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Euclidean spaces and their transformations

Scalar product (dot product) in R
3

a · b = |a| · |b| · cosα, where α is the angle of the two vectors.
With coordinates: if a = (a1, a2, a3) and b = (b1, b2, b3) then ab = a1b1 + a2b2 + a3b3.

Exercise Consider the unit cube 0 ≤ x, y, z ≤ 1, and let a = (1, 0, 1) and b = (0, 1, 1) be
the diagonal vectors of two faces of the cube starting from the origin. What is the angle
of a and b?
Solution: ab = 0+0+1 = 1, |a| = |b| =

√
2 ⇒ cosα = 1

2
⇒ α = 60◦. Indeed, the corners

(0, 0, 0), (1, 0, 1) and (0, 1, 1) form an equilateral triangle, since the third side is also the
diagonal of a face of the cube.

Properties:

– a and b are orthogonal (perpendicular) ⇔ ab = 0. Notation: a⊥b.
– a · a = |a|2, so |a| = √

a · a
– Projection of a vector x onto a vector a 6= 0: x′ =

a · x
a · aa =

ax

|a|2a,

since ax

|a|2a = |a|·|x| cosα
|a|2 a = |x| cosα · a

|a| , where |x| cosα is the length of the projection

(with + or − sign) and a

|a|
is the unit vector pointing in the same direction as a.

Scalar product in R
n and in C

n

We consider the elements of Rn and C
n as column vectors.

Def.: For x,y ∈ R
n, the (standard) scalar product of x and y is 〈x,y〉 := xTy =

∑n

j=1
xjyj (the 1× 1 matrix taken as a scalar).

For x ∈ R
n, the vector xT is the transposed vector of x, which is the row vector

[x1 . . . xn].

For x ∈ C
n, the vector x∗ = xT = [x1, . . . , xn] is the adjoint vector of x, which is the

same as xT if all coordinates of x are real.
For x,y ∈ C

n, the (standard) scalar product of x and y is 〈x,y〉 := x∗y =
∑n

j=1
xjyj .

R
n and C

n with this scalar product are called real or complex Euclidean spaces.

Def.: For a matrix A ∈ C
m×n the adjoint matrix A∗ = AT is the n ×m matrix whose

(i, j) element is aji.

Example: For A =

[

1 1− i i
0 2 + i 5

]

, the adjoint matrix is A∗ =





1 0
1 + i 2− i
−i 5



.

Properties of the scalar product

in R
n in C

n

〈x+ x′,y〉 = 〈x,y〉+ 〈x′,y〉
〈x,y + y′〉 = 〈x,y〉+ 〈x,y′〉

〈x, λy〉 = λ〈x,y〉
〈λx,y〉 = λ〈x,y〉 〈λx,y〉 = λ〈x,y〉
〈y,x〉 = 〈x,y〉 〈y,x〉 = 〈x,y〉

〈x,x〉 ≥ 0 real, and > 0 if x 6= 0
|x| :=

√

〈x,x〉
x⊥y :⇔ 〈x,y〉
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These properties mean that the scalar product in R
n is a symmetric bilinear form, the

scalar product in C
n is an Hermitian form, and both are positive definite: 〈x,x〉 > 0 if

x 6= 0.

It can be proved (see Gram–Schmidt orthogonalization) that any subspace of a Euclidean
space has an orthonormal basis, that is, a basis B = {b1, . . . ,bm } such that |bi| = 1 for
every i and 〈bi,bj〉 = 0 for every i 6= j.

Orthogonal projection on a vector

Proposition: Let a ∈ Kn, where K = R or K = C, and assume that a 6= 0. Consider
the map

x 7→ x′ =
a∗x

a∗a
a

Then x′||a and (x− x′)⊥a, so x′ is the orthogonal projection of x to a.

Proof: x′ is a scalar multiple of a, so it is parallel to a.
〈a,x− x′〉 = 〈a,x〉 − 〈a,x′〉 = 〈a,x〉 − 〈a, a∗

x

a
∗
a
a〉 = 〈a,x〉 − a

∗

x

a
∗
a
〈a, a〉 = a∗x− a

∗

x

a
∗
a
a∗a = 0.

Proposition: The orthogonal projection on a vector a 6= 0 is a linear transformation in
R

n or in C
n, and its matrix is

1

a∗a
aa∗ =

1

|a|2aa
∗.

Proof:
1

|a|2aa
∗ · x =

1

|a|2a(a
∗x) =

1

|a|2 (a
∗x)a = x′, since the multiplication from the

right by the 1× 1 matrix a∗x is the same as the multiplication from the left by a∗x as by
a scalar.

Exercise: Find the matrix of the orthogonal projection onto the vector a =

[

1
2

]

∈ R
2.

Solution: A = 1

|a|2
aa∗ = 1

5

[

1
2

]

[ 1 2 ] = 1

5

[

1 2
2 4

]

=

[

1/5 2/5
2/5 4/5

]

.

Orthogonal projection and reflection to a hyperplane

For a vector a 6= 0 in Kn (where K = R or C), the hyperplane with normal vector
a is H(a) = {x ∈ Kn |〈a,x〉 = 0 }: the plane formed by the endpoints of the vectors
perpendicular to the vector a. H(a) is an (n − 1)-dimensional subspace in Kn. For
instance, hyperplanes in R

2 are the lines going through the origin, in R
3 the planes going

through the origin.

The orthogonal projection of x on H(a) is x−x′, where x′ is the orthogonal projection
of x on a. So the matrix of this transformation is

I − 1

|a|2aa
∗.

The reflection of x on H(a) is x − 2x′, where x′ is the orthogonal projection of x on a.
So the matrix of this transformation is

I − 2

|a|2aa
∗.
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Exercise: Find the standard matrix of the reflection of R3 to the plane x+ y − 2z = 0.
Solution: The normal vector is (1, 1,−2), so a = [ 1 1 −2 ]

T
, |a|2 = 6, and

A = I − 2

|a|2aa
∗ = I − 1

3





1 1 −2
1 1 −2

−2 −2 4



 =





2/3 −1/3 2/3
−1/3 2/3 2/3
2/3 2/3 −1/3



 .

Unitary, self-adjoint and normal matrices

Properties of the adjoint of a matrix:
(A+B)∗ = A∗ +B∗

(AB)∗ = B∗A∗

(cA)∗ = cA∗

(A∗)∗ = A
A∗ = AT if A ∈ R

m×n

Def.: Let A ∈ C
n×n.

A is unitary if A∗ = A−1, that is, if A∗A = AA∗ = I.
A is self-adjoint if A∗ = A.
A is normal if A∗A = AA∗. Clearly, any unitary or self-adjoint matrix is also normal.

If A ∈ R
n×n then unitary is also called orthogonal and self-adjoint is also called sym-

metric, since in this case AT = A means that the matrix is symmetric to its main diagonal.

Proposition: The following are equivalent for A ∈ Kn×n with K = R or C:
(i) A is unitary;
(ii) the columns of A form an orthonormal basis in Kn;
(iii) the rows of A form an orthonormal basis in Kn;
(iv) the transformation x 7→ Ax maps an orthonormal basis to an orthonormal basis.

Exercise: Consider the matrices

A =

[

2 3
3 −1

]

, B =

[

i i
i 1

]

, C =

[

2 3
−3 2

]

, D =

[

1 2 + i
2− i 3

]

, E =

[

3/5 −4/5
4/5 3/5

]

.

Which of them are unitary, self-adjoint or normal?
Solution: A is self-adjoint (real symmetric), D is complex self-adjoint, E is unitary (real
orthogonal), so they are all normal. B is not even normal but C is normal: C∗C = CC∗ =
[

13 0
0 13

]

.

Examples: 1. Every real diagonal matrix is self-adjoint.
2. If A ∈ R

n×n is skew-symmetric: AT = −A, then A is normal.
3. If A is the matrix of an orthogonal projection or reflection on a hyperplane then it is
self-adjoint: (aa∗)∗ = aa∗, so (I− 1

|a|2aa
∗)∗ = I− 1

|a|2aa
∗ and (I− 2

|a|2aa
∗)∗ = I− 2

|a|2aa
∗.

4. If A is the matrix of a reflection on a hyperplane, then A is unitary:

(

I − 2

|a|2aa
∗

)∗ (

I − 2

|a|2aa
∗

)

=

(

I − 2

|a|2aa
∗

)2

= I − 4

|a|2aa
∗ +

4

|a|4 (aa
∗)2,

and here (aa∗)2 = a(a∗a)a∗ = |a|2aa∗, so AA∗ = A2 = I.
Note that the eigenvalues of a projection are 0 and 1, the eigenvalues of a reflection are 1
and −1
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Theorem
(1) If A ∈ C

n×n is unitary, then |λ| = 1 for every eigenvalue λ of A.
(2) If A ∈ C

n×n is self-adjoint, then every eigenvalue of A is real.

Proof: Suppose that v is an eigenvector with eigenvalue λ: Av = λv.
(1): (Av)∗(Av) = v∗A∗Av = v∗Iv = |v|2, on the other hand, (Av)∗(Av) = (λv)∗(λv) =
λλv∗v = |λ|2|v|2, so |λ|2|v|2 = |v|2, and since v 6= 0, this implies |λ|2 = 1, so |λ| = 1.
(2): v∗(Av) = (v∗A)v = (v∗A∗)v = (Av)∗v = (λv)∗v = λv∗v = λ|v|2, on the other
hand, v∗(Av) = v∗(λv) = λ|v|2, so λ|v|2 = λ|v|2, and since v 6= 0, this implies that
λ = λ, that is, λ ∈ R.

Theorem:
If A ∈ C

n×n is unitary, self-adjoint or normal, and U ∈ C
n×n is unitary, then U−1AU is

also unitary, self-adjoint or normal, respectively.

Proof: Let’s notice first that (U−1AU)∗ = (U∗AU)∗ = U∗A∗U .
If A∗ = A, then (U−1AU)∗ = U∗A∗U = U−1AU .
If A∗ = A−1, then (U−1AU)∗ = U∗A∗U = U−1A−1U = (U−1AU)−1.
Finally, (U−1AU)(U−1AU)∗ = (U−1AU)(U−1A∗U) = U−1AA∗U , and similary,
(U−1AU)∗(U−1AU) = U−1A∗AU , so if AA∗ = A∗A, then (U−1AU)(U−1AU)∗ =
(U−1AU)∗(U−1AU).

Spectral theorem

Theorem The following are equivalent for a matrix A ∈ C
n×n.

(i) A is normal.
(ii) There is a unitary matrix U ∈ C

n×n such that U−1AU = U∗AU is diagonal.
(iii) There is an orthonormal basis in C

n consisting of eigenvectors of A.

The following two theorems are special cases of the spectral theorem.

Theorem: The following are equivalent for a matrix A ∈ C
n×n.

(i) A is self-adjoint.
(ii) There is a unitary matrix U ∈ C

n×n such that U−1AU = U∗AU is real diagonal.
(iii) Every eigenvalue of A is real and there is an orthonormal basis in C

n consisting of
eigenvectors of A.

And its version for real matrices:

Theorem: The following are equivalent for a matrix A ∈ R
n×n.

(i) A is symmetric.
(ii) There is an orthogonal matrix U ∈ R

n×n such that U−1AU = U∗AU is (real) diagonal.
(iii) There is an orthonormal basis in R

n consisting of eigenvectors of A.

Examples:
1. If A is the standard matrix of an orthogonal projection to a hyperplane, then it has an
orthonormal basis of eigenvectors (an orthonormal basis of the hyperplane together with
the normal vector of length 1), and the eigenvalues are 0 and 1, so A must be symmetric.
2. If A is the standard matrix of a projection to a plane in R

3 along a vector which is not
perpendicular to the given plane, then the eigenvector for 0 is not perpendicular to the
eigenspace for 1, so the matrix cannot be symmetric.
3. If f is the rotation of R2 about the origin by the angle α, then its standard matrix is
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orthogonal: the orthonormal basis { i, j } is mapped to an orthonormal basis. (The matrix

is A =

[

cosα − sinα
sinα cosα

]

.)


