Applied algebra Euclidean spaces 2017, Fall semester

Euclidean spaces and their transformations

Scalar product (dot product) in R?

a-b=|a|-|b|-cosa, where « is the angle of the two vectors.
With coordinates: if a = (a1, a2, a3) and b = (b1, bo, b3) then ab = a1by + asbs + asbs.

Exercise Consider the unit cube 0 < z,y,z < 1, and let a = (1,0,1) and b = (0,1,1) be
the diagonal vectors of two faces of the cube starting from the origin. What is the angle
of a and b?

Solution: ab=0+0+1=1, |]a| = |b| = V2 = cosa = 3 = a = 60°. Indeed, the corners
(0,0,0), (1,0,1) and (0,1,1) form an equilateral triangle, since the third side is also the
diagonal of a face of the cube.

Properties:
— a and b are orthogonal (perpendicular) < ab = 0. Notation: a_lb.
~a-a=|a]?,so|a]=\a-a
, a-x ax

— Projection of a vector x onto a vector a # 0: x = ——a=—=a,
a-a |a|
|a|-|x| cos «

since pza = = p—a= |x|cos - fa]> Where |x| cos «v is the length of the projection
with + or — sign) and & is the unit vector pointing in the same direction as a.
g p g
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Scalar product in R" and in C"

We consider the elements of R"” and C™ as column vectors.

Def.: For x,y € R", the (standard) scalar product of x and y is (x,y) = xTy =

2?21 x;jy; (the 1 x 1 matrix taken as a scalar).

For x € R", the vector x’ is the transposed vector of x, which is the row vector
[.’131 Ce .CCn]. L
For x € C", the vector x* = xT = [Tq,...,T,] is the adjoint vector of x, which is the

same as x' if all coordinates of x are real.
For x,y € C", the (standard) scalar product of x and y is (x,y) := x*y = Z?Zl Z;Y;-

R™ and C" with this scalar product are called real or complex Euclidean spaces.

Def.: For a matrix A € C™*" the adjoint matrix A* = AT is the n x m matrix whose
(i,7) element is aj;.

. 1 0
Example: For A = Lo1- vt , the adjoint matrix is A* = [ 1+4¢ 2—1
0 2+¢ 5 _ 5
Properties of the scalar product
in R" in C"
(x+xy)=(xy)+&.,y)
(xy+y) =&y +&xy')
(x,\y) = AMx,y) N
(Ax,y) = Ax,y) (Ax,y) = Ax,y)
<Y7 X> = <X7 Y> <y7 X> = <X7 y>
(x,x) >0 real, and > 0if x #0
x| = v/ (x, %)

xly & (x,y)
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These properties mean that the scalar product in R" is a symmetric bilinear form, the
scalar product in C" is an Hermitian form, and both are positive definite: (x,x) > 0 if

x # 0.

It can be proved (see Gram—Schmidt orthogonalization) that any subspace of a Euclidean
space has an orthonormal basis, that is, a basis B = {by,...,b,, } such that |b;| = 1 for
every ¢ and (b;,b;) = 0 for every i # j.

Orthogonal projection on a vector

Proposition: Let a € K™, where K = R or K = C, and assume that a # 0. Consider
the map

a*x

x = x = a

a*a
Then x'||a and (x — x’) La, so x’ is the orthogonal projection of x to a.

Proof: x’ is a scalar multiple of a, so it is parallel to a.

(a,x —x') = (a,x) — (a,x') = (a,x) — (a, ’;i:a) = (a,x) —

a*x
a*a

a*x
a*a

(a,a) = a*x — 2Xa*a = 0.

Proposition: The orthogonal projection on a vector a # 0 is a linear transformation in

R™ or in C", and its matrix is
1 1

aa® = —aa".
a*a |a|?
Proof: Waa ‘X = Wa(a X) = W(a x)a = X', since the multiplication from the

right by the 1 x 1 matrix a*x is the same as the multiplication from the left by a*x as by
a scalar.

Exercise: Find the matrix of the orthogonal projection onto the vector a = {1 e R%

2
. . 1 1 2 1/5 2/5
Solution: A = #aa =3 [2} (1 2]=3 {2 4] - [2/5 4/5}

Orthogonal projection and reflection to a hyperplane

For a vector a # 0 in K" (where K = R or C), the hyperplane with normal vector
ais H(a) = {x € K" |{a,x) = 0}: the plane formed by the endpoints of the vectors
perpendicular to the vector a. H(a) is an (n — 1)-dimensional subspace in K™. For
instance, hyperplanes in R? are the lines going through the origin, in R® the planes going
through the origin.

The orthogonal projection of x on H(a) is x —x’, where x’ is the orthogonal projection
of x on a. So the matrix of this transformation is

1 *
I—Waa.

The reflection of x on H(a) is x — 2x’, where x’ is the orthogonal projection of x on a.
So the matrix of this transformation is
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Exercise: Find the standard matrix of the reflection of R® to the plane z +y — 2z = 0.
Solution: The normal vector is (1,1,-2),soa=[1 1 —2]", |a]> =6, and

5 o = 2/3 —1/3  2/3
A=I-maa"=T—2| 1 1 =2/ =|-1/3 2/3 23
2l —2 -2 4 2/3  2/3 —1/3

Unitary, self-adjoint and normal matrices

Properties of the adjoint of a matrix:

(A+B)* = A*+ B*

(AB)* = B*A*
(cA)* =cA*
(4%)* = 4

A* = AT if Ac R™*"

Def.: Let A € C" ™.
A is unitary if A* = A~!, that is, if A*A = AA* = 1.
A is self-adjoint if A* = A.
Aisnormal if A*A = AA*. Clearly, any unitary or self-adjoint matrix is also normal.

If A € R™™" then unitary is also called orthogonal and self-adjoint is also called sym-
metric, since in this case A7 = A means that the matrix is symmetric to its main diagonal.

Proposition: The following are equivalent for A € K"*™ with K =R or C:
(i) A is unitary;
(ii) the columns of A form an orthonormal basis in K";
(iii) the rows of A form an orthonormal basis in K™;
(iv) the transformation x — Ax maps an orthonormal basis to an orthonormal basis.

Exercise: Consider the matrices

N N R AT P

Which of them are unitary, self-adjoint or normal?
Solution: A is self-adjoint (real symmetric), D is complex self-adjoint, E is unitary (real
orthogonal), so they are all normal. B is not even normal but C is normal: C*C = CC* =
13 0
0 13|
Examples: 1. Every real diagonal matrix is self-adjoint.
2. If A € R™™" is skew-symmetric: A7 = —A, then A is normal.
3. If A is the matrix of an orthogonal projection or reflection on a hyperplane then it is
1 1 2

self-adjoint: (aa*)* = aa*, so (I — Waa*)* =I—zaa” and (I— Waa*)* =1— %aa*.

4. If A is the matrix of a reflection on a hyperplane, then A is unitary:

(I‘Waa‘) (I_Waa): (I‘Wa) =1 et EEe)

and here (aa*)? = a(a*a)a* = |a|?aa*, so AA* = A2 =I.
Note that the eigenvalues of a projection are 0 and 1, the eigenvalues of a reflection are 1
and —1
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Theorem
(1) If A € C™™™ is unitary, then |A| = 1 for every eigenvalue \ of A.
(2) If A e C™™" is self-adjoint, then every eigenvalue of A is real.

Proof: Suppose that v is an eigenvector with eigenvalue \: Av = Av.

(1): (Av)*(Av) = v*A*Av = v*Iv = |v|?, on the other hand, (Av)*(4v) = (Av)*(\v) =
AV = |A2|v|2, so |A]2|v|? = |v|?, and since v # 0, this implies [A|? = 1, so |\| = 1.

(2): v¥(Av) = (vFA)v = (VA" )v = (Av)*v = (Av)*v = Av*v = A|v|?, on the other
hand, v*(Av) = v*(A\v) = A|[v|?, so A[v|? = A|v|?, and since v # 0, this implies that
A =\, that is, A € R.

Theorem:
If A € C™" is unitary, self-adjoint or normal, and U € C™*" is unitary, then U~*AU is
also unitary, self-adjoint or normal, respectively.

Proof: Let’s notice first that (U1AU)* = (U*AU)* = U*A*U.

If A* = A, then (UT1AU)* = U*A*U = U~ AU.

If A* =AY then (UTtAU)* =U*A*U = U 1A7U = (UTAU) L.

Finally, (UT'AU)(U'AU)* = (UT'AU)(U'A*U) = U1 AA*U, and similary,
(UTTAU(UTLAU) = U1A*AU, so if AA* = A*A, then (UTTAU)(UTAU)* =
(UTAU)*(U1AD).

Spectral theorem

Theorem The following are equivalent for a matrix A € C™*".

(i) A is normal.

(ii) There is a unitary matrix U € C"*" such that U=t AU = U* AU is diagonal.
(iii) There is an orthonormal basis in C™ consisting of eigenvectors of A.

The following two theorems are special cases of the spectral theorem.

Theorem: The following are equivalent for a matrix A € C™"*".
(i) A is self-adjoint.
(ii) There is a unitary matrix U € C™*" such that U=t AU = U* AU is real diagonal.
(iii) Every eigenvalue of A is real and there is an orthonormal basis in C" consisting of
eigenvectors of A.

And its version for real matrices:

Theorem: The following are equivalent for a matrix A € R™"*".

(i) A is symmetric.

(i) There is an orthogonal matrix U € R™*" such that U=t AU = U* AU is (real) diagonal.
(iii) There is an orthonormal basis in R™ consisting of eigenvectors of A.

Examples:

1. If A is the standard matrix of an orthogonal projection to a hyperplane, then it has an
orthonormal basis of eigenvectors (an orthonormal basis of the hyperplane together with
the normal vector of length 1), and the eigenvalues are 0 and 1, so A must be symmetric.
2. If A is the standard matrix of a projection to a plane in R® along a vector which is not
perpendicular to the given plane, then the eigenvector for 0 is not perpendicular to the
eigenspace for 1, so the matrix cannot be symmetric.

3. If f is the rotation of R? about the origin by the angle ¢, then its standard matrix is
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orthogonal: the orthonormal basis {1i,j} is mapped to an orthonormal basis. (The matrix

. cosa —sina
is A= . )
sina  cos«



