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Definiteness of matrices

Let A ∈ R
n×n. We define 〈x,y〉A = xTAy for any vectors x,y ∈ R

n.

Proposition: 〈x,y〉A is bilinear, and if A is symmetric, then this bilinear form is also
symmetric.

Proof: It follows easily from the properties of matrix operations that

〈x+ x′,y〉A =〈x,y〉A + 〈x′,y〉A
〈x,y + y′〉A =〈x,y〉A + 〈x,y′〉A

〈x, λy〉A =λ〈x,y〉A
〈λx,y〉A =λ〈x,y〉A

.

If A is symmetric, then 〈y,x〉A = yTAx = (yTAx)T = xTATy = xTAy = 〈x,y〉, since
the transposition does not change the 1× 1 matrix yTAx.

Def. The symmetric matrix A is

positive semidefinite if 〈x,x〉A ≥ 0 ∀x
positive definite if 〈x,x〉A > 0 ∀x 6= 0

negative semidefinite if 〈x,x〉A ≤ 0 ∀x
negative definite if 〈x,x〉A < 0 ∀x 6= 0

indefinit if ∃x,y: 〈x,x〉A > 0 and 〈y,y 〉A < 0

Example: The identity matrix I defines the standard scalar product, so it is positive
definite: xT Ix = xTx = |x|2 > 0 if x 6= 0.

Proposition: Let A ∈ R
n×n be a symmetric matrix. Then the following are equivalent:

(i) A is positive semidefinite;
(ii) all the eigenvalues of A are nonnegative;
(iii) PTAP is positive semidefinite for some/every invertible P .

Proof: (i) ⇒ (ii): If v is an eigenvector with eigenvalue λ, then 0 ≤ 〈v,v〉 = vTAv =
vTλv = λ|v|2, and v|2 > 0, so λ ≥ 0.
(ii) ⇒ (i): Since A is symmetric, all its eigenvalues in C are real, and there is an orthonor-
mal basis B = {b1, . . . ,bn } in R

n consisting of eigenvectors of A. Let Abi = λibi. By
assumption, λi ≥ 0. Then for any 〈bi,bj〉A = bT

i Abj = biλjbj = λj〈bi,bj〉, which is 0 if
i 6= j, and λj otherwise, because ⌊ is orthonormal. Now any x ∈ R

n can be written in the
form x =

∑

i xibi, and then 〈x,x〉A =
∑

i,j xixj〈bi,bj〉A =
∑

i x
2
iλi ≥ 0, since λi ≥ 0 for

every i.
(i) ⇒ (iii): 〈x,x〉PTAP = xTPTAPx = (Px)TA(Px) = 〈Px, Px〉 ≥ 0 for every x.
(iii) ⇒ (i): We can apply (i) ⇒ (iii) with P−1.

Remark: A similar theorem can be proved in the same way for positive definite, negative
definite and negative semidefinite, and indefinite is just the remaining case.

Example: For A =

[

1 −1
−1 3

]

the characteristic polynomial is kA(x) = x2 − 4x+ 2, the

eigenvalues are 2±
√
2 > 0, so A is positive definite.
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The eigenvalues are not always easy to find but we can use the equivalence of (i) and
(iii) to find a nicer (actually a diagonal) matrix whose definiteness is the same as that of
the original matrix but easier to determine.

If we use elementary row operations to bring the matrix to upper triangular form and
we do the same operations on the columns, it means that we multiply the matrix from the
left with some invertible matrices and from the right with their transposed matrix. So the
new matrix will be of the form PTAP , which is still symmetric ((PTAP )T = PTATP =
PTAP ), so if it is upper triangular, it must be diagonal. The eigenvalues of a diagonal
matrix are its diagonal elements, so the definiteness of the diagonal matrix PTAP can be
determined by the signs of its diagonal elements.

Theorem: Let A ∈ R
n×n be symmetric, and D = PTAP . Then the three statements in

the rows of the following table are equivalent.

A the diagonal elements in D the eigenvalues of A

positive definite, i.e.

xTAx > 0 ∀x 6= 0
all + all +

negative definite, i.e.
x∗Ax < 0 ∀x 6= 0

all − all −

positive semidefinite, i.e.
x∗Ax ≥ 0 ∀x,

+ and possibly 0 + and possibly 0

negative semidefinite, i.e.
x∗Ax ≤ 0 ∀x,

− and possibly 0 − and possibly 0

indefinite, i.e.
∃x : x∗Ax > 0,
and ∃y : y∗Ay < 0

+ and −
and possibly 0

+ and −
and possibly 0

Pl.: 1.

A =





1 2 1
2 5 0
1 0 5





row7→ r1 − 2r1
r3 − r1





1 2 1
0 1 −2
0 −2 4





column7→





1 0 0
0 1 −2
0 −2 4





row7→

r3 + 2r2





1 0 0
0 1 −2
0 0 0





oszlop7→





1 0 0
0 1 0
0 0 0





We always performed the same operations on the columns as on the rows: after r2 7→
r2 − 2r1 and r3 7→ r3 − r1 comes c2 7→ c2 − 2c1 and c3 7→ c3 − c1, and so on.

2.

A =

[

0 1
1 0

]

row7→ r1 + r2
[

1 1
1 0

]

column7→
[

2 1
1 0

]

row7→
[

2 1
0 −1

2

]

column7→
[

2 0
0 −1

2

]

So this A is indefinite.
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Proposition: Let A ∈ R
m×n. Then (ATA)n×n is symmetric, positive semidefinite and

rankA = rankATA, which is the number of positive eigenvalues of ATA (with multiplici-
ties).

Proof (ATA)T = ATATT = ATA, so ATA is symmetric.
xTATAx = (Ax)T (Ax) ≥ 0 for every x, so ATA is positive semidefinite.
KerA = KerATA, since Ax = 0 ⇒ ATAx = AT0 = 0,
and ATAx = 0 ⇒ 0 = xTATAx = (Ax)T (Ax) = |Ax|2, so Ax = 0. Hence rankA =
n− dim(KerA) = n− dim(KerATA) = rankATA.
Finally, ATA is similar to a diagonal matrix with the eigenvalues in the diagonal (the
positive eigenvalues coming first). The rank of this diagonal matrix is the same as rankA,
and, since it is a row echelon matrix, it is the same as the number of non zero (thus
positive) eigenvalues with multiplicities.

Reduced and full singular value decomposition

Def.: The singular values of A ∈ R
m×n are σ1 ≥ · · · ≥ σr > 0, where σ2

1 ≥ . . . ≥ σ2
r > 0 are

the positive eigenvalues of A∗A with multiplicities (the number of these is r = rankA∗A =
rankA).

Def.: A matrix A ∈ R
m×n is called semiorthogonal if its columns form an orthonormal

system.

Theorem (Reduced SVD). Let A be an m × n real matrix with rank r. Then there

exist semiorthogonal matrices U ∈ R
m×r and V ∈ R

n×r such that with the diagonal matrix

Σ ∈ R
r×r whose diagonal elements are the singular values σ1 ≥ σ2 ≥ . . . ≥ σr > 0 in this

order, we have A = UΣV T . This is the reduced singular value decomposition of A.

Proof: The proof also gives an algorithm for calculating the decomposition. Let the
positive eigenvalues of ATA be λ1 ≥ λ2 ≥ . . . ≥ λr > 0, and {b1, . . . ,br } be an or-
thonormal system of eigenvectors for the given eigenvalues (such a sytem exists since ATA

is a symmetric matrix). Then V = [b1 . . .br] is a semiorthogonal matrix. Furthermore,
〈Abi, Abj〉 = bT

i A
TAbj = λjb

T
i bj = 0 if i 6= j and λi if i = j, so columns of the ma-

trix AV are also orthogonal, where the lengthes of the column vectors are σ1, . . . , σr, so
U = AV Σ−1 is a semiorthogonal matrix. Hence UΣV T = AV V T .

We only need to prove that AV V T = A. We could complete the orthonormal system
{b1, . . .br } to a basis of Rn with eigenvectors br+1, . . . , bn of ATA for the eigenvalue 0.
Let M = [b1 . . .bn] = [V |T ]. Than M is invertible, and AV V TM = [AV V TV |AV V TT ] =
[AV |0] = A[V |T ] = AM , since br+1, . . . ,bn ∈ KerATA = KerA. We can simplify with
M , and we get that AV V T = A.

Example:

Pl.: A =

[

1 2
−2 −4

]

, A∗A =

[

5 10
10 20

]

, kA∗A(x) = x2 − 25x = x(x − 25), λ1 = 25,

λ2 = 0, σ1 = 5, Σ = [5],

The eigenvector of A∗A for λ1:

[

1
2

]

, or to have an eigenvecor of length 1, it is 1√
5

[

1
2

]

.

V = 1√
5

[

1
2

]

, AV = 1√
5

[

5
−10

]

, U = AV Σ−1 = 1√
5

[

1
−2

]

.

A = UAV T = 1√
5

[

1
−2

]

· [5] · 1√
5
[ 1 2 ] .
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Theorem (Full SVD). Let A be an m × n real matrix with rank r. Then there exist

M ∈ R
n×n and M ′ ∈ R

m×m orthogonal matrice such that A = M ′Σ′MT , where Σ′ =
[

Σ 0
0 0

]

is an m×n-es block matrix, and Σ is the diagonal matrix with the singular values

σ1 ≥ . . . ≥ σr in its diagonal. This is the full singular value decomposition of A.

We can complete the U and V of the reduced SVD to orthogonal matrices: M = [V |V ′]
and M ′ = [U |U ′]. Then

M ′Σ′MT = [U U ′ ]

[

Σ 0
0 0

] [

V T

V

]

= [UΣ 0 ]

[

V T

V

]

= UΣV T = A.

Example: Find the full SVD of the matrix of the previous example. M = [V V ′ ] =

1√
5

[

1 −2
2 1

]

, and M ′ = [U U ′ ] = 1√
5

[

1 2
−2 1

]

. Then A = M ′Σ′MT = 1√
5

[

1 2
−2 1

]

·
[

5 0
0 0

]

· 1√
5

[

1 2
−2 1

]

.

Applications of the SVD

Def.: For A ∈ R
m×n, A+ is a pseudoinverse of A if AA+A = A, A+AA+ = A+, and AA+

and A+A are symmetric. The pseudoinverse always exists, and it is unique.

Theorem: If A = UΣV T a reduced SVD, then A+ = V Σ−1UT

Proof: It is easy to check the four properties of the pseudoinverse, using that V TV = Ir×r

and UTU = Ir×r.

Theorem (Best approximate solution): If A ∈ R
m×n, and A+ its pseudoinverse, then

the best approximate solution of a (possibly inconsistent) system of equation, Ax = b is
x = A+b. This means that |Ax− x| is minimal for x = A+b.

Proof: The error of the approximate solution A+b is e := AA+b − b. We want to prove
that |e| ≤ |Ax− b| for any x. First we show that e is orthogonal to ImA. For any x,

(Ax)TAA+b = xTAT (AA+)b = xTAT (AA+)Tb = xT (AA+A)Tb = xTATb = (Ax)Tb,

so 〈Ax, e〉 = (Ax)T (A(A+)b−b) = 0. (Here we used that AA+ is symmetric, and AA+A =
A. ) This implies that |Ax−b|2 = |(Ax−AA+)+e|2 = 〈A(x−A+)+e, A(x−A+)+e〉 =
〈A(x−A+), A(x−A+)〉+ 〈e, e〉 = |A(x−A+)|2 + |e|2 ≥ |e|2.
Eckart–Young theorem about low-rank approximation: Let A = UΣV T be a
reduced SVD, and d < r = rank(A). Then the best approximating matrix of rank at most
d for A is

A(d) = U (d)Σ(d)(V (d))T ,

where U (d) and V (d) consist the first d columns of U and V , respectively and Σ(d) is the
left upper d× d submatrix of Σ. Here best approximating matrix means that ||A−M || is
minimal among the matrices M with rankM ≤ d if M = A(d), and for a matrix M , the

norm of ||M || is
√

∑

i,j

m2
ij .


