Block matrices

Def. Let $A \in K^{m \times n}$ be a matrix, and $m=m_{1}+\ldots+m_{r}, n=n_{1}+\ldots+n_{s}$ decomposition of m and n into a sum of positive integers. We divide the matrix into horizontal bands of m_{1}, m_{2}, \ldots rows, and then we divide these bands vertically to matrices of n_{1}, n_{2}, \ldots columns. Then we get an $r \times s$ matrix whose elements are also matrices.

The sum of matrices of equal sizes and block decompositions:

$$
\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 s} \\
\ldots & \ldots & \ldots \\
A_{r 1} & \ldots & A_{r s}
\end{array}\right]+\left[\begin{array}{ccc}
B_{11} & \ldots & B_{1 s} \\
\ldots & \ldots & \ldots \\
B_{r 1} & \ldots & B_{r s}
\end{array}\right]=\left[\begin{array}{ccc}
A_{11}+B_{11} & \ldots & A_{1 s}+B_{1 s} \\
\ldots & \ldots & \ldots \\
A_{r 1}+B_{r 1} & \ldots & A_{r s}+B_{r s}
\end{array}\right] .
$$

The product of two block matrices with matching sizes and block decompositions (that is, if $A \in K^{\ell \times m}$ and $B \in K^{m \times n}$, where m is decomposed the same way in the block structure of A and B)

$$
A=\left[\begin{array}{ccc}
A_{11} & \ldots & A_{1 r} \\
\ldots & \ldots & \ldots \\
A_{p 1} & \ldots & A_{p r}
\end{array}\right] \quad \cdot \quad\left[\begin{array}{ccc}
B_{11} & \ldots & B_{1 s} \\
\ldots & \ldots & \ldots \\
B_{r 1} & \ldots & B_{r s}
\end{array}\right]=C
$$

where $C_{i j}=\sum_{t=1}^{m} A_{i t} B_{t j}$. (Since we have matching decompositions, the products $A_{i t} B_{t j}$ exist and can be added for $t=1, \ldots, r$)

Example: The product $A B=\left[\begin{array}{rrrrr}0 & 0 & \mid & 1 & 0 \\ 0 & 0 & \mid & 0 & 1 \\ - & - & - & - & - \\ -1 & 0 & \mid & 1 & 0 \\ 0 & -1 & \mid & 0 & 1\end{array}\right] \cdot\left[\begin{array}{rr}1 & 2 \\ 3 & -1 \\ - & - \\ 0 & 1 \\ 2 & 1\end{array}\right]=\left[\begin{array}{rr}0 & 1 \\ 2 & 1 \\ - & - \\ -1 & -1 \\ -1 & 2\end{array}\right]$
can be calculated easier, if we consider A and B as block matrices with 2×2 blocks:
$A B=\left[\begin{array}{cc}0 & I \\ -I & I\end{array}\right] \cdot\left[\begin{array}{l}B_{1} \\ B_{2}\end{array}\right]=\left[\begin{array}{c}B_{2} \\ -B_{1}+B_{2}\end{array}\right]=\left[\begin{array}{cc}0 & 1 \\ 2 & 1 \\ - & - \\ -1 & -1 \\ -1 & 2\end{array}\right]$.
Corollary: The product of block diagonal matrices (that is, $n \times n$ matrices divided along the same decomposition of n, and having only zero matrices in their non-diagonal positions) can be calculated by multiplying the corresponding diagonal elements:

$$
\left[\begin{array}{cccc}
A_{1} & 0 & \ldots & 0 \\
0 & A_{2} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & A_{n}
\end{array}\right] \cdot\left[\begin{array}{cccc}
B_{1} & 0 & \ldots & 0 \\
0 & B_{2} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & B_{n}
\end{array}\right]=\left[\begin{array}{cccc}
A_{1} B_{1} & 0 & \ldots & 0 \\
0 & A_{2} B_{2} & \ldots & 0 \\
& & \ddots & \\
0 & 0 & \ldots & A_{n} B_{n}
\end{array}\right]
$$

The Jordan normal form
Def. Jordan block: $\left[\begin{array}{cccc}\lambda & 1 & \ldots & 0 \\ 0 & \lambda & \ddots & 0 \\ 0 & \ldots & \ddots & 1 \\ 0 & \ldots & 0 & \lambda\end{array}\right]$
(Note that its only eigenvalue is λ, however the eigenspace is only 1 dimensional).
Jordan matrix: a block diagonal matrix whose diagonal matrices are Jordan blocks.
Exercise: Calculate the characteristic polynomial, minimal polynomial and the dimension of the eigenspace for the 4×4 Jordan block corresponding to the eigenvalue 2 .

Proposition: Let $J \in K^{n \times n}$ be a Jordan block with eigenvalue λ. Then $k_{A}(x)=$ $(-1)^{n}(x-\lambda)^{n}$ and $m_{A}(x)=(x-\lambda)^{n}$.

Proof: Since J is an upper triangular matrix, the first statement is obvious. As for the second, let us notice that $N:=A-\lambda I$ is a Jordan block with eigenvalue 0 , and it acts on the basis vectors in the following way: $\mathbf{b}_{n} \mapsto \mathbf{b}_{n-1} \mapsto \cdots \mapsto \mathbf{b}_{1} \mapsto \mathbf{0}$. Then $N^{k}: \mathbf{b}_{i} \mapsto \mathbf{b}_{i-k}$ for $i>k$ and $\mathbf{b}_{i} \mapsto \mathbf{0}$ for $i \leq k$. This means that N^{k} has only a skew row of $1^{\prime} s$ parallel to the diagonal, starting at the position $(1, k+1)$. Thus $N^{n-1}=E_{1 n} \neq 0$, but $N^{n}=0$, showing that the minimal polynomial of A is $m_{A}(x)=(x-\lambda)^{n}$.

Corollary: If the different diagonal elements of an $n \times n$ Jordan matrix J are $\lambda_{1}, \ldots, \lambda_{r}$ with multiplicities a_{1}, \ldots, a_{k} respectively, then the characteristic polynomial of the matrix is $(-1)^{n}\left(x-\lambda_{1}\right)^{a_{1}} \cdots\left(x-\lambda_{k}\right)^{a_{k}}$, and its minimal polynomial is $\left(x-\lambda_{1}\right)^{b_{1}} \cdots\left(x-\lambda_{k}\right)^{b_{k}}$, where for each i, the largest λ_{i}-block is of size b_{i} (meaning that it is a $b_{i} \times b_{i}$ matrix). Furthermore, the dimension of the λ_{i}-eigenspace is the number of λ_{i}-blocks.

Proof: The statement about the characteristic polynomial is clear, since the Jordan matrix is an upper triangular matrix.

For a polynomial $p(x), p(J)=0$ if and only if $p\left(J_{t}\right)=0$ for every diagonal block J_{t}. But for a λ_{i}-block J_{t}, the matrix $J_{t}-\lambda_{j} I$ is invertible for $\lambda_{j} \neq \lambda_{i}$, so for the largest λ_{i}-block (of size b_{i}) to become $0,\left(x-\lambda_{i}\right)$ should be at least on the power of b_{i} by the previous proposition, and the $b_{i}{ }^{\prime}$ 'th power is clearly sufficient.

Finally, $J-\lambda_{i} I$ will be in row echelon form if we move the zero rows to the bottom, and the number of zero rows is exactly the number of λ_{i}-blocks (let that be d_{i}). Then $\operatorname{rank}\left(J-\lambda_{i} I\right)=n-d_{i}$, and by the dimension theorem, $\operatorname{dim} V_{\lambda_{i}}=\operatorname{dim} \operatorname{Ker}\left(J-\lambda_{i} I\right)=d_{i}$.

Jordan's theorem

Let $A \in K^{n \times n}$, and suppose that the characteristic polynomial of A can be factored into a product of linear polynomials over K, that is, $k_{A}(x)=(-1)^{n}\left(x-\lambda_{1}\right)^{a_{1}} \cdots\left(x-\lambda_{k}\right)^{a_{k}}$. Then A is similar to a Jordan matrix, which is unique up to the order of the diagonal blocks. This matrix is called the Jordan normal form of the matrix

Every non-constant polynomial in $\mathbb{C}[x]$ can be written as a product of linear polynomials (by the fundamental theorem of algebra), so every matrix in $\mathbb{C}^{n \times n}$ has a Jordan normal form.

Calculating the Jordan normal form

The sizes of the blocks in the Jordan normal form can be calculated from the ranks of the powers of the matrices $A-\lambda_{i} I$ (where λ_{i} are the eigenvalues). However, if the multiplicity of each eigenvalue in the characteristic polynomial is not greater than 6 , then the normal form can be determined from

$$
\begin{aligned}
& k_{A}(x)=\left(x-\lambda_{1}\right)^{a_{1}} \cdots\left(x-\lambda_{k}\right)^{a_{k}}, \\
& m_{A}(x)=\left(x-\lambda_{1}\right)^{b_{1}} \cdots\left(x-\lambda_{k}\right)^{b_{k}}, \\
& d_{i}:=\operatorname{dim} V_{\lambda_{i}} \text { for } i=1, \ldots, k .
\end{aligned}
$$

Since these numbers are invariant under similarity of matrices, the corollary above shows that for each eigenvalue λ_{i}
the sum of the sizes of λ_{i}-blocks is a_{i} the largest size of the λ_{i}-blocks is b_{i} the number of the λ_{i}-blocks is d_{i}.

Exercises: Determine the Jordan normal form if the characteristic polynomial, the minimal polynomial and the dimension of the eigenspaces are given.
1.
$k(x)=(x-2)^{5}$
$m(x)=(x-2)^{2}$
$\operatorname{dim} V_{2}=3$
$5=2+2+1$
$\left[\begin{array}{ccccccccc}\mid & - & - & & & & & \\ \mid & 2 & 1 & 1 & & & & \\ \mid & & 2 & \mid & & & & \\ & - & - & - & - & & \\ & & & 2 & 1 & \mid & \\ & & & & 2 & \mid & \\ & & & & - & - & - & - & \\ & & & & & & & 2 & \mid\end{array}\right]$
2.
$k(x)=(x-2)^{5}$
$m(x)=(x-2)^{3}$
$\operatorname{dim} V_{2}=3$
$5=3+1+1$

3. Determine the Jordan normal form and the minimal polynomial of the matrix A.

$$
A=\left[\begin{array}{rrrr}
1 & 0 & 2 & 1 \\
0 & 1 & 1 & -1 \\
0 & 0 & 1 & 1 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

$k_{A}(x)=(x-1)^{3}(x-2)$. The eigenspace for the eigenvalue 1 is the kernel of $A-I$. We can use the Gaussian method to bring $A-I$ to row echelon form and see that $\operatorname{rank}(A-I)=2$, so $\operatorname{dim} V_{1}=4-2=2$. This means that there are two 1-blocks in the Jordan-matrix, and these can only be a 2×2 and a 1×1-block, and we must have a 1×12-block:

$$
A \sim\left[\begin{array}{llll}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 2
\end{array}\right]
$$

By the maximal sizes of the blocks, $m_{A}(x)=(x-1)^{2}(x-2)$.

Applications of the Jordan normal form

1) One can determine whether two matrices are similar.
2) For $J=P^{-1} A P$, the power J^{m} can be calculated relatively easily, so we also get A^{m}.
3) As in the case of the diagonal form (but a diagonal form does not always exist, even in $\mathbb{C}^{n \times n!}$) it provides a better understanding of the transformation.
(Note that in 1) and 3) we don't have to determine the transition matrix P.)
An immediate consequence of the Jordan normal form is the following condition for diagonalizability.

Theorem: A matrix $A \in K^{n \times n}$ whose characteristic polynomial can be written as a product of linear polynomials over K is diagonalizable if and only if the minimal polynomial has no multiple roots.

Proof: A diagonal matrix is also a Jordan matrix, and the Jordan matrix is essentially unique, so the matrix is diagonalizable if and only if every Jordan block is a 1×1 matrix, i.e. the maximal size of the λ_{i}-blocks is 1 for each i.

