
Applied algebra Eigenvalues, eigenvectors, . . . 2017, Fall semester

Eigenvalues, eigenvectors, diagonalization

Def. v ∈ VK is an eigenvector of the linear transformation f : V → V if v 6= 0, and
there is a scalar λ ∈ K such that f(v) = λv, that is, f(v) is parallel to v (including the
case when f(v) = 0). Here λ is the eigenvalue corresponding to v. The spectrum of
f is the set of eigenvalues of f . The eigenspace corresponding to the eigenvalue λ is
Vλ = {v ∈ V | f(v) = λv } ≤ V , which consists of 0 and the eigenvectors for λ.

Example: The eigenvectors of an orthogonal projection onto a plane containing the origin
are the nonzero vectors of the plane (with eigenvalue 1), and the nonzero vectors orthogonal
to the plane (with eigenvalue 0). In other words, the plane itself is the eigenspace for 1,
and the line through the origin which is perpendicular to the plane is the eigenspace for 0.

Def. The eigenvectors, eigenvalues and the spectrum of a matrix A are those of the
linear transformation x 7→ Ax.

Diagonalization (spectral decomposition)

A ∈ Kn×n, f : Kn → Kn, f : x 7→ Ax. If ∃ a basis B = {b1, . . . ,bn } consisting of
eigenvectors of f with eigenvalues λ1, . . . , λn then

[f ]B =













λ1 0 0 . . . 0
0 λ2 0 . . . 0

0 0
. . . . . . 0

0 0 . . . λn−1 0
0 0 0 . . . λn













= D

is a diagonal matrix, and with the transition matrix P = [b1 . . .bn] we have D = P−1AP ,
that is, A = PDP−1. The latter is the spectral decomposition of A.

Def. A ∈ Kn×n is diagonalizable if there exists an invertible matrix P such that P−1AP

is diagonal, i.e. ∃ a basis in Kn consisting of eigenvectors of A.

Powers of diagonalizable matrices

If A = PDP−1, then Ak = (PDP−1)(PDP−1) · · · (PDP−1) = PDkP−1, and we obtain
the kth power of a diagonal matrix simply by taking the kth powers of the diagonal
elements.

Calculating eigenvalues and eigenvectors

∃v 6= 0 : Av = λv ⇔

∃v 6= 0 : (A− λI)v = 0 ⇔

|A− λI| = 0

Characteristic polynomial

Def. The characteristic polynomial of the matrix A is

kA(x) =
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a11 − x a12 . . . a1n
a21 a22 − x . . . a2n

. . .

an1 an2 . . . ann − x
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Properties of the characteristic polynomial:
– the roots of kA(x) are the eigenvalues of A;
– kA(x) = (−1)nxn + (−1)n−1(trA)xn−1 + . . .+ |A|, where trA = a11 + . . .+ ann is the

trace of A;
– If kA(x) can be written as the product of linear polynomials:
kA(x) = (−1)n(x−λ1) . . . (x−λn) (the λi are the eigenvalues of A with multiplicities),
then trA = λ1 + . . .+ λn and |A| = λ1 · · ·λn.

– A ∼ B ⇒ kA(x) = kB(x),
since |P−1AP −xI| = |P−1AP −xP−1IP | = |P−1(A−xI)P | = |P |−1 · |A−xI| · |P | =
|A− xI|.

Exercises: Which of the following matrices are diagonalizable over R or C?

A =

[

1 2
0 2

]

|A− xI| =

∣

∣

∣

∣

1− x 2
0 2− x

∣

∣

∣

∣

= (x− 1)(x− 2)
eigenvalues: λ = 1, 2
∃ eigenvector for each„
they are indep. ⇒
they form a basis ⇒
A is diag.-able

B =

[

0 −1
1 0

]

|B − xI| = x2 + 1
no real root ⇒
B is not diag.-able over R

(but diag.-able over C)

C =

[

1 1
0 1

]

|C − xI| = (x− 1)2

eigenvalue: λ = 1
(C − 1 · I)v = 0, v =?
[

0 1 | 0
0 0 | 0

]

⇒ v =

[

t

0

]

6 ∃ two indep. eigenvectors ⇒
C is not diagonalizable
(neither over R nor over C)

Minimal polynomial

Def. For A ∈ Kn×n and p(x) = c0 + c1x + · · · + cmxm ∈ K[x], we define p(A) :=
c0I + c1A+ · · ·+ cmAm.

Proposition. For A ∈ Kn×n ∃ 0 6= p(x) ∈ K[x], with p(A) = 0 (where 0 denotes the
matrix with only 0 elements).

Proof. I, A,A2, . . . , An
2

∈ Kn×n, but dimKn×n = n2 ⇒ these are linearly independent
⇒ ∃ c0, . . . , cn2 not all 0: c0I + c1A+ . . .+ cn2An

2

= 0. ⊓⊔

Cayley–Hamilton theorem. kA(A) = 0.

No proof.

Def. The minimal polynomial mA(x) ∈ K[x] of a matrix A ∈ Kn×n is the polynomial
of minimal degree with main coefficient 1 such that mA(A) = 0. (It follows from the
Cayley–Hamilton theorem that degmA(x) ≤ n.)

Remark. The minimal polynomial remains the same over a larger field, for instance, the
minimal polynomial of A ∈ R

n×n is the same over R and C, since c0+c1A+· · ·+cmAm = 0
is a linear system of equations for the unknown cis, so if the coefficients are in K, and
there is a nontrivial solution over a field L ≥ K, then the Gaussian elimination method
gives us a nontrivial solution over K as well.

Proposition. For p(x) ∈ K[x] we have p(A) = 0 ⇔ mA(x)|p(x), that is, ∃ q(x) ∈ K[x]
such that p(x) = mA(x)q(x).
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Proof. ⇐: p(A) = mA(A)q(A) = 0q(A) = 0

⇒: The polynomial p(x) can be written as p(x) = m(x)q(x) + r(x), such that deg r(x) <
degm(x). But 0 = p(A) = m(A)q(A) + r(A) = 0 · q(A) + r(A) = r(A) and then r(x) = 0
follows from the minimality of degm(x). ⊓⊔

Proposition. ©P Every eigenvalue of A is a root of mA(x).

Proof. Let v be an eigenvector with eigenvalue λ.

Av =λv

A2
v =A(λv) = λAv = λ2

v

...

Ak
v =λk

v

p(A)v =p(λ)v ∀p(x) ∈ K[x]

0 = mA(A)v =mA(λ)v

mA(λ) =0 because v 6= 0.

⊓⊔

Corollary. If A ∈ C
n×n and kA(x) = (−1)n(x−λ1)

a1 · · · (x−λk)
ak , where λ1, . . . , λk are

different, then mA(x) = (x− λ1)
b1 · · · (x− λk)

bk for some 1 ≤ bi ≤ ai ∀i.

Exercise: Determine the characteristic and the minimal polynomial of A =





1 0 0
1 1 0
0 0 2



.

Solution: kA(x) = |A − xI| = −(x − 1)2(x − 2), so mA(x) can only be (x − 1)(x − 2) or
(x− 1)2(x− 2). We check if A is a ’root’ of the first:

(A− I)(A− 2I) =





0 0 0
1 0 0
0 0 1



 ·





−1 0 0
1 −1 0
0 0 0



 =





0 0 0
−1 0 0
0 0 0



 6= 0,

so the minimal polynomial is mA(x) = (x− 1)2(x− 2).

Example: The solution of the problem about the coins

xi = 0 or 1 ∈ F2

(tail or head)
One round of the game: x1 7→ xn + x1

xi 7→ xi−1 + xi
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This is a linear transformation, its matrix:













1 0 0 . . . 1
1 1 0 . . . 0
0 1 1 . . . 0

0 0
. . .

. . .

0 0 . . . 1 1













.

k rounds: x 7→ Ak
x, the game ends: ∃k: Ak

x = 0.
the game ends for ∀x ⇔ the game ends for ∀ basis vector

⇔ ∀i ∃ki : Akiei = 0

⇔ ∃k : ∀i Ak
ei = 0 (k is the maximal ki)

⇔ ∃k : 0 = Ak[e1 · · ·en] = AkI = Ak

⇔ ∃k : mA(x)|x
k

⇔ 0 is the only eigenvalue
⇔ kA(x) = (−1)nxn = xn (over F2)

On the other hand, if we expand |A− xI| by the first column, we get

|A− xI| =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

1− x 0 0 . . . 1
1 1− x 0 . . . 0
0 1 1− x . . . 0

0 0
. . .

. . .

0 0 . . . 1 1− x

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

= (1− x)n + (−1)n+1 · 1 = (x+ 1)n + 1

over F2, so the good numbers are those n for which (x+1)n+1 = xn, i.e. (x+1)n = xn+1
over F2. If n is a power of 2, then it is true. If n = m · 2t, where m > 1 is an odd number,
then (x + 1)n = (x2

t

+ 1)m = 1 + mx2
t

+ . . ., so the coeffiecient of x2
t

is not 0, thus
(x+ 1)n 6= xn + 1.
Consequently, the game ends when started with any position of the coins if and only if n
is a power of 2.

Invariants of matrices

If A,B ∈ Kn×n, and A ∼ B, then the following are the same for A and B:
a) characteristic polynomial (it has been proved)
b) determinant (it follows from a))
c) trace (it follows from a))
d) minimal polynomial (since g(P−1AP ) = P−1g(A)P for every polynomial g(x))
e) rang (dim Im f does not depend on the basis)
f) spectrum with multiplicities (the roots of the characteristic polynomial)
g) the dimension of the eigenspace (A ∼ B ⇒ (A− λI) ∼ (B − λI), and

dimVλ = n− rank(A− λI))


