ V means that W is a subspace of V

e.g. the subspaces of R3 are: the origin, lines and planes containing the origin, and
the whole R

3

R[x] ≥ R[x]≤n: real polynomials of degree ≤ n

spanned subspace: the smallest subspace containing a given subset S
= the intersection of all the subspaces containing S
= the set of linear combinations of the elements of S, i.e.
{
∑

λivi |vi ∈ S, λi ∈ K } =: spanS

spanning set S: spans the whole vector space, i.e. ∀ vector can be expressed as a linear
combination of some elements of S
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linearly independent set U = {ui | i ∈ I }:
∑

λiui = 0⇒ λi = 0 ∀i, i.e.
any vector in the spanned subspace can be written uniquely as a linear combination
of elements from U

basis: independent spanning set
= maximal independent set (no new elements can be added)
= minimal spanning set (no elements can be dropped)

∀ independent set can be completed to a basis,
∀ spanning set can be reduced to a basis

dimension the number of elements in a basis (well defined!)
The vector spaces in this course will be finite dimensional.

The following are equivalent for a set of vectors B in an n-dimensional space:
(i) B is a basis
(ii) |B| = n, and B independent
(iii) |B| = n, and B is a spanning set.

Example A basis (the standard basis) of R2×2 is

{[

1 0
0 0

]

,

[

0 1
0 0

]

,

[

0 0
1 0

]

,

[

0 0
0 1

]}

,

the standard basis of CR is { 1, i }.

In an n-dimensional space with a basis B = {b1, . . . ,bn } (here the order of the elements

is also important!), every vector can be uniquely written in the form
n
∑

i=1

xibi. This defines

the coordinatization with respect to B: the coordinate vector of v =
∑

xibi is

[v]B =





x1
...
xn



 = (x1, . . . , xn)
T

Example In R
2 , what is [(2, 1)]B with respect to the basis B = {(1, 1), (−1, 1) }?

[(2, 1)]B =

[

3/2
−1/2

]

.

rank (of a set of vectors): the dimension of the generated subspace.
calculation using Gauss elimination:
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rank of a matrix: the dimension of the column space
= the dimension of the row space

linear map: f : V →W (V and W are vector spaces over K), which satisfies
f(u+ v) =f(u) + f(v)

f(λv) =λf(v)

Example: congruences of R3 fixing 0, differentiation in R[x].

linear transformation: linear map with V = W

matrix of a linear map:

f :V →W

bases: B C
We need a matrix A such that f : v 7→ w if and only if A · [v]B = [w]C.
∃! such a matrix for B and C:

A = [f ]B,C =
[

[f(b1)]C

∣

∣

∣
. . .

∣

∣

∣
[f(bn)]C

]

matrix of a linear transformation: usually C = B, and
[f ]B := [f ]B,B

Exercise: Determine the matrix of z → z in CR in the basis { 1, i }, or { i, 1 + i }!

Sol.:

[

1 0
0 −1

]

, or

[

−1 −2
0 1

]

, respectively

image: Im f = { f(v) |v ∈ V } ≤W

kernel: Ker f = {v ∈ V | f(v) = 0 } ≤ V



Applied algebra Vector spaces, linear maps. . ./4 2017, Fall semester

Change of basis

Let B = {b1, . . . ,bn } and B′ = {b′
1, . . . ,b

′
n } be two bases in V . P :=

[

[b′
1]B

∣

∣ . . .
∣

∣[b′
n]B

]

is the transition matrix. Then

[v]B = P [v]B′, i.e. P = [id]B′,B, and

P−1[v]B = [v]B′ .

Exercise: (a new method for an earlier problem) Determine the coordinate vector of (2, 1)
with respect to the basis {(1, 1), (−1, 1) }. This means that we change the standard basis
B = {(1, 0), (0, 1) } to the new basis B′ = {(1, 1), (−1, 1) }.

The transition matrix is P =

[

1 −1
1 1

]

.

[P |I] =

[

1 −1 | 1 0
1 1 | 0 1

]

7→

[

1 −1 | 1 0
0 2 | −1 1

]

7→

[

1 0 | 1
2

1
2

0 1 | −1
2

1
2

]

= [I|P−1].

[(2, 1)]B′ = P−1

[

2
1

]

=

[

3/2
−1/2

]

The matrix of a linear map with respect to a new pair of bases

Let the transition matrices from B to B′ and from C to C′ be P and Q, respectively,
[f ]B,C = A and [f ]B′,C′ = A′.
Then A′ = Q−1AP :

[f(v)]C′

Q−1

←−[f(v)]C
A
←−[v]B

P
←−[v]B′

The matrix of a linear transformation with respect to a new basis

B, B′ are two bases of V , f : V → V a linear transformation, [f ]B = A, [f ]B′ = A′, and P
the transition matrix from B to B′.
Then A′ = P−1AP .

Exercise: The matrix of the linear transformation z 7→ z of CR with respect to the stan-

dard basis B = { 1, i } is A =

[

1 0
0 −1

]

. What is the matrix of the transformation with

respect to the basis B′ = { i, 1 + i }?

The transition matrix is P =

[

0 1
1 1

]

, P−1 =

[

−1 1
1 0

]

, and the matrix of the transfor-

mation with respect to the new basis is A′ = P−1AP =

[

−1 −2
0 1

]

.

Definition. A,B ∈ Kn×n are similar (notation: A ∼ B), if there is an invertible matrix
P such that B = P−1AP . In other words: A and B are the matrices of the same linear
transformations in two bases (the columns of P give the new basis coordinatized in the old
basis).



Applied algebra Vector spaces, linear maps. . ./5 2017, Fall semester

f injective if Ker f = {0 } =: 0

f surjective if Im f = W

f isomorphism if f injective és surjective.

Dimension theorem. Let dimV = n and f : V →W be linear. Then

dimKer f + dim Im f = n

Cor.: If f : V → V and dimV = n then
f iso. ⇔ f inj. ⇔ f surj.

Example: the coordinatization is an isomorphism: for |B| = n
V → Kn

v 7→ [v]B

Theorem: Any map from the basis of a vector space to another vector space can be
extended uniquely to a linear map.

rank of a linear map: rank f = dim Im f = rank[f ]B,C for any pair of bases B, C

For dimV = n, a linear map f : V → V is an isomorphism ⇔ rank f = n.

Matrix operations and linear maps:

[g]C,D · [f ]B,C = [g ◦ f ]B,D, where (g ◦ f)v := g(f(v))

[f ]B,C + [g]B,C = [f + g]B,C, where (f + g)(v) := f(v) + g(v)

Proposition. For the matrices A, B
1) rank(AB) ≤ min { rankA, rankB }
2) | rankA− rankB| ≤ rank(A+B) ≤ rankA+ rankB
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Proof. Use the linear maps defined by the matrices. See Probelm Set 1.

An application: Fisher’s inequality

Theorem. ©P Let C1, . . . , Ck ⊆ { 1, . . . , n } be distinct sets. Suppose that there is a λ > 0
such that |Ci ∩ Cj | = λ (∀i 6= j). Then k ≤ n.

Proof. Case 1: ∃i: |Ci| = λ. Then:

⇒ n ≥ |Ci|+ (k − 1) ≥ k.

Case 2: ∀i |Ci| = λ + ai, ai > 0. The characteristic vector of X ⊆ { 1, . . . , n } is the n
dimensional 0-1-vector, (x1, . . . , xn), where xi = 1 ⇔ i ∈ X . Let M ∈ R

k×n the matrix
whose ith row is the characteristic vector of the set Ci. Then

A = MMT =









λ+ a1 λ λ . . . λ
λ λ+ a2 λ . . . λ
...

. . .

λ+ an









k×k

, since x · y = |X ∩ Y |

We know: rankA ≤ rankM ≤ n.
We will show: |A| 6= 0, so rankA = k.

|A| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
0 λ+ a1 λ . . . λ
0 λ λ+ a2 . . . λ
...

...
. . .

0 λ . . . λ+ an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

(k+1)×(k+1)

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 1 1 . . . 1
−λ a1 0 . . . 0
−λ 0 a2 . . . 0
...

. . .

−λ 0 0 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1 + λ
a1

+ . . .+ λ
an

1 1 . . . 1
0 a1 0 . . . 0
0 0 a2 . . . 0
...

. . .

0 0 0 . . . an

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1 +
λ

a1
+ . . .+

λ

an
) · a1 · · · · an > 0,

since λ, a1, . . . , an > 0. ⊓⊔
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The rank of a matrix

For A ∈ Km×n the following are equivalent:
(i) rankA = r;
(ii) the rank of x 7→ Ax is r;
(iii) the column space of A is r-dimensional;
(iv) the row space of A is r-dimensional;
(v) in the row echelon form of A there are exactly r nonzero rows (i.e. there are r

leading coefficients);
(vi) A contains an r×r submatrix with nonzero determinant but all its (r+1)×(r+1)

submatrices have zero determinant.

Invertible matrices

For A ∈ Kn×n the following are equivalent:
(i) A is invertible;
(ii) f : Kn → Kn, f : x 7→ Ax is an isomorphism;
(iii) |A| 6= 0;
(iv) the reduced row echelon form of A is I;
(v) rankA = n;
(vi) the system of equations Ax = b has a solution for any b ∈ Kn;
(vii) the system of equations Ax = 0 has only the trivial solution.

Calculating the inverse by Gaussian elimination:

[A|I] 7→7→7→ [I|A−1].

Polynomial interpolation

©P K is a field, a0, . . . , an, b0, . . . , bn ∈ K, a0, . . . , an are pairwise different ⇒

∃!p(x) ∈ K[x]≤n : p(ai) = bi ∀i.

Proof. f : K[x]≤n → Kn+1, f : p(x) 7→







p(a0)
...

p(an)






is a linear map. Ker f = 0, since if

p(x) ∈ Ker f ⇒ p(a0) = · · · = p(an) = 0⇒ p(x) = (x−a0) · · · (x−an)q(x), but deg p ≤ n,
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so p(x) = 0. dimKer f+dim Im f = dimK[x]≤n = n+1 implies dim Im f = n+1, that is, f
is surjective, and by Ker f = 0 it is also injective, consequently, f is an isomorphism. This

means that for any b =





b0
...
bn



 there is exactly one p(x) ∈ K[x]≤n such that f(p(x)) = b.

⊓⊔

Newton’s method of interpolation (see also the Lagrange polynomials)

For the given a0, . . . , an, b0, . . . , bn let pi(x) ∈ K[x]≤i be an interpolating polynomial on
a0, . . . , ai. Clearly, p0(x) ≡ b0. If pi is given, then

pi+1(x) = pi(x) + A · (x− a0) · · · (x− ai)

has the same values up to ai for any A ∈ K, and deg pi+1(x) ≤ i+ 1. Furthermore, A can
be chosen so that pi+1(ai+1) = bi+1 (if we substitute ai+1, the coefficient of A is not 0,
since all the aj ’s are different). So in the end we find a suitable pn(x).

Remark: Using Newton’s method, it is easy to improve an interpolation by adding new
points, i.e. measuring the value of the function which we wish to approximate by a poly-
nomial at a few more places.

Shamir’s secret sharing

We want to share a secret between n people (let the secret be coded by a natural number
c) so that any k of the n people together can find out the secret information, but no k− 1
of them could get closer to the secret if they share their bit of information among them.

Solution: Let p > c be a prime, q(x) ∈ Fp[x]<k, such that q(0) = c (that is, c is the constant
term). The i.’th person is given the value q(i) ∈ Fp (i = 1, . . . , n). Then k people together
know k values of the polynomial, so by the interpolation theorem they can determine the
polynomial and then also its constant term. But if someone knows only k − 1 values of
the polynomial, then q(0) can still be anything: we can still find such an interpolating
polynomial of degree less than k.

Question: Why do we need a polynomial over a finite field Fp? Why do not we choose
an integral polynomial? Because in that case it is not true that with given k − 1 values,
q(0) can be anything. It is possible that, though we find an interpolating polynomial over
Q, the coefficients of that polynomial are not integers.


