Reminder before the midterm test

Concepts:

subspace and spanned subspace, linear independence, generating set, basis, dimension of a vector space, coordinate vector
linear map and transformation, their matrices in a given basis or pair of bases, similarity of matrices
image and kernel of a linear map, rank of a linear map or matrix
eigenvalue, eigenvector, eigenspace, spectrum
characteristic polynomial, minimal polynomial
Jordan block, Jordan matrix
standard scalar product in \mathbb{R}^{n} and \mathbb{C}^{n}, orthogonal and orthonormal systems
adjoint of a matrix, self-adjoint/symmetric, unitary/orthogonal and normal matrices
definiteness of a real symmetric matrix
definition of pseudoinverse by its properties
singular value, reduced and full SVD

Theorems:

- polynomial interpolation
change of bases for matrices of linear maps and transformations
Cayley-Hamilton theorem, connection between the minimal and the characteristic polynomial
minimal polynomial and eigenvalues
condition for diagonalizability by eigenvectors and by the minimal polynomial
existence and uniqueness of the Jordan normal form
connection between the Jordan normal form and the characteristic polynomial, the minimal polynomial and the dimension of the eigenspaces
eigenvalues of unitary and self-adjoint transformations
conditions for a matrix to be unitary
equivalent characterizations of normális matrices (the spectral theorem)
equivalent characterizations of self-adjoint and real symmetric matrices (corollaries of the spectral theorem)
best approximating solution of an inconsistent system of equations by using the pseudoinverse
applications of the SVD: calculating the pseudoinverse; approximation of a matrix by a low rank matrix

Algorithms, computational methods:

- finding a basis of a spanned subspace, or of the image or kernel of a linear map, calculating the rank of a matrix
- Newton interpolation
- matrix of a transformation in a given basis, transition to another basis
- spectral decomposition $\left(A=P D P^{-1}\right.$, where D is diagonal), diagonalization, calculating powers of a diagonalizable matrix
- calculating eigenvalues and eigenvectors
- operations of block matrices
- determining the Jordan normal form when the multiplicities of the eigenvalues is at most 6
- determine the invariants of the matrix from the Jordan normal form
- determining the definiteness of a symmetric matrix
- orthogonal projection of a vector on a vector in a real or complex Euclidean space
- finding the matrix of an orthogonal projection or reflection on a hyperplane in a real or complex Euclidean space
- calculating the reduced or full SVD of a real matrix
- calculating the pseudoinverse by SVD
- best approximating solution of an inconsistent system of equations
- low rank approximation of matrices by SVD

