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Block matrices

Def. Let A ∈ Km×n be a matrix, and m = m1+ . . .+mr , n = n1+ . . .+ns decomposition
of m and n into a sum of positive integers. We divide the matrix into horizontal bands
of m1, m2, . . . rows, and then we divide these bands vertically to matrices of n1, n2, . . .

columns. Then we get an r × s matrix whose elements are also matrices.

The sum of matrices of equal sizes and block decompositions:





A11 . . . A1s

. . . . . . . . .

Ar1 . . . Ars



+





B11 . . . B1s

. . . . . . . . .

Br1 . . . Brs



 =





A11 +B11 . . . A1s +B1s

. . . . . . . . .

Ar1 +Br1 . . . Ars +Brs



 .

The product of two block matrices with matching sizes and block decompositions (that is,
if A ∈ Kℓ×m and B ∈ Km×n, where m is decomposed the same way in the block structure
of A and B)

A =





A11 . . . A1r

. . . . . . . . .

Ap1 . . . Apr



 ·





B11 . . . B1s

. . . . . . . . .

Br1 . . . Brs



 = C

where Cij =
m
∑

t=1

AitBtj . (Since we have matching decompositions, the products AitBtj

exist and can be added for t = 1, . . . , r )

Example: The product AB =











0 0 | 1 0
0 0 | 0 1
− − − − −
−1 0 | 1 0
0 −1 | 0 1











·











1 2
3 −1
− −
0 1
2 1











=











0 1
2 1
− −

−1 −1
−1 2











can be calculated easier, if we consider A and B as block matrices with 2 × 2 blocks:

AB =

[

0 I

−I I

]

·

[

B1

B2

]

=

[

B2

−B1 +B2

]

=











0 1
2 1
− −

−1 −1
−1 2











.

Corollary: The product of block diagonal matrices (that is, n×n matrices divided along
the same decomposition of n, and having only zero matrices in their non-diagonal positions)
can be calculated by multiplying the corresponding diagonal elements:









A1 0 . . . 0
0 A2 . . . 0

. . .

0 0 . . . An









·









B1 0 . . . 0
0 B2 . . . 0

. . .

0 0 . . . Bn









=









A1B1 0 . . . 0
0 A2B2 . . . 0

. . .

0 0 . . . AnBn









.
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The Jordan normal form

Def. Jordan block:











λ 1 . . . 0

0 λ
. . . 0

0 . . .
. . . 1

0 . . . 0 λ











(Note that its only eigenvalue is λ, however the eigenspace is only 1 dimensional).

Jordan matrix: a block diagonal matrix whose diagonal matrices are Jordan blocks.

Exercise: Calculate the characteristic polynomial, minimal polynomial and the dimension
of the eigenspace for the 4× 4 Jordan block corresponding to the eigenvalue 2.

Proposition: Let J ∈ Kn×n be a Jordan block with eigenvalue λ. Then kA(x) =
(−1)n(x− λ)n and mA(x) = (x− λ)n.

Proof: Since J is an upper triangular matrix, the first statement is obvious. As for the
second, let us notice that N := A− λI is a Jordan block with eigenvalue 0, and it acts on
the basis vectors in the following way: bn 7→ bn−1 7→ · · · 7→ b1 7→ 0. Then Nk : bi 7→ bi−k

for i > k and bi 7→ 0 for i ≤ k. This means that Nk has only a skew row of 1′s parallel
to the diagonal, starting at the position (1, k + 1). Thus Nn−1 = E1n 6= 0, but Nn = 0,
showing that the minimal polynomial of A is mA(x) = (x− λ)n.

Corollary: If the different diagonal elements of an n× n Jordan matrix J are λ1, . . . , λr

with multiplicities a1, . . . , ak respectively, then the characteristic polynomial of the matrix
is (−1)n(x− λ1)

a1 · · · (x− λk)
ak , and its minimal polynomial is (x − λ1)

b1 · · · (x − λk)
bk ,

where for each i, the largest λi-block is of size bi (meaning that it is a bi × bi matrix).
Furthermore, the dimension of the λi-eigenspace is the number of λi-blocks.

Proof: The statement about the characteristic polynomial is clear, since the Jordan matrix
is an upper triangular matrix.

For a polynomial p(x), p(J) = 0 if and only if p(Jt) = 0 for every diagonal block
Jt. But for a λi-block Jt, the matrix Jt − λjI is invertible for λj 6= λi, so for the largest
λi-block (of size bi) to become 0, (x − λi) should be at least on the power of bi by the
previous proposition, and the bi’th power is clearly sufficient.

Finally, J − λiI will be in row echelon form if we move the zero rows to the bottom,
and the number of zero rows is exactly the number of λi-blocks (let that be di). Then
rank(J − λiI) = n− di, and by the dimension theorem, dimVλi

= dimKer(J − λiI) = di.

Jordan’s theorem
Let A ∈ Kn×n, and suppose that the characteristic polynomial of A can be factored into
a product of linear polynomials over K, that is, kA(x) = (−1)n(x − λ1)

a1 · · · (x − λk)
ak .

Then A is similar to a Jordan matrix, which is unique up to the order of the diagonal
blocks. This matrix is called the Jordan normal form of the matrix

Every non-constant polynomial in C[x] can be written as a product of linear polynomials
(by the fundamental theorem of algebra), so every matrix in C

n×n has a Jordan normal
form.
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Calculating the Jordan normal form

The sizes of the blocks in the Jordan normal form can be calculated from the ranks of the
powers of the matrices A−λiI (where λi are the eigenvalues). However, if the multiplicity
of each eigenvalue in the characteristic polynomial is not greater than 6, then the normal
form can be determined from

kA(x) = (x− λ1)
a1 · · · (x− λk)

ak ,
mA(x) = (x− λ1)

b1 · · · (x− λk)
bk ,

di := dimVλi
for i = 1, . . . , k.

Since these numbers are invariant under similarity of matrices, the corollary above shows
that for each eigenvalue λi

the sum of the sizes of λi-blocks is ai
the largest size of the λi-blocks is bi
the number of the λi-blocks is di.

Exercises: Determine the Jordan normal form if the characteristic polynomial, the mini-
mal polynomial and the dimension of the eigenspaces are given.
1.
k(x) = (x− 2)5

m(x) = (x− 2)2

dimV2 = 3
5 = 2 + 2 + 1


























− −
| 2 1 |
| 2 |

− − − −
| 2 1 |
| 2 |

− − − −
| 2 |

−



























2.
k(x) = (x− 2)5

m(x) = (x− 2)3

dimV2 = 3
5 = 3 + 1 + 1


























− − −
| 2 1 |
| 2 1 |
| 2 |

− − − −
| 2 |

− −
| 2 |

−



























3. Determine the Jordan normal form and the minimal polynomial of the matrix A.

A =







1 0 2 1
0 1 1 −1
0 0 1 1
0 0 0 2







kA(x) = (x−1)3(x−2). The eigenspace for the eigenvalue 1 is the kernel of A−I. We can
use the Gaussian method to bring A−I to row echelon form and see that rank(A−I) = 2,
so dimV1 = 4− 2 = 2. This means that there are two 1-blocks in the Jordan-matrix, and
these can only be a 2× 2 and a 1× 1 1-block, and we must have a 1× 1 2-block:

A ∼







1 1 0 0
0 1 0 0
0 0 1 0
0 0 0 2







By the maximal sizes of the blocks, mA(x) = (x− 1)2(x− 2).
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Applications of the Jordan normal form

1) One can determine whether two matrices are similar.

2) For J = P−1AP , the power Jm can be calculated relatively easily, so we also get Am.

3) As in the case of the diagonal form (but a diagonal form does not always exist, even in
C

n×n!) it provides a better understanding of the transformation.

(Note that in 1) and 3) we don’t have to determine the transition matrix P .)

An immediate consequence of the Jordan normal form is the following condition for diag-
onalizability.

Theorem: A matrix A ∈ Kn×n whose characteristic polynomial can be written as a
product of linear polynomials over K is diagonalizable if and only if the minimal polynomial
has no multiple roots.

Proof: A diagonal matrix is also a Jordan matrix, and the Jordan matrix is essentially
unique, so the matrix is diagonalizable if and only if every Jordan block is a 1× 1 matrix,
i.e. the maximal size of the λi-blocks is 1 for each i.


